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ABSTRACT

We study the fractal structure of language, aiming to provide a precise formalism
for quantifying several properties that may have been previously suspected but
not formally shown. We establish that language is: (1) self-similar, exhibiting
complexities at all levels of granularity, with no particular characteristic granularity
level or context length, and (2) long-range dependent (LRD), with tokens at any
instant typically correlated with all subsequent tokens. Based on these findings,
we argue that short-term patterns in language, such as in paragraphs, mirror the
patterns seen in larger scopes, like entire documents. This may shed some light
on how next-token prediction can lead to a comprehension of the structure of text
at multiple levels of granularity, from words and clauses to broader contexts and
intents. In addition, we demonstrate a connection between fractal parameters,
such as the Hurst exponent, and scaling laws when varying the context length at
inference time. We hope that these findings offer a fresh perspective on the nature
of language and the mechanisms underlying the success of LLMs.

1 INTRODUCTION

How does next-token prediction in large language models (LLMs) yield remarkably intelligent
behavior? Consider, for instance, the two models: GPT4 (OpenAI, 2023) and PaLM2 (Anil et al.,
2023); these models have demonstrated extraordinary capabilities beyond just mastering language.
Their skills extend to quantitative reasoning, creative content creation, document summarization, and
even coding, which has prompted some researchers to ponder if there was more to intelligence than
“on-the-fly improvisation” (Bubeck et al., 2023). While understanding the exceptional capabilities of
LLMs is complex, particularly given the fuzzy meaning of “intelligent” behavior, a possible insight
can be drawn from the study of fractals and self-similarity. We elucidate this connection in this work.

Self-Similarity. Self-similar processes were introduced by Kolmogorov in 1940 (Kolmogorov,
1940). The notion garnered considerable attention during the late 1960s, thanks to the extensive
works of Mandelbrot and his peers (Embrechts & Maejima, 2000).

Broadly speaking, an object is called “self-similar” if it is invariant across scales, meaning its
statistical or geometric properties stay consistent irrespective of the magnification applied to it (see
Figure 1). Nature furnishes us with many such patterns, such as coastlines and snowflakes. In
geometry, the Cantor set and the Kuch curve stand out as beautiful illustrations of this phenomenon.
Despite the distinction, self-similarity is often discussed in the context of “fractals,” another term
popularized by Mandelbrot in his seminal book The Fractal Geometry of Nature (Mandelbrot, 1982).
However, the two concepts are different (Gneiting & Schlather, 2004). We define each in Section 2.

In language, in particular, there have been studies arguing for the presence of a self-similar structure.
Nevertheless, due to the computational constraints of the past, it was not feasible to holistically
model the joint probability distribution of language. As such, linguists often resorted to rudimentary
approximations in their arguments, such as by substituting a word with its frequency or length (Aus-
loos, 2012), or by focusing on the recurrence of a specific, predetermined word (Najafi & Darooneh,
2015; Altmann et al., 2012). These studies fall short of fully capturing the underlying structure of
language due to the simplifying assumptions they make. For example, they remain invariant to the
semantic ordering of texts and do not model second-order statistics, such as long-range dependence
(LRD) (Najafi & Darooneh, 2015).
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Figure 1: Manifestations of processes across different time scales. A region marked in red corresponds
to the magnified plot shown below it. LEFT: The process exhibits self-similarity with rich details at
all levels of granularity. It is an integral process (Xt)t∈N calculated from Wikipedia (see Section 2).
RIGHT: Example of a process that is not self-similar, looking smoother at larger time scales.

Highlighting the self-similar nature of a process can have profound implications. For instance, conven-
tional Poisson models for Ethernet traffic were shown to fail because traffic was self-similar (Crovella
& Bestavros, 1995; Leland et al., 1994; Paxson & Floyd, 1995; Willinger et al., 1997). In such cases,
recognizing and quantifying this self-similarity had practical applications, such as in the design of
buffers in network devices (Wilson, 2004). Similarly in language, we argue that self-similarity may
offer a fresh perspective on the mechanisms underlying the success of LLMs. Consider the illustrative
example shown in Figure 1 (left), where the task is to predict the subsequent observation in a time
series, specifically predicting next tokens in a Wikipedia article (see Section 2 for details). The three
plots in Figure 1 (left) represent different manifestations of the same process observed across three
distinct time scales. Notably, we can observe rich details, e.g. burstiness, in all of them. Hence, for
the model to successfully predict the next observation, it must capture the behavior of the process at
various levels of granularity. The common approach for quantifying self-similarity is using the Hölder
exponent (Watkins, 2019), which we denote by S. In language, we estimate it to be S = 0.638± .006
(see Section 2 for details), confirming that the process exhibits statistical self-similarity.

Why is this significant? We hypothesize that since LLMs are trained to predict the future of a
self-similar process, i.e., language, they develop proficiency in capturing behavior across multiple
levels of granularity for two interconnected reasons: First, self-similarity implies that the patterns
in language at the level of a paragraph are reflective of the patterns seen at the level of a whole text.
Hence, recognizing short-term patterns can also aide in learning broader contexts. Second, because
language displays detailed, intricate patterns at every level of granularity, it would not be enough to
rely only on the immediate context of a sentence to predict the next token. Instead, the model would
need to identify and predict patterns at higher levels of granularity; i.e. understand the overarching
topic, direction of the argument, and even the broader context and intent. It must balance between
immediate and long-term contexts. Willinger et al. (1995) and Altmann et al. (2012) argue that
self-similarity might arise in language precisely because of this hierarchical nature.

Long-range dependence. However, self-similarity by itself is not sufficient for a predictive model
to exhibit anything resembling “intelligent” behavior. In fact, some self-similar processes, despite
their intricacy across all levels of granularity, remain entirely unpredictable. A quintessential example
is the simple Brownian motion, which is a Wiener process with independent increments. Its discrete
analog Bn is defined by Bn =

∑n
i=1 εi, where εi ∼ N (0, σ2). Despite possessing rich details at all

granularities, a model trained to predict the future of a simple Brownian motion cannot obviously
acquire any intelligence since the process itself is completely unpredictable.

Thus, for intelligent behavior to manifest, the process must have some degree of predictability or
dependence as well. One classical metric for quantifying predictability in a stochastic process is the
Hurst parameter (Hurst, 1951), developed by the hydrologist H. E. Hurst in 1951 while studying
the Nile river flooding. It is generally considered to be a robust metric (Willinger et al., 1995),
unlike for instance the wavelet estimator (Abry et al., 1995) and the periodogram method (Geweke &
Porter-Hudak, 1983) that can be sensitive to measurement errors (Pilgrim & Taylor, 2018). As we
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discuss in Section 2, we estimate the Hurst parameter in language to be H = 0.74±0.02. For context,
the Hurst parameter can only take values in [0, 1]. A higher value suggests more predictability or
persistence in the data (H = 1 for completely deterministic system), while a lower Hurst parameter
indicates more randomness (H = 0.5 for completely random system). See Section 2.3.

While it is compelling that H ≈ 0.75 in language lies midway between determinism and noise, it
is perhaps more surprising how similar that value is to what Hurst himself calculated for the Nile
river, which is H ≈ 0.77 (Hurst, 1951), and to what has been estimated for Ethernet traffic, which is
H ≈ 0.75 (Crovella & Bestavros, 1995). In fact, it turned out that a Hurst parameter of about 0.75
occurs commonly in nature (Feller, 1951; Aref, 1998). Many processes, such as those relating to river
discharges, temperatures, precipitation, and tree rings consistently exhibit similar values.

Importantly, predictability and self-similarity together imply long-range dependence (LRD). This
follows from the definition of self-similarity, where the patterns at small scales mirror those at larger
scales so, for example, the correlations established at micro levels are also pertinent at macro levels.
LRD is arguably necessary for intelligence to emerge in a predictive model because processes that
only exhibit short-range dependence could be forecasted (somewhat trivially) using lookup tables
that provide the likelihood of transitions over brief sequences. By contrast, this is not possible in
LRD processes due to the long contexts, which extend indefinitely into the past.

Statement of Contribution. In summary, our contribution is to:

1. highlight how the fractal structure of language can offer a unique perspective on the intelli-
gent behavior exhibited by large language models (LLMs), and provide a precise formalism
to quantify properties of language, such as long-range dependence (LRD).

2. establish that language is self-similar and long-range dependent. We provide concrete
estimates in language of the three parameters: the self-similarity (Hölder) exponent, the
Hurst parameter, and the fractal dimension. We also estimate the related Joseph exponent.

