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ABSTRACT

Understanding how transcriptomic programs shape tissue morphology remains
a central challenge in computational pathology. Gene-to-WSI tile synthesis of-
fers a principled generative framework to translate molecular profiles into his-
tological images. However, most existing methods compress RNA-Seq into a
single global embedding injected once at initialization, an oversimplified design
that weakens transcriptomic signals and induces non-causal associations between
gene expression and tissue morphology. We present GeneAR, an Autoregres-
sive Gene-to-WSI model that reformulates synthesis as an iterative, coarse-to-
fine generative process. At its core is a novel Causal MeanFlow module that
reinforces transcriptome-informed guidance at multiple stages and mitigates non-
causal factors through counterfactual-style interventions, thereby ensuring bio-
logical fidelity throughout the generative trajectory. Combined with a β-VAE for
compact gene embeddings and a multi-scale vector quantizer for discrete morphol-
ogy representation, GeneAR generates H&E-stained WSI tiles that are both visu-
ally realistic and transcriptomically faithful. Extensive experiments across five
TCGA cancer benchmarks demonstrate consistent state-of-the-art performance,
surpassing prior methods in both generative fidelity and downstream classifica-
tion accuracy. All models and code will be released to facilitate reproducibility.

1 INTRODUCTION

A central question in computational pathology is how transcriptomic programs shape tissue mor-
phology, and whether pathology images can be generated directly from RNA-Seq to probe this
link (Coudray et al., 2018; Schmauch et al., 2020). Framing this as Gene-to-WSI tile synthesis
is both scientifically meaningful and practically useful: it enables in silico experiments on how
molecular perturbations manifest morphologically, provides privacy-preserving synthetic data for
model development, and improves label/data efficiency in downstream tasks such as cancer classi-
fication or biomarker discovery (Ktena et al., 2024; Chang et al., 2023). Beyond augmentation,
Gene–to–WSI generation offers a controlled testbed for multi-omics hypothesis generation and can
boost statistical power where real images or labels are scarce or imbalanced (Chen et al., 2025).
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Figure 1: Key Idea. GeneAR integrates
Causal MeanFlow into an autoregressive
framework, where transcriptomic guidance is
iteratively injected with causal enhancement
to ensure biologically faithful WSI synthesis.

Despite its promise, Gene-to-WSI tile synthesis re-
mains methodologically underdeveloped. Exist-
ing solutions typically compress RNA-Seq profiles
into low-dimensional embeddings that either drive
one-shot generators (e.g., GAN variants) (Carrillo-
Perez et al., 2023) or condition cascaded diffusion
pipelines (Carrillo-Perez et al., 2025). While feasi-
ble, these strategies face structural limitations that
undermine biological fidelity and scalability. First,
collapsing the transcriptome into a static embedding
injected only once causes signal decay, with molec-
ular guidance fading as generation unfolds and im-
ages drifting toward superficial correlations rather
than gene-driven morphology. Second, synthesizing
tiles at a fixed resolution introduces scale rigidity,
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weakening cross-scale semantic consistency and diminishing transcriptome–morphology alignment.
Third, embeddings are learned in a purely correlational manner, leaving models vulnerable to con-
founders such as batch effects, tumor purity, and staining variability, thereby undermining causal
fidelity.

To address these challenges, we reformulate Gene-to-WSI synthesis as an iterative, coarse-to-fine
generative process in which transcriptomic signals are injected at multiple stages during generation
rather than used once at initialization. Building on this principle, we propose GeneAR—the first
autoregressive Gene-to-WSI model that delivers stepwise molecular reinforcement while preserving
structural coherence and causal fidelity (see Fig. 1). While drawing inspiration from recent ad-
vances in visual autoregression (Tian et al., 2024), GeneAR extends this paradigm into the molecu-
lar domain by conditioning coarse-to-fine prediction on compact, biologically grounded embeddings
derived from a β-VAE. This integration ensures that the transcriptome remains an active driver of
morphology, enabling dynamic cross-scale guidance during decoding. As a result, GeneAR prevents
signal decay, enforces multi-scale consistency, and strengthens the causal alignment between gene
programs and emergent tissue organization.

Yet an iterative paradigm alone does not immunize the generative trajectory against con-
founders—such as batch effects, tumor purity, and staining variability—whose correlational foot-
prints can divert decoding from gene-driven semantics (Leek et al., 2010; Aran et al., 2015). To ad-
dress this, Causal MeanFlow is introduced as a gene-driven causal module intrinsically embedded in
the autoregressive trajectory. Inspired by average velocity fields (Geng et al., 2025), it reformulates
flow dynamics in a biological context by directly coupling generative updates with transcriptomic
embeddings. During training, counterfactual interventions disentangle causal signals from spurious
variation, while at inference the learned field governs generation independently without auxiliary
samples. More than an auxiliary add-on, Causal MeanFlow functions as an integral mechanism that
injects transcriptomic guidance at multiple stages, suppresses non-causal drift, and preserves struc-
tural coherence. Through this integration, GeneAR establishes a generative framework in which
transcriptomic signals remain active, consistent, and causally faithful throughout synthesis.

We validate GeneAR on five TCGA benchmarks spanning diverse cancer types. Across all datasets,
GeneAR attains the lowest Fréchet Inception Distance (FID), indicating superior generative fidelity,
and achieves the highest accuracy and F1 score in downstream cancer classification. These results
confirm that GeneAR not only synthesizes realistic morphology faithfully aligned with transcrip-
tomic profiles, but also produces synthetic data that directly enhance predictive modeling. Our main
contributions are summarized as follows:

• Paradigm Shift. GeneAR reformulates Gene-to-WSI synthesis as an iterative, coarse-
to-fine generative process in which transcriptomic signals are injected at multiple stages
across scales, overcoming the signal decay and rigidity of static global embeddings.

• Causal Fidelity. By integrating the novel Causal MeanFlow module into the autoregressive
trajectory, GeneAR disentangles transcriptomic effects from confounders, ensuring that
morphological synthesis remains biologically grounded and causally aligned.

• State-of-the-Art Performance. Comprehensive evaluation on five TCGA cohorts demon-
strates that GeneAR attains the lowest FID and the highest accuracy in downstream classi-
fication, setting a new benchmark for both generative fidelity and functional utility.

2 RELATED WORKS

Gene-to-WSI Synthesis. In recent years, most prior studies in computational pathology focus on
predicting gene expression from WSIs (Schmauch et al., 2020; Pizurica et al., 2024; Chung et al.,
2024; Ganguly et al., 2025), whereas the inverse task—synthesizing histology directly from RNA-
Seq—remains underexplored. Early attempts such as RNