HOW BASE FREQUENCY SHAPES ROPE: AN ANALYTICAL STUDY OF FREQUENCY-BAND FORMATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Rotary Position Embeddings (RoPE) are widely adopted in LLMs, and it is commonly believed that larger base frequencies θ yield better long-context performance. In this paper, we show that a high-norm RoPE dimension, referred to as the "frequency band," consistently emerges across multiple models, and we focus on this band to reveal the trade-offs inherent in RoPE. We find that replacing the RoPE dimensions below the frequency band with NoPE during inference has little effect on performance, indicating that these lower-frequency dimensions are only weakly utilized. We further find that the location of the frequency band depends on the RoPE base θ and the training sequence length. Moreover, the band forms early during pre-training and persists even after context extension via position interpolation. Notably, we show that aligning θ with the training length shifts the band toward lower frequencies and improves extrapolation, whereas increasing θ enhances interpolation but reduces extrapolation, revealing a clear trade-off between interpolation and extrapolation. We believe this work is a step toward a sharper understanding of positional embeddings in LLMs, with falsifiable diagnostics and practical guidance for choosing θ that support scaling to longer contexts.

1 Introduction

Rotary Position Embedding (RoPE) (Su et al., 2021) is a widely adopted positional encoding method in Transformer-based large language models (LLMs). It can provide an awareness of relative position via two-dimensional rotations determined by a base frequency parameter, denoted as θ hereinafter. To support longer input sequences, recent work has scaled the base frequency θ well beyond its default setting of 10,000, typically up to 500,000 or more (Grattafiori et al., 2024; Abdin et al., 2024). This approach is motivated by the intuition that higher base frequencies alleviate sharp decay in attention scores over relative distances (Xiong et al., 2024; Rozière et al., 2024) as well by the aim of achieving extrapolation to unseen longer contexts (Vaswani et al., 2017). However, previous research shows that scaling only RoPE's θ often fails to yield robust extrapolation (Oka et al., 2025), and thus position interpolation with fine-tuning (Peng et al., 2024; Ding et al., 2024) remains necessary to recover performance in extended contexts.

Furthermore, Barbero et al. (2024) observed clear "frequency bands" in the low-frequency dimension of queries and keys, where a frequency band refers to a dimension in which high L2-norm values occur for all tokens. However, the formation of this band has not been verified. They also showed that replacing some of the low-frequency dimensions in RoPE, corresponding to the largest θ , with NoPE (Kazemnejad et al., 2023) does not affect the performance of LLMs. These results suggest that such low-frequency RoPE dimensions are nearly identical to NoPE and may not represent positional information. Figure 1 illustrates a segment of the sine wave in using RoPE. As the value of θ_i increases with $\theta=500,000$, the sine components approach zero and the cosine components approach one across most positions, effectively resulting in matrices that closely resemble the identity matrix. Such a lack of significant variation in the encoded values may underlie the phenomena discussed above.

Theoretical reasons for θ -scaling via activation decay (Xiong et al., 2024) conflict with evidence that swapping low frequencies for NoPE leaves performance unchanged (Barbero et al., 2024), revealing a deeper puzzle in RoPE's θ choice. These previous studies present a fundamental challenge to the prevailing θ -scaling paradigm: **Does increasing** θ **truly add useful positional information**

Figure 1: Sine waves of base frequencies θ_i in RoPE and a frequency-matching intervention in RoPE (FMRoPE), with training context length $L_{\text{train}} = 512$. FMRoPE sets the maximum base frequency to match the maximum sequence length in pre-training.

or does it mainly push many RoPE dimensions into a NoPE-like form that contributes little information? In this paper, we focus on frequency band analysis and reveal that the relationship between θ and context length from the frequency band is much closer than previously assumed.

We first present evidence that frequency bands emerge systematically across different LLMs, including Gemma (Team et al., 2024), Llama (Touvron et al., 2023; Grattafiori et al., 2024), Qwen (Yang et al., 2025), and Phi-3 (Abdin et al., 2024), and that their formation is governed by the interaction between θ and the training context length $L_{\rm train}$. This formation is determined in the early stages of training and persists even when applying position interpolation, including YaRN (Peng et al., 2024) and LongRoPE (Ding et al., 2024)—in fact, the formation is inherited rather than corrected. Most critically, we study a frequency-matching intervention in RoPE that aligns the base frequency to the training length. This shifts the frequency band toward the lowest frequencies and reveals a clear trade-off: Matching the training length improves extrapolation but hurts interpolation, whereas using larger base frequencies has the opposite effect. This trade-off contradicts the prevailing notion that simply scaling θ is a universal solution for context extension.

Through extensive analysis, we provide an answer to the research question posed above: Increasing θ does not by itself add useful positional information; rather, it mainly reallocates energy so that the dimension below the frequency band remains informative while many dimensions behave similarly to NoPE and contribute little. This improves interpolation within the training range but degrades extrapolation. Therefore, rather than treating θ -scaling as universally beneficial, we emphasize the importance of considering the frequency band and the interpolation–extrapolation trade-off.

2 BACKGROUND

Rotary Position Embedding (RoPE) RoPE (Su et al., 2021) incorporates positional information directly in the self-attention mechanism by rotating the query and key vectors. The d-dimensional space is divided into $\frac{d}{2}$ subspaces, and the inner product of the rotation matrix and the query is calculated as follows.

$$\begin{bmatrix} \cos\frac{m}{\theta_i} & -\sin\frac{m}{\theta_i} \\ \sin\frac{m}{\theta_i} & \cos\frac{m}{\theta_i} \end{bmatrix} \begin{bmatrix} q_{2i-1}^m \\ q_{2i}^m \end{bmatrix}, \theta_i = \theta^{2i/d}, \tag{1}$$

where n is absolute position, $q^m \in \mathbb{R}^{1 \times d}$ is the m-th query $(0 \le m \le L-1)$ when the number of dimensions is d, i is the dimension $(i \in \{1, 2, \dots, \frac{d}{2}\})$, θ is the base of RoPE, and L is sequence length. The same process is also performed for the n-th key $k^n \in \mathbb{R}^{1 \times d}$. The base θ in RoPE is relatively large and designed to represent positions exceeding the sequence length appearing during training. These positions include $\theta = 10,000$, which is based on Sinusoidal Positional Encoding (Vaswani et al., 2017) and used in the Gemma (Team et al., 2024) and Llama-2 (Touvron et al., 2023) models, $\theta = 500,000$, which is used in the Llama-3 model (Xiong et al., 2024), and $\theta = 1,000,000$, which is used in the Phi-3 model (Abdin et al., 2024).