3. demonstrate a connection between fractal patterns, such as the Hurst exponent, and scaling
law parameters when varying the context length at inference time.

2 FRACTAL PARAMETERS OF LANGUAGE

2.1 PRELIMINARIES

Suppose we have a discrete-time, stationary stochastic process (xt)t∈N. We assume that E[xt] = 0
and E[x2t ] = 1. We will refer to (xt)t∈N as the increment process to distinguish it from the integral
process (Xt)t∈N defined by Xt =

∑t
k=0 xk. While (xt)t∈N and (Xt)t∈N are merely different

representations of the same data, it is useful to keep both representations in mind. For example,
self-similarity is typically studied in the context of integral processes whereas long-range dependence
(LRD) is defined on increment processes.

In the literature, it is not uncommon to mistakenly equate parameters that are generally different. For
example, the Hurst parameter has had many different definitions in the past that were not equivalent,
and Mandelbrot himself had cautioned against this (Mandelbrot, 2002). The reason behind this is
because different parameters can agree in the idealized fractional Brownian motion setting, leading
some researchers to equate them in general (Watkins, 2019). We will keep the self-similarity exponent
S and the Hurst parameter H separate in our discussion.

Experimental Setup. In order to establish self-similarity and LRD in language, we convert texts
into sequences of bits using a language model (LM). Specifically, we use PaLM-8B (Chowdhery
et al., 2022) to calculate the probability of the next word wt conditioned on its entire prefix w[t−1] =
(w0, w1, . . . , wt−1). By the chain rule (Cover, 1999), the corresponding number of bits assigned
to wt is zt = − log p(wt|w[t−1]). Unlike in prior works, which rely on simplifications such as by
substituting a word with its length (Ausloos, 2012) or by focusing on the recurrence of a single,
predetermined word (Najafi & Darooneh, 2015; Altmann et al., 2012), we use the language model to
approximate the full joint distribution of language. We carry out these calculations for prefixes of up
to 4096 words (i.e. approximately 15 pages of text). The size of the PaLM model we use is 8 billion
parameters, trained on approximately 780B tokens. See Chowdhery et al. (2022) for further details.
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Figure 3: TOP: The peak probability pε(τ) with ε = 10−2 is plotted against the granularity level
τ . See Section 2.2 for details. We observe a power law relation pε(τ) ∼ τ−S in all datasets, with
exponents ranging from S = 0.59± 0.01 in Newsroom to S = 0.70± 0.02 in the Big Patent. When
all datasets are aggregated (rightmost plot), we have S = 0.63± 0.01. The existence of a power law
relation indicates a self-similar structure, in agreement with Figure 1. BOTTOM: Sensitivity analysis
of the self-similarity exponent to ε. Generally, S is insensitive to the choice of ε.
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Figure 2: A comparison of
PaLM-8B’s logits with actual
log-probabilities. We observe
a substantial agreement ex-
cept for exceedingly uncom-
mon words with a probability
less than 10−9.

To rely on a language model for such analysis, it must provide
probability scores that are reasonably well-calibrated. Generally,
LLMs are known to produce calibrated probability scores at the to-
ken level (Kadavath et al., 2022). As a sanity check, we compare the
logits− log p(word) predicted by PaLM-8B with the actual log prob-
abilities derived from the Google Web Trillion Word Corpus (Brants
& Web, 2006) based on word frequencies. We use histogram binning
(by grouping similar logits together) and plot their averaged actual
log probabilities, similar to how the expected calibration error (ECE)
is calculated (Guo et al., 2017). The results are presented in Fig-
ure 2. Notably, we find a strong agreement for the most frequently
occurring words, i.e., when the word probability exceeds p� 10−9.

Once zt is computed for a document, we construct the increment
process (xt)t∈N by normalizing zt to have a zero-mean and unit vari-
ance. The integral process (Xt)t∈N is calculated based on (xt)t∈N,
as described earlier and depicted in Figure 1 (left). Normalizing bits
(to have zero mean and unit variance) models language as a random
walk. It is a standard approach used extensively in the literature
in various contexts, such as in DNA sequences (Peng et al., 1992;
Roche et al., 2003; Montemurro & Pury, 2002; Kokol & Podgorelec, 2000; Schenkel et al., 1993).

