
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PSFORMER: PARAMETER-EFFICIENT TRANSFORMER
WITH SEGMENT ATTENTION FOR TIME SERIES FORE-
CASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Time series forecasting remains a critical challenge across various domains, often
complicated by high-dimensional data and long-term dependencies. This paper
presents a novel transformer architecture for time series forecasting, incorporat-
ing two key innovations: parameter sharing (PS) and Spatial-Temporal Segment
Attention (SegAtt). We also define the time series segment as the concatena-
tion of sequence patches from the same positions across different variables. The
proposed model, PSformer, reduces the number of training parameters through
the parameter sharing mechanism, thereby improving model efficiency and scal-
ability. The introduction of SegAtt could enhance the capability of capturing lo-
cal spatio-temporal dependencies by computing attention over the segments, and
improve global representation by integrating information across segments. The
combination of parameter sharing and SegAtt significantly improves the forecast-
ing performance. Extensive experiments on benchmark datasets demonstrate that
PSformer outperforms popular baselines and other transformer-based approaches
in terms of accuracy and scalability, establishing itself as an accurate and scalable
tool for time series forecasting.

1 INTRODUCTION

Time series forecasting is an important learning task with significant application values in a wide
range of domains, including the weather prediction (Ren et al., 2021; Chen et al., 2023a), traffic
flow (Tedjopurnomo et al., 2020; Khan et al., 2023), energy consumption (Liu et al., 2020; Nti et al.,
2020), anomaly detection (Zamanzadeh Darban et al., 2022) and the financial analysis (Nazareth &
Ramana Reddy, 2023), etc. With the advancement of artificial intelligence techniques, significant
efforts have been devoted to developing innovative models that continue to improve the prediction
performance (Liang et al., 2024; Wang et al., 2024b). In particular, the transformer-based model
family has recently attracted more attention for its proved success in nature language processing
(OpenAI et al., 2024) and computer vision (Liu et al., 2021; Dosovitskiy et al., 2021). Moreover,
pre-trained large models based on the transformer architecture have shown advantages in time series
forecasting(Liu et al., 2024a; Jin et al., 2024; Chang et al., 2023; Woo et al., 2024), demonstrating
that increasing the amount of parameters in transformer models and the volume of training data can
effectively enhance the model capability.
On the other side, many simple linear models (Zeng et al., 2023; Li et al., 2023) also shown competi-
tive performance compared to the more complex designs of transformer-based models. One possible
key reason for their success in time series forecasting is that they have low model complexities and
are less likely to overfit on noisy or irrelevant signals. As a result, even with limited data, these
models can effectively capture robust information representations. To overcome the limitations of
modeling long-term dependencies and capturing complex temporal relationships, PatchTST (Nie
et al., 2023) process temporal information by combining patching techniques to extract local seman-
tic information, leading to superior performance. However, it applies channel-independent designs
and leaves the significant potential for improvement in effectively modeling across variables. More-
over, the unique challenges of modeling multivariate time series data, where the temporal and spatial
dimensions differ significantly from other data types, present many unexplored opportunities. While
past research (donghao & wang xue, 2024; Zhang & Yan, 2023; Ilbert et al., 2024) has largely treated
these dimensions separately, the question of whether systematically mixing temporal and spatial in-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

formation can further enhance model performance remains an open area for future investigation.

To reduce the model complexity in deep learning, parameter sharing (PS) is a crucial technique
that can significantly reduce the amount model parameters and enhance computational efficiency.
In CNNs, convolutional filters share weights across spatial locations, capturing local features with
fewer parameters. Similarly, LSTM networks share weight matrices across time steps to manage
memory and control information flow. By studying the sharing of attention weights, (Xiao et al.,
2019; Kitaev et al., 2020) improved performance in the fields of natural language processing and
computer vision. ALBERT (Lan et al., 2020) further extends parameter sharing in natural language
processing by sharing weights across transformer layers, reducing parameter redundancy while
maintaining performance. In multi-task learning, the Task Adaptive Parameter Sharing (TAPS)
approach (Wallingford et al., 2022) selectively fine-tunes task-specific layers while maximizing pa-
rameter sharing across tasks, achieving efficient learning with minimal task-specific modifications.
Those studies demonstrate that parameter sharing has the potential for model size reduction, gen-
eralization ability enhancement and mitigating the over-fitting risks across various tasks. Besides,
employing advanced optimization technique is also essential in reducing the overfitting issue. (Il-
bert et al., 2024) proposed a simple yet effective transformer-based network structure and equipped
it with the SAM (Sharpness-Aware Minimization) optimization mechanism to achieve competitive
performance compared with large models (Foret et al., 2021).
In this work, we explore innovative designs of transformer-based model for time series forecasting
by incorporating the characteristics of time series tasks and the concept of parameter sharing. Un-
like MOIRAI (Woo et al., 2024) that “flattens” multivariate time series by treating all variables as
a single sequence, or SAMformer (Ilbert et al., 2024) that applies attention to the channel dimen-
sion to capture spatial dependencies, we propose a different and novel approach. We construct a
transformer encoder with two-stage segment attention structure, where each network layer consists
of a parameter-sharing block. This parameter-sharing block is composed of three fully connected
layers with residual connections, which keeps the overall number of parameters in the model very
small while enabling effective information sharing across different parts of the model. For segment
attention, we use patching to divide the variables into different patches, then identify the patches
at the same position across different variables and merge them into a segment. As a result, each
segment represents the spatial extension of a single-variable patch. In this way, we decompose the
multivariate time series into multiple segments. Attention is applied within each segment to enhance
the extraction of local spatial-temporal relationships, while information fusion across segments is
performed to improve the overall predictive performance. Additionally, by incorporating the SAM
optimization method, we further reduce over-fitting while maintaining efficient training. We con-
duct extensive experiments on long-term time series forecasting datasets to verify the effectiveness
of this segment attention structure with parameter sharing. Our model remains competitive when
compared to previous state-of-the-art models, achieving the best performance on 7 out of 8 main-
stream long-term time series forecasting tasks. The contributions are summarized as follows:

• We developed a novel transformer-based model structure for time series forecasting, where
the parameter sharing technique is applied in the transformer block to reduce the model
complexity and improve the generalization ability.

• We proposed a segment attention mechanism tailored for multi-variate data, which merges
the temporal sequence of different channels to form a local segment and applies attention
within each segment to capture both temporal dependencies and cross-channel interactions.

• Through extensive experiments in long-term forecasting tasks and ablation studies, we ver-
ified the effectiveness and superior performance of our proposed framework.

2 RELATED WORK

2.1 TEMPORAL MODELING IN TIME SERIES FORECASTING

In recent years, time series analysis has received widespread attention, with more deep learning
methods being applied to time series forecasting. These deep learning methods focus on estab-
lishing temporal dependencies within time series data to predict future trends. The models can be
broadly categorized into RNN-based, CNN-based, MLP-based, and Transformer-based approaches.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

RNNs and their LSTM variants were widely used for time series tasks in the past, with related
works such as DeepAR(Salinas et al., 2020). CNN-based methods like TCN (Bai et al., 2018) and
TimesNet (Wu et al., 2023) have been designed to adapt convolutional structures specifically for
temporal modeling. MLP-based approaches, such as N-BEATS (Oreshkin et al., 2020), RLinear
(Li et al., 2023), and TSMixer (Chen et al., 2023b), have demonstrated that even simple network
structures can achieve solid predictive performance. Moreover, Transformer-based models have
become increasingly popular in time series forecasting due to the unique attention mechanism of
Transformers, which provides strong global modeling capabilities. Many recent works leverage this
to enhance time series modeling performance, such as Informer (Zhou et al., 2021), Autoformer
(Wu et al., 2021), Pyraformer (Liu et al., 2022), and Fedformer (Zhou et al., 2022). Additionally,
PatchTST (Nie et al., 2023) further divides time series data into different patches to enhance the abil-
ity to capture local information. However, the aforementioned models primarily focus on temporal
modeling, with less emphasis on modeling the relationships between variables. Although PatchTST
attempted to incorporate cross-channel designs, it observed degraded performance in their model.

On the other hand, some pre-trained large models have been applied to time series forecasting tasks
(Das et al., 2023; Liu et al., 2024a; Gao et al., 2024; Liu et al., 2024c; Zhou et al., 2023; Jin et al.,
2024). For example, MOMENT (Goswami et al., 2024) uses the patching method and mask pre-
training to build a pre-trained model for time series, while GPT4TS (Zhou et al., 2023) also adopts
the patching method and uses GPT2 as the backbone. The increase in model parameters has provided
them with greater expressive power but also increased the difficulty of training.

2.2 VARIATE MODELING IN TIME SERIES FORECASTING

In addition to modeling temporal dependencies, recent works have focused on modeling inter-
variable dependencies (donghao & wang xue, 2024; Zhang & Yan, 2023; Ilbert et al., 2024; Woo
et al., 2024; Liu et al., 2024b). ModernTCN (donghao & wang xue, 2024) employs different 1-D
convolutions to capture the temporal and variable dimensions separately; Crossformer (Zhang &
Yan, 2023) constructs attention mechanisms across both time and spatial dimensions; SAMformer
(Ilbert et al., 2024) applies attention to the variable dimension to model cross-channel dependen-
cies; MORAI (Woo et al., 2024) ”flattens” multivariate time series into univariate sequences to
merge information across variables; iTransformer (Liu et al., 2024b) represents multivariate time se-
ries and captures global dependencies. All of these works emphasize the simultaneous modeling of
both variable and temporal dependencies as critical directions for improving multivariate time series
modeling, which helps establish global spatial-temporal dependencies. However, this may weaken
the ability to capture local spatial-temporal dependencies. Additionally, expanding the global recep-
tive field of spatio-temporal dependencies could increase model complexity, which in turn may lead
to overfitting due to the larger number of parameters. Our work addresses these issues and proposes
solutions to mitigate them.

Figure 1: Data transformation in PSformer. Multivariate time series data first undergo patching and
cross-channel merging before being fed into the PSformer Encoder. Then after inverse transforma-
tion and linear mapping for the prediction length, the final time series results are obtained.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: PSformer network structure. The PSformer includes the PS Block for parameter sharing
within the PS Encoder structure, as well as the two-stage segment attention.

3 THE PSFORMER FRAMEWORK

3.1 PROBLEM FORMULATION

We denote the input multivariate time series X ∈ RM×L as with M variables and look-back window
L : (x1, x2, ..., xL), where xt represents the M -dimensional vector at time step t. L will be equally
divided into N non-overlapping patches of size P . P (i) denote the i-th patch with size P , where
i = 1, 2, 3, ..., N . The P (i) of the M variables forms the i-th segment, which denote cross-channel
patch of length C, where C = M × P . As shown in Figure 1, we transform X from X ∈ RM×L to
X ∈ RC×N before feeding it into the model. We aim to predict the future values of F time steps,
e.g., (xL+1, ..., xL+F). Beside, we denote Xin and Xout as the input and output signals for the
specified layers.

3.2 MODEL STRUCTURE

The PSformer model we constructed is depicted in Figure 2. The key components of the model
include the PSformer Encoder, segment attention, and PS Block. The PSformer Encoder serves as
the backbone of the model and contains both the segment attention and the PS Block. The PS Block
provides the parameters for all layers within the Encoder, utilizing the parameter sharing technique.