Position Interpolation RoPE requires fine-tuning to handle sequences longer than the maximum sequence length L_{train} appearing in pre-training. The most common approach to this fine-tuning is a position interpolation method that further expands the θ used in pre-training, and it includes YaRN (Peng et al., 2024), which determines θ with a rule-based approach, LongRoPE (Ding et al., 2024),

¹Note that the pretrained LLMs in Section 3 use $\theta_i = \theta^{2i/d}, i \in \{0, 1, \dots, \frac{d}{2} - 1\}$, unlike the standard definition.

which searches for the most suitable θ using parameter optimization, and Llama-scaling (Team, 2024), which is a rule-based approach used in the Llama-3.1 model (Meta, 2024)².

Frequency Bands in RoPE Barbero et al. (2024) revealed that there are "frequency bands" with high continuous norm values for the 2-norm $\|q^m\|_2$ and $\|k^n\|_2$ of the query and key after applying RoPE, where $q^m \in \mathbb{R}^{1 \times d}$ is the m-th query and $k^n \in \mathbb{R}^{1 \times d}$ is the n-th key when the number of dimensions is d. Furthermore, they also revealed that pretraining while replacing the low-frequency dimension RoPE with NoPE (Kazemnejad et al., 2023) does not change performance. This method is called p-RoPE, where p is a parameter that turns the dimension into NoPE. However, their analysis focused on short texts and did not verify cases of positional interpolation or long context. Moreover, the mechanism behind the formation of the "frequency bands" remains unclear.

3 Frequency Band Emergence in Pretrained LLMs

We first investigate the frequency band identified by Barbero et al. (2024). Do similar frequency bands appear in other LLMs, or in those with base θ modified by position interpolation? To address this, we build on prior analysis (Barbero et al., 2024) and conduct further investigations across several LLMs.

3.1 ANALYTICAL METHODOLOGY

To measure the usage of frequencies, Barbero et al. (2024) calculated the 2-norm of key $\|k^n\|_2$. By the Cauchy-Schwarz inequality, the attention score $a_{m,n}$ between the mth query q^m and the nth key k^n satisfies $|\langle q^m, k^n \rangle| \leq \|q^m\|_2 \|k^n\|_2$. Therefore, to analyze the frequency components influencing the attention score, it is sufficient to examine either $\|q^m\|_2$ or $\|k^n\|_2$. We mainly examined the 2-norm of queries. Here, the 2-norm of a key is calculated as $\|k^n\|_2 = \sqrt{\sum_{j=0}^{d-1} (k_j^n)^2}$, where d is the number of dimensions and $j \in \{1, 2, ..., d\}$.

Frequency Band Index i_{band} To quantify where the frequency band appears in the key vector dimensions, we define the *band index* i_{band} . First, we identify the dominant frequency component at token position n by selecting the dimension i with the maximum 2-norm among the first $\frac{d}{2}$ dimensions of the key vector k^n .

$$idx_n = \max_{k_i^n \in \{k_0^n, k_1^n, \dots, k_{d/2-1}^n\}} (\|k_i^n\|_2)$$
(2)

Next, we determine the index idx_n that appears most frequently in the entire sequence of length L. The resulting index idx represents the dominant dimension in which the frequency bands are concentrated throughout the entire sequence.

$$i\hat{d}x = \underset{k^n \in \{k^0, k^1, \dots, k^L - 1\}}{\operatorname{argmax}} (\operatorname{count}(idx_n)) \tag{3}$$

This procedure is repeated for all heads and layers. The average of these model indices is defined as the *band index* i_{band} , where $0 \le i_{\text{band}} \le \frac{d}{2}$.

p-RoPE To analyze the contribution of different frequency components in RoPE, we measured perplexity using a simplified RoPE called p-RoPE (Barbero et al., 2024), which disables low-frequency dimensions. p-RoPE applies rotation only to the top-r high-frequency dimensions, interpolating between NoPE (r=0) and the full RoPE (r=1).

Unlike the previous studies of Barbero et al. (2024), no training was conducted in our analysis.

3.2 EXPERIMENTAL SETTINGS

For a comprehensive analysis, we selected models that use different base models (Gemma 8B, Llama-2 7B, Llama-3 8B, Phi-3 Small, Qwen-3-8B) and different position interpolation methods (YaRN,

²These major position interpolations all enlarge the original θ values, as shown in Appendix E.

Figure 2: 2-norm plotted over 2-dimensional chunks of queries. Vertical axis represents sequence length (L=4096), and horizontal axis represents each dimension index $(i \in \{0, 1, \dots, d/2-1\})$ of RoPE. Note that the head dimension d for the Gemma model is 256, while d is 128 for other models.

scaling in Llama-3 model, LongRoPE). Additional details are given in Appendix A. The dataset for evaluation is the test set of Wikitext-103 (Merity et al., 2017), and the sequence length in inference is L=4096 for all models.

3.3 RESULTS

Do frequency bands exist in other LLMs? Figure 2 shows the 2-norm of the queries for each model. As with Barbero et al. (2024), we extracted queries in the first layer that had semantic attention patterns in the head. First, we found that bands exist in all models, indicating that bands reflect a phenomenon that occurs generally. Next, we observed that the dimension in which the frequency band appears varies across models. Furthermore, we found that the position interpolation model inherits the bands regardless of the position interpolation method.

Do low-frequency components of RoPE contribute to performance? Table 1 shows frequency band index i_{band} and perplexity results when varying parameter r in p-RoPE across multiple language models. We also present standardized band index i_{band}/d (divided by head dimension d) for unified comparison. Band index i_{band} remains largely unchanged before and after position interpolation, and it aligns closely with the index of the bands shown in Figure 2, confirming consistency between our visual and quantitative analyses. The standardized index i_{band}/d decreases as θ increases, suggesting a relationship between band location and frequency determined by θ . For the Gemma and Llama models, the p-RoPE results reveal that replacing RoPE in a frequency dimension lower than the band with NoPE does not degrade performance, indicating an ineffective use of low-frequency RoPE components. Conversely, Phi-3 shows performance degradation when low-frequency dimensions are replaced, regardless of band appearance, suggesting an effective use of low-frequency RoPE, possibly due to this model's block-sparse attention (Abdin et al., 2024) that alternates between dense and sparse patterns.

Takeaways from Section 3: In other LLMs and in models that use position interpolation, a distinct frequency band appears and remains even when the base changes. Since replacing RoPE dimensions below this frequency band with NoPE shows no measurable change, these low-frequency dimensions might not contribute to performance.

4 Understanding Frequency Band Formation in Pre-training

What factors cause the band index to change, and when do bands occur? To investigate the factors that determine bands, we varied RoPE's θ and max sequence length in pre-training to analyze the frequency bands via the 2-norm of the query.

