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ABSTRACT

Rotary Position Embeddings (RoPE) are widely adopted in LLMs, and it is com-
monly believed that larger base frequencies θ yield better long-context performance.
In this paper, we show that a high-norm RoPE dimension, referred to as the “fre-
quency band,” consistently emerges across multiple models, and we focus on this
band to reveal the trade-offs inherent in RoPE. We find that replacing the RoPE
dimensions below the frequency band with NoPE during inference has little effect
on performance, indicating that these lower-frequency dimensions are only weakly
utilized. We further find that the location of the frequency band depends on the
RoPE base θ and the training sequence length. Moreover, the band forms early dur-
ing pre-training and persists even after context extension via position interpolation.
Notably, we show that setting θ to the training length shifts the band toward lower
frequencies and improves extrapolation, whereas increasing θ enhances interpo-
lation but reduces extrapolation, revealing a clear trade-off between interpolation
and extrapolation. We believe this work is a step toward a sharper understanding of
positional embeddings in LLMs, with falsifiable diagnostics and practical guidance
for choosing θ that support scaling to longer contexts.

1 INTRODUCTION

Rotary Position Embedding (RoPE) (Su et al., 2021) is a widely adopted positional encoding method
in Transformer-based large language models (LLMs). It can provide an awareness of relative position
via two-dimensional rotations determined by a base frequency parameter, denoted as θ hereinafter. To
support longer input sequences, recent work has scaled the base frequency θ well beyond its default
setting of 10, 000, typically up to 500, 000 or more (Grattafiori et al., 2024; Abdin et al., 2024). This
approach is motivated by the intuition that higher base frequencies alleviate sharp decay in attention
scores over relative distances (Xiong et al., 2024; Rozière et al., 2024) as well by the aim of achieving
extrapolation to unseen longer contexts (Vaswani et al., 2017). However, previous research shows that
scaling only RoPE’s θ often fails to yield robust extrapolation (Oka et al., 2025), and thus position
interpolation with fine-tuning (Peng et al., 2024; Ding et al., 2024) remains necessary to recover
performance in extended contexts.

Furthermore, Barbero et al. (2024) observed clear “frequency bands” in the low-frequency dimension
of queries and keys, where a frequency band refers to a dimension in which high L2-norm values
occur for all tokens. However, the formation of this band has not been verified. They also showed
that replacing some of the low-frequency dimensions in RoPE, corresponding to the largest θ, with
NoPE (Kazemnejad et al., 2023) does not affect the performance of LLMs. These results suggest that
such low-frequency RoPE dimensions are nearly identical to NoPE and may not represent positional
information. Figure 1 illustrates a segment of the sine wave in using RoPE. As the value of θi
increases with θ = 500, 000, the sine components approach zero and the cosine components approach
one across most positions, effectively resulting in matrices that closely resemble the identity matrix.
Such a lack of significant variation in the encoded values may underlie the phenomena discussed
above.

Theoretical reasons for θ-scaling via activation decay (Xiong et al., 2024) conflict with evidence that
swapping low frequencies for NoPE leaves performance unchanged (Barbero et al., 2024), revealing
a deeper puzzle in RoPE’s θ choice. These previous studies present a fundamental challenge to
the prevailing θ-scaling paradigm: Does increasing θ truly add useful positional information
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Figure 1: Sine waves of base frequencies θi in RoPE and a frequency-matching intervention in RoPE
(FMRoPE), with training context length Ltrain = 512. FMRoPE sets the maximum base frequency to
match the maximum sequence length in pre-training.

or does it mainly push many RoPE dimensions into a NoPE-like form that contributes little
information? In this paper, we focus on frequency band analysis and reveal that the relationship
between θ and context length from the frequency band is much closer than previously assumed.

We first present evidence that frequency bands emerge systematically across different LLMs, including
Gemma (Team et al., 2024), Llama (Touvron et al., 2023; Grattafiori et al., 2024), Qwen (Yang
et al., 2025), and Phi-3 (Abdin et al., 2024), and that their formation is governed by the interaction
between θ and the training context length Ltrain. This formation is determined in the early stages of
training and persists even when applying position interpolation, including YaRN (Peng et al., 2024)
and LongRoPE (Ding et al., 2024)—in fact, the formation is inherited rather than corrected. Most
critically, we study a frequency-matching intervention in RoPE that sets the base frequency to the
training length. This shifts the frequency band toward the lowest frequencies and reveals a clear
trade-off: Matching the training length improves extrapolation but hurts interpolation, whereas using
larger base frequencies has the opposite effect. This trade-off contradicts the prevailing notion that
simply scaling θ is a universal solution for context extension.

Through extensive analysis, we provide an answer to the research question posed above: Increasing
θ does not by itself add useful positional information; rather, it mainly reallocates energy so
that the dimension below the frequency band remains informative while many dimensions
behave similarly to NoPE and contribute little. This improves interpolation within the training
range but degrades extrapolation. Therefore, rather than treating θ-scaling as universally beneficial,
we emphasize the importance of considering the frequency band and the interpolation–extrapolation
trade-off.

2 BACKGROUND

Rotary Position Embedding (RoPE) RoPE (Su et al., 2021) incorporates positional information
directly in the self-attention mechanism by rotating the query and key vectors. The d-dimensional
space is divided into d

2 subspaces, and the inner product of the rotation matrix and the query is
calculated as follows. [

cos m
θi

− sin m
θi

sin m
θi

cos m
θi

] [
qm2i−1
qm2i

]
, θi = θ2i/d, (1)

where n is absolute position, qm ∈ R1×d is the m-th query (0 ≤ m ≤ L− 1) when the number of
dimensions is d, i is the dimension (i ∈ {1, 2, . . . , d

2}), θ is the base of RoPE, and L is sequence
length. The same process is also performed for the n-th key kn ∈ R1×d. 1 The base θ in RoPE is
relatively large and designed to represent positions exceeding the sequence length appearing during
training. These positions include θ = 10, 000, which is based on Sinusoidal Positional Encoding
(Vaswani et al., 2017) and used in the Gemma (Team et al., 2024) and Llama-2 (Touvron et al., 2023)
models, θ = 500, 000, which is used in the Llama-3 model (Xiong et al., 2024), and θ = 1, 000, 000,
which is used in the Phi-3 model (Abdin et al., 2024).

Position Interpolation RoPE requires fine-tuning to handle sequences longer than the maximum
sequence length Ltrain appearing in pre-training. The most common approach to this fine-tuning is a
position interpolation method that further expands the θ used in pre-training, and it includes YaRN
(Peng et al., 2024), which determines θ with a rule-based approach, LongRoPE (Ding et al., 2024),

1Note that the pretrained LLMs in Section 3 use θi = θ2i/d, i ∈ {0, 1, . . . , d
2
− 1}, unlike the standard

definition.
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which searches for the most suitable θ using parameter optimization, and Llama-scaling (Team, 2024),
which is a rule-based approach used in the Llama-3.1 model (Meta, 2024)2.

Frequency Bands in RoPE Barbero et al. (2024) revealed that there are “frequency bands” with
high continuous norm values for the 2-norm ∥qm∥2 and ∥kn∥2 of the query and key after applying
RoPE, where qm ∈ R1×d is the m-th query and kn ∈ R1×d is the n-th key when the number of
dimensions is d. Furthermore, they also revealed that pretraining while replacing the low-frequency
dimension RoPE with NoPE (Kazemnejad et al., 2023) does not change performance. This method is
called p-RoPE, where p is a parameter that turns the dimension into NoPE. However, their analysis
focused on short texts and did not verify cases of positional interpolation or long context. Moreover,
the mechanism behind the formation of the “frequency bands” remains unclear.