We use four datasets all containing a minimum of 1,000 documents of length > 4K words. They are:
(1) Big Patent, which contains records of U.S. patent documents (Sharma et al., 2019), (2) Wikipedia,
containing English articles only (Wikimedia, 2023), (3) Newsroom, which is also a collection of
articles (Grusky et al., 2018), and (4) Scientific Papers, derived from ArXiv and PubMed OpenAccess
repositories (Cohan et al., 2018). We restrict analysis to sufficiently-long documents of length > 4K
words. We use the bootstrap method (Efron & Tibshirani, 1994) to estimate the margin of error.

Notation. We write f(x) ∼ xc if f(x) = xcL(x) for some slowly-varying function L. More
precisely, L(tx)/L(x) → 1 as x → ∞ for all t > 0. Examples of slowly varying functions are
constants L(x) = c and logarithmic functions L(x) = log x. When f(x) ∼ xc, we will abuse
terminology slightly by referring to f(x) as a power law function.
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2.2 SELF-SIMILARITY EXPONENT

An integral process is said to be self-similar if it exhibits statistical self-similarity. More precisely,
(Xt)t∈N is self-similar if (Xτt)t∈N is distributionally equivalent to (τSXt)t∈N for some exponent
S. Thus, scaling of time is equivalent to an appropriate scaling of space. We will refer to τ as the
granularity level and to the exponent S as the self-similarity exponent. It is worth noting that S is also
often called the Hölder exponent (Watkins, 2019). Many time series in nature exhibit self-similar
structures, such as human blood pressure and heart rate (Goldberger et al., 2002).

One convenient approach for calculating the self-similarity exponent S is as follows. First, fix ε� 1
and denote the τ -increments by (Xt+τ − Xt)t∈N. These would correspond, for instance, to the
number of bits used for clauses, sentences, paragraphs and longer texts as τ increases. In terms of the
increment process (xt)t∈N, this corresponds to aggregating increments into “bursts”. Let pε(τ) be
the probability mass of the event {|Xt+τ −Xt| ≤ ε}t∈N. Then, S can be estimated by fitting a power
law relation pε(τ) ∼ τ−S (Watkins, 2019). We adopt this approach in our experiments.

Figure 3 (top) plots the probability pε(τ) against τ when ε = 10−2. We indeed observe a power
law relation; i.e. linear in a log-log scale. When all the datasets are aggregated, the self-similarity
exponent is S = 0.63± 0.01. Figure 3 (bottom) shows that the S is robust to the choice of ε.

2.3 HURST PARAMETER

The Hurst parameter H ∈ [0, 1] quantifies the degree of predictability or dependence over time (Hurst,
1951). It is calculated using the so-called rescaled-range (R/S) analysis. Let (xt)t∈N be an increment
process. For each n ∈ N, write yt = xt − 1

t

∑t
k=0 xk and Yt =

∑t
k=0 yt. The range and scale are

defined, respectively, as R(n) = maxt≤n Yt −mint≤n Yt and S(n) = σ ({xk}k≤n), where σ is the
standard deviation.

Then, the Hurst parameter H is estimated by fitting a power law relation R(n)/S(n) ∼ nH. As stated
earlier, for completely random processes, such as a simple Brownian motion, it can be shown that
H = 1/2. On the other hand, H = 1 is a deterministic system. Hence, H > 1/2 implies dependence
over time (Crovella & Bestavros, 1995; Willinger et al., 1995; Aref, 1998).

Writing ρn = E[(xt+nxt] for the autocovariance function of the increment process (xt)t∈N, the Hurst
parameter satisfies H = 1− β/2 when ρn ∼ n−β as n→∞ (Gneiting & Schlather, 2004; Crovella
& Bestavros, 1995). Since in self-similar processes, H > 1/2 implies long-range dependence (LRD),
LRD is equivalent to the condition that the autocovariances are not summable.

In terms of the integral process, it can be shown that (Samorodnitsky, 2006; Altmann et al., 2012):

lim
n→∞

Var(Xn)

n
= 1 + 2

∞∑
i=1

ρi. (1)

Hence, if H < 1/2, the auto-covariances are summable and Var(Xn) grows, at most, linearly fast on
n. On the other hand, if the process has long-range dependence (LRD), Var(Xn) grows superlinearly
on n. In particular, using the Euler-Maclaurin summation formula (Apostol, 1999; Alabdulmohsin,
2018), one obtains Var(Xn) ∼ n2H if H > 1/2.