Table 1: Perplexity Results with p-RoPE. 'pt' is 'Pre-train' and 'ft' is 'Fine-tuning.' YaRN, Llama3, and LongRoPE are position interpolation methods applied during fine-tuning. Note that head dimension d is 256 for the Gemma model and 128 for the other models.

Model	$L_{ m train}$		$L_{ ext{train}}$ base $ heta$		Index	Perplexity with p-RoPE				
	pt	ft	pt	i_{band}	$i_{band}/\frac{d}{2}$	r=1.0	r=0.9	r=0.75	r =0.50	
Gemma	8k	-	10000	116.68	0.91	2.52	2.70	81.66	> 100	
Qwen3	40k		-1000000	51.04	0.79	6.22	6.22	6.22	7.46	
Llama-2	4k		$-1\overline{0}0\overline{0}0$	53.53	0.84	2.54	2.58	$\bar{} > \bar{1}\bar{0}\bar{0}$	> 100	
+YaRN	4k	64k	10000	51.93	0.81	2.81	5.08	> 100	> 100	
Llama-3	8k		500000 -	43.43		2.29	2.29		84.50	
+Llama3	8k	131k	500000	40.47	0.63	2.29	2.29	2.29	5.53	
Phi-3	8k		$\bar{1}0\bar{0}0\bar{0}\bar{0}\bar{0}$	36.67	0.57	2.84	46.11	46.36	> 100	
+LongRoPE	8k	131k	1000000	39.32	0.61	2.74	62.20	62.18	> 100	

Figure 3: 2-norm plotted in the combination pattern of $(L_{\text{train}}, \theta) \in \{512, 1024, 2048\} \times \{L_{\text{train}}, 10, 000; 500, 000; 1, 000, 000\}$. Vertical axis represents sequence length (L = 1024), and horizontal axis represents each dimension index $(i \in \{0, 1, \dots, d/2\})$ of RoPE.

4.1 Experimental Settings

For pre-training, we followed the experimental settings of Press et al. (2022) and Oka et al. (2025), and we used the WikiText-103 dataset (Merity et al., 2017). A comparative evaluation was made using a Transformer-based language model (Baevski & Auli, 2019). Here, the dimensionality of the word embedding d_{model} is 1024, the number of heads N is 8, the dimensionality of the heads d is 128, and the number of layers is 16. This implementation uses the fairseq (Ott et al., 2019)-based code. Additional details on the parameter settings are given in Appendix A. The maximum sequence length and RoPE were tested in combination with $(L_{\rm train}, \theta) \in \{512, 1024, 2048\} \times \{L_{\rm train}, 10, 000; 500, 000; 1, 000, 000\}$. The sequence length in inference is L = 1024 for all models.

4.2 RESULTS

What factors cause the band index to change? Figure 3 shows the 2-norm map in the combination pattern. We output 2-norm maps of queries from the semantic attention head, following Section 3. First, when theta values are fixed, the index at which the band exists increases as the maximum sequence length during pre-training increases (from top to bottom of Figure 3). This suggest that

Table 2: Band index and perplexity with p-RoPE when sequence length is L=512.

Base in RoPE θ		Band Index			Perplexity with p-RoPE					
Train	Inference	i_{band}	$i_{band}/\frac{d}{2}$	r=1.0	r=0.90	r=0.75	r=0.50	r=0.25		
512	512	60.5	0.94	19.58	20.18	24.28	35.11	98.26		
10000	10000	30.12	0.47	19.39	19.39	19.39	22.71	63.59		
500000	500000	17.00	0.26	19.35	19.35	19.35	19.35	34.46		
1000000	1000000	15.37	0.24	19.35	19.35	19.35	19.35	30.59		

Figure 4: Plot of the 2-norm for each epoch. Vertical axis represents sequence length, and horizontal axis represents each dimension index $(i \in \{0, 1, \dots, d/2\})$ of RoPE.

the index at which the band exists depends on the maximum sequence length during pre-training. When the maximum pretraining sequence length is fixed and θ is increased $(10,000 \rightarrow 500,000 \rightarrow 1,000,000)$; from left to right in Figure 3), the dominant frequency band shifts toward the lower dimensions. However, the difference between $\theta = 500,000$ and $\theta = 1,000,000$ is marginal; this similarity between the two values likely arises because both settings are already high, so further increases in θ provide little additional shift. Furthermore, when theta values were matched to the maximum sequence length during pre-training, it was found that the position of the band was near the maximum index for the head dimension.

Band index and p-RoPE We also investigate the band index i_{band} and p-RoPE. The results when sequence length is $L_{\text{train}}=512$ are shown in Table 2. As demonstrated in Section 3, increasing θ lowers the band index (i.e., shifts it to higher frequencies), and replacing RoPE with NoPE below this band has little impact on performance. Therefore, the frequency-band characteristics identified in Section 3 are expected to hold irrespective of model scale and training corpus.

When do bands occur? We also investigated the stage when the band first appears. Figure 4 shows the key 2-norm for each epoch in the model with L_{train} set to 512 and θ set to 10,000. At epoch 1, the band does not exist, and the distribution appears to be mixed with noise, but at epoch 6, the band appears from an early stage. This band is maintained until the final epoch. Therefore, we can see that the band does not exist in the first stage but is still acquired by the model at an early stage during training. Epoch 6 is a stage of rapid initial convergence, during which we can see that the model acquires the band.

Takeaways from Section 4: The effective dimension of RoPE is determined by the pre-training theta value and maximum sequence length, since these factors shape the band. The band emerges early in pre-training, suggesting it is a fundamental feature learned by the model.

5 DERIVATION OF FREQUENCY BANDS

As explained above, it has been found that the frequency band depends on the maximum sequence length and the basis. However, the mechanism itself is the core issue. This section provides a theoretical analysis to address this question. To probe the mechanism of forming the frequency band, we reduce the problem to a constrained optimization under weight decay and state our guiding question: Under a fixed coefficient-norm budget due to weight decay, which θ_i allows the largest position-dependent variation? As a simple and informative proxy, we maximize the coordinate variance of $\cos(m\omega)$ over the window.

5.1 DERIVATION

Our Goal We derive which RoPE pair in the query tends to concentrate energy during training, using only the maximum training sequence length L_{train} and the RoPE base θ . To make the argument beginner-friendly, we work with the *variance* of a single coordinate of the sinusoidal basis,

$$V(x) := \operatorname{Var}_{m \sim \operatorname{Unif}[0, L_{\operatorname{train}}]} [\cos(m\omega)], \qquad x \coloneqq \omega L_{\operatorname{train}},$$

and choose the frequency that maximizes V(x). Section D explains the connection to the full covariance view.