3 FREQUENCY BAND EMERGENCE IN PRETRAINED LLMS

We first investigate the frequency band identified by Barbero et al. (2024). Do similar frequency
bands appear in other LLMs, or in those with base θ modified by position interpolation? To address
this, we build on prior analysis (Barbero et al., 2024) and conduct further investigations across several
LLMs.

3.1 ANALYTICAL METHODOLOGY

To measure the usage of frequencies, Barbero et al. (2024) calculated the 2-norm of key ∥kn∥2. By
the Cauchy-Schwarz inequality, the attention score am,n between the mth query qm and the nth key
kn satisfies |⟨qm, kn⟩| ≤ ∥qm∥2∥kn∥2. Therefore, to analyze the frequency components influencing
the attention score, it is sufficient to examine either ∥qm∥2 or ∥kn∥2. We mainly examined the

2-norm of queries. Here, the 2-norm of a key is calculated as ∥kn∥2 =
√∑d−1

j=0(k
n
j )

2, where d is
the number of dimensions and j ∈ {1, 2, ..., d}.

Frequency Band Index iband To quantify where the frequency band appears in the key vector
dimensions, we define the band index iband. First, we identify the dominant frequency component at
token position n by selecting the dimension i with the maximum 2-norm among the d

2 dimensions of
the key vector kn.

idxn = argmax
kn
i ∈{kn

0 ,kn
1 ,...,kn

d/2−1
}
(∥kni ∥2) (2)

Next, we determine the index idxn that appears most frequently in the entire sequence of length
L. The resulting index ˆidx represents the dominant dimension in which the frequency bands are
concentrated throughout the entire sequence.

ˆidx = argmax
kn∈{k0,k1,...,kL−1}

(count(idxn)) (3)

This procedure is repeated for all heads and layers. The average of these model indices is defined as
the band index iband, where 0 ≤ iband ≤ d

2 .

p-RoPE To analyze the contribution of different frequency components in RoPE, we measured per-
plexity using a simplified RoPE called p-RoPE (Barbero et al., 2024), which disables low-frequency
dimensions. p-RoPE applies rotation only to the top-r high-frequency dimensions, interpolating
between NoPE (r = 0) and the full RoPE (r = 1).

Unlike the previous studies of Barbero et al. (2024), no training was conducted in our analysis.

3.2 EXPERIMENTAL SETTINGS

For a comprehensive analysis, we selected models that use different base models (Gemma 8B, Llama-
2 7B, Llama-3 8B, Phi-3 Small, Qwen-3-8B) and different position interpolation methods (YaRN,

2These major position interpolations all enlarge the original θ values, as shown in Appendix I.
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Figure 2: 2-norm plotted over 2-dimensional chunks of queries. Vertical axis represents sequence
length (L = 4096), and horizontal axis represents each dimension index (i ∈ {0, 1, . . . , d/2− 1}) of
RoPE. Note that the head dimension d for the Gemma model is 256, while d is 128 for other models.

Table 1: Perplexity Results with p-RoPE. ’pt’ is ’Pre-train’ and ’ft’ is ’Fine-tuning.’ YaRN, Llama3,
and LongRoPE are position interpolation methods applied during fine-tuning. Note that head
dimension d is 256 for the Gemma model and 128 for the other models.

Model Ltrain base θ Band Index Perplexity with p-RoPE

pt ft pt iband iband/
d
2

r=1.0 r=0.9 r=0.75 r =0.50

Gemma 8k - 10000 116.68 0.91 2.52 2.70 81.66 > 100
Qwen3 40k - 1000000 51.04 0.79 6.22 6.22 6.22 7.46
Llama-2 4k - 10000 53.53 0.84 2.54 2.58 > 100 > 100
+YaRN 4k 64k 10000 51.93 0.81 2.81 5.08 > 100 > 100
Llama-3 8k - 500000 43.43 0.68 2.29 2.29 2.29 84.50
+Llama3 8k 131k 500000 40.47 0.63 2.29 2.29 2.29 5.53
Phi-3 8k - 1000000 36.67 0.57 2.84 46.11 46.36 > 100
+LongRoPE 8k 131k 1000000 39.32 0.61 2.74 62.20 62.18 > 100

scaling in Llama-3 model, LongRoPE). Additional details are given in Appendix A. The dataset for
evaluation is the test set of Wikitext-103 (Merity et al., 2017), and the sequence length in inference is
L = 4096 for all models.

3.3 RESULTS

Do frequency bands exist in other LLMs? Figure 2 shows the 2-norm of the queries for each
model. As with Barbero et al. (2024), we extracted queries in the first layer that had semantic attention
patterns in the head. First, we found that bands exist in all models, indicating that bands reflect a
phenomenon that occurs generally. Next, we observed that the dimension in which the frequency
band appears varies across models. Furthermore, we found that the position interpolation model
inherits the bands regardless of the position interpolation method.

Do low-frequency components of RoPE contribute to performance? Table 1 shows frequency
band index iband and perplexity results when varying parameter r in p-RoPE across multiple language
models. We also present standardized band index iband/d (divided by head dimension d) for unified
comparison. Band index iband remains largely unchanged before and after position interpolation, and
it aligns closely with the index of the bands shown in Figure 2, confirming consistency between our
visual and quantitative analyses. The standardized index iband/d decreases as θ increases, suggesting
a relationship between band location and frequency determined by θ. For the Gemma and Llama
models, the p-RoPE results reveal that replacing RoPE in a frequency dimension lower than the
band with NoPE does not degrade performance, indicating an ineffective use of low-frequency RoPE

4
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Figure 3: 2-norm plotted in the combination pattern of (Ltrain, θ) ∈ {512, 1024, 2048} ×
{Ltrain, 10, 000; 500, 000; 1, 000, 000}. Vertical axis represents sequence length (L = 1024), and
horizontal axis represents each dimension index (i ∈ {0, 1, . . . , d/2}) of RoPE.

components. Conversely, Phi-3 shows performance degradation when low-frequency dimensions
are replaced, regardless of band appearance, suggesting an effective use of low-frequency RoPE,
possibly due to this model’s block-sparse attention (Abdin et al., 2024) that alternates between dense
and sparse patterns.3

Takeaways from Section 3: In other LLMs and in models that use position interpolation, a
distinct frequency band appears and remains even when the base changes. Since replacing
RoPE dimensions below this frequency band with NoPE shows no measurable change, these
low-frequency dimensions might not contribute to performance.

4 UNDERSTANDING FREQUENCY BAND FORMATION IN PRE-TRAINING

What factors cause the band index to change, and when do bands occur? To investigate the factors
that determine bands, we varied RoPE’s θ and max sequence length in pre-training to analyze the
frequency bands via the 2-norm of the query.

4.1 EXPERIMENTAL SETTINGS

For pre-training, we followed the experimental settings of Press et al. (2022) and Oka et al. (2025),
and we used the WikiText-103 dataset (Merity et al., 2017). A comparative evaluation was made
using a Transformer-based language model (Baevski & Auli, 2019). Here, the dimensionality of
the word embedding dmodel is 1024, the number of heads N is 8, the dimensionality of the heads
d is 128, and the number of layers is 16. This implementation uses the fairseq (Ott et al., 2019)-
based code. Additional details on the parameter settings are given in Appendix A. The maximum
sequence length and RoPE were tested in combination with (Ltrain, θ) ∈ {512, 1024, 2048} ×
{Ltrain, 10, 000; 500, 000; 1, 000, 000}. The sequence length in inference is L = 1024 for all models.