Forward Process The univariate time series of length L for the i-th variable, starting at time index
1, is denoted as x

(i)
1 = (x

(i)
1 , ..., x

(i)
L), where i = 1, ...,M . Then the input (x1, ..., xL) with M

dimensions is presented as x1 ∈ RM×L, and x1 is used as the input to the transformer network
structure. Similar to other time series forecasting methods, we use a RevIN layer Kim et al. (2022),
which is added at both the input and output of the model.

Spatial-Temporal Segment Attention

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We introduce spatial-temporal segment attention (SegAtt), which merges patches from different
channels at the same position into a segment and establishes spatial-temporal relationships across
different segments. Specifically, the input time series X ∈ RM×L is first divided into patches, where
L = P × N , and then transformed into X ∈ R(M×P)×N . By merging the M and P dimensions,
the input becomes X ∈ RC×N , where C = M × P , facilitating the subsequent cross-channel
information fusion.

In this transformed space, identical Q ∈ RC×N , K ∈ RC×N , and V ∈ RC×N matrices are
generated by applying a shared block’s non-linear projection (applied by Parameter Shared Block),
with weights WQ ∈ RN×N and WK ∈ RN×N used to project the input Xin ∈ RC×N . The
Q and K matrices are then multiplied using a dot-product operation to form the attention matrix
QKT ∈ RC×C , which captures relationships between different spatial-temporal segments (in the
C dimension) and is used to act on the V matrix. While the computation of Q, K and V involves
non-linear transformations of the input Xin across segments in the N dimension (corresponding to
the dmodel dimension of attention in the NLP domain), the scaled dot-product attention primarily
applies attention across the C dimension, allowing the model to focus on dependencies between
spatial-temporal segments across channels and time.

This mechanism ensures that information from different segments is integrated through the com-
putation of Q, K, and V . It also captures local spatial-temporal dependencies within individual
segments by applying attention to the internal structure of each segment. Additionally, it captures
long-term dependencies across segments over larger time steps. The final output is Xout ∈ RC×N ,
completing the attention process.

Parameter Shared Block In our work, we propose a novel Parameter Shared Block (PS Block),
which consists of three fully connected layers with residual connections, as illustrated in Figure 2.
Specifically, we construct three trainable linear mappings W (j) ∈ RN×N with j ∈ {1, 2, 3}. The
output of the first two layers is computed as:

Xout = GeLU(XinW (1))W (2) +Xin, (1)

which follows a similar structure as the feed-forward network (FFN) with residual connections. This
intermediate output Xout is then used as the input for the third transformation, yielding:

Xout = XinW (3).

Therefore, the PS Block as a whole can be expressed as:

Xout = (GeLU(XinW (1))W (2) +Xin)W (3), (2)

and we denote PS Block output as Xout = XinW S , where WS ∈ RN×N and Xout ∈ RC×N . The
structure of the PS Block allows it to perform nonlinear transformations while preserving a linear
transformation path. Although the three layers within the PS Block have different parameters, the
entire PS Block is reused across different positions in the PSformer Encoder, ensuring that the same
block parameters W S are shared across those positions, as illustrated in Figure 2. Specifically, PS
Block share parameters across three parts of each PSformer Encoder, which including two segment
attention layer and the final PS Block. In the segment attention layer, the PS block outputs are used
as the Q, K, and V matrices to construct the attention mechanism. This parameter-sharing strategy
reduces the overall number of parameters while maintaining the network’s expressive capacity.

PSformer Encoder In the PSformer Encoder, as Figure 2, each layer shares the same parameters
W S of PS Block. For the input Xin, the transformation in the PSformer Encoder can be expressed
as follows:

SegAtt stage one is represented as: Q(1) = XinW S , K(1) = XinW S , V (1) = XinW S ,
Therefore, Q(1), K(1), V (1) ∈ RC×N . Dot-product attention operation

O(1) = Attention(1)(Q(1),K(1),V (1)) = Softmax(
Q(1)K(1)

√
dk

)V (1).

then with ReLU activation:O(1)
act = ReLU(O(1)) .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

SegAtt stage two is represented as: Q(2) = O
(1)
actW

S , K(2) = O
(1)
actW

S , V (2) = O
(1)
actW

S ,
Therefore, Q(2), K(2), V (2) ∈ RC×N . Dot-product attention operation

O(2) = Attention(2)(Q(2),K(2),V (2)) = Softmax(
Q(2)K(2)

√
dk

)V (2).

The two-stage SegAtt mechanism can be viewed as analogous to an FFN layer, where the MLP is
replaced with attention operations. Additionally, residual connections are introduced between the
input and output, and the result is then fed into the final PS Block.

The transformation in the final PS Block is represented as Oout = OinW S . Therefore, the entire
encoder can be expressed as

Xout = (Attention(2)(ReLU(Attention(1)(Xin))) +Xin)W S ,

with Xout ∈ RC×N . Then we apply a dimensionality transformation to obtain Xout ∈ RM×L,
since C = M × P and L = P ×N .

After passing through n layers of the PSformer Encoder, the final output is Xpred = XoutW F ,
where Xpred ∈ RM×F , and W F ∈ RL×F is a linear mapping, where F is the prediction length.
The Xpred is the final output of the PSformer model. The PSformer structure does not use positional
encoding, as the segment attention mixes local spatiotemporal information. We discuss this in more
detail in Appendix A.6 and Appendix B.8.

4 EXPERIMENT

Datasets In this paper, we focus on the long-term time series forecasting. We follow the time series
forecasting work in Ilbert et al. (2024) and use 8 mainstream datasets to evaluate the performance of
our proposed PSformer model. As shown in Table 1, these datasets include 4 ETT datasets (ETTh1,
ETTh2, ETTm1, ETTm2), as well as Weather, Traffic, Electricity, and Exchange. These datasets
have been used as benchmark evaluations in many previous time series forecasting studies.

Baselines We select state-of-the-art (SOTA) models in the field of long-term time series forecast-
ing, including not only Transformer-based models but also large models and other SOTA mod-
els. Specifically, baselines include (1) Transformer-based model: SAMformer (Ilbert et al., 2024),
iTransformer (Liu et al., 2024b), PatchTST (Nie et al., 2023), FEDformer (Zhou et al., 2022), Auto-
former (Wu et al., 2021), (2) Pretrained Large model: MOMENT (Goswami et al., 2024), GPT4TS
(Zhou et al., 2023), (3) TCN-based model: ModernTCN (donghao & wang xue, 2024) and (4) MLP-
based methods: TSMixer (Chen et al., 2023b), RLinear (Li et al., 2023). Additionally, we provide
more baselines for a comprehensive comparison, including TimeMixer (Wang et al., 2024a), Cross-
GNN (Huang et al., 2023), MICN (Wang et al., 2023), TimesNet (Wu et al., 2023), FITS (Xu et al.,
2024), Crossformer (Zhang & Yan, 2023), PDF (Dai et al., 2024), and TimeLLM (Jin et al., 2024)
Further details about these baselines can be found in Appendix B.9.

Experimental Settings The input time series length T is set to 512, and four different prediction
lengths H ∈ {96, 192, 336, 720} are used. Evaluation metrics include Mean Squared Error (MSE)
and Mean Absolute Error (MAE). We train our constructed models using the SAM optimization
technique as in Ilbert et al. (2024).We set the look-back window of RevIN to 16 for the Exchange
dataset, more details about this setting can be found in Appendix B.7. We collect baseline results of
SAMformer, TSMixer, FEDformer and Autoformer from Ilbert et al. (2024), in which SAMformer

Table 1: Datasets for long-term forecasting. Dataset size is structured as (Train, Validation, Test).

Dataset Variate Predict Length Frequency Dataset Size Information

ETTh1,ETTh2 7 {96,192,336,720} Hourly (8545, 2881, 2881) Electricity
ETTm1,ETTm2 7 {96,192,336,720} 10 mins (34465, 11521, 11521) Electricity

Weather 21 {96,192,336,720} 15 mins (36792, 5271, 10540) Weather
Electricity 321 {96,192,336,720} Hourly (18317, 2633, 5261) Electricity
Exchange 8 {96,192,336,720} Daily (5120, 665, 1422) Exchange rate

Traffic 862 {96,192,336,720} Hourly (12185, 1757, 3509) Transportation

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Long-term forecasting task. All the results are averaged from 4 different prediction lengths
{96, 192, 336, 720}. A lower MSE or MAE indicates a better performance. See Table B.2 in
Appendix for the full results with more baselines.

Metric PSformer SAMformer TSMixer PatchTST MOMENT ModernTCN FEDformer GPT4TS Autoformer RLinear iTransformer

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.397 0.418 0.410 0.424 0.420 0.431 0.468 0.455 0.418 0.436 0.421 0.432 0.428 0.454 0.428 0.426 0.473 0.477 0.446 0.434 0.454 0.448

ETTh2 0.338 0.390 0.344 0.391 0.354 0.400 0.387 0.407 0.352 0.394 0.343 0.393 0.388 0.434 0.355 0.395 0.422 0.443 0.374 0.398 0.383 0.407

ETTm1 0.342 0.372 0.373 0.388 0.378 0.392 0.387 0.400 0.344 0.379 0.361 0.384 0.382 0.422 0.351 0.383 0.515 0.493 0.414 0.407 0.407 0.410

ETTm2 0.251 0.313 0.269 0.327 0.283 0.339 0.281 0.326 0.259 0.318 0.262 0.322 0.292 0.343 0.267 0.326 0.310 0.357 0.286 0.327 0.288 0.332

Weather 0.225 0.264 0.261 0.293 0.255 0.289 0.259 0.281 0.228 0.270 0.237 0.274 0.310 0.357 0.237 0.271 0.335 0.379 0.272 0.291 0.258 0.278

Electricity 0.162 0.255 0.181 0.275 0.198 0.296 0.205 0.290 0.165 0.260 0.160 0.255 0.207 0.321 0.167 0.263 0.214 0.327 0.219 0.298 0.178 0.270

Exchange 0.358 0.399 0.445 0.470 0.532 0.523 0.367 0.404 0.437 0.446 0.555 0.536 0.478 0.477 0.371 0.409 0.613 0.539 0.378 0.417 0.360 0.403

Traffic 0.400 0.274 0.425 0.297 0.439 0.315 0.481 0.304 0.415 0.293 0.414 0.283 0.604 0.372 0.414 0.295 0.617 0.384 0.626 0.378 0.428 0.282

Count 7 8 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1

and TSMixer are also trained with SAM, and the results of iTransformer, RLinear and PatchTST
from Liu et al. (2024b). We test ModernTCN with the fixed input length of 512 following donghao
& wang xue (2024). For the pre-trained large models MOMENT and GPT4TS, the results are
collected from (Goswami et al., 2024). More details about the baseline settings can be found in
Appendix A.2. Besides, We also provide results under uni-variate series and unrelated variate in the
Appendix B.6.

4.1 RESULTS AND ANALYSIS

Summary of Experimental Results The main experimental results are reported in Table 2. PS-
former achieved the best performance on 7 out of 8 major datasets in long-term time series fore-
casting tasks, demonstrating its strong predictive capabilities across various time series prediction
problems. This success is attributed to its segment attention mechanism, which enhances the ex-
traction of spatial-temporal information, and the parameter-sharing structure, which improves the
model’s robustness. The complete experimental results are in Appendix B.2. We also provide addi-
tional visualization results to analyze the attention maps across spatial and temporal dimensions in
the Appendix B.5.