Step 1. Let $m \sim \text{Unif}[0, L_{\text{train}}]$ and define $x = \omega L_{\text{train}}$. By direct integration,

$$\mathbb{E}[\cos(m\omega)] = \frac{\sin x}{x}, \qquad \mathbb{E}[\cos^2(m\omega)] = \frac{1}{2} + \frac{\sin(2x)}{4x}.$$
 (4)

Hence, the centered variance

$$V(x) = \operatorname{Var}[\cos(m\omega)] = \frac{1}{2} + \frac{\sin(2x)}{4x} - \left(\frac{\sin x}{x}\right)^2.$$
 (5)

This function captures how much the cos coordinate moves across the position window. As $x \to 0$, $\cos(m\omega)$ is almost constant and $V(x) \to 0$; as $x \to \infty$, oscillations average out and $V(x) \to \frac{1}{2}$.

Step 2. Differentiating Eq. (5) gives

$$V'(x) = \frac{2x^2\cos(2x) - 5x\sin(2x) + 8\sin^2 x}{4x^3}.$$
 (6)

Stationary points satisfy V'(x) = 0, i.e.,

$$2x^2\cos(2x) - 5x\sin(2x) + 8\sin^2 x = 0. (7)$$

Solving Eq. (7) numerically yields the smallest positive root

$$x^* \approx 3.657210 \text{ rad}$$
 (i.e., $x^*/(2\pi) \approx 0.582 \text{ cycles}$). (8)

Here, we checked that V(x) is unimodal on $(0,\infty)$ and that Eq. (8) gives the global maximum with $V(x^{\star}) \approx 0.54047 > \frac{1}{2}$.

Step 3. The continuous optimizer has angular frequency $\omega^* = x^*/L_{\text{train}}$. We select the RoPE pair whose grid frequency $\omega_j = \theta^{-2j/d}$ is closest to ω^* , which yields the closed-form predictor

$$j^{\star} \approx \frac{d}{2} \log_{\theta} \left(\frac{L_{\text{train}}}{x^{\star}} \right), \quad x^{\star} \approx 3.657210 \ .$$
 (9)

 j^* is rounded to the nearest integer; the corresponding physical dimensions are $(2j^*, 2j^*+1)$.

5.2 Derived Band Location

The results of calculating j^* and i_{band} in Section 3 for each model are shown in Table 3. The relationship between j^* and i_{band} can be expressed as an approximately linear scaling $i_{band} \approx c \times j^*$ with $c \approx 1.1$. This indicates that once the energy-concentrating dimension j^* is determined, the corresponding physical frequency band i_{band} is essentially fixed. The small variation observed across models is likely due to differences in the query distribution rather than the model architecture. Accordingly, we proved that the position of the RoPE frequency band is predetermined by RoPE base θ , training length L_{train} , and dimension d.

Table 3: Results of j^* and i_{band}

Model	j^{\star}	i_{band}
Gemma	107	116.68
Llama-2	49	53.53
Qwen3	43	51.04
Llama-3	38	43.43
Phi-3	36	36.67
$\overline{\theta} = \overline{L}_{train}^{-}$	59	

Furthermore, we calculated j^{\star} when $\theta = L_{train} = 8192$ and d = 128. Here, $j^{\star} = 59$, and c = 1.1 yields $c \times j_{star} = 64.9$, matching the model's RoPE pair count ($\frac{d}{2} = 64$). Thus, for $\theta = L_{train}$, the band is expected to be concentrated near the lowest frequency.

Takeaways from Section 5: Using $x^* \approx 3.657210$, d, L_{train} , and θ , we can predict the frequency band location in advance. When $\theta = L_{train}$, the frequency band is theoretically predicted to lie at the lowest frequency dimensions.

Table 4: Perplexity results from Section 5. 'pt' stands for 'Pre-train' and 'ft' stands for 'Fine-tuning' in context extension with position interpolation. 'YaRN' is a position interpolation method applied during context extension. The gray area represents the FMRoPE score.

	$L_{ m train}$		Base in	Base in RoPE θ		Sequence Length in Inference L					
	pt	ft	Train	Inference	512	1512	2512	3512	15512	25512	
	512	-	512	512	19.58	21.19	24.20	27.42	84.75	> 100	
	512	-	512	1512	20.02	19.09	21.40	24.00	72.19	>100	
Pre-train	512	-	512	3512	21.28	20.27	20.37	23.00	66.10	>100	
Pre-train	512	-	10000	10000	19.39	43.63	84.45	>100	>100	>100	
	512	-	500000	500000	19.35	40.39	77.90	>100	>100	>100	
	512	-	1000000	1000000	19.35	37.94	74.26	>100	>100	>100	
	512	1512	1512	1512	19.62	17.78	17.56	17.65	20.51	23.19	
	512	1512	1512	3512	19.38	17.99	17.66	17.64	19.93	23.44	
Fine-tuning	512	1512	1512	15512	21.00	19.74	19.53	19.48	20.51	22.41	
with YaRN	512	1512	10000	10000	19.10	17.84	17.75	18.37	52.59	85.88	
	512	1512	500000	500000	19.14	17.89	18.83	18.34	35.57	50.88	
	512	1512	1000000	1000000	19.07	17.76	17.81	18.72	66.89	>100	

6 Frequency-matching intervention in RoPE

Interestingly, our analysis results suggest that higher-frequency dimensions beyond this band contribute to model performance (Section 3). However, since the frequency band is set by θ and L_{train} during pretraining (Sections 4 and 5) and remains stable even with interpolation (Section 3), a natural question arises: What is the impact on model performance when the frequency band is shifted toward lower frequencies during pretraining? To explore this, we analyze a strategy we term frequency-matching intervention in RoPE (FMRoPE), where we align the base frequency parameter θ with the maximum sequence length L_{train} used during pretraining. As demonstrated in Sections 4.2 and 5, this alignment shifts the frequency band toward the lowest frequencies, allowing the model to leverage a broader and more effective frequency range from the start of pretraining.

6.1 METHODOLOGY

In FMRoPE, we set the RoPE base equal to the training context length: $\theta = L_{\text{train}}$. Here, L_{train} denotes the maximum sequence length used during pretraining or fine-tuning. For example, we use $\theta = 512$ during pretraining and $\theta = 1512$ during interpolation-based fine-tuning.