3A more detailed discussion of this observation appears in Appendix D.
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Table 2: Band index and perplexity with p-RoPE when sequence length in pre-training is L =
{512, 1024, 2048}.

Base in RoPE θ Band Index Perplexity with p-RoPE

L Train Inference iband iband/
d
2

r=1.0 r=0.90 r=0.75 r=0.50 r=0.25

512 512 512 60.5 0.94 19.58 20.18 24.28 35.11 98.26
10000 10000 30.12 0.47 19.39 19.39 19.39 22.71 63.59
500000 500000 17.00 0.26 19.35 19.35 19.35 19.35 34.46

1000000 1000000 15.37 0.24 19.36 19.36 19.35 19.35 30.59

1024 1024 1024 60.25 0.94 20.07 20.19 22.37 32.39 101.97
10000 10000 46.12 0.72 19.53 19.53 19.53 21.41 68.54
500000 500000 18.25 0.28 19.55 19.55 19.55 19.55 34.22

1000000 1000000 11.12 0.17 19.59 19.59 19.59 19.59 31.09

2048 2048 2048 60.50 0.94 21.49 20.99 21.51 29.56 94.90
10000 10000 52.12 0.81 19.73 19.73 19.73 20.97 69.13
500000 500000 16.62 0.25 19.71 19.71 19.71 19.73 34.98

1000000 1000000 11.62 0.18 20.06 20.06 20.06 20.04 31.57

Figure 4: Plot of the 2-norm for each epoch. Vertical axis represents sequence length, and horizontal
axis represents each dimension index (i ∈ {0, 1, . . . , d/2}) of RoPE.

4.2 RESULTS

What factors cause the band index to change? Figure 3 shows the 2-norm map in the combination
pattern. We output 2-norm maps of queries from the semantic attention head, following Section
3. First, when theta values are fixed, the index at which the band exists increases as the maximum
sequence length during pre-training increases (from top to bottom of Figure 3). This suggest that
the index at which the band exists depends on the maximum sequence length during pre-training.
When the maximum pretraining sequence length is fixed and θ is increased (10, 000 → 500, 000 →
1, 000, 000; from left to right in Figure 3), the dominant frequency band shifts toward the lower
dimensions. However, the difference between θ = 500, 000 and θ = 1, 000, 000 is marginal; this
similarity between the two values likely arises because both settings are already high, so further
increases in θ provide little additional shift. Furthermore, when theta values were matched to the
maximum sequence length during pre-training, it was found that the position of the band was near
the maximum index for the head dimension.

Band index and p-RoPE We also investigate the band index iband and p-RoPE. The results when
sequence length is Ltrain = 512 are shown in Table 2. As demonstrated in Section 3, increasing θ
lowers the band index (i.e., shifts it to higher frequencies), and replacing RoPE with NoPE below this
band has little impact on performance. Therefore, the frequency-band characteristics identified in
Section 3 are expected to hold irrespective of model scale and training corpus.
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When do bands occur? We also investigated the stage when the band first appears. Figure 4 shows
the key 2-norm for each epoch in the model with Ltrain set to 512 and θ set to 10,000. At epoch 1, the
band does not exist, and the distribution appears to be mixed with noise, but at epoch 6, the band
appears from an early stage. This band is maintained until the final epoch. After the frequency band
first emerges, its position remains stable throughout the remainder of training. Therefore, we can see
that the band does not exist in the first stage but is still acquired by the model at an early stage during
training. Epoch 6 is a stage of rapid initial convergence, during which we can see that the model
acquires the band.

Takeaways from Section 4: The effective dimension of RoPE is determined by the pre-training
theta value and maximum sequence length, since these factors shape the band. The band emerges
early in pre-training, suggesting it is a fundamental feature learned by the model.

5 DERIVATION OF FREQUENCY BANDS

As explained above, it has been found that the frequency band depends on the maximum sequence
length and the basis. However, the mechanism itself is the core issue. This section provides a
theoretical analysis to address this question. To probe the mechanism of forming the frequency band,
we reduce the problem to a constrained optimization and state our guiding question: Under a fixed
coefficient-norm budget, which θi allows the largest position-dependent variation? As a simple and
informative proxy, we maximize the coordinate variance of cos(mω) over the window.

5.1 DERIVATION

Our Goal We derive which RoPE pair in the query tends to concentrate energy during training,
using only the maximum training sequence length Ltrain and the RoPE base θ. To make the argument
beginner-friendly, we work with the variance of a single coordinate of the sinusoidal basis,

V (x) := Varm∼Unif[0,Ltrain]

[
cos(mω)

]
, x := ωLtrain,

and choose the frequency that maximizes V (x). Section H explains the connection to the full
covariance view.

Step 1. Let m ∼ Unif[0, Ltrain] and define x = ωLtrain. By direct integration,

E[cos(mω)] =
sinx

x
, E[cos2(mω)] =

1

2
+

sin(2x)

4x
. (4)

Hence, the centered variance

V (x) = Var[cos(mω)] =
1

2
+

sin(2x)

4x
−

( sinx
x

)2

. (5)

This function captures how much the cos coordinate moves across the position window. As x → 0,
cos(mω) is almost constant and V (x) → 0; as x → ∞, oscillations average out and V (x) → 1

2 .

Step 2. Differentiating Eq. (5) gives

V ′(x) =
2x2 cos(2x) − 5x sin(2x) + 8 sin2 x

4x3
. (6)

Stationary points satisfy V ′(x) = 0, i.e.,

2x2 cos(2x) − 5x sin(2x) + 8 sin2 x = 0 . (7)

Solving Eq. (7) numerically yields the smallest positive root

x⋆ ≈ 3.657210 rad (i.e., x⋆/(2π) ≈ 0.582 cycles). (8)

Here, we checked that V (x) is unimodal on (0,∞) and that Eq. (8) gives the global maximum with
V (x⋆) ≈ 0.54047 > 1

2 .
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Step 3. The continuous optimizer has angular frequency ω⋆ = x⋆/Ltrain. We select the RoPE pair
whose grid frequency ωj = θ− 2j/d is closest to ω⋆, which yields the closed-form predictor

j⋆ ≈ d

2
logθ

(Ltrain

x⋆

)
, x⋆ ≈ 3.657210 . (9)

j⋆ is rounded to the nearest integer; the corresponding physical dimensions are (2j⋆, 2j⋆+1).

5.2 DERIVED BAND LOCATION

The results of calculating j⋆ and iband in Section 3 for each
model are shown in Table 3. The relationship between j⋆ and
iband can be expressed as an approximately linear scaling
iband ≈ c × j⋆ with c ≈ 1.1. This indicates that once
the energy-concentrating dimension j⋆ is determined, the
corresponding physical frequency band iband is essentially
fixed. The small variation observed across models is likely
due to differences in the query distribution rather than the
model architecture. Accordingly, we proved that the position
of the RoPE frequency band is predetermined by RoPE base
θ, training length Ltrain, and dimension d.

Table 3: Results of j⋆ and iband

Model j⋆ iband

Gemma 107 116.68
Llama-2 49 53.53
Qwen3 43 51.04
Llama-3 38 43.43
Phi-3 36 36.67
θ = Ltrain 59 -

Furthermore, we calculated j⋆ when θ = Ltrain = 8192 and d = 128. Here, j⋆ = 59, and c = 1.1
yields c × jstar = 64.9, matching the model’s RoPE pair count (d2 = 64). Thus, for θ = Ltrain,
the band is expected to be concentrated around the 59th dimension toward the lowest-frequency
dimensions.