Comparison with Other SOTA models Compared to other Transformer-based models, PSformer
demonstrates higher predictive accuracy, reflecting the effectiveness of dividing multivariate time
series data into spatial-temporal segments for attention calculation. The neural network’s ability
to extract information from all spatial-temporal segments enhances the prediction performance. In
contrast to current large pre-trained models, PSformer not only achieves better accuracy but also
reduces the amount of parameters through parameter sharing. Although linear models are simpler
and have fewer parameters with satisfactory performance in some cases, the ability to extract rich
information from complex data is limited. In contrast, PSformer integrates the residual connections,
thus enabling a linear path while retaining the capability to process complex nonlinear information.
Moreover, the ConvFFN component in ModernTCN tailored for temporal data also confirms that the
convolutional mechanism, which actually embodies the idea of parameter sharing, is also effective
in the time series domain. With the same spirit, we have successfully applied the parameter sharing
to the transformer-based models in the time series field and achieved superior performance.

Comparison with PatchTST and SAMformer PatchTST employs a channel-independent design
and divides time series data into multiple patches, which demonstrates the effectiveness of the patch-
ing method in time series processing. However, its channel-independent approach does not fully
consider the relationships between different channels, focusing only on processing each channel
individually. On the other hand, SAMformer applies attention directly to the channel dimension
via dimension transformations and utilizes a simplified model structure, achieving good predic-
tive performance. However, it may fail to capture valuable local information without the patching
method. PSformer combines the advantages of both models while addressing their limitations. By
using spatial-temporal segment attention mechanism, PSformer effectively captures local temporal
information and handles relationships among different channels. This design enables PSformer to
outperform them in various time series forecasting tasks as validated by extensive experiments.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: The MSE results of different number of segments (N) on the ETTh1 and ETTm1 dataset.

Num. of segments ETTh1 ETTm1
96 192 336 720 96 192 336 720

8 0.362 0.406 0.670 0.451 0.290 0.325 0.357 0.412
16 0.352 0.417 0.424 0.446 0.285 0.323 0.353 0.412
32 0.352 0.386 0.410 0.440 0.282 0.321 0.352 0.413
64 0.354 0.389 0.412 0.446 0.288 0.325 0.355 0.417

4.2 ABLATION STUDIES

The Effect of segments Numbers Since PSformer employs a non-overlapping patching to construct
segments, the model’s performance is affected by the number of segments. Therefore, we tested the
model’s performance with different segment numbers on two datasets, ETTh1 and ETTm1. Given
that the input sequence length is fixed at 512, the number of segments must be a divisor of the
sequence length. Consequently, we set the number of segments to 8, 16, 32, and 64, and test the
model on four different forecasting horizons. The test results are shown in Table 3, which indicate
that the number of segments impacts the model’s prediction accuracy to some extent. Across both
datasets, a moderate number of segments (such as 32) tends to perform the best, particularly for
both short and long forecasting horizons. For shorter horizons (96, 192), using 16 or 32 segments
generally yields the lowest MSE, while fewer segments (8) often result in poorer performance. As
the horizon increases (336, 720), 32 segments consistently lead to optimal results, indicating that
this number balances the extraction of both local and global temporal features effectively. Besides,
we provide results and analysis about the impact of the segment number across more datasets in the
Appendix B.13.

The Effect of PSformer Encoder Numbers Since PSformer adopts the segment attention mecha-
nism, with non-shared PS Block parameters across different Encoders (shared within Encoder), we
tested the impact of varying the number of encoders on model performance. We conducted tests
on the ETTh1 and ETTm1 datasets, varying the number of encoders from 1 to 4 with four differ-
ent forecasting horizons. The experimental results are shown in Table 4. The results indicate that
ETTm1 performs best with 3 encoders, while ETTh1 achieves better performance with just 1 en-
coder. This may suggest that for smaller datasets, fewer encoders result in better performance, as
reducing the number of encoders decreases the amount of model parameters, thereby mitigating the
risk of over-fitting.

Table 4: The MSE results of different number of encoders on the ETTh1 and ETTm1 dataset.

Num. of Encoders ETTh1 ETTm1
96 192 336 720 96 192 336 720

1 0.352 0.385 0.411 0.440 0.288 0.324 0.356 0.414
2 0.355 0.392 0.418 0.443 0.284 0.323 0.356 0.415
3 0.355 0.391 0.416 0.443 0.282 0.321 0.352 0.413
4 0.355 0.389 0.416 0.440 0.282 0.321 0.353 0.416

Ablation of Parameter Sharing methods We investigate the impact of parameter-sharing mecha-
nism on the model performance. In addition to the default parameter-sharing approach, which shares
parameters only within encoder (In-Encoder), we also test the following approaches: a. no pa-
rameter sharing, i.e., None; b. sharing parameters only across encoders (with different parameters
used for the PS blocks within each encoder), i.e., Cross-Encoders; and c. sharing parameters
both within and across encoders, i.e., ALL. We conducted experiments on the ETTm1 and Weather
datasets, and the results are shown in Table 5. As can be seen, the In-Encoder method per-
forms the best, followed by ALL, while None shows the worst performance. This indicates that the
parameter-sharing mechanism contributes to improving the model performance. Furthermore, we
provide a comparison of convergence rates between parameter sharing and non-parameter sharing
in Appendix B.10, as well as a comparison of parameter savings achieved by parameter sharing in
Appendix B.11 and Appendix A.4.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Parameter Sharing with different methods

Sharing Methods Cross-Encoders In-Encoder ALL None

ETTm1

96 0.297 0.282 0.288 0.295
196 0.329 0.321 0.326 0.338
336 0.360 0.352 0.358 0.372
720 0.420 0.413 0.414 0.425

Weather

96 0.158 0.149 0.151 0.154
196 0.201 0.193 0.196 0.198
336 0.252 0.245 0.245 0.245
720 0.319 0.314 0.316 0.319

Table 6: Ablation analysis of SegAtt on ETTh1 and ETTh2 (MSE reported). Red: the best.

Variant ETTh1 ETTh2
96 192 336 720 96 192 336 720

w SegAtt (Default) 0.352 0.385 0.411 0.440 0.272 0.335 0.356 0.389

w/o SegAtt 0.369 0.397 0.414 0.448 0.288 0.365 0.373 0.398

w channel independent 0.376 0.407 0.427 0.455 0.285 0.382 0.369 0.395

only mlp 0.379 0.399 0.426 0.450 0.282 0.352 0.358 0.398

Ablation of Segment Attention methods As an important component of PSformer, we designed
segment attention to effectively capture temporal information while fully utilizing the correlations
between channels. In the ablation study, we compared different attention mechanisms without using
SegAtt under parameter sharing, as well as the performance of using only MLP. We conducted
experiments on the ETTh1 and ETTh2 datasets. In this study, w/o SegAtt means applying the
attention mechanism to the input x ∈ RB×M×L on the M × L dimensions. For the setting with
channel independence’ applies the attention mechanism on the N × P dimensions. The results
in Table 6 show the performance of PSformer variants with different attention mechanisms on the
ETTh1 and ETTh2 datasets across various forecasting horizons:

• The default PSformer configuration (with SegAtt) consistently achieves the lowest MSE across all
horizons, demonstrating the effectiveness of segment attention.

• When SegAtt is removed, the cross-channel attention is less effective at capturing both local and
global temporal dependencies, resulting in slightly increased MSE .

• The variant with channel-independent attention shows further degradation, suggesting that ne-
glecting inter-channel correlations impacts the model’s ability to capture temporal features.

• Using only MLP layers also results in higher MSE. Although it performs second best for the
three forecasting horizons on ETTh2, it still falls short compared to the performance with SegAtt,
highlighting the necessity of applying SegAtt.

5 CONCLUSION AND FUTURE WORK

In this work, we proposed the PSformer model for multivariate time series forecasting, which lever-
ages segment attention technique to facilitate information transfer among time series variables and
capture spatial-temporal dependencies. By employing parameter sharing, the model effectively
improves parameter efficiency and reduces the risk of overfitting when the data size is relatively
limited. This network structure, which combines parameter sharing with segment attention mecha-
nism, achieves state-of-the-art performance on long-term multivariate forecasting tasks by enhanc-
ing model parameter efficiency and improving the utilization of channel-wise information. Future
work can focus on applying this parameter sharing and segment attention technique to the develop-
ment of pre-trained large models for time series forecasting, to overcome the issue of excessively
large parameter counts in existing pre-trained models, and improve the capability of extracting in-
formation from multivariate time series. Additionally, exploring model architecture designs with
parameter sharing to improve prediction performance still holds potential value.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Ching Chang, Wen-Chih Peng, and Tien-Fu Chen. LLM4TS: Aligning pre-trained llms as data-
efficient time-series forecasters. arXiv preprint arXiv:2308.08469, 2023.

Liuyi Chen, Bocheng Han, Xuesong Wang, Jiazhen Zhao, Wenke Yang, and Zhengyi Yang. Machine
learning methods in weather and climate applications: A survey. Applied Sciences, 13(21), 2023a.
ISSN 2076-3417. doi: 10.3390/app132112019.

Si-An Chen, Chun-Liang Li, Sercan O Arik, Nathanael Christian Yoder, and Tomas Pfister.
TSMixer: An all-MLP architecture for time series forecast-ing. Transactions on Machine Learn-
ing Research, 2023b. ISSN 2835-8856. URL https://openreview.net/forum?id=
wbpxTuXgm0.

Tao Dai, Beiliang Wu, Peiyuan Liu, Naiqi Li, Jigang Bao, Yong Jiang, and Shu-Tao Xia. Periodicity
decoupling framework for long-term series forecasting. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
dp27P5HBBt.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. arXiv preprint arXiv:2310.10688, 2023.

Luo donghao and wang xue. ModernTCN: A modern pure convolution structure for general time
series analysis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=vpJMJerXHU.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/forum?id=6Tm1mposlrM.

Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis, and
Marinka Zitnik. UniTS: Building a unified time series model. arXiv preprint arXiv:2403.00131,
2024.

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
MOMENT: A family of open time-series foundation models. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
FVvf69a5rx.

Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, and Yang
Wang. CrossGNN: Confronting noisy multivariate time series via cross interaction refinement.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=xOzlW2vUYc.

Romain Ilbert, Ambroise Odonnat, Vasilii Feofanov, Aladin Virmaux, Giuseppe Paolo, Themis Pal-
panas, and Ievgen Redko. SAMformer: Unlocking the potential of transformers in time series
forecasting with sharpness-aware minimization and channel-wise attention. In Forty-first Interna-
tional Conference on Machine Learning, 2024. URL https://openreview.net/forum?
id=8kLzL5QBh2.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time series forecasting
by reprogramming large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Unb5CVPtae.

10

https://openreview.net/forum?id=wbpxTuXgm0
https://openreview.net/forum?id=wbpxTuXgm0
https://openreview.net/forum?id=dp27P5HBBt
https://openreview.net/forum?id=dp27P5HBBt
https://openreview.net/forum?id=vpJMJerXHU
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=6Tm1mposlrM
https://openreview.net/forum?id=FVvf69a5rx
https://openreview.net/forum?id=FVvf69a5rx
https://openreview.net/forum?id=xOzlW2vUYc
https://openreview.net/forum?id=xOzlW2vUYc
https://openreview.net/forum?id=8kLzL5QBh2
https://openreview.net/forum?id=8kLzL5QBh2
https://openreview.net/forum?id=Unb5CVPtae

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Anwar Khan, Mostafa M Fouda, Dinh-Thuan Do, Abdulaziz Almaleh, and Atiq Ur Rahman. Short-
term traffic prediction using deep learning long short-term memory: Taxonomy, applications,
challenges, and future trends. IEEE Access, 11:94371–94391, 2023.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=cGDAkQo1C0p.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=rkgNKkHtvB.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=H1eA7AEtvS.

Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
investigation on linear mapping, 2023. URL https://arxiv.org/abs/2305.10721.

Yuxuan Liang, Haomin Wen, Yuqi Nie, Yushan Jiang, Ming Jin, Dongjin Song, Shirui Pan, and
Qingsong Wen. Foundation models for time series analysis: A tutorial and survey. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 6555–
6565, 2024.

Che Liu, Bo Sun, Chenghui Zhang, and Fan Li. A hybrid prediction model for residential electricity
consumption using holt-winters and extreme learning machine. Applied Energy, 275:115383,
2020. ISSN 0306-2619.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=0EXmFzUn5I.

Xu Liu, Junfeng Hu, Yuan Li, Shizhe Diao, Yuxuan Liang, Bryan Hooi, and Roger Zimmermann.
UniTime: A language-empowered unified model for cross-domain time series forecasting. In
Proceedings of the ACM on Web Conference 2024, pp. 4095–4106, 2024a.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
iTransformer: Inverted transformers are effective for time series forecasting. In The Twelfth In-
ternational Conference on Learning Representations, 2024b. URL https://openreview.
net/forum?id=JePfAI8fah.

Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long.
Timer: Transformers for time series analysis at scale. arXiv preprint arXiv:2402.02368, 2024c.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10012–10022, October
2021.

Noella Nazareth and Yeruva Venkata Ramana Reddy. Financial applications of machine learning:
A literature review. Expert Systems with Applications, 219:119640, 2023. ISSN 0957-4174.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In International Conference on Learning
Representations, 2023.

Isaac Kofi Nti, Moses Teimeh, Owusu Nyarko-Boateng, and Adebayo Felix Adekoya. Electricity
load forecasting: a systematic review. Journal of Electrical Systems and Information Technology,
7:1–19, 2020.

11

https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://arxiv.org/abs/2305.10721
https://openreview.net/forum?id=0EXmFzUn5I
https://openreview.net/forum?id=0EXmFzUn5I
https://openreview.net/forum?id=JePfAI8fah
https://openreview.net/forum?id=JePfAI8fah

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, and Diogo Almeida. Gpt-4 technical report, 2024.

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis ex-
pansion analysis for interpretable time series forecasting. In International Conference on Learn-
ing Representations, 2020. URL https://openreview.net/forum?id=r1ecqn4YwB.

Xiaoli Ren, Xiaoyong Li, Kaijun Ren, Junqiang Song, Zichen Xu, Kefeng Deng, and Xiang Wang.
Deep learning-based weather prediction: A survey. Big Data Research, 23:100178, 2021. ISSN
2214-5796. doi: https://doi.org/10.1016/j.bdr.2020.100178.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic fore-
casting with autoregressive recurrent networks. International journal of forecasting, 36(3):1181–
1191, 2020.

David Alexander Tedjopurnomo, Zhifeng Bao, Baihua Zheng, Farhana Murtaza Choudhury, and
Alex Kai Qin. A survey on modern deep neural network for traffic prediction: Trends, meth-
ods and challenges. IEEE Transactions on Knowledge and Data Engineering, 34(4):1544–1561,
2020.

Matthew Wallingford, Hao Li, Alessandro Achille, Avinash Ravichandran, Charless Fowlkes, Rahul
Bhotika, and Stefano Soatto. Task adaptive parameter sharing for multi-task learning. In 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7551–7560,
2022. doi: 10.1109/CVPR52688.2022.00741.

Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. MICN: Multi-
scale local and global context modeling for long-term series forecasting. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=zt53IDUR1U.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang,
and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In
The Twelfth International Conference on Learning Representations, 2024a. URL https://
openreview.net/forum?id=7oLshfEIC2.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep
time series models: A comprehensive survey and benchmark. arXiv preprint arXiv:2407.13278,
2024b.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sa-
hoo. Unified training of universal time series forecasting transformers. arXiv preprint
arXiv:2402.02592, 2024.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transform-
ers with Auto-Correlation for long-term series forecasting. In Advances in Neural Information
Processing Systems, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=ju_Uqw384Oq.

Tong Xiao, Yinqiao Li, Jingbo Zhu, Zhengtao Yu, and Tongran Liu. Sharing attention weights for
fast transformer. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19, pp. 5292–5298. International Joint Conferences on Artificial Intelligence
Organization, 7 2019. doi: 10.24963/ijcai.2019/735. URL https://doi.org/10.24963/
ijcai.2019/735.

Zhijian Xu, Ailing Zeng, and Qiang Xu. FITS: Modeling time series with $10k$ parameters.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=bWcnvZ3qMb.

Zahra Zamanzadeh Darban, Geoffrey I Webb, Shirui Pan, Charu Aggarwal, and Mahsa Salehi. Deep
learning for time series anomaly detection: A survey. ACM Computing Surveys, 2022.

12

https://openreview.net/forum?id=r1ecqn4YwB
https://openreview.net/forum?id=zt53IDUR1U
https://openreview.net/forum?id=zt53IDUR1U
https://openreview.net/forum?id=7oLshfEIC2
https://openreview.net/forum?id=7oLshfEIC2
https://openreview.net/forum?id=ju_Uqw384Oq
https://openreview.net/forum?id=ju_Uqw384Oq
https://doi.org/10.24963/ijcai.2019/735
https://doi.org/10.24963/ijcai.2019/735
https://openreview.net/forum?id=bWcnvZ3qMb
https://openreview.net/forum?id=bWcnvZ3qMb

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series fore-
casting? In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and
Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Sym-
posium on Educational Advances in Artificial Intelligence, AAAI’23/IAAI’23/EAAI’23. AAAI
Press, 2023. ISBN 978-1-57735-880-0. doi: 10.1609/aaai.v37i9.26317.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=vSVLM2j9eie.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, number 12, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International conference
on machine learning, pp. 27268–27286. PMLR, 2022.

Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. One fits all: Power general time
series analysis by pretrained LM. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=gMS6FVZvmF.

13

https://openreview.net/forum?id=vSVLM2j9eie
https://openreview.net/forum?id=gMS6FVZvmF

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL CONFIGURATION

A.1 HARDWARE

All experiments were conducted on two servers, each equipped with an 80GB NVIDIA A100 GPU
and 4 Intel Xeon Gold 5218 CPUs.

A.2 DETAILS OF BASELINE SETTINGS

We conducted all of our experiments with look-back window L = 512 and prediction horizons
H ∈ {96, 192, 336, 720}. Results of PSformer and ModernTCN reported in Table 11 come from
our own experiments. The difference between our experiment with ModernTCN and its official
code is that we standardized the look-back window to 512 and set drop last=False for the test set
in the dataloader to ensure consistency with our experimental settings for a fair comparison. For
MOMENT and GPT4TS, the results are collected from (Goswami et al., 2024), except Exchange
rate (which is tested on official code repository). The results of SAMformer, TSMixer, FEDformer
and Autoformer are obtained from (Ilbert et al., 2024), while the results of iTransformer, PatchTST,
and RLinear are taken from (Liu et al., 2024b).

A.3 SETTINGS FOR PSFORMER

We provides an overview of the experimental configurations for the PSFormer model across various
tasks and datasets in Table 7. The experiments cover multiple time-series datasets, including ETTh1,
ETTh2, ETTm1, ETTm2, Weather, Electricity, Traffic, and Exchange. In all experiments, the input
sequence length (Input Length T) is set to 512, and each input is equally divided into 32 non-
overlapping segments (Segments Num. N). The model architecture uses 3 Encoders for tasks,
while for the ETTh1, ETTh2, ETTm2 and Exchange, 1 Encoder are used.

The learning rate adjustment strategy (schedule) is set to “constant” for all experiments, with a fixed
learning rate (LR) of 10−4. The loss function used in all experiments is Mean Squared Error (MSE).
The batch size is set to 16 for most tasks, except for the Traffic dataset, where the batch size is 8.
Each experiment runs for 300 epochs, with a patience value of 30 for early stopping. A fixed random
seed of 1 is applied across all experiments to ensure reproducibility.

Table 7: An overview of the experimental configurations for PSFORMER.

Task-Dataset Encoder Num. Input Length T Segment Num. N schedule LR* Loss Batch Size Epochs patient random seed

ETTh1 1 512 32 constant 10−4 MSE 16 300 30 1
ETTh2 1 512 32 constant 10−4 MSE 16 300 30 1
ETTm1 3 512 32 constant 10−4 MSE 16 300 30 1
ETTm2 1 512 32 constant 10−4 MSE 16 300 30 1
Weather 3 512 32 constant 10−4 MSE 16 300 30 1

Electricity 3 512 32 constant 10−4 MSE 16 300 30 1
Traffic 3 512 32 constant 10−4 MSE 8 300 30 1

Exchange 1 512 32 constant 10−4 MSE 16 300 30 1

A.4 MODEL SIZE COMPARISON

Table 8 presents a comparison of the parameter size across different models, including the PS-
Former and other baseline models such as SAMformer, TSMixer, ModernTCN, and RLinear.
The comparison is conducted on ETTh1, Weather, and Traffic datasets, with prediction horizons
H ∈ {96, 192, 336, 720}. PSFormer is evaluated in two configurations: the full model and the en-
coder part. The parameters of the encoder part refer to the number of parameters after excluding the
linear mapping in the output layer. The table denote that both PSFormer (full) and SAMformer have
parameter sizes that are close to RLinear, where RLinear’s parameters mainly stem from the linear
mapping between input and output. Notably, the parameter sizes of these three models are relatively
unaffected by the number of input channels. In contrast, TSMixer and ModernTCN exhibit signifi-
cantly larger parameter sizes, with the number of input channels playing a major role in the overall
parameter burden. The relative size comparison shows that TSMixer and ModernTCN have several
times, or even thousands of times, more parameters than PSFormer(full). Finally, the parameter size

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 8: Comparison of the trainable model parameters

Dataset Horizon PSformer SAMformer TSMixer ModernTCN RLinear
Full Encoder

ETTh1

H=96 52,416 3,168 50,272 124,142 876,064 49248
H=192 101,664 3,168 99,520 173,390 1,662,592 98496
H=336 175,536 3,168 173,392 247,262 2,842,384 172368
H=720 372,528 3,168 369,904 444,254 5,988,496 369360

Relative Size (Avg) 1.0 0.014 0.987 1.408 16.192 0.948

Weather

H=96 58,752 9,504 50,272 121,908 2,709,280 49248
H=192 108,000 9,504 99,520 171,156 3,495,808 98496
H=336 181,872 9,504 173,392 245,028 4,675,600 172368
H=720 378,864 9,504 369,904 442,020 7,821,712 369360

Relative Size (Avg) 1.0 0.039 0.953 1.347 25.708 0.948

Traffic

H=96 58,752 9,504 50,272 793,424 822,018,208 49248
H=192 108,000 9,504 99,520 842,672 822,804,736 98496
H=336 181,872 9,504 173,392 916,544 823,984,528 172368
H=720 378,864 9,504 369,904 1,113,536 827,130,640 369360

Relative Size (Avg) 1.0 0.039 0.953 5.040 4530.574 0.948

of PSFormer(Encoder) is much smaller, indicating that optimizing the linear mapping layer in the
output could further reduce the overall parameter count.