Figure 4 plots the rescaled range R(n)/S(n) against n. When all datasets are aggregated, we obtain
an estimate of H = 0.74± .02. As mentioned in Section 1, a value of H ≈ 0.75 occurs commonly in
nature, such as in river discharges, temperatures, and tree rings (Feller, 1951; Aref, 1998).

2.4 FRACTAL DIMENSION

Broadly speaking, the fractal dimension of an object describes its local complexity. For a geometric
object Z, such as the Koch curve, let τ be a chosen scale (e.g. a short ruler for measuring lengths
or a small square for areas). Let N(τ) be the minimum number of objects of scale τ that cover Z.
Then, the fractal dimension of Z, also called its Hausdorff dimension, is (Pilgrim & Taylor, 2018):
D = − limτ→0

{
logN(τ)
log τ

}
. For example, a line has a fractal dimension 1, in agreement with its

topological dimension, because N(τ) = C/τ for some constant C > 0.
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Figure 4: Rescaled rangeR(n)/S(n) is plotted against the number of (normalized) bits n. We observe
a power law R(n)/S(n) ∼ nH, with a Hurst parameter ranging from H = 0.67± .01 in Newsroom
to H = 0.89± .01 in Big Patent. When aggregating all datasets (rightmost), H = 0.74± .02.

Table 1: A comparison of the self-similarity exponent and the Hurst parameter on a composite
of 1,000 articles sourced from both Wikipedia (Wikimedia, 2023) and Newsroom (Grusky et al.,
2018) datasets. As expected, PaLM-540B produces consistently larger estimates of both parameters
compared to PaLM-8B. See Section 2.5. However, both models affirm the existence of self-similarity
and long-range dependence (LRD) in language.

Self-Similarity Exponent S Hurst Parameter H

PaLM-8B PaLM-540B PaLM-8B PaLM-540B

Wikipedia + Newsroom 0.60± .01 0.64± .01 0.67± .01 0.73± .01

By convention, an object is referred to as “fractal” if D is different from its topological dimension.
For example, the fractal dimension of the Koch curve is about 1.26 when its topological dimension is
1. Fractals explain some puzzling observations, such as why estimates of the length of the coast of
Britain varied significantly from one study to another, because lengths in fractals are scale-sensitive.
Mandelbrot estimated the fractal dimension of the coast of Britain to be 1.25 (Mandelbrot, 1967).

The definition above for the fractal dimension D applies to geometric shapes, but an analogous
definition has been introduced for stochastic processes. Let (xt)t∈R be a stationary process with
autocovariance ρn. Then, its fractal dimension D is determined according to the local behavior of ρn
at the vicinity of n = 0, by first normalizing (xt)t∈R to have a zero-mean and a unit variance, and
modeling ρn using a power law ρn ∼ 1− nα as n→ 0+, for α ∈ (0, 2]. Then, the fractal dimension
D ∈ [1, 2] of (xt)t∈R is defined by D = 2 − α/2 (Gneiting & Schlather, 2004). A value D � 1
indicates a significant fractal structure.

It can be shown that D = 2−S, where S is the self-similarity exponent (Gneiting & Schlather, 2004) so
we use the latter identity in our analysis since it has the advantage of being applicable to discrete-time
stochastic processes as well. For language, this gives a fractal dimension of D = 1.37± .01.

2.5 ROBUSTNESS TO THE MODEL SIZE

As previously mentioned, we employed PaLM-8B for our experiments. To ensure that our main
conclusions hold true even when leveraging larger LLMs, which provide more accurate estimates
of the joint probability distribution in language, we calculate the self-similarity exponent and Hurst
parameter using PaLM-540B (Chowdhery et al., 2022) on a composite of 1,000 articles sourced from
Wikipedia and Newsroom. We then compare these outcomes with those obtained from PaLM-8B.

Table 1 summarizes the results. First, power law relations, pε(τ) ∼ τ−S and R(n)/S(n) ∼ nH

continue to hold when using PaLM-540B, affirming the existence of both self-similarity and long-
range dependence (LRD) in language. Both exponents, however, are slightly larger than using
PaLM-8B, which is quite expected. Because H > 1/2 quantifies predictability in language, we
expect larger models to capture the predictability in language more accurately than smaller models. In
addition, since the fractal dimension satisfies D = 2− S, a large value of the self-similarity exponent
indicates less complexity at small scales. Hence, we expect larger models to produce large estimates
of S and H, in agreement with Table 1. Generally, however, these differences are not significant and
we observe comparable results across both models, despite the ×67 increase in model size.
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Figure 5: S and H plotted for different constructions of bits, as we vary the prefix length in the LM.