5.3 CHECKING THE PREDICTED FREQUENCY-BAND POSITION

We examine whether the theorem derived in the previous
section, which predicts the band location, generalizes to other
choices of θ and context length. The experiments in Section
4.2 were conducted with θ = 512, 1024, 2048, where the
maximum training length L was set equal to each value of θ.
We then compare the resulting empirical band positions iband
in Section 4.2 with the theoretically predicted coordinate j∗.
The results of calculating j⋆ and iband in Section 4.2 for each
model are shown in Table 4. The relationship between j⋆ and
iband can be expressed as an approximately linear scaling
iband ≈ c× j⋆ with c ≈ 1.0.

Table 4: Results of j⋆ and iband in
Section 4.2

θ L j⋆ iband

512 512 59 60.50
1024 1024 59 60.25
2048 2048 59 60.50

Takeaways from Section 5: Using x⋆ ≈ 3.657210, d, Ltrain, and θ, we can predict the
frequency band location in advance. When θ = Ltrain, the frequency band is theoretically
predicted to lie at the lowest frequency dimensions.

6 FREQUENCY-MATCHING INTERVENTION IN ROPE

Interestingly, our analysis results suggest that higher-frequency dimensions beyond this band con-
tribute to model performance (Section 3). However, since the frequency band is set by θ and Ltrain

during pretraining (Sections 4 and 5) and remains stable even with interpolation (Section 3), a natural
question arises: What is the impact on model performance when the frequency band is shifted toward
lower frequencies during pretraining? To explore this, we analyze a strategy we term frequency-
matching intervention in RoPE (FMRoPE), where we set the base frequency parameter θ to the
maximum sequence length Ltrain used during pretraining. As demonstrated in Sections 4.2 and 5,
this setting shifts the frequency band toward the lowest frequencies, allowing the model to leverage a
broader and more effective frequency range from the start of pretraining.

8
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Table 5: Perplexity results from Section 5. ’pt’ stands for ’Pre-train’ and ’ft’ stands for ’Fine-tuning’
in context extension with position interpolation. ’YaRN’ is a position interpolation method applied
during context extension. The gray area represents the FMRoPE score.

Ltrain Base in RoPE θ Sequence Length in Inference L

pt ft Train Inference 512 1512 2512 3512 15512 25512

Pre-train

512 - 512 512 19.58 21.19 24.20 27.42 84.75 > 100
512 - 512 1512 20.02 19.09 21.40 24.00 72.19 >100
512 - 512 3512 21.28 20.27 20.37 23.00 66.10 >100
512 - 10000 10000 19.39 43.63 84.45 >100 >100 >100
512 - 500000 500000 19.35 40.39 77.90 >100 >100 >100
512 - 1000000 1000000 19.35 37.94 74.26 >100 >100 >100

Fine-tuning
with YaRN

512 1512 1512 1512 19.62 17.78 17.56 17.65 20.51 23.19
512 1512 1512 3512 19.38 17.99 17.66 17.64 19.93 23.44
512 1512 1512 15512 21.00 19.74 19.53 19.48 20.51 22.41
512 1512 10000 10000 19.10 17.84 17.75 18.37 52.59 85.88
512 1512 500000 500000 19.14 17.89 18.83 18.34 35.57 50.88
512 1512 1000000 1000000 19.07 17.76 17.81 18.72 66.89 >100

6.1 METHODOLOGY

In FMRoPE, we set the RoPE base equal to the training context length: θ = Ltrain. Here, Ltrain
denotes the maximum sequence length used during pretraining or fine-tuning. For example, we use
θ = 512 during pretraining and θ = 1512 during interpolation-based fine-tuning.

6.2 EXPERIMENTAL SETTINGS

We conducted a small-scale pre-learning and context-extension experiment, following the experi-
mental settings of Press et al. (2022) and Oka et al. (2025) as in Section 4. The maximum sequence
length during pre-training is Ltrain = 512, and we set θ = 512. In context extension through position
interpolation, we adopted YaRN (Peng et al., 2024), which is the most commonly used standard
method for position interpolation. The maximum sequence length for context expansion with position
interpolation is Ltrain = 1512. Additional details on the parameter settings can be found in Appendix
A. We used perplexity as the evaluation metric. 4

6.3 RESULTS

Pre-train We begin with the results above the dashed line in Table 5, corresponding to models
without YaRN-based fine-tuning. When using conventional RoPE and FMRoPE without modification,
the conventional RoPE outperforms FMRoPE. However, we observe that FMRoPE achieves better
extrapolation performance. The analyses of Sections 3, 4, and 5 suggest that as more low-frequency
dimensions behave like NoPE, larger θ values (θ ≥ 10, 000) may reduce RoPE’s contribution in
longer contexts. In particular, the inference-time θ is adjusted to match the target sequence length
(e.g., θ = 1512 or 3512), thus significantly reducing perplexity. While FMRoPE demonstrates strong
extrapolation, the requirement of knowing the target sequence length at inference time poses practical
limitations. Future work should explore dynamic or adaptive schemes for adjusting θ based on
observed context.

Context extension We next examine the results below the dashed line in Table 5, corresponding to
models fine-tuned with YaRN for position interpolation. FMRoPE underperforms conventional RoPE
in short contexts, suggesting that FMRoPE is particularly effective in long-context or extrapolation
settings but not in interpolation. FMRoPE outperforms conventional RoPE in extended sequences,
achieving lower perplexity. In the FMRoPE experiment using YaRN, we found that similar trade-
offs to those observed in the pre-train experiment occurred. However, as shown in Section 3, we
believe this result can be expected because the frequency bands are preserved even when positional
interpolation is applied.

4Comparisons with other position encodings were also conducted (Appendix F). We additionally validated
our approach on a 1B-parameter model with longer contexts and evaluated downstream tasks (Appendix G).
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Takeaways from Section 6: Matching θ to the training length, which shift the frequency
band into the lowest dimension, improves extrapolation but hurts interpolation, and this trade-
off persists under position interpolation such as YaRN. Larger θ makes more low-frequency
dimensions behave like NoPE, which may reduce RoPE’s contribution in extrapolation.

7 RELATED WORK

The base θ in Sinusoidal PE (Vaswani et al., 2017) was set to 10, 000 for the purpose of enabling
theoretical extrapolation. Meanwhile, Takase & Okazaki (2019) demonstrated that LRPE, which sets
the base θ of SPE to the sequence length, provides robust control of output length. The θ setting
adopted in this study is consistent with that setting.

RoPE’s θ component has been redesigned to support context expansion with fine-tuning, including
rule-based expansion of θ (Chen et al., 2023; bloc97, 2023) and learning-based or search-based
frequency scaling (Chen et al., 2024; Ding et al., 2024). Furthermore, Xiong et al. (2024) reported
that setting θ = 500, 000 during pre-training suppresses the rapid decay of attention scores between
distant tokens. However, all of these methods tend to increase θ, regardless of the maximum context
length in pre-training. Liu et al. (2024) showed that using a smaller θ (e.g., 500) during pretraining
improves extrapolation, but they did not analyze its relationship to the pretraining sequence length.
In contrast, Xu et al. (2024), focusing on nearby tokens and ignoring distant context, found that such
models achieve lower perplexity while still exhibiting “superficial extrapolation.” Furthermore, their
theoretical analysis suggests that the base frequency of RoPE governs the model’s capacity to handle
context length, which aligns with our findings. Barbero et al. (2024) identified RoPE frequency bands
and linked them to positional heads. They also challenge the common “distance-decay” narrative and
propose a modified RoPE variant.