A.5 RUNNING TIME COMPARISON

The average running time per iteration (s/iter) of different models on the ETTh1 and Weather
datasets with varying prediction horizons is shown in Table 9. PSformer demonstrates relatively
stable running times across different horizons. For the ETTh1 dataset, the running time remains
between 0.011 and 0.012 seconds, while for the Weather dataset, it varies slightly between 0.026
and 0.027 seconds. PSformer also shows comparatively efficient running times across the datasets,
with performance that remains competitive even as the prediction horizon increases. This indicates
that PSformer manages computational costs effectively, especially when compared to more complex
models.

Table 9: Comparison of the running time (s/iter). We test the average running time per iteration of
different models across the first five epochs on the ETTh1 and Weather datasets.

Dataset Horizon PSformer PatchTST ModernTCN TSMixer RLinear iTransformer

ETTh1

H=96 0.012 0.049 0.241 0.013 0.032 0.020
H=192 0.011 0.049 0.244 0.016 0.033 0.023
H=336 0.012 0.054 0.245 0.015 0.034 0.022
H=720 0.012 0.063 0.279 0.019 0.037 0.025

Weather

H=96 0.026 0.165 0.388 0.013 0.030 0.022
H=192 0.026 0.166 0.361 0.016 0.032 0.022
H=336 0.027 0.176 0.730 0.016 0.033 0.027
H=720 0.027 0.185 0.788 0.024 0.034 0.035

A.6 DISCUSS ABOUT POSITIONAL ENCODING

The reasons of eliminating positional encoding Similarly, SAMformer does not use positional
encoding because it applies attention to the channel dimension, where there is no strict sequential
relationship between channels. Although SegAtt is also a cross-channel structure, it involves local
time series constructed by patches. We consider such local sequences as local representations (or
tokens) rather than short sequences. The experimental results also demonstrate that this structure
can similarly reduce the dependency on positional encoding while achieving good performance.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.7 SHARPNESS-AWARE MINIMIZATION (SAM)

Optimization steps SAM optimizer (Foret et al., 2021) modifies the typical gradient descent update
to seek a flatten optimum. Below is the mathematical formulation:

Let θ be the model parameters, L(θ) be the loss function, and ϵ be a small perturbation applied to
the parameters. The SAM optimization process can be described in two steps:

• Find the adversarial perturbation that maximizes the loss in a neighborhood of the current
weights θ:

ϵ̂ = arg max
∥ϵ∥≤ρ

L(θ + ϵ)

where ρ is a small constant that controls the size of the neighborhood.
• Update the parameters in the direction that minimizes the loss with respect to the perturbed

parameters:
θ ← θ − η∇θL(θ + ϵ̂)

where η is the learning rate.

As used in SAMformer, we also employ this optimization technique to train our models, which can
generate promising results.

B MORE RESULTS AND ANALYSIS

B.1 INVESTIGATION OF HYPER-PARAMETER ρ

The Effect of ρ Since we employed SAM to ensure training stability, we also conducted sensitivity
tests on the hyper-parameter ρ in SAM. We divided the range of ρ from 0 to 1 into 10 equal parts
and tested its effect on model prediction performance across the ETTh1, ETTm1, ETTm2, and
Weather datasets. The results are shown in Figure 3. It can be observed that as the parameter
ρ gradually increases in SAM can improve the model’s prediction performance to some extent.
However, if ρ is set too large, it may degrade the model’s performance. When selecting ρ, it’s
important to consider the dataset’s complexity and noise levels, as well as the model’s architecture.
For more complex datasets or larger models, a slightly larger ρ can help smooth the loss landscape
and improve generalization. Further, ρ should also be balanced with the learning rate to avoid
instability or performance degradation. As a comparison, we also report the ρ∗ used by PSformer,
SAMformer and TSMixer in the Table 10.

Table 10: Neighborhood size ρ∗ used by PSformer, SAMformer and TSMixer for SAM optimization
to achieve their best performance on the benchmarks.

H Model ETTh1 ETTh2 ETTm1 ETTm2 Electricity Exchange Traffic Weather
96 PSformer 0.6 0.1 0.4 0.0 0.0 0.2 0.1 0.1

SAMformer 0.5 0.5 0.6 0.2 0.5 0.7 0.8 0.4
TSMixer 1.0 0.9 1.0 1.0 1.0 0.9 0.0 0.5

192 PSformer 0.8 0.0 0.4 0.2 0.1 0.1 0.1 0.1
SAMformer 0.6 0.8 0.9 0.9 0.6 0.8 0.1 0.4

TSMixer 0.7 0.1 0.6 0.9 0.6 0.9 0.9 0.4

336 PSformer 0.9 0.6 0.4 0.3 0.1 0.2 0.2 0.2
SAMformer 0.9 0.6 0.9 0.8 0.5 0.5 0.5 0.6

TSMixer 0.7 0.7 0.9 1.0 0.4 1.0 0.6 0.6

720 PSformer 0.6 0.5 0.4 0.3 0.1 0.2 0.3 0.3
SAMformer 0.9 0.8 0.9 0.9 1.0 0.9 0.7 0.5

TSMixer 0.3 0.4 0.5 1.0 0.9 0.1 0.9 0.3

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 3: Ablation analysis on hyper-parameter ρ. When taking ρ values from 0 to 1 in steps of
0.1, the prediction loss will slightly decrease first and then increase significantly if the ρ exceeds a
threshold, which means the selection of ρ should be careful.

B.2 FULL RESULTS

Table 11 presents the detailed experimental results of different models and forecasting horizons,
providing a comprehensive evaluation of their performance in long-term time series forecasting
tasks. The performance is measured using Mean Squared Error (MSE) and Mean Absolute Error
(MAE). In the table, red values represent the best performance in the respective task and metric,
while blue-lined values indicate the second-best performance.

The last row of the table summarizes the number of first-place results for each model across all tasks.
As can be seen, PSformer achieved the best MSE performance in 20 out of 32 prediction tasks, and
ranked second in 8 tasks. In terms of MAE, PSformer achieved the best results in 22 tasks and came
second in 5 tasks. This clearly demonstrates the superior performance of PSformer compared to
other baseline models in long-term time series forecasting tasks.

The next best-performing model is ModernTCN, which achieved the best MSE results in 6 tasks and
the best MAE results in 3 tasks. While other models such as SAMformer and PatchTST also showed
competitive performance in some tasks, their overall results are not as strong as those of PSformer
and ModernTCN. In summary, PSformer’s strong performance across multiple benchmark tasks
suggests its potential effectiveness in long-term forecasting.

B.3 TRAINING LOSS

Figure 4 illustrates the training and validation loss curves of the ETTh1 and ETTm1 datasets with
prediction horizons H = {96, 192}. In this experiment, we set the number of epochs to 200 and
disabled early stopping to observe the complete training process. As shown in the plots, despite the
model reaching convergence early in the training (as indicated by the flattening of the training loss
curve), the validation loss remains consistently low throughout the training duration. This indicates
the model’s stability and its ability to generalize well to unseen data over extended epochs.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 11: Full long-term forecasting results. We set the forecasting horizons H ∈
{96, 192, 336, 720}. A lower value indicates better performance. Avg means the average results
from all prediction lengths. Red: the best, Blue lined: the second best.

Models PSformer SAMformer TSMixer PatchTST MOMENT ModernTCN FEDformer GPT4TS Autoformer RLinear iTransformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.352 0.385 0.381 0.402 0.388 0.408 0.414 0.419 0.387 0.410 0.373 0.399 0.376 0.415 0.376 0.397 0.435 0.446 0.386 0.395 0.386 0.405

192 0.385 0.406 0.409 0.418 0.421 0.426 0.460 0.445 0.410 0.426 0.407 0.419 0.423 0.446 0.416 0.418 0.456 0.457 0.437 0.424 0.441 0.436

336 0.411 0.424 0.423 0.425 0.430 0.434 0.501 0.466 0.422 0.437 0.436 0.437 0.444 0.462 0.442 0.433 0.486 0.487 0.479 0.446 0.487 0.458

720 0.440 0.456 0.427 0.449 0.440 0.459 0.500 0.488 0.454 0.472 0.467 0.474 0.469 0.492 0.477 0.515 0.515 0.517 0.481 0.470 0.503 0.491

Avg 0.397 0.418 0.410 0.424 0.420 0.431 0.468 0.455 0.418 0.436 0.421 0.432 0.428 0.454 0.428 0.426 0.473 0.477 0.446 0.434 0.454 0.448

ETTh2

96 0.272 0.337 0.295 0.358 0.305 0.367 0.302 0.348 0.288 0.345 0.271 0.339 0.332 0.374 0.285 0.342 0.332 0.368 0.288 0.338 0.297 0.349

192 0.335 0.379 0.340 0.386 0.350 0.393 0.388 0.400 0.349 0.386 0.332 0.382 0.407 0.446 0.354 0.389 0.426 0.434 0.374 0.390 0.380 0.400

336 0.356 0.411 0.350 0.395 0.360 0.404 0.426 0.433 0.369 0.408 0.365 0.411 0.400 0.447 0.373 0.407 0.477 0.479 0.415 0.426 0.428 0.432

720 0.389 0.431 0.391 0.428 0.402 0.435 0.431 0.446 0.403 0.439 0.402 0.441 0.412 0.469 0.406 0.441 0.453 0.490 0.420 0.440 0.427 0.445

Avg 0.338 0.390 0.344 0.391 0.354 0.400 0.387 0.407 0.352 0.394 0.343 0.393 0.388 0.434 0.355 0.395 0.422 0.443 0.374 0.398 0.383 0.407

ETTm1

96 0.282 0.336 0.329 0.363 0.327 0.363 0.329 0.367 0.293 0.349 0.310 0.356 0.326 0.390 0.292 0.346 0.510 0.492 0.355 0.376 0.334 0.368

192 0.321 0.360 0.353 0.378 0.356 0.381 0.367 0.385 0.326 0.368 0.340 0.373 0.365 0.415 0.332 0.372 0.514 0.495 0.391 0.392 0.377 0.391

336 0.352 0.380 0.382 0.394 0.387 0.397 0.399 0.410 0.352 0.384 0.373 0.392 0.392 0.425 0.366 0.394 0.510 0.492 0.424 0.415 0.426 0.420

720 0.413 0.412 0.429 0.418 0.441 0.425 0.454 0.439 0.405 0.416 0.420 0.418 0.446 0.458 0.417 0.421 0.527 0.492 0.487 0.450 0.491 0.459

Avg 0.342 0.372 0.373 0.388 0.378 0.392 0.387 0.400 0.344 0.379 0.361 0.384 0.382 0.422 0.351 0.383 0.515 0.493 0.414 0.407 0.407 0.410

ETTm2

96 0.167 0.258 0.181 0.274 0.190 0.284 0.175 0.259 0.170 0.260 0.168 0.261 0.180 0.271 0.173 0.262 0.205 0.293 0.182 0.265 0.180 0.264

192 0.219 0.292 0.233 0.306 0.250 0.320 0.241 0.302 0.227 0.297 0.231 0.305 0.252 0.318 0.229 0.301 0.278 0.336 0.246 0.304 0.250 0.309

336 0.269 0.325 0.285 0.338 0.301 0.350 0.305 0.343 0.275 0.328 0.272 0.328 0.324 0.364 0.286 0.341 0.343 0.379 0.307 0.342 0.311 0.348