6.2 Experimental Settings

We conducted a small-scale pre-learning and context-extension experiment, following the experimental settings of Press et al. (2022) and Oka et al. (2025) as in Section 4. The maximum sequence length during pre-training is $L_{\rm train}=512$, and we set $\theta=512$. In context extension through position interpolation, we adopted YaRN (Peng et al., 2024), which is the most commonly used standard method for position interpolation. The maximum sequence length for context expansion with position interpolation is $L_{\rm train}=1512$. Additional details on the parameter settings can be found in Appendix A. We used perplexity as the evaluation metric. ³

6.3 RESULTS

Pre-train We begin with the results above the dashed line in Table 4, corresponding to models without YaRN-based fine-tuning. When using conventional RoPE and FMRoPE without modification, the conventional RoPE outperforms FMRoPE. However, we observe that FMRoPE achieves better extrapolation performance. The analyses of Sections 3, 4, and 5 suggest that as more low-frequency dimensions behave like NoPE, larger θ values ($\theta \ge 10,000$) may reduce RoPE's contribution in longer contexts. In particular, the inference-time θ is adjusted to match the target sequence length

³Comparisons with other position encodings were also conducted (Appendix B). We additionally validated our approach on a 1B-parameter model with longer contexts and evaluated downstream tasks (Appendix C).

(e.g., $\theta=1512$ or 3512), thus significantly reducing perplexity. While FMRoPE demonstrates strong extrapolation, the requirement of knowing the target sequence length at inference time poses practical limitations. Future work should explore dynamic or adaptive schemes for adjusting θ based on observed context.

Context extension We next examine the results below the dashed line in Table 4, corresponding to models fine-tuned with YaRN for position interpolation. FMRoPE underperforms conventional RoPE in short contexts, suggesting that FMRoPE is particularly effective in long-context or extrapolation settings but not in interpolation. FMRoPE outperforms conventional RoPE in extended sequences, achieving lower perplexity. In the FMRoPE experiment using YaRN, we found that similar trade-offs to those observed in the pre-train experiment occurred. However, as shown in Section 3, we believe this result can be expected because the frequency bands are preserved even when positional interpolation is applied.

Takeaways from Section 6: Matching θ to the training length, which shift the frequency band into the lowest dimension, improves extrapolation but hurts interpolation, and this trade-off persists under position interpolation such as YaRN. Larger θ makes more low-frequency dimensions behave like NoPE, which may reduce RoPE's contribution in extrapolation.

7 RELATED WORK

The base θ in Sinusoidal PE (Vaswani et al., 2017) was set to 10,000 for the purpose of enabling theoretical extrapolation. Meanwhile, Takase & Okazaki (2019) demonstrated that LRPE, which sets the base θ of SPE to the sequence length, provides robust control of output length. The θ setting adopted in this study is consistent with that setting.

RoPE's θ component has been redesigned to support context expansion with fine-tuning, including rule-based expansion of θ (Chen et al., 2023; bloc97, 2023) and learning-based or search-based frequency scaling (Chen et al., 2024; Ding et al., 2024). Furthermore, Xiong et al. (2024) reported that setting $\theta = 500,000$ during pre-training suppresses the rapid decay of attention scores between distant tokens. However, all of these methods tend to increase θ , regardless of the maximum context length in pre-training. Liu et al. (2024) showed that using a smaller θ (e.g., 500) during pretraining improves extrapolation, but they did not analyze its relationship to the pretraining sequence length. In contrast, Xu et al. (2024), focusing on nearby tokens and ignoring distant context, found that such models achieve lower perplexity while still exhibiting "superficial extrapolation." Furthermore, their theoretical analysis suggests that the base frequency of RoPE governs the model's capacity to handle context length, which aligns with our findings. Barbero et al. (2024) identified RoPE frequency bands and linked them to positional heads. Their analysis used a base model and did not evaluate position interpolation or long-context settings. Sections 3, 4, and 5 extend these findings across multiple LLMs, including models with interpolation and long contexts, and add a theoretical analysis and experimental evidence that predict the band location from the base θ and the training length L_{train} .

8 Conclusion

We first showed that RoPE forms a distinct frequency band that appears across LLMs, persists after position interpolation, depends on the base θ and the training length $L_{\rm train}$, and emerges at an early stage. Low-frequency dimensions below this band often act like NoPE and add little to performance. We derived a simple predictor by maximizing a variance proxy, yielding $x^* \approx 3.657210$ and a grid index j^* that matches the observed band. At this point, it was theoretically understood that aligning theta with $L_{\rm train}$ would position the frequency band near the minimum frequency. Through our experiments, we found that aligning θ with $L_{\rm train}$ shifts the band to the lowest frequencies and widens the useful range, improving extrapolation while degrading interpolation. Therefore, increasing θ mostly reallocates energy rather than adding new positional information.

As Practical guidance, choose $\theta \approx L_{\rm train}$ when extrapolation is critical, and use larger θ when interpolation within the trained range is dominant. Position interpolation should be paired with a band-aware choice of θ rather than applied indiscriminately. Overall, our results connect the emergence of frequency bands to θ and $L_{\rm train}$ and provide a new perspective for band-aware design of positional encodings in long-context LLMs.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dongdong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali Yaday, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan, Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your phone, 2024. URL https://arxiv.org/abs/2404.14219.

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling. In *International Conference on Learning Representations*, 2019. URL https://openreview.net/forum?id=ByxZX20qFQ.

Federico Barbero, Alex Vitvitskyi, Christos Perivolaropoulos, Razvan Pascanu, and Petar Veličković. Round and round we go! what makes rotary positional encodings useful?, 2024. URL https://arxiv.org/abs/2410.06205.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about physical commonsense in natural language. In *AAAI Conference on Artificial Intelligence*, 2019. URL https://api.semanticscholar.org/CorpusID:208290939.

bloc97. Ntk-aware scaled rope allows llama models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation., 2023. URL https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/.

Guanzheng Chen, Xin Li, Zaiqiao Meng, Shangsong Liang, and Lidong Bing. CLEX: Continuous length extrapolation for large language models. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=wXpSidPpc5.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window of large language models via positional interpolation, 2023. URL https://arxiv.org/abs/2306.15595.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov. Transformer-XL: Attentive language models beyond a fixed-length context. In Anna Korhonen, David Traum, and Lluís Màrquez (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp. 2978–2988, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1285. URL https://aclanthology.org/P19-1285.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens, 2024. URL https://arxiv.org/abs/2402.13753.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,

541

542

543

544

546

547

548

549

550

551

552

553

554

558

559

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

588

590

592

Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,

596

597

598

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622 623

624

625

626

627 628

629

630

631 632

633

634 635

636

637 638

639

640

641 642

643

644 645

646

647

Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan, Payel Das, and Siva Reddy. The impact of positional encoding on length generalization in transformers. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=Drrl2gcjzl.

Xiaoran Liu, Hang Yan, Chenxin An, Xipeng Qiu, and Dahua Lin. Scaling laws of roPE-based extrapolation. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=J07k0SJ5V6.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. In *International Conference on Learning Representations*, 2017. URL https://openreview.net/forum?id=Byj72udxe.