While our visual observations overlap with Barbero et al. (2024), the core scientific questions and
contributions differ substantially. We explain where the frequency band appears (Section 3) and how
its position depends on the RoPE base θ and the training length Ltrain (Section 4, and 5). In addition,
our experiments reveal that modifying θ shifts the band toward higher or lower frequencies, and this
shift leads to a clear interpolation–extrapolation trade-off (Section 6). Through theoretical analysis
and controlled pre-training experiments, we identify the conditions under which bands emerge and
show that their position can be predicted directly from (θ, Ltrain). Our analysis also covers a broader
range of models. We examine multiple pretrained LLMs (Gemma, Llama, Qwen and Phi), models
after context expansion via positional interpolation (YaRN, Llama-3 scaling and LongRoPE), and
models using sparse attention. In multiple pretrained LLMs analysis, we use a 4096-token context
window, which is substantially longer than the 20-token window considered in Barbero et al. (2024).
The results show that frequency bands persist after positional interpolation, while sparse attention
changes the behavior of p-RoPE. Appendix D discuss why sparse attention is the only setting that
produces a different trend. Finally, our study reveals a connection between θ and Ltrain. We show
that modifying the value of θ induces a trade-off between interpolation and extrapolation performance.

8 CONCLUSION

We first showed that RoPE forms a distinct frequency band that appears across LLMs, persists after
position interpolation, depends on the base θ and the training length Ltrain, and emerges at an early
stage. Low-frequency dimensions below this band often act like NoPE and add little to performance.
We derived a simple predictor by maximizing a variance proxy, yielding x⋆ ≈ 3.657210 and a
grid index j⋆ that matches the observed band. At this point, it was theoretically understood that
setting θ to Ltrain would position the frequency band near the minimum frequency. Through our
experiments, we found that setting θ to Ltrain shifts the band to the lowest frequencies and widens the
useful range, improving extrapolation while degrading interpolation. Therefore, increasing θ mostly
reallocates energy rather than adding new positional information. As Practical guidance, choose
θ ≈ Ltrain when extrapolation is critical, and use larger θ when interpolation within the trained range
is dominant. Position interpolation should be paired with a band-aware choice of θ rather than applied
indiscriminately. Overall, our results connect the emergence of frequency bands to θ and Ltrain and
provide a new perspective for band-aware design of positional encodings in long-context LLMs.
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A DETAILS OF EXPERIMENTAL SETTINGS

A.1 FREQUENCY BAND EMERGENCE IN PRETRAINED LLMS

The detailed experimental settings are described in Section 3.2. For a comprehensive analysis, we
used the following models:

• google/gemma-7b
• meta-Llama/Llama-2-7b
• NousResearch/Yarn-Llama-2-7b-64k
• meta-Llama/Meta-Llama-3-8B
• meta-Llama/Llama-3.1-8B
• microsoft/Phi-3-small-8k-instruct
• microsoft/Phi-3-small-128k-instruct

We selected models that use different base models (Gemma, Llama, Phi-3) and different position
interpolation methods (YaRN, Llama-scaling, LongRoPE). Here, the head dimension d for the
Gemma model is 256, and that for the other models is 128. The dataset for evaluation is the test
set of Wikitext-103 (Merity et al., 2017) 5, and we used the subset of wikitext-103-raw-v1. This
dataset is a collection of over 100 million tokens extracted from a set of articles verified as Good
and Featured on Wikipedia. The subset of wikitext-103-raw-v1 has 4358 sentences as a test set.
In our analysis, we concatenated all sentences in the dataset to create a long context for measuring
perplexity. The sequence length in inference is L = 4096 for all models.

A.2 UNDERSTANDING FREQUENCY BAND FORMATION IN PRE-TRAINING

We described the detailed experimental settings in Section 4.1. For pre-training, we used the WikiText-
103 dataset (Merity et al., 2017), which consists of over 103 million tokens of English Wikipedia
articles. We performed a comparative evaluation using a Transformer-based language model (Baevski
& Auli, 2019). The dimensionality of the word embedding dmodel is 1024, the number of heads N
is 8, the dimensionality of the heads d is 128, and the number of layers is 16. This implementation
used the fairseq (Ott et al., 2019)-based code provided in a previous work(Press et al., 2022), and all
hyperparameters were set to the same values as those in the literature(Press et al., 2022). The number
of training epochs is 205, and the batch size is 9216. The learning rate was set to 1.0, and the learning
process was updated by 1e-7 every 16,000 steps. The maximum sequence length and RoPE were tested
in combination with (Ltrain, θ) ∈ {512, 1024, 2048} × {Ltrain, 10, 000; 500, 000; 1, 000, 000}.

A.3 FREQUENCY MATCHING IN ROTARY POSITION EMBEDDING

The detailed experimental settings are described in Section 6.2. We conducted a small-scale pre-
learning and context-extension experiment. In pre-training, we used the WikiText-103 dataset (Merity
et al., 2017). Furthermore, we performed a comparative evaluation using a Transformer-based
language model (Baevski & Auli, 2019). Other parameter settings are the same as in Section 4.3.
The maximum sequence length during pre-training is Ltrain = 512, and we set θ = 512. In context
extension achieved through position interpolation, we adopted YaRN (Peng et al., 2024), which is
the most standard method for position interpolation. The maximum sequence length for context
expansion with position interpolation is Ltrain = 1512, so we used θ = 1512. Perplexity was used as
the evaluation metric.

5https://huggingface.co/datasets/Salesforce/wikitext
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B LAYER-WISE VISUALIZATION OF A SINGLE ATTENTION HEAD

To verify whether the frequency-band pattern identified in Figure 2 and discussed in Section 3 is
consistent across layer, we visualize the query structure for a single attention head (Head 19) across
all 32 layers of Llama-3-8B. For each layer, we compute the 2-norm of the query matrix over the
head dimensions and arrange the results into a two-dimensional map, following the same procedure
as in Figure 2.

Figure 5 provides the full visualization. This layer-wise visualization provides a detailed view
of how the characteristic frequency band emerges, shifts, or dissipates across the model. The
visualizations reveal that a frequency band appears in every layer. Notably, the band becomes
increasingly pronounced in deeper layers, indicating that the model progressively emphasizes a fixed
set of frequencies as depth increases. In contrast, the early layers exhibit a more heterogeneous
pattern, suggesting that a wider range of frequencies contributes to the representation before the
model consolidates onto a narrower band. Although the exact coordinate at which the band appears
varies across layers, we find that in most cases the strongest frequency concentration occurs near the
dimension predicted in Section 3. Importantly, no frequency band is observed at higher frequencies
beyond those identified in Section 3.

C HEAD-WISE VISUALIZATION OF A SINGLE ATTENTION LAYER

To verify whether the frequency-band pattern identified in Figure 2 and discussed in Section 3 is
consistent across head, we visualize the query structure for a single attention layer (each Layer 0 and
31) across all 32 heads of Llama-3-8B. For each head, we compute the 2-norm of the query matrix
over the head dimensions and arrange the results into a two-dimensional map, following the same
procedure as in Figure 2.

Figure 6 provides the full visualization in Layer 0. Figure 7 provides the full visualization in Layer 31.
As reported in Section B, we observe a clear difference in the visibility of frequency bands between
the shallow and deep layers. In layer 0, a well-defined band appears at almost the same coordinate
across all heads. In layer 31, the band is still present, but its position shifts slightly. Even so, a faint
band remains in a consistent region, which suggests that the deeper layers still inherit the influence of
the original frequency band.