720 0.347 0.376 0.375 0.390 0.389 0.402 0.402 0.400 0.363 0.387 0.375 0.394 0.410 0.420 0.378 0.401 0.414 0.419 0.407 0.398 0.412 0.407

Avg 0.251 0.313 0.269 0.327 0.283 0.339 0.281 0.326 0.259 0.318 0.262 0.322 0.292 0.343 0.267 0.326 0.310 0.357 0.286 0.327 0.288 0.332

Weather

96 0.149 0.200 0.197 0.249 0.189 0.242 0.177 0.218 0.154 0.209 0.154 0.209 0.238 0.314 0.162 0.212 0.249 0.329 0.192 0.232 0.174 0.214

192 0.193 0.243 0.235 0.277 0.228 0.272 0.225 0.259 0.197 0.248 0.207 0.257 0.275 0.329 0.204 0.248 0.325 0.370 0.240 0.271 0.221 0.254

336 0.245 0.282 0.276 0.304 0.271 0.299 0.278 0.297 0.246 0.285 0.248 0.289 0.339 0.377 0.254 0.286 0.351 0.391 0.292 0.307 0.278 0.296

720 0.314 0.332 0.334 0.342 0.331 0.341 0.354 0.348 0.315 0.336 0.337 0.342 0.389 0.409 0.326 0.337 0.415 0.426 0.364 0.353 0.358 0.347

Avg 0.225 0.264 0.261 0.293 0.255 0.289 0.259 0.281 0.228 0.270 0.237 0.274 0.310 0.357 0.237 0.271 0.335 0.379 0.272 0.291 0.258 0.278

Electricity

96 0.133 0.229 0.155 0.252 0.171 0.273 0.181 0.270 0.136 0.233 0.133 0.228 0.186 0.302 0.139 0.238 0.196 0.313 0.201 0.281 0.148 0.240

192 0.149 0.242 0.168 0.263 0.191 0.292 0.188 0.274 0.152 0.247 0.147 0.241 0.197 0.311 0.153 0.251 0.211 0.324 0.201 0.283 0.162 0.253

336 0.164 0.258 0.183 0.277 0.198 0.297 0.204 0.293 0.167 0.264 0.163 0.260 0.213 0.328 0.169 0.266 0.214 0.327 0.215 0.298 0.178 0.269

720 0.203 0.291 0.219 0.306 0.230 0.321 0.246 0.324 0.205 0.295 0.194 0.289 0.233 0.344 0.206 0.297 0.236 0.342 0.257 0.331 0.225 0.317

Avg 0.162 0.255 0.181 0.275 0.198 0.296 0.205 0.290 0.165 0.260 0.160 0.255 0.207 0.321 0.167 0.263 0.214 0.327 0.219 0.298 0.178 0.270

Exchange

96 0.081 0.197 0.161 0.306 0.233 0.363 0.088 0.205 0.098 0.224 0.207 0.342 0.139 0.276 0.091 0.212 0.197 0.323 0.093 0.217 0.086 0.206

192 0.179 0.299 0.246 0.371 0.342 0.437 0.176 0.299 0.201 0.323 0.337 0.437 0.256 0.369 0.183 0.304 0.300 0.369 0.184 0.307 0.177 0.299

336 0.328 0.412 0.368 0.453 0.474 0.515 0.301 0.397 0.387 0.454 0.520 0.553 0.426 0.464 0.328 0.417 0.509 0.524 0.351 0.432 0.331 0.417

720 0.842 0.689 1.003 0.750 1.078 0.777 0.901 0.714 1.062 0.783 1.154 0.810 1.090 0.800 0.880 0.704 1.447 0.941 0.886 0.714 0.847 0.691

Avg 0.358 0.399 0.445 0.470 0.532 0.523 0.367 0.404 0.437 0.446 0.555 0.536 0.478 0.477 0.371 0.409 0.613 0.539 0.378 0.417 0.360 0.403

Traffic

96 0.367 0.257 0.407 0.292 0.409 0.300 0.462 0.295 0.391 0.282 0.391 0.271 0.576 0.359 0.388 0.282 0.597 0.371 0.649 0.389 0.395 0.268

192 0.390 0.272 0.415 0.294 0.433 0.317 0.466 0.296 0.404 0.287 0.403 0.275 0.610 0.380 0.407 0.290 0.607 0.382 0.601 0.366 0.417 0.276

336 0.404 0.274 0.421 0.292 0.424 0.299 0.482 0.304 0.414 0.292 0.410 0.280 0.608 0.375 0.412 0.294 0.623 0.387 0.609 0.369 0.433 0.283

720 0.439 0.294 0.456 0.311 0.488 0.344 0.514 0.322 0.450 0.310 0.451 0.305 0.621 0.375 0.450 0.312 0.639 0.395 0.647 0.387 0.467 0.302

Avg 0.400 0.274 0.425 0.297 0.439 0.315 0.481 0.304 0.415 0.293 0.414 0.283 0.604 0.372 0.414 0.295 0.617 0.384 0.626 0.378 0.428 0.282

1st Count 20 22 2 3 0 0 2 3 2 0 6 3 0 0 0 0 0 0 0 0 2 2

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) ETTh1-96 (b) ETTh1-192

(c) ETTm1-96 (d) ETTm1-192

Figure 4: Training and validation loss curves of the ETTh1 and ETTm1 datasets.

B.4 VISUALIZATION

To better understand our method, we present the forecast curves and the corresponding attention
maps for several selected samples. The attention maps visualize the attention weights in different
stages of the model, providing insight into how the model processes the input data at each stage.

For the ETTh1 in Figure 5, the input sequence length is 512, and we display the last 100 time steps
of the input. The prediction length is set to 96. We select five samples from the ETTh1 dataset, and
for each sample, we visualize the attention maps for stage 1 and stage 2 of the SegAtt. From the
attention maps, it is evident that there are significant variations in the attention distributions across
different samples. Additionally, the attention maps from stage 1 and stage 2 also show noticeable
differences, despite both stages sharing the same PS block parameters. This indicates that while the
two-stage share parameters, they are able to handle and process the information differently, capturing
different aspects of the input data at each stage of the model.

For the Weather in Figure 6, the input length is also 512, and the last 100 time steps are displayed,
while the prediction length is 192. Since the model for this dataset employs a three-layer En-
coder structure, we display the attention maps for both stages across each layer. Specifically, the
notation“1-2” represents the attention map for layer 1, stage 2, and similarly for the other layers.
The first two rows of attention maps correspond to the attention distributions from the three En-
coder layers. Following that, the prediction curves for nine selected variates are plotted, providing a
detailed view of the model’s forecast performance across different variates.

B.5 ADDITIONAL VISUALIZATION OF ATTENTION MAP

Here, We further analyze the SegAtt attention matrix of PSformer in both the temporal and spatial di-
mensions. Using samples from ETTh1, the key parameters include: input length L = 512, segment

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Axis-1

Ax
is-

2

Attention 1 map

(a) SegAtt map: stage 1

Axis-1

Ax
is-

2

Attention 2 map

(b) SegAtt map: stage 2

0 25 50 75 100 125 150 175 200
Time Step

1.0

0.5

0.0

0.5

1.0

Va
lu

e

forecast and actual
True
Pred

(c) Sample:1, Variate:5

Axis-1

Ax
is-

2

Attention 1 map

(d) SegAtt map: stage 1

Axis-1

Ax
is-

2

Attention 2 map

(e) SegAtt map: stage 2

0 25 50 75 100 125 150 175 200
Time Step

0.5

0.0

0.5

1.0

1.5

Va
lu

e

forecast and actual
True
Pred

(f) Sample:2, Variate:2

Axis-1

Ax
is-

2

Attention 1 map

(g) SegAtt map: stage 1

Axis-1

Ax
is-

2

Attention 2 map

(h) SegAtt map: stage 2

0 25 50 75 100 125 150 175 200
Time Step

4

3

2

1

0

1

Va
lu

e

forecast and actual

True
Pred

(i) Sample:3, Variate:1

Axis-1

Ax
is-

2

Attention 1 map

(j) SegAtt map: stage 1

Axis-1

Ax
is-

2

Attention 2 map

(k) SegAtt map: stage 2

0 25 50 75 100 125 150 175 200
Time Step

0.5

0.0

0.5

1.0

1.5

2.0

Va
lu

e

forecast and actual
True
Pred

(l) Sample:4, Variate:2

Axis-1

Ax
is-

2

Attention 1 map

(m) SegAtt map: stage 1

Axis-1

Ax
is-

2

Attention 2 map

(n) SegAtt map: stage 2

0 25 50 75 100 125 150 175 200
Time Step

4

3

2

1

0

1

Va
lu

e

forecast and actual
True
Pred

(o) Sample:5, Variate:1

Figure 5: SegAtt map and forecast samples for ETTh1-96

number N = 32, channel number M = 7, and patch length P = 16. Therefore, QKT ∈ RC×C ,
where C = M × P , as described in the Spatial-Temporal Segment Attention part.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) SegAtt map 1-1 (b) SegAtt map 1-2 (c) SegAtt map 2-1

(d) SegAtt map 2-2 (e) SegAtt map 3-1 (f) SegAtt map 3-2

0 50 100 150 200 250 300
Time Step

0.5

0.0

0.5

1.0

1.5

Va
lu

e

forecast and actual
True
Pred

(g) Variate 5

0 50 100 150 200 250 300
Time Step

0.6

0.4

0.2

0.0

0.2

0.4

Va
lu

e

forecast and actual

True
Pred

(h) Variate 6

0 50 100 150 200 250 300
Time Step

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Va
lu

e

forecast and actual
True
Pred

(i) Variate 7

0 50 100 150 200 250 300
Time Step

1.0

0.8

0.6

0.4

0.2

0.0

0.2

Va
lu

e

forecast and actual
True
Pred

(j) Variate 8

0 50 100 150 200 250 300
Time Step

0.8

0.6

0.4

0.2

0.0

0.2

Va
lu

e

forecast and actual
True
Pred

(k) Variate 11

0 50 100 150 200 250 300
Time Step

0.0

0.2

0.4

0.6

Va
lu

e

forecast and actual
True
Pred

(l) Variate 15

0 50 100 150 200 250 300
Time Step

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Va
lu

e

forecast and actual
True
Pred

(m) Variate 17

0 50 100 150 200 250 300
Time Step

0.4

0.2

0.0

0.2

0.4

Va
lu

e

forecast and actual

True
Pred

(n) Variate 20

0 50 100 150 200 250 300
Time Step

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Va
lu

e

forecast and actual
True
Pred

(o) Variate 21

Figure 6: SegAtt matrices and forecast for Weather-192

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.5.1 ADDITIONAL VISUALIZATION OF THE SEGATT ATTENTION

Since stage one of SegAtt operates on the input data x, we print out the attention matrix to observe
how SegAtt captures local spatio-temporal information. The attention matrix is shown in the Fig-
ure 7 below. To better display the colors, we choose the plasma color style and apply a clipping
operation to the top 1.

(a) SegAtt attention map. (b) Cross-channel attention
map.

Figure 7: Comparison of SegAtt map and cross-channel map.