2.6 JOSEPH EFFECT

Finally, we also examine another related parameter that is commonly studied in self-similar processes.
The motivation behind it comes from the fact that in processes with LRD, one often observes
burstiness as shown in Figure 1; i.e. clusters over time in which the process fully resides on one side
of the mean, before switching to the other. This is quite unlike random noise, for instance, where
measurements are evenly distributed on both sides of the mean. The effect is often referred to as the
Joseph effect, named after the biblical story of the seven fat years and seven lean years (Willinger
et al., 1995; Mandelbrot & Wallis, 1968; Watkins, 2019).

A common way to quantify the Joseph effect for integral processes (Xt)t∈N is as follows (Watkins,
2019). First, let στ be the standard deviation of the τ -increments Xt+τ − Xt. Then, fit a power
law relation στ ∼ τJ. The exponent J here is called the Joseph exponent. In an idealized fractional
Brownian motion, both J and the self-similarity exponent S coincide. Figure 6 summarizes the
empirical results. When all datasets are aggregated, we obtain an estimate of J = 0.51± .01, which
is intriguing because J = 0.5 corresponds to self-similar processes with independent increments.

3 CONNECTION TO SCALING LAWS

Since the self-similarity exponent S and the Hurst parameter H quantify the level of complexity
(fractal structure) and long-range dependence (LRD) in language, we expect them to correlate with
the performance of language models (LMs) as we vary the context length during inference. To verify
this hypothesis, we calculate the average log-perplexity score of PaLM-8B on each of the four datasets
as we vary the length of the context window during inference in the set {24, 25, . . . 211}. Note that
the model is tasked with predicting a single token only so all results are directly comparable.

Denoting εx for the log-perplexity score, where x is the context length used during inference, we
model the performance as a power law: εx ∼ βx−c + ε∞. Figure 7 plots the scaling parameters c
and ε∞ in each of the four datasets against the self-similarity exponent and Hurst parameter. We
observe a strong correlation in general. More specifically, a large value of S or H leads to smaller
values of both c and ε∞. In other words, increasing the context length offers more predictability
(hence lower values of ε∞) but with a slower convergence (smaller values of c).

These results confirm our interpretation of the self-similarity exponent and the Hurst parameter;
namely that S and H quantify the level of complexity or predictability in language. We provide
further verification in Figure 5, where we plot S and H when the sequence of bits constructed using
the LM are conditioned on prefixes of a small fixed length, instead of the entire history. We observe
that both S and H indeed increase with prefix length (more predictability). Generally, when S and H
are large, language models would benefit significantly from having longer contexts during inference.

What about the context length at training time? Self-similarity and long-range dependence also
point to another intriguing possibility: the importance of training the model with extensive contexts in
order to capture the fractal-nature of language, which may elevate the model’s capabilities regardless
of the context length needed during inference. To test this hypothesis, we pretrain PaLM-1B (with
approximately 1 billion parameters), utilizing context lengths of 256, 512, 1024, and 2048 tokens.
These models are all trained under a compute-matched regime, with 12 billion tokens from the C4
corpus (Raffel et al., 2019). To assess the performance of these four models, we conduct evaluations
across all tasks from BigBench-Lite benchmark. We adjust the number of shots as the main knob
to control the context length during inference. The objective of these experiments is to allow us to
compare the performance of models trained with different context lengths in different scenarios. For
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Figure 6: The standard deviation σ of the τ -increments Xt+τ − Xt is plotted against the scale
τ . We, again, observe another power law relation σ ∼ τJ, with a Joseph exponent ranging from
J = 0.41 ± .01 in Wikipedia to J = 0.51 ± .01 in Newsroom. When aggregating all datasets
(rightmost plot), we obtain the estimate J = 0.51± .01.
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Figure 7: We model the performance of PaLM-8B on the four datasets as a power law εx ∼
βx−c + ε∞, where x is the context length used at inference. The y-axis corresponds to the scaling
parameters c (left) and ε∞ (right) while the x-axis is the self-similarity exponent S and Hurst
parameter H. Generally, we observe a strong correlation between fractal and scaling parameters.

instance, with small number of shots, e.g., 0 or 1, models are confronted with problems requiring
shorter contexts than what they were exposed to during training. Figure 8 shows the results.