D STRUCTURAL FACTORS BEHIND THE PHI-3 ANOMALY

In Section 3, only the Phi-3 model showed a tendency for p-RoPE results to differ. This section
examines the reasons for this. A key difference is that Phi-3’s block-sparse attention already removes
a subset of long-range attention interactions by construction. This means Phi-3 relies more heavily
on the positional channels that remain available. In particular, the low-frequency RoPE dimensions
that encode long-range relational structure. In Llama and Gemma , multiple query heads share the
same key–value projections, which creates redundancy across heads. As a result, if a subset of RoPE
dimensions is replaced, other heads may still access similar positional information through shared
KV projections. However, Phi-3 allocates each head a distinct block-sparse pattern. These patterns
eliminate many token-pair interactions, leaving fewer pathways through which long-range positional
signals can be recovered. When low-frequency RoPE dimensions are removed, Phi-3 loses one of the
only mechanisms that supports long-distance reasoning under its sparsity constraints, leading to the
sharp degradation observed in Table 1.
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Figure 5: Layer-wise 2-norm maps of the query matrix for attention head 19 in Llama-3-8B. Each
subplot shows the 2-norm plotted over 2-dimensional chunks of the query vectors, following the same
visualization procedure as in Figure 2. The vertical axis corresponds to sequence length (L = 4096),
and the horizontal axis corresponds to RoPE dimension index (i ∈ 0, 1, . . . , d/2− 1) with d = 128
for Llama-3-8B.
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Figure 6: Head-wise 2-norm maps of the query matrix for attention layer 0 in Llama-3-8B. Each
subplot shows the 2-norm plotted over 2-dimensional chunks of the query vectors, following the same
visualization procedure as in Figure 2. The vertical axis corresponds to sequence length (L = 4096),
and the horizontal axis corresponds to RoPE dimension index (i ∈ 0, 1, . . . , d/2− 1) with d = 128
for Llama-3-8B.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 7: Head-wise 2-norm maps of the query matrix for attention layer 31 in Llama-3-8B. Each
subplot shows the 2-norm plotted over 2-dimensional chunks of the query vectors, following the same
visualization procedure as in Figure 2. The vertical axis corresponds to sequence length (L = 4096),
and the horizontal axis corresponds to RoPE dimension index (i ∈ 0, 1, . . . , d/2− 1) with d = 128
for Llama-3-8B.
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E HOW POSITION HEADS BEHAVE UNDER FMROPE

We examined the “position heads” described by (Barbero et al., 2024) under both standard RoPE
and FMRoPE in Section 6. Figure 8, 9 and 10 shows 20-token attention maps for clarity. First, we
confirmed that position heads exist in both RoPE and FMRoPE. Second, changing the inference-time
value of θ in FMRoPE did not substantially affect these heads. Consistent with Barbero et al. (2024),
these heads appear to ignore semantic content and attend purely based on relative offsets. Our results
indicate that FMRoPE retains the same class of relative-position-driven heads as standard RoPE.

Figure 8: Position Head with RoPE (Training θ = 10000, Inference θ = 10000)

Figure 9: Position Head with RoPE (Training θ = 512, Inference θ = 512)

Figure 10: Position Head with RoPE (Training θ = 512, Inference θ = 1024)
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Table 6: Perplexity results from Section 5. Here, ’pt’ stands for ’Pre-train’ and ’ft’ stands for ’Fine-
tuning’ in context extension with position interpolation. ’YaRN’ is a position-interpolation method
applied during context extension.

Ltrain base θ Sequence Length L

pt ft Train Inference 512 1512 2512 3512 15512 25512

NoPE 512 - - - 21.24 21.32 46.52 >100 >100 >100
SPE 512 - - - 20.02 77.30 >100 >100 >100 >100
Transformer-XL 512 - - - 19.98 18.88 19.02 19.53 OOM OOM
RPE 512 - - - 21.20 21.89 34.77 74.55 OOM OOM
WaveletRPE 512 - - - 19.20 17.99 18.00 18.21 OOM OOM
ALiBi 512 - - - 19.69 18.53 18.40 18.43 18.39 18.39

RoPE

512 - 10000 10000 19.39 43.63 84.45 >100 >100 >100
512 - 500000 500000 19.35 40.39 77.90 >100 >100 >100
512 - 1000000 1000000 19.35 37.94 74.26 >100 >100 >100
512 - 512 512 19.58 21.19 24.20 27.42 84.75 > 100
512 - 512 1512 20.02 19.09 21.40 24.00 72.19 >100
512 - 512 3512 21.28 20.27 20.37 23.00 66.10 >100
512 - 512 15512 25.83 26.90 28.46 30.08 60.44 91.35

RoPE+YaRN

512 1512 1512+YaRN 1512+YaRN 19.62 17.78 17.56 17.65 20.51 23.19
512 1512 1512+YaRN 3512+YaRN 19.38 17.99 17.66 17.64 19.93 23.44
512 1512 1512+YaRN 15512+YaRN 21.00 19.74 19.53 19.48 20.51 22.41
512 1512 1512+YaRN 25512+YaRN 21.99 20.89 20.77 20.84 21.51 23.19
512 1512 10000+YaRN 10000+YaRN 19.10 17.84 17.75 18.37 52.59 85.88
512 1512 500000+YaRN 500000+YaRN 19.14 17.89 18.83 18.34 35.57 50.88
512 1512 1000000+YaRN 1000000+YaRN 19.07 17.76 17.81 18.72 66.89 >100

F COMPARISON WITH OTHER POSITION-ENCODING METHODS

F.1 EXPERIMENTAL SETTINGS

In addition to experiment in Section 6, we also compared our method with the following position-
encoding methods.

• NoPE (Kazemnejad et al., 2023)
• Sinusoidal PE (SPE) (Vaswani et al., 2017)
• Transformer-XL PE (Dai et al., 2019)
• Relative Position Representation (RPE) (Shaw et al., 2018) with clipping size 32
• Attention with Linear Biases (ALiBi) (Press et al., 2022)
• Wavelet PE (Oka et al., 2025)

For pre-training, we used the WikiText-103 dataset (Merity et al., 2017), which consists of over
103 million tokens of English Wikipedia articles. We performed a comparative evaluation using a
Transformer-based language model (Baevski & Auli, 2019). The experimental setup is identical to
that used in Section 6. Please refer to Appendix A.3 for details.

F.2 PERPLEXITY RESULTS

Figure 6 presents the perplexity scores for each method. We first confirmed the effectiveness of
ALiBi and WaveletPE, both of which are known for their strong extrapolation capabilities. However,
methods based on relative position encoding (RPE), such as RPE itself, WaveletPE, and Transformer-
XL, showed out-of-memory (OOM) errors as the sequence length increased, and these methods
were unable to generate results. In contrast, ALiBi consistently maintained strong extrapolation
performance even at longer sequence lengths. RoPE, on the other hand, generally exhibits lower
extrapolation performance compared to other positional encoding methods. Even FMRoPE, an
enhanced variant of RoPE, did not surpass the original RoPE in extrapolation ability. Nevertheless,
when the context length was expanded to L = 1512 and the models were fine-tuned accordingly, both
FMRoPE and RoPE showed improved performance relative to extrapolation-oriented PE methods.
Notably, beyond L = 1512, FMRoPE outperformed not only RoPE but also the other PE methods.
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G DOWNSTREAM TASK

Beyond the analyses in Section 6, we further examined FMRoPE under extended context lengths and
larger model scales. In addition, we assessed performance not only in terms of perplexity but also
across a suite of downstream tasks.