Since both the x-axis and y-axis correspond to a specific point within a segment of length C, the
brighter yellow points in this attention matrix indicate higher attention weights between the cor-
responding x-axis and y-axis positions. Taking this attention map as an example, we can observe
distinct high-attention regions (e.g., the top-left corner) and high-attention areas between different
time steps and variables (e.g., the non-diagonal symmetric grid section in the top-left corner). From
this, we can observe that the coordinate positions within the spatial attention submatrix (inside the
grids) exhibit the same or gradually changing attention weights across different time steps (between
the grids). This suggests that the model may capture temporal consistency between variables, local
stationary features, and long-term dependencies across time steps.

B.5.2 SINGLE-CHANNEL ATTENTION MAP

For better visualization of SegAtt’s capture of the local temporal dimension, we extract the single-
channel attention submatrix from the attention matrix, as shown in Figure 8a, and visualize the
corresponding single-channel local time sequence in Figure 8b. This allows us to observe the high-
attention weights at specific temporal local positions. We present three samples of attention along
the temporal dimension for a single sequence.

From Figure 8a, the high attention weight at coordinates (x=14, y=7) corresponds to time steps 7
and 14 in the Figure 8b. These two time points may represent a pattern of significant change in the
sequence, which the model identifies as a noteworthy relationship.

Using the same analysis method, we can observe in Figure 9 that high attention occurs between time
steps 2 and 3, as well as between time steps 9 and 10. This includes both consecutive time points
with related attention (e.g. 2 and 3) and attention with intervals (e.g. 2-3 and 9-10).

At the same time, as shown in Figure 10, there are some more complex temporal attention patterns,
which are difficult to intuitively understand.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) Variate 2 Attention Map (b) Variate 2 Timeseries Attention Map

Figure 8: Comparison of Variate 2 Attention Maps

(a) Variate 1 Attention Map (b) Variate 1 Timeseries Attention Map

Figure 9: Comparison of Variate 1 Attention Maps

(a) Variate 4 Attention Map (b) Variate 4 Timeseries Attention Map

Figure 10: Comparison of Variate 4 Attention Maps

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B.5.3 CROSS-CHANNELS ATTENTION MAP

To visualize the cross-channel attention relationships in SegAtt, we extract the attention weights
between two channels, forming the corresponding cross-channel attention submatrix map and the
time series plots for the two variables, as shown in Figure 11.

(a) Attention map between Variate 0 and Variate 5 (b) Time series for two channels

Figure 11: Comparison between Variate 0 and Variate 5

Besides, The x-axis positions in Figure 11a correspond to the time series of variate 5 (yellow line) in
Figure 11b, and the y-axis positions correspond to the time series of variate 0 (blue line). Therefore,
after establishing the correspondence, we can observe that time steps 1-2 of variate 5 and time steps
4-5, 11-12 of variate 0 have higher attention weights.

(a) Attention map between Variate 0 and Variate 2 (b) Time series for two channels

Figure 12: Comparison between Variate 0 and Variate 2

From Figure 12, we can see that high attention is mainly concentrated at coordinates (3, 14) and (5,
14), which correspond to time step 14 of variate 2 and time steps 3 and 5 of variate 0. These three
positions may reflect a reversal relationship for the two time series.

Additionally, in Figure 13, we can also observe high attention weights between the two channels
at the same time step. This occurs when both sequences undergo significant changes in opposite
directions simultaneously.

B.5.4 ADDITIONAL VISUALIZATION OF THE SEGATT ATTENTION MAP WITHOUT
PARAMETER SHARING

We further analyzed how parameter sharing affects the model’s ability to capture temporal pat-
terns by comparing attention maps with and without parameter sharing. To achieve this, we also

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) Attention map between Variate 0 and Variate 6 (b) Time series for two channels

Figure 13: Comparison between Variate 0 and Variate 6

(a) Attention1 map without parameter sharing. (b) Attention2 map without parameter sharing.

Figure 14: Comparison of Variate 2 Attention Maps

visualized the attention heatmaps without parameter sharing. To reflect cross-layer variations, we
provided attention maps from both the first and second layers for comparison, as in Figure 14a and
Figure 14b. Several differences were observed when comparing these to the attention maps with
parameter sharing.

Range of attention weights: For attention maps with parameter sharing, the values generally range
between [-3, 3], while for those without parameter sharing, the range is much broader, approximately
[-30, 40]. The larger variations in attention weights without parameter sharing might contribute to
faster model convergence during training.

Inter-channel relationships: With parameter sharing, the inter-channel relationships represented in
Figure 15 are simpler and more distinct. Gradual transitions in attention weights between grid cells
are clearly visible. In contrast, without parameter sharing, although progressive changes are still
observed, the temporal relationships become more complex and harder to interpret (as the attention
map in the first layer cannot be directly aligned with the corresponding temporal positions due to
the lack of parameter sharing).

Cross-layer variations: Observing the differences between the two layers in the non-parameter-
shared attention maps in Figure 16, I tend to suggest that the first layer’s attention focuses on cap-
turing basic temporal patterns, which are then refined and processed in the second layer. However,
the interpretability in temporal models is challenging and remains an open research question worthy
of further exploration.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

(a) Attention1 map for Variate 2. (b) Attention2 map for Variate 2. (c) Time series for Variate 2.

Figure 15: Single-channel Attention Map without Parameter Sharing.

(a) Attention1 map for Variate 2. (b) Attention2 map for Variate 2. (c) Time series for Variate 2.

Figure 16: Comparison of Cross-channels Attention Maps without Parameter Sharing.

B.6 SEGATT FOR UNIVARIATE TIME SERIES AND LOW DEPENDENCY SERIES

We tested the performance of PSformer in single-sequence forecasting. Specifically, we saved the 8
variables from the Exchange dataset into 8 separate single-sequence files, each supplemented with
an additional column filled with zeros to form single sequences, along with an unrelated variable. We
compared PSformer with the baseline model PatchTST (which is channel-independent and performs
well on the Exchange dataset).

The experimental results in the Table 12. As can be observed, PSformer consistently outperforms
across all uni-variate time series, demonstrating that the PSformer architecture is not only effective
in capturing cross-channel information but also performs well in univariate time series or with little
dependency between variables.

During the experiments, PatchTST encountered a NaN loss on the validation set for a prediction
length of 720, so the corresponding loss value was not recorded.

B.7 EXCHANGE DATESETS PERFORMANCE WITH DIFFERENT REVIN LOOK-BACK WINDOWS

The Exchange dataset is non-stationary nature and random walk characteristics, which prevent
RevIN from obtaining stable mean and variance statistics. These statistics are sensitive to the choice
of RevIN’s lookback window. Further testing in the Table 13 revealed that the model performs best
when the lookback window for calculating RevIN’s statistics is very small (length 16), achieving
results superior to all selected baseline models. We believe that for non-stationary data, RevIN’s
normalization should be used with caution. Adjusting the lookback window length can help identify
more stable statistical means and variances, thereby facilitating model training.

B.8 THE EFFECTS OF POSITIONAL ENCODING ON DIFFERENT TIME SERIES TYPES

We added a set of comparative experiments using positional encoding to better illustrate its impact.
Specifically, we tested the encoding performance under two different data transformation modes: pos
emb (time series), where positional encoding is applied to the original time series before dimension
transformation; and pos emb (segment), where positional encoding is applied to the transformed
segments. The default case, No pos emb, refers to the absence of positional encoding.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 12: Performance comparison between PSformer and PatchTST across various variates.

Variate Model 96 192 336 720

1 PSformer 0.057 0.147 0.360 0.803
PatchTST 0.063 0.152 0.461 -

2 PSformer 0.042 0.094 0.152 0.216
PatchTST 0.052 0.140 0.181 -

3 PSformer 0.034 0.093 0.169 0.476
PatchTST 0.055 0.116 0.176 -

4 PSformer 0.041 0.066 0.090 0.146
PatchTST 0.058 0.085 0.111 -

5 PSformer 0.007 0.009 0.012 0.073
PatchTST 0.016 0.025 0.022 -

6 PSformer 0.077 0.169 0.532 1.125
PatchTST 0.099 0.215 0.505 -

7 PSformer 0.033 0.069 0.120 0.342
PatchTST 0.039 0.079 0.140 -

OT PSformer 0.047 0.101 0.190 0.510
PatchTST 0.097 0.154 0.230 -

Table 13: Performance comparison with different norm window sizes on the Exchange Rate dataset.

Dataset Horizon 16 64 128 256 512

Exchange Rate

96 0.081 0.085 0.090 0.092 0.091
192 0.179 0.187 0.189 0.191 0.197
336 0.328 0.338 0.356 0.362 0.345
720 0.842 0.900 0.976 1.003 1.036
Avg 0.358 0.378 0.403 0.412 0.417

Table 14: Performance comparison with different positional embedding methods.

Dataset Horizon Pos emb (time series) Pos emb (segment) No pos emb

ETTh1 96 0.378 0.353 0.352
192 0.412 0.388 0.385

ETTh2 96 0.298 0.276 0.272
192 0.352 0.338 0.335

Exchange Rate

96 0.189 0.095 0.091
192 0.314 0.201 0.197
336 0.525 0.370 0.345
720 1.574 1.041 1.036

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 15: Comparasion with additional baselines (Part-I).

Models PSformer (F, noDL) TimeMixer (F, noDL) CrossGNN (F, noDL) MICN (F, DL) TimesNet (F, DL) FITS (M, noDL)

ETTh1 96 0.352 0.375 0.382 \ 0.384 0.372
192 0.385 0.429 0.427 \ 0.436 0.404
336 0.411 0.484 0.465 \ 0.491 0.427
720 0.44 0.498 0.472 \ 0.521 0.424
Avg 0.397 0.447 0.437 \ 0.458 0.407

ETTh2 96 0.272 0.289 0.309 \ 0.34 0.271
192 0.335 0.372 0.39 \ 0.402 0.331
336 0.356 0.386 0.426 \ 0.452 0.354
720 0.389 0.412 0.445 \ 0.462 0.377
Avg 0.338 0.365 0.393 \ 0.414 0.333

ETTm1 96 0.282 0.32 0.335 \ 0.338 0.303
192 0.321 0.361 0.372 \ 0.372 0.337
336 0.352 0.39 0.403 \ 0.41 0.366
720 0.413 0.454 0.461 \ 0.478 0.415
Avg 0.342 0.381 0.393 \ 0.4 0.355

ETTm2 96 0.167 0.175 0.176 0.179 0.187 0.162
192 0.219 0.237 0.24 0.307 0.249 0.216
336 0.269 0.298 0.304 0.325 0.321 0.268
720 0.347 0.391 0.406 0.502 0.408 0.348
Avg 0.251 0.275 0.282 0.328 0.291 0.249

Weather 96 0.149 0.163 0.159 \ 0.172 0.143
192 0.193 0.208 0.211 \ 0.219 0.186
336 0.245 0.251 0.267 \ 0.28 0.236
720 0.314 0.339 0.352 \ 0.365 0.307
Avg 0.225 0.24 0.247 \ 0.259 0.218

Electricity 96 0.133 0.153 0.173 0.164 0.168 0.134
192 0.149 0.166 0.195 0.177 0.184 0.149
336 0.164 0.185 0.206 0.193 0.198 0.165
720 0.203 0.225 0.231 0.212 0.22 0.203
Avg 0.162 0.182 0.201 0.187 0.192 0.163

Exchange rate 96 0.091 0.09 0.084 0.102 0.107 \
192 0.197 0.187 0.171 0.172 0.226 \
336 0.345 0.353 0.319 0.272 0.367 \
720 1.036 0.934 0.805 0.714 0.964 \
Avg 0.417 0.391 0.345 0.315 0.416 \

Traffic 96 0.367 0.462 0.57 0.519 0.593 0.385
192 0.39 0.473 0.577 0.537 0.617 0.397
336 0.404 0.498 0.588 0.534 0.629 0.41
720 0.439 0.506 0.597 0.577 0.64 0.448
Avg 0.4 0.485 0.583 0.542 0.62 0.41

To highlight the differences between seasonal vs. non-seasonal and stationary vs. non-stationary
characteristics, we selected the ETTh1 and ETTh2 datasets (relatively seasonal and stable) as well
as the Exchange dataset (relatively non-seasonal and non-stationary). The experimental results are
shown in the Table 14.