Meta. Introducing llama 3.1: Our most capable models to date. https://ai.meta.com/blog/meta-llama-3-1/, 2024. Accessed: 2025-05-08.

Yui Oka, Taku Hasegawa, Kyosuke Nishida, and Kuniko Saito. Wavelet-based positional representation for long context. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=OhauMUNW8T.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In *Proceedings of NAACL-HLT 2019: Demonstrations*, 2019.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context window extension of large language models. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=wHBfxhZu1u.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables input length extrapolation. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=R8sQPpGCv0.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024. URL https://arxiv.org/abs/2308.12950.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Commonsense reasoning about social interactions. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 4463–4473, Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1454. URL https://aclanthology.org/D19-1454/.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)*, pp. 464–468, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-2074. URL https://aclanthology.org/N18-2074.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding, 2021.

Sho Takase and Naoaki Okazaki. Positional encoding to control output sequence length. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 3999–4004, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1401. URL https://aclanthology.org/N19-1401/.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421/.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo, Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon, Machel Reid, Maciej Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev, Nithum Thain, Olivier Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko Yotov, Rahma Chaabouni, Ramona Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith, Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira, Eli Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek Andreev, and Kathleen Kenealy. Gemma: Open models based on gemini research and technology, 2024. URL https://arxiv.org/abs/2403.08295.

The HuggingFace Team. Rope utilities in transformers: modeling_rope_utils.py. https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_rope_utils.py#L385, 2024. Accessed: 2025-05-08.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, Madian Khabsa, Han Fang, Yashar Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov, Mike Lewis, Sinong Wang, and Hao Ma. Effective longcontext scaling of foundation model. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 4643–4663, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.260. URL https://aclanthology.org/2024.naacl-long.260.

Mingyu Xu, Xin Men, Bingning Wang, Qingyu Zhang, Hongyu Lin, Xianpei Han, and weipeng chen. Base of roPE bounds context length. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=EiIelh2t7S.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, 2019.

A DETAILS OF EXPERIMENTAL SETTINGS

A.1 Frequency Band Emergence in Pretrained LLMs

The detailed experimental settings are described in Section 3.2. For a comprehensive analysis, we used the following models:

• google/gemma-7b

- meta-Llama/Llama-2-7b
- NousResearch/Yarn-Llama-2-7b-64k
- meta-Llama/Meta-Llama-3-8B
- meta-Llama/Llama-3.1-8B
- microsoft/Phi-3-small-8k-instruct
- microsoft/Phi-3-small-128k-instruct

We selected models that use different base models (Gemma, Llama, Phi-3) and different position interpolation methods (YaRN, Llama-scaling, LongRoPE). Here, the head dimension d for the Gemma model is 256, and that for the other models is 128. The dataset for evaluation is the test set of Wikitext-103 (Merity et al., 2017) 4 , and we used the subset of wikitext-103-raw-v1. This dataset is a collection of over 100 million tokens extracted from a set of articles verified as Good and Featured on Wikipedia. The subset of wikitext-103-raw-v1 has 4358 sentences as a test set. In our analysis, we concatenated all sentences in the dataset to create a long context for measuring perplexity. The sequence length in inference is L=4096 for all models.

A.2 Understanding Frequency Band Formation in Pre-training

We described the detailed experimental settings in Section 4.1. For pre-training, we used the WikiText-103 dataset (Merity et al., 2017), which consists of over 103 million tokens of English Wikipedia articles. We performed a comparative evaluation using a Transformer-based language model (Baevski & Auli, 2019). The dimensionality of the word embedding d_{model} is 1024, the number of heads N is 8, the dimensionality of the heads d is 128, and the number of layers is 16. This implementation used the fairseq (Ott et al., 2019)-based code provided in a previous work(Press et al., 2022), and all hyperparameters were set to the same values as those in the literature(Press et al., 2022). The number of training epochs is 205, and the batch size is 9216. The learning rate was set to 1.0, and the learning process was updated by 1e-7 every 16,000 steps. The maximum sequence length and RoPE were tested in combination with $(L_{\rm train}, \theta) \in \{512, 1024, 2048\} \times \{L_{\rm train}, 10, 000; 500, 000; 1, 000, 000\}$.

A.3 Frequency Matching in Rotary Position Embedding

The detailed experimental settings are described in Section 6.2. We conducted a small-scale prelearning and context-extension experiment. In pre-training, we used the WikiText-103 dataset (Merity et al., 2017). Furthermore, we performed a comparative evaluation using a Transformer-based language model (Baevski & Auli, 2019). Other parameter settings are the same as in Section 4.3. The maximum sequence length during pre-training is $L_{\text{train}} = 512$, and we set $\theta = 512$. In context extension achieved through position interpolation, we adopted YaRN (Peng et al., 2024), which is the most standard method for position interpolation. The maximum sequence length for context expansion with position interpolation is $L_{\text{train}} = 1512$, so we used $\theta = 1512$. Perplexity was used as the evaluation metric.

⁴https://huggingface.co/datasets/Salesforce/wikitext

Table 5: Perplexity results from Section 5. Here, 'pt' stands for 'Pre-train' and 'ft' stands for 'Fine-tuning' in context extension with position interpolation. 'YaRN' is a position-interpolation method applied during context extension.

	L	train	bas	se θ	Sequence Length L					
	pt	ft	Train	Inference	512	1512	2512	3512	15512	25512
NoPE	512	-	-	-	21.24	21.32	46.52	>100	>100	>100
SPE	512	-	-	-	20.02	77.30	>100	>100	>100	>100
Transformer-XL	512	-	-	-	19.98	18.88	19.02	19.53	OOM	OOM
RPE	512	-	-	-	21.20	21.89	34.77	74.55	OOM	OOM
WaveletRPE	512	-	-	-	19.20	17.99	18.00	18.21	OOM	OOM
ALiBi	512	-	-	-	19.69	18.53	18.40	18.43	18.39	18.39
	512	-	10000	10000	19.39	43.63	84.45	>100	>100	>100
	512	-	500000	500000	19.35	40.39	77.90	>100	>100	>100
	512	-	1000000	1000000	19.35	37.94	74.26	>100	>100	>100
RoPE	512	-	512	512	19.58	21.19	24.20	27.42	84.75	> 100
	512	-	512	1512	20.02	19.09	21.40	24.00	72.19	>100
	512	-	512	3512	21.28	20.27	20.37	23.00	66.10	>100
	512	-	512	15512	25.83	26.90	28.46	30.08	60.44	91.35
	512			1512+YaRN	- 1 9. 6 2 -	17.78	17.56	17.65	- 2 0 .51 -	23.19
	512	1512	1512+YaRN	3512+YaRN	19.38	17.99	17.66	17.64	19.93	23.44
	512	1512	1512+YaRN	15512+YaRN	21.00	19.74	19.53	19.48	20.51	22.41
RoPE+YaRN	512	1512	1512+YaRN	25512+YaRN	21.99	20.89	20.77	20.84	21.51	23.19
	512	1512	10000+YaRN	10000+YaRN	19.10	17.84	17.75	18.37	52.59	85.88
	512	1512	500000+YaRN	500000+YaRN	19.14	17.89	18.83	18.34	35.57	50.88
	512	1512	1000000+YaRN	1000000+YaRN	19.07	17.76	17.81	18.72	66.89	>100

B COMPARISON WITH OTHER POSITION-ENCODING METHODS

B.1 EXPERIMENTAL SETTINGS

In addition to RoPE, we also compared our method with the following position-encoding methods.