G.1 EXPERIMENTAL SETUP

We trained a decoder-only Transformer with RoPE and FlashAttention. The model has ≈1.2B
parameters with hidden size dmodel=2048, nlayers=16, nheads=16, and an MLP expansion ratio of
8. We use RMSNorm without biases. Dropout is disabled throughout (residual_dropout=0.0,
attention_dropout=0.0, embedding_dropout=0.0). The maximum training context length is
1024 tokens. Vocabulary size is 50,280 using the GPT-NeoX/OLMo Dolma v1.5 tokenizer with
right-side truncation/padding; eos_token_id= 0, pad_token_id= 1. We use AdamW with
(β1, β2)=(0.9, 0.95), ϵ=10−8, weight decay 0.1 (applied to embeddings and LayerNorm scales;
decay_norm_and_bias=true, decay_embeddings=true). The peak learning rate is 6×10−4 with
a cosine schedule and 10,000 warmup steps; the final LR decays to 0.1× the peak. We use AMP
bfloat16 training with gradient clipping at 1.0. Training uses distributed data parallelism with gradient
synchronization at the batch boundary. The global batch size is 512 sequences; per-device microbatch
size is 4. We enable pinned memory, prefetching, and persistent dataloader workers for throughput.
Checkpointing saves unsharded states every 5,000 steps; evaluation runs every 1,000 steps. We
train with flash_attention=true. Distributed training uses find_unused_params=false; gradi-
ent synchronization mode is set to batch. We log metrics every 10 steps and monitor throughput
with a moving window of 20 steps. Pretraining uses the English C4 corpus (high-quality web text)
preprocessed into NumPy shards. Unless otherwise noted, we train for one epoch.

G.2 EVALUATION METRIC

We report validation perplexity on C4 using fixed-length chunks to probe length generalization:
{256, 512, 1024, 2048, 4096, 8192} tokens. Batch size is 64. Beyond perplexity, we evaluate zero-
shot performance (unless specified) on standard commonsense and QA benchmarks: PIQA (Bisk
et al., 2019), HellaSwag (Zellers et al., 2019), CommonsenseQA (Talmor et al., 2019), and Social
IQa (Sap et al., 2019). We additionally report Basic Arithmetic perplexity. For a more realistic
long-context generation setting, we also evaluated the model on the Needle-in-a-Haystack task 6.

G.3 RESULTS

G.3.1 PERPLEXITY

Table 7 shows the perplexity results. When the inference length does not exceed the training length
(L ≤ 1024), all settings achieve comparable perplexity around 20. The lowest perplexity is 19.77
when training and inference both use θ = 10,000. Differences appear once the inference length
exceeds the pre-training context. The baseline configuration with θ = 1024 shows a sharp perplexity
increase to 42.36 at L = 2048 and diverges beyond 4096. In contrast, FMRoPE enlarges the inference
base to 2048 or 8192 while keeping training at 1024, and this substantially improves extrapolation.
These results show that simply enlarging the inference base frequency effectively extends the usable
context without additional training. A model trained and inferred with θ = 10,000 maintains
competitive perplexity up to L = 1024 but degrades rapidly beyond that point, reaching 46.61 at
L = 2048 and 57.83 at L = 4096. This observation confirms that training with an excessively high
base does not guarantee long-context generalization.

G.3.2 DOWNSTREAM TASK

Table 8 shows the downstream task results. Across all tasks, the differences among configurations
are small, showing that changing the RoPE base for inference has little negative impact on general
language understanding. When training and inference both use θ = 1024, the model achieves strong
overall accuracy with 43.96 on SocialIQA, 69.58 on PIQA, 33.66 on CommonsenseQA, 44.80 on

6https://github.com/gkamradt/LLMTest_NeedleInAHaystack
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Table 7: Perplexity results from Section G. ’pt’ stands for ’Pre-train’ and ’ft’ stands for ’Fine-tuning’
in context extension with position interpolation. The gray area represents the FMRoPE score.

Ltrain Base in RoPE θ Sequence Length in Inference L

pt ft Train Inference 256 512 1024 2048 4096 8192

Pre-train 1024 - 1024 1024 23.08 21.02 19.88 42.36 >100 >100
1024 - 1024 2048 23.10 21.05 19.90 19.33 >100 >100
1024 - 1024 8192 23.98 22.07 21.08 19.85 19.58 22.86
1024 - 10000 10000 23.01 20.94 19.77 46.61 57.83 >100

Table 8: Downstream task results from Section G.

Base in RoPE θ Downstream Task

Train Inference SocialIQA PIQA CommonsenseQA HellaSwag Arithmetic

1024 1024 43.96 69.58 33.66 44.80 24.90
1024 2048 43.85 70.07 33.98 45.10 24.36
1024 8192 44.16 68.71 32.92 44.91 24.06
10000 10000 43.90 70.78 32.35 45.00 24.86

HellaSwag, and 24.90 on Arithmetic. Using FMRoPE with an inference base of 2048 maintains or
slightly improves performance. The model reaches 70.07 on PIQA, 33.98 on CommonsenseQA,
and 45.10 on HellaSwag, which are the best or nearly the best among all settings, while keeping
SocialIQA and Arithmetic close to the baseline. When the inference base is further increased to 8192,
performance remains stable with 44.16 on SocialIQA and 44.91 on HellaSwag, indicating that a large
inference base does not harm downstream accuracy. A model trained and inferred with θ = 10,000
achieves the highest PIQA accuracy of 70.78, although CommonsenseQA drops to 32.35.

These results show that frequency matching during inference preserves or slightly enhances down-
stream task performance while providing the long-context benefits demonstrated in perplexity eval-
uation. The findings confirm that decoupling the training and inference RoPE bases does not
compromise the model’s ability to perform common natural language understanding tasks.

G.3.3 NEEDLE IN A HAYSTACK

We evaluate four settings of RoPE on the Needle-in-a-Haystack task with context lengths from
512 to 8192 tokens. The training context length is 1024 tokens. Figure 11, 12, 13 and 14 shows
Needle-in-a-Haystack results. In the figures, green indicates high scores and red indicates failure.

First, the standard RoPE with base θ = 10000 shows a clear boundary at the training length. Scores
stay green for contexts up to 1024 tokens, which means the model interpolates well inside the training
range. Beyond 1024 tokens, the scores turn red, and the model loses the ability to retrieve the needle.
This behavior shows that standard RoPE does not extrapolate. Next, the model trained with base
θ = 1024 and inferenced with the same base shows almost the same pattern. The model keeps green
scores inside 1024 tokens and turns red beyond it. However, the scores near the beginning of the
sequence drop to red. When we train with base θ = 1024 but inference with base θ = 2048, the
behavior changes. The model keeps green scores up to 2048 tokens. This result shows that the larger
inference base pushes the usable range beyond the training length. A small degradation remains near
the beginning, but the overall pattern suggests partial extrapolation. Finally, inference with base
θ = 8192 expands the effective range even further. The model keeps green scores up to 2048 tokens
and shows mostly green scores around 4096 tokens. Between 4096 and 7168 tokens, some regions
still appear green. These results indicate that long-range retrieval becomes possible in parts of this
extended range. Overall, the model trained with =1024 exhibits clear extrapolation once the inference
base is increased, demonstrating that inference-time base scaling can expand the effective context
length without additional training.
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Figure 11: Needle-in-a-Haystack performance with RoPE. The maximum training context length is
1024 tokens.

Figure 12: Needle-in-a-Haystack performance with FMRoPE (θ = 1024). The maximum training
context length is 1024 tokens.