While performance turns out to be similar overall across all models, there are stark exceptions, such
as conlang_translation and play_dialog, where the model trained on context length 256
tokens performed considerably worse than the rest, including in the zero-shot setting. This suggests
that training a model on longer contexts might elevate its ability even if shorter contexts are used at
inference time. We speculate that the reason all models perform comparably in most tasks is because
C4 documents are mostly short (Xiong et al., 2022). We defer this investigation to future work.

4 RELATED WORKS

The statistical attributes of human language have long piqued scholarly curiosity. One example is
Zipf’s law, which postulates that the marginal probability (frequency) of a word follows a power
law p(word) ∝ 1/r(word), with r(word) symbolizing the word’s rank. Shannon leveraged this
observation to estimate the entropy of English to be around 1 bit per letter (Shannon, 1951), but his
calculation did not consider second-order statistics. More recently, Eftekhari (2006) proposed a
refinement to Zipf’s law, suggesting its application to letters rather than words. Another related result
is Heap’s law, which states that the number of unique words in a document is a power law function
of the document’s length (Heaps, 1978). However, both Zipf’s and Heap’s laws are invariant to the
permutation of words, i.e. invariant to the semantic ordering of text. Hence, they do not capture
important aspects, such as long-range dependence (LRD) (Najafi & Darooneh, 2015).

In terms of self-similarity in language, the Menzerath-Altmann law stipulates a self-similar behavior
in the following sense: when the size of a language construct increases, the size of its constituents
decreases, and this happens at all scales (Najafi & Darooneh, 2015; Andres, 2009). In Ausloos (2012),
the authors model texts as a time series by replacing a word with its length or frequency. After that,
they study the fractal behavior of language. However, replacing a word with its length is invalid
because it is not translation-independent (i.e. we could map every word in the language to an arbitrary
token, including tokens of equal length). In our work, we model language as a time series of bits
calculated from the conditional entropies, which reflects the structure of the language itself.
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Figure 8: Performance of models trained with different context length on fewshot BigBench-Lite.

In Najafi & Darooneh (2015), the authors define a fractal dimension for each word. Informally, they
examine the recurrence of a single, predetermined word in texts as an ON/OFF time series, similar
to the approach used in Altmann et al. (2012). However, this is only applicable to individual words
and cannot model higher-level clauses. For instance, it does not distinguish between the word “time”
in the phrase “once upon a time” and the word “time” in the phrase “space and time.” Kokol &
Podgorelec (2000) estimate LRD in natural language texts, and suggest that LRD in language is close
to that of pure noise! This raises concerns because there is clearly some dependence in language. The
authors conjecture that their conclusion could be due to the use of ASCII-like encoding. In computer
languages, they observe LRD and attribute this to the fact that computer languages are more formal.

Besides the above concerns in prior studies that examined the self-similar structure in language,
another concern is that they sometimes give extremely large values of the fractal dimension (values
that even exceed ten in some cases) (Andres, 2009). Such extreme values are difficult to interpret
because classical definitions of the fractal dimension restrict its value to the range [1, 2] (since the
fractal dimension D is always between d and d+ 1, where d is the topological dimension, which is 1
in a time series). We do not observe such issues in our analysis. In our case, D ≈ 1.37.

5 CONCLUDING REMARKS

In this work, we highlight intriguing insights into the underlying fractal structure of language and how
it may be interconnected with the intelligent behavior of LLMs. Our formalism quantifies properties
of language that may have been suspected, but not previously formally shown. In particular, the need
in LLMs to balance between short- and long-term contexts is reflected in the self-similar structure of
language, while long-range dependence is quantifiable using the Hurst parameter. Interestingly, the
approximate Hurst value of 0.75 for language suggests an intriguing balance between determinism
and randomness that is similar to those seen in other phenomena. Also, we demonstrate how fractal
patterns relate to scaling law parameters, confirming that LLMs would benefit from longer contexts in
domains with a large Hurst parameter. We hope that future research can further probe into these fractal
properties, unearthing deeper understandings of the relation between intelligence and language.
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