- NoPE (Kazemnejad et al., 2023)
- Sinusoidal PE (SPE) (Vaswani et al., 2017)
- Transformer-XL PE (Dai et al., 2019)
- Relative Position Representation (RPE) (Shaw et al., 2018) with clipping size 32
- Attention with Linear Biases (ALiBi) (Press et al., 2022)
- Wavelet PE (Oka et al., 2025)

For pre-training, we used the WikiText-103 dataset (Merity et al., 2017), which consists of over 103 million tokens of English Wikipedia articles. We performed a comparative evaluation using a Transformer-based language model (Baevski & Auli, 2019). The dimensionality of the word embedding d_{model} is 1024, the number of heads N is 8, the dimensionality of the heads d is 128, and the number of layers is 16. This implementation used the fairseq (Ott et al., 2019)-based code provided in a previous work(Press et al., 2022), and all hyperparameters were set to the same values as those in the literature(Press et al., 2022). The number of training epochs was 205, and the batch size was 9216. The learning rate was set to 1.0, and the learning process was updated by 1e-7 every 16,000 steps.

B.2 Perplexity Results

Figure 5 presents the perplexity scores for each method. We first confirmed the effectiveness of ALiBi and WaveletPE, both of which are known for their strong extrapolation capabilities. However, methods based on relative position encoding (RPE), such as RPE itself, WaveletPE, and Transformer-XL, showed out-of-memory (OOM) errors as the sequence length increased, and these methods were unable to generate results. In contrast, ALiBi consistently maintained strong extrapolation performance even at longer sequence lengths. RoPE, on the other hand, generally exhibits lower extrapolation performance compared to other positional encoding methods. Even FMRoPE, an enhanced variant of RoPE, did not surpass the original RoPE in extrapolation ability. Nevertheless, when the context length was expanded to L=1512 and the models were fine-tuned accordingly, both FMRoPE and RoPE showed improved performance relative to extrapolation-oriented PE methods. Notably, beyond L=1512, FMRoPE outperformed not only RoPE but also the other PE methods.

Table 6: Perplexity results from Section 5. 'pt' stands for 'Pre-train' and 'ft' stands for 'Fine-tuning' in context extension with position interpolation. The gray area represents the FMRoPE score.

	$L_{ m train}$		Base i	n RoPE θ	Sequence Length in Inference L					
	pt	ft	Train	Inference	256	512	1024	2048	4096	8192
Pre-train	1024	-	1024	1024	23.08	21.02	19.88	42.36	>100	>100
	1024	-	1024	2048	23.10	21.05	19.90	19.33	>100	>100
	1024	-	1024	8192	23.98	22.07	21.08	19.85	19.58	22.86
	1024	-	10000	10000	23.01	20.94	19.77	46.61	57.83	>100

Table 7: Perplexity results from Section 5. 'pt' stands for 'Pre-train' and 'ft' stands for 'Fine-tuning' in context extension with position interpolation. 'YaRN' is a position interpolation method applied during context extension. The gray area represents the FMRoPE score.

Base i	n RoPE θ	Downstream Task							
Train	Inference	SocialIQA	PIQA	CommonsenseQA	HellaSwag	Arithmetic			
1024	1024	43.96	69.58	33.66	44.80	24.90			
1024	2048	43.85	70.07	33.98	45.10	24.36			
1024	8192	44.16	68.71	32.92	44.91	24.06			
10000	10000	43.90	70.78	32.35	45.00	24.86			

C DOWNSTREAM TASK

Beyond the analyses in Section 6, we further examined FMRoPE under extended context lengths and larger model scales. In addition, we assessed performance not only in terms of perplexity but also across a suite of downstream tasks.

C.1 EXPERIMENTAL SETUP

We trained a decoder-only Transformer with RoPE and FlashAttention. The model has ≈ 1.2 B parameters with hidden size $d_{\text{model}} = 2048$, $n_{\text{lavers}} = 16$, $n_{\text{heads}} = 16$, and an MLP expansion ratio of We use RMSNorm without biases. Dropout is disabled throughout (residual_dropout=0.0, $attention_dropout=\emptyset.\,\emptyset,\ embedding_dropout=\emptyset.\,\emptyset).\ The\ maximum\ training\ context\ length\ is$ 1024 tokens. Vocabulary size is 50,280 using the GPT-NeoX/OLMo Dolma v1.5 tokenizer with right-side truncation/padding; eos_token_id= 0, pad_token_id= 1. We use AdamW with $(\beta_1, \beta_2) = (0.9, 0.95), \epsilon = 10^{-8}$, weight decay 0.1 (applied to embeddings and LayerNorm scales; decay_norm_and_bias=true, decay_embeddings=true). The peak learning rate is 6×10^{-4} with a cosine schedule and 10,000 warmup steps; the final LR decays to $0.1\times$ the peak. We use AMP bfloat16 training with gradient clipping at 1.0. Training uses distributed data parallelism with gradient synchronization at the batch boundary. The global batch size is 512 sequences; per-device microbatch size is 4. We enable pinned memory, prefetching, and persistent dataloader workers for throughput. Checkpointing saves unsharded states every 5,000 steps; evaluation runs every 1,000 steps. We train with flash_attention=true. Distributed training uses find_unused_params=false; gradient synchronization mode is set to batch. We log metrics every 10 steps and monitor throughput with a moving window of 20 steps. All experiments are seeded with 6198 and run under bfloat16 mixed precision on CUDA devices.

Pretraining uses the English C4 corpus (high-quality web text) preprocessed into NumPy shards. Unless otherwise noted, we train for one epoch.

C.2 EVALUATION METRIC

We report validation perplexity on C4 using fixed-length chunks to probe length generalization: $\{256, 512, 1024, 2048, 4096, 8192\}$ tokens. Batch size is 64. Beyond perplexity, we evaluate zero-shot performance (unless specified) on standard commonsense and QA benchmarks: PIQA (Bisk

et al., 2019), HellaSwag (Zellers et al., 2019), CommonsenseQA (Talmor et al., 2019), and Social IQa (Sap et al., 2019). We additionally report Basic Arithmetic perplexity.