Figure 13: Needle-in-a-Haystack performance with FMRoPE (θ = 2048). The maximum training
context length is 1024 tokens.

Figure 14: Needle-in-a-Haystack performance with FMRoPE (θ = 8192). The maximum training
context length is 1024 tokens.
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G.4 COMPUTATIONAL CONSIDERATIONS

To address computational concerns under different θ settings (RoPE vs FMRoPE), we track four
metrics during training: training loss, validation loss, peak GPU memory, and throughput. As shown
in Figure 15, all θ values lead to smooth and stable optimization, with no divergence in either loss
curve. Peak memory usage is nearly identical across settings, and throughput varies only within
normal noise levels. These results confirm that θ has no material effect on training stability, memory
footprint, or efficiency. RoPE’s computational cost does not depend on θ . Changing θ only modifies
the numerical values of the cos and sin rotations applied to each query/key pair, but the number of
operations stays exactly the same. The dominant costs in inference, namely the self-attention and
feed-forward matrix multiplications, remain unchanged. Therefore, inference speed and memory
usage remain identical across different θ settings.

Figure 15: Training stability and computational efficiency across different base frequencies θ. All
plots use training steps as the x-axis. (a) Training cross-entropy loss curves. (b) Validation cross-
entropy loss curves. (c) Peak GPU memory usage during training. (d) Throughput measured in
batches per second.
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H CONNECTION TO COVARIANCE VIEW (WHY THIS PROXY WORKS)

The full 2× 2 covariance of the basis

Σ(ω) = Cov
([

cos(mω)
sin(mω)

])
=

[
Σ11 Σ12

Σ21 Σ22

]
has explicit entries (with x = ωLtrain)

Σ11 = 1
2 +

sin(2x)

4x
−
(

sin x
x

)2

, Σ22 = 1
2 − sin(2x)

4x
−
(

1−cos x
x

)2

, (10)

Σ12 =
1− cos(2x)

4x
− sinx

x
· 1− cosx

x
, Σ21 = Σ12. (11)

The variance we maximized is exactly the (1, 1) entry: V (x) = Σ11(x). If, instead, one optimizes
over all linear combinations A cos(mω) +B sin(mω) under a coefficient-norm budget, the centered
variance is R2λmax(Σ(ω)) by the Rayleigh–Ritz theorem. Here, λmax represents an indicator of the
maximum variance along the principal component direction of the covariance matrix and is used as a
more general optimization criterion. This value can be computed via the eigenvalue decomposition
of the matrix.

We additionally computed the optimal point by maximizing the largest eigenvalue λmax of the full
2 × 2 RoPE matrix. This full covariance analysis yields an alternative maximizer x ≈ 4.493409,
whereas the simplified proxy gives x̃ ≈ 3.657210 in Section 4. While the numerical values differ, this
discrepancy has only a minor effect on the predicted band index iband in Table 3 and 4, because the
theoretical predictor depends on x only through the logarithmic relationship in Eq (9). Substituting x
into this expression shifts j by at most 1–2 dimensions across all values of θ used in the experiments,
due to the strong dampening effect of the logarithm. As a consequence, the empirical relation between
our predicted j and the predicted band index iband (Table 3 and 4), including the near-linear fit with
slope c ≈ 1.0 - 1.1, remains essentially unchanged.

I DISTRIBUTION OF θi IN ROPE

Figure 16 shows the distribution of θi when position interpolation is applied at positions 10,000,
500,000, and 1,000,000. We examined several interpolation methods, including YaRN, Llama-scaling,
and LongRoPE. Overall, position interpolation tends to increase the proportion of low-frequency θi
components.

Figure 16: Distribution of θi values across dimensions i when position interpolation is applied at
positions 10,000, 500,000, and 1,000,000. The x-axis represents the dimension index i, and the y-axis
shows the corresponding θi values.
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J ANALYSIS OF LONG-TERM DECAY

To better understand interpolation and extrapolation trade-off, we next investigate the long-term decay
of RoPE.

J.1 LONG-TERM DECAY OF QUERY AND KEY

Figure 17 plots the attention logit (query–key dot product) for the first query vector in the final
decoder layer across relative positions; all heads show the same trend, so we report just the first head
for brevity. For large base frequencies (θ≥ 10, 000), the logit decays almost monotonically with
distance, whereas with θ = 512, no such decrease in activation is observed.

J.2 LONG-TERM DECAY OF ROPE

To isolate the effect of θ, we follow prior work (Su et al., 2021; Xiong et al., 2024) and visualize
RoPE activation when both the query and key vectors are filled with ones (Figure 18, left). The
original activation grows with θ, confirming that larger base frequencies inject more energy into
low-frequency dimensions.

Here, we hypothesize that RoPE components at frequencies higher than the band index are NoPE.
To isolate the effect of the active components, we visualize the activation using only the dimensions
higher than the band index in the right part of Figure 18. Surprisingly, we found that RoPE activation
was reduced when theta was large. In contrast, when θ matches the sequence length, most dimensions
fit within the band, resulting in relatively high activation. When the relative distance is within the
maximum sequence length used during pre-training, the activation tends to be low. In contrast, for
distances beyond the pre-training range, the activation becomes relatively higher. We speculate that
this pattern is the reason why activation does not decrease in extrapolation in the actual activation
shown in Figure 17.

Figure 17: Attention logits (query–key dot product) for the first query vector, plotted across relative
positions.

Figure 18: RoPE activation when both query and key vectors are filled with ones. Gray area indicates
relative positions beyond the maximum sequence length Ltrain = 512 used during pre-training.
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K LIMITATION

A potential limitation of FMRoPE is that the optimal θ may differ across pretraining, finetuning,
and inference. While our analysis suggests that such cross-stage differences correspond to the
same linear frequency rescaling in RoPE, and our experiments did not observe degradation from
pretrain→inference mismatches (Table 5), a more systematic study at larger model scales remains an
important direction for future work.

Our analysis focuses on long-context extrapolation, and we did not study multi-step reasoning tasks.
Our evaluation does not fully cover larger model sizes or a wide range of long-context benchmarks.
It remains an open question how FMRoPE interacts with chain-of-thought reasoning and other forms
of multi-step problem solving. We leave this direction for future work.

29


	Introduction
	Background
	Frequency Band Emergence in Pretrained LLMs
	Analytical Methodology
	Experimental Settings
	Results

	Understanding Frequency Band Formation in Pre-training
	Experimental Settings
	Results

	Derivation of Frequency Bands
	Derivation
	Derived Band Location
	Checking the Predicted Frequency-Band Position

	Frequency-matching intervention in RoPE
	Methodology
	Experimental Settings
	Results

	Related Work
	Conclusion
	Details of Experimental Settings
	Frequency Band Emergence in Pretrained LLMs
	Understanding Frequency Band Formation in Pre-training
	Frequency Matching in Rotary Position Embedding

	Layer-wise Visualization of a Single Attention Head
	Head-wise Visualization of a Single Attention Layer
	Structural Factors Behind the Phi-3 Anomaly
	How Position Heads Behave Under FMRoPE
	Comparison with other position-encoding methods
	Experimental Settings
	Perplexity Results

	DownStream Task
	Experimental Setup
	Evaluation Metric
	Results
	Perplexity
	Downstream Task
	Needle In A Haystack

	Computational considerations

	Connection to covariance view (why this proxy works)
	Distribution of i in RoPE
	Analysis of long-term decay
	Long-term decay of query and key
	Long-term decay of RoPE

	Limitation