The degraded performance of pos emb (time series) might be due to the incompatibility of the
positional encoding with dimension transformation, as the original temporal order is lost in the seg-
ment dimension, making it unsuitable for dot-product attention calculations. On the other hand, pos
emb (segment) shows smaller changes compared to the No pos emb case, but the performance still
deteriorates slightly. This suggests that the significance of positional encoding in the context of mul-
tivariate time series forecasting might need to be re-evaluated, as there are fundamental differences
between NLP and time series data when applying attention mechanisms.

B.9 COMPARASION WITH ADDITIONAL BASELINES (PART-I).

B.9.1 COMPARISON WITH EXTENDED BASELINES

We have collected the Extended experimental MSE loss results of the relevant models in Table 15.
Although there are differences in experimental setups across each work, which may affect the re-
sults and prevent a completely fair comparison, we have provided some key settings to help better
understand the model performance.

For each model, the name is followed by two values in parentheses: the first value represents the
look-back window mode (with “F” indicating fixed input length and “M” indicating a grid search
was performed across different input lengths), and the second value indicates whether the test set
dataloader drops the last batch of data (noDL: does not drop last; DL: drops last).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 16: Comparison with additional baselines (Part-II).

Models PSformer (512, noDL) Crossformer (96,noDL) PDF (512, noDL) PatchTST (512, noDL) TimeLLM (512, DL)

ETTh1 96 0.352 0.384 0.361 0.374 0.362
192 0.385 0.438 0.391 0.413 0.398
336 0.411 0.495 0.415 0.434 0.43
720 0.44 0.522 0.468 0.455 0.442
Avg 0.397 0.46 0.409 0.419 0.408

ETTh2 96 0.272 0.347 0.272 0.274 0.268
192 0.335 0.419 0.334 0.341 0.329
336 0.356 0.449 0.357 0.364 0.368
720 0.389 0.479 0.397 0.39 0.372
Avg 0.338 0.424 0.34 0.342 0.334

ETTm1 96 0.282 0.349 0.284 0.29 0.272
192 0.321 0.405 0.327 0.333 0.31
336 0.352 0.432 0.351 0.37 0.352
720 0.413 0.487 0.409 0.416 0.383
Avg 0.342 0.418 0.343 0.352 0.329

ETTm2 96 0.167 0.208 0.162 0.166 0.161
192 0.219 0.263 0.224 0.223 0.219
336 0.269 0.337 0.277 0.273 0.271
720 0.347 0.429 0.354 0.363 0.352
Avg 0.251 0.309 0.254 0.256 0.251

Weather 96 0.149 0.191 0.147 0.152 0.147
192 0.193 0.219 0.191 0.196 0.189
336 0.245 0.287 0.243 0.247 0.262
720 0.314 0.368 0.317 0.315 0.304
Avg 0.225 0.266 0.225 0.228 0.226

From the results, compared to models with fixed windows, PSformer performed best on 7/8 of the
prediction tasks. This further highlights PSformer’s competitive performance in forecasting. Even
when compared to non-fixed window models like FITS, PSformer performed best on 4/7 of the
prediction tasks.

B.9.2 COMPARISON WITH ADDITIONAL BASELINES (PART-II)

We have collected the Extended experimental results of the relevant models in Table 16. Compari-
son with PDF and PatchTST. While PDF demonstrates strong predictive performance, as shown in
its paper, it also relies on a more complex hyperparameter search process. Additionally, PDF ad
PatchTST set drop last = True in the test set dataloader, which results in the model inadvertently
using incomplete batches during evaluation. To ensure a fair comparison, we modified PDF and
PatchTST by correcting this DL issue (setting drop last = True) and set the input length to 512 to
align with our experimental setup. Under these adjustments, we have included the updated results
in the table below, which provide further insights into PSformer performance under fair conditions.
We conducted tests on the following five datasets. From the experimental results, both PSformer and
PDF significantly outperform PatchTST in predictive performance, and PSformer achieving better
predictions than PDF. However, the average prediction loss reduction relative to PDF is not substan-
tial. Therefore, we consider PSformer and PDF to exhibit equally excellent predictive performance
under the same settings.

Comparison with Time-LLM. For Time-LLM, We listed the predictive performance from the origi-
nal paper of the model in the table below. However, we check its offical repository and find Time-
LLM also faces DL issue in the test set dataloader, which may affects its reported results. Besides,
due to the computational demands of large-scale models, we decided not to execute its code directly
in our experiments. When selecting the baseline large models, we considered both MOMENT and
TimeLLM. We ultimately chose MOMENT for two main reasons: the MOMENT paper includes
a direct comparison with TimeLLM, and it is relatively lightweight (428M parameters). In sum-
mary, despite the significant difference in parameter scale and the DL issue present in TimeLLM,
PSformer still achieves equal or better average predictive performance than TimeLLM on 3 out of 5
datasets.

Comparison with Crossformer. For Crossformer, we used experimental results based on the Cross-
GNN[7] paper, as there is an inconsistency in prediction lengths between the original Crossformer
paper and current mainstream work. Therefore, we aligned the experimental setup with the Cross-
GNN results to ensure consistency in the comparison. From the results, PSformer performs better
than Crossformer.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 17: Comparisons of convergence rates.

methods 96 192 336 720

ETTh1 w parameter sharing 83/0.352 70/0.385 53/0.411 35/0.440

w/o parameter sharing 46/0.359 108/0.392 39/0.423 36/0.441

Exchange w parameter sharing 71/0.081 51/0.179 82/0.328 32/0.842

w/o parameter sharing 47/0.084 32/0.183 43/0.333 31/0.855

Table 18: Comparisons of Parameter-Saving Capacity.

1 3 12 24 36 48

Parameter Sharing 52,416 58,752 87,264 125,280 163,296 201,312

No Parameter Sharing 71,424 115,776 315,360 581,472 847,584 1,113,696

B.10 COMPARISONS OF CONVERGENCE RATES WITH AND WITHOUT PARAMETER SHARING.

We compare the impact of parameter sharing on the convergence rate using the ETTh1 and Exchange
datasets, recording the total number of epochs and the MSE loss under the same settings.

The experimental results are shown in the Table 17, where the values represent epochs/MSE loss. We
observe that the number of epochs required with or without parameter sharing on the ETTh1 dataset
varies depending on the prediction length. However, for the Exchange dataset, the convergence rate
is faster without parameter sharing.

Additionally, in terms of MSE loss, using parameter sharing leads to greater reductions in loss and
also results in fewer parameters. Therefore, there exists a trade-off between convergence rates, loss
reduction, and parameter efficiency.

B.11 FURTHER TESTING OF PARAMETER-SAVING CAPACITY FOR PRE-TRAINED MODELS

For further validating the framework’s parameter-saving capacity, we compared the parameter count
of the PSformer under Parameter Sharing and No Parameter Sharing scenarios, including the com-
parison for 1-layer and 3-layer Encoders, as well as for different layers same as GPT2 models
(GPT2-small, GPT2-medium, GPT2-large, and GPT2-xl) at 12-layer, 24-layer, 36-layer, and 48-
layer configurations. The results are reported in the Table 18. In addition, if the hidden layer
dimension is expanded from 32 to 1024 (as in GPT2), or if multi-head attention is adopted, the total
number of parameters will also increase significantly.

B.12 MORE DETAILS ABOUT PARAMETER SEARCH SPACE.

The main hyperparameters of PSformer include: 1. the number of encoders, 2. the number of seg-
ments, and 3. the SAM hyperparameter rho. For the number of encoders, we primarily searched
within 1 to 3 layers. For the number of segments, we maintain the same as the number of patches
in PatchTST, we also analyzed values that divide the input length evenly (specifically: 2, 4, 8, 16,
32, 64, 128, 256), and ultimately set all prediction tasks to 32 to avoid performance improvements
caused by complex hyperparameter tuning. For the SAM hyperparameter rho, we referred to SAM-
former and performed a search across 11 parameter points evenly spaced in the range 0 to 1. The
number of encoders and segments can be found in the ablation study in section 4.2. Additionally, for
the learning rate, we mainly tested values of 1e− 3 and 1e− 4, and for the learning rate scheduler,
we tested OneCycle and MultiStepLR.

B.13 MORE RESULTS FOR SEGMENT NUMBER SELECTION.

We further conducted tests on the selection of segmentation numbers using the ETTh2 and Exchange
Rate datasets. The results are shown in the Appendix B.13. For prediction lengths of 192 and 336, a

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 19: Effect of Segment number selection.

segment number 8 16 32 64

ETTh1 96 0.273 0.273 0.272 0.275
192 0.333 0.333 0.335 0.337
336 0.353 0.357 0.356 0.357
720 0.387 0.387 0.389 0.394

Exchange 96 0.091 0.092 0.091 0.098
192 0.183 0.2 0.197 0.235
336 0.34 0.345 0.345 0.417
720 1.071 1.071 1.036 1.037

segment number of 8 further improves the forecasting performance (compared with default segment
number of 32). This suggests that there can not be a perfect fixed value for the choice of the number
of segments. The choice of the number of segments may be influenced by the characteristics of
different datasets, prediction lengths, as well as the overall increase in the scale of model parameters.

Therefore, for datasets without clear seasonality and with non-stationary characteristics (e.g. finan-
cial asset time series, including exchange rates), it is preferable to choose a larger segmentation
number. This allows each segment to capture smaller local spatio-temporal patterns, better ad-
dressing unstable variation modes. On the other hand, for datasets with significant seasonality or
relatively stationary characteristics (e.g. electricity and traffic), a relatively smaller segmentation
number often facilitates model training.

31

	Introduction
	Related Work
	Temporal modeling in time series forecasting
	Variate modeling in time series forecasting

	The PSformer Framework
	Problem Formulation
	Model Structure

	Experiment
	Results and Analysis
	Ablation studies

	Conclusion and future work
	Experimental Configuration
	Hardware
	Details of Baseline Settings
	Settings for PSformer
	Model Size Comparison
	Running time Comparison
	Discuss about Positional Encoding
	Sharpness-Aware Minimization (SAM)

	More Results and Analysis
	Investigation of hyper-parameter
	Full Results
	Training loss
	Visualization
	Additional Visualization of Attention Map
	Additional Visualization of the SegAtt Attention
	Single-channel Attention Map
	Cross-channels Attention Map
	Additional Visualization of the SegAtt Attention Map without Parameter Sharing

	SegAtt for univariate time series and low dependency series
	Exchange datesets performance with different RevIN look-back windows
	The effects of positional encoding on different time series types
	Comparasion with Additional Baselines (Part-I).
	Comparison with Extended Baselines
	Comparison with Additional Baselines (Part-II)

	Comparisons of convergence rates with and without parameter sharing.
	Further Testing of Parameter-Saving Capacity for Pre-Trained Models
	More details about parameter search space.
	More Results for Segment number selection.