C.3 RESULTS

C.3.1 PERPLEXITY

Table 6 shows the perplexity results. When the inference length does not exceed the training length $(L \le 1024)$, all settings achieve comparable perplexity around 20. The lowest perplexity is 19.77 when training and inference both use $\theta = 10,000$.

Differences appear once the inference length exceeds the pre-training context. The baseline configuration with $\theta=1024$ shows a sharp perplexity increase to 42.36 at L=2048 and diverges beyond 4096. In contrast, FMRoPE enlarges the inference base to 2048 or 8192 while keeping training at 1024, and this substantially improves extrapolation. These results show that simply enlarging the inference base frequency effectively extends the usable context without additional training.

A model trained and inferred with $\theta=10{,}000$ maintains competitive perplexity up to L=1024 but degrades rapidly beyond that point, reaching 46.61 at L=2048 and 57.83 at L=4096. This observation confirms that training with an excessively high base does not guarantee long-context generalization.

C.3.2 DOWNSTREAM TASK

Table 7 shows the downstream task results. Across all tasks, the differences among configurations are small, showing that changing the RoPE base for inference has little negative impact on general language understanding. When training and inference both use $\theta=1024$, the model achieves strong overall accuracy with 43.96 on SocialIQA, 69.58 on PIQA, 33.66 on CommonsenseQA, 44.80 on HellaSwag, and 24.90 on Arithmetic. Using FMRoPE with an inference base of 2048 maintains or slightly improves performance. The model reaches 70.07 on PIQA, 33.98 on CommonsenseQA, and 45.10 on HellaSwag, which are the best or nearly the best among all settings, while keeping SocialIQA and Arithmetic close to the baseline. When the inference base is further increased to 8192, performance remains stable with 44.16 on SocialIQA and 44.91 on HellaSwag, indicating that a large inference base does not harm downstream accuracy. A model trained and inferred with $\theta=10,000$ achieves the highest PIQA accuracy of 70.78, although CommonsenseQA drops to 32.35.

These results show that frequency matching during inference preserves or slightly enhances down-stream task performance while providing the long-context benefits demonstrated in perplexity evaluation. The findings confirm that decoupling the training and inference RoPE bases does not compromise the model's ability to perform common natural language understanding tasks.

CONNECTION TO COVARIANCE VIEW (WHY THIS PROXY WORKS)

The full 2×2 covariance of the basis

$$\Sigma(\omega) = \operatorname{Cov}\left(\begin{bmatrix} \cos(m\omega) \\ \sin(m\omega) \end{bmatrix}\right) = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

has explicit entries (with $x = \omega L_{\text{train}}$)

$$\Sigma_{11} = \frac{1}{2} + \frac{\sin(2x)}{4x} - \left(\frac{\sin x}{x}\right)^2, \qquad \Sigma_{22} = \frac{1}{2} - \frac{\sin(2x)}{4x} - \left(\frac{1-\cos x}{x}\right)^2, \qquad (10)$$

$$\Sigma_{12} = \frac{1-\cos(2x)}{4x} - \frac{\sin x}{x} \cdot \frac{1-\cos x}{x}, \qquad \Sigma_{21} = \Sigma_{12}. \qquad (11)$$

$$\Sigma_{12} = \frac{1 - \cos(2x)}{4x} - \frac{\sin x}{x} \cdot \frac{1 - \cos x}{x}, \qquad \Sigma_{21} = \Sigma_{12}. \tag{11}$$

The variance we maximized is exactly the (1,1) entry: $V(x) = \Sigma_{11}(x)$. If, instead, one optimizes over all linear combinations $A\cos(m\omega)+B\sin(m\omega)$ under a coefficient-norm budget, the centered variance is $R^2 \lambda_{\max}(\Sigma(\omega))$ by the Rayleigh–Ritz theorem.

Here, $\lambda_{\rm max}$ represents an indicator of the maximum variance along the principal component direction of the covariance matrix and is used as a more general optimization criterion. This value can be computed via the eigenvalue decomposition of the matrix. The method that maximizes Σ_{11} and the method that maximizes λ_{\max} select values close to each other on the RoPE frequency grid. Since the former is more practical and easier to interpret, we chose it for use in this paper.

DISTRIBUTION OF θ_i IN ROPE

Figure 5 shows the distribution of θ_i when position interpolation is applied at positions 10,000, 500,000, and 1,000,000. We examined several interpolation methods, including YaRN, Llama-scaling, and LongRoPE. Overall, position interpolation tends to increase the proportion of low-frequency θ_i components.

Figure 5: Distribution of θ_i values across dimensions i when position interpolation is applied at positions 10,000, 500,000, and 1,000,000. The x-axis represents the dimension index i, and the y-axis shows the corresponding θ_i values.

F ANALYSIS OF LONG-TERM DECAY

 To better understand interpolation and extrapolation trade-off, we next investigate the long-term decay of RoPE.

F.1 Long-term decay of query and key

Figure 6 plots the attention logit (query–key dot product) for the first query vector in the final decoder layer across relative positions; all heads show the same trend, so we report just the first head for brevity. For large base frequencies ($\theta \ge 10,000$), the logit decays almost monotonically with distance, whereas with $\theta = 512$, no such decrease in activation is observed.

F.2 Long-term decay of RoPE

To isolate the effect of θ , we follow prior work (Su et al., 2021; Xiong et al., 2024) and visualize RoPE activation when both the query and key vectors are filled with ones (Figure 7, left). The original activation grows with θ , confirming that larger base frequencies inject more energy into low-frequency dimensions.

Here, we hypothesize that RoPE components at frequencies higher than the band index are NoPE. To isolate the effect of the active components, we visualize the activation using only the dimensions higher than the band index in the right part of Figure 7. Surprisingly, we found that RoPE activation was reduced when theta was large. In contrast, when θ matches the sequence length, most dimensions fit within the band, resulting in relatively high activation. When the relative distance is within the maximum sequence length used during pre-training, the activation tends to be low. In contrast, for distances beyond the pre-training range, the activation becomes relatively higher. We speculate that this pattern is the reason why activation does not decrease in extrapolation in the actual activation shown in Figure 6.

Figure 6: Attention logits (query–key dot product) for the first query vector, plotted across relative positions. Gray area indicates relative positions beyond the maximum sequence length $L_{\text{train}} = 512$ used during pre-training.

Figure 7: RoPE activation when both query and key vectors are filled with ones. Gray area indicates relative positions beyond the maximum sequence length $L_{\text{train}} = 512$ used during pre-training.