

LLM-based Code Evaluation for Fairness

As LLM agents are tasked with writing and running ML pipelines, it is no longer sufficient to measure
performance only by overall accuracy. We need evaluations that (i) detect group-level harms, (ii) verify
whether the code actually implements fairness practices, and (iii) assess whether the agent’s plan reflects
the stated fairness goal. This work presents an evaluation-first view of our benchmark for agentic ML,
focusing on fairness. Agents receive realistic ML tasks derived from widely used fairness datasets and
goals (e.g., reduce disparity under equalized-odds or demographic-parity while maintaining a high
accuracy). Each task requires training, documenting choices, and returning runnable code plus a final
report.
We provide three levels of evaluation: model, code, and reasoning. The model evaluation is based on
running the scripts written by the agent. The code evaluation combines a linter-based step and an LLM
evaluator applying a rubric. Reasoning evaluation is completely based on an LLM evaluator applying a
rubric. We use the same LLM evaluator scheme for both code and reasoning evaluation. To validate our
evaluation we check the consistency of scores across the repetitions of the same code or log for each
single rubric item by computing the Coefficient of variation score(CVs) . If the scores are different even
when the input is the same, it means our evaluation process might be inconsistent. Across candidate
evaluators on the test task, Gemma had the lowest CVs for both race and sex items, whereas several
alternatives (e.g., DeepSeek and Granite) showed much higher variability, including CVs > 1 on some
items. For validity, we examined correlations among rubric sub-scores, across repeated runs, and
between LLM-based rubric scores (code) and automated linter checks, and found good overall
agreement. These results motivated selecting Gemma as the evaluator and support the reliability and
interpretability of our evaluation pipeline.
 Evaluators have risks, LLMs exhibit a bias towards their own generated outputs, a phenomenon termed
“self-preference,” (Panickssery, Bowman, and Feng 2024). Therefore all LLM evaluations are done with
Gemma, Granite and Deepseek which were not used as an agent.
Agents frequently succeed on easier accuracy-only binary tasks, but struggle with real-world fairness
constraints: across tasks, final-answer submission rates range from 51.4%–86.2%, and agents generally
underperform human strong baselines and rarely beat a naïve baseline. Focusing on tasks where
disparate impact (DI) is the target metric, we analyzed accuracy vs. DI across models, research
problems, target demographics, and datasets. Accuracy remains fairly consistent and near typical
literature values across runs, while DI varies substantially. In particular, DI suffers for Adult data. State of
the art performance on DI is very close to 1 for German(1.13), Credit(1.02), and Adult (0.97). The agents
come close to this for german and credit in many runs, but not for Adult, highlighting a decoupling
between overall accuracy and fairness and underscoring the need for fairness-aware evaluation. The
multi-scale analysis pinpoints why results degrade: (a) reasoning that identifies a mitigation but code that
omits it; (b) code that adds a mitigation but evaluates only overall accuracy; and (c) plans that select a
fairness metric incompatible with the task’s constraint. We checked if the code actually did the fairness
things the reasoning said it would. On the target-selection task for fairness selection (rubric section) ,
code-eval = 3 points (it used statistical parity + equalized odds), but log-eval = 1 point (the plan didn’t
name any fairness metric). This shows the agent can do it without saying it, or say it without doing it.
Unlike accuracy-only or pass/fail benchmarks, we introduce a diagnostic, fairness-aware evaluator that
scores the model, the code, and the reasoning with one rubric. It separates intent from implementation,
quantifies fairness trade-offs, and makes failures reproducible, while remaining model-agnostic and easy
to extend to new tasks and fairness goals for governance use. Practitioners should not trust accuracy
alone; require disaggregated metrics, code-level evidence of mitigations, and plan-level alignment
checks. Our evaluation methodology operationalizes these requirements and reveals where fairness
breaks down.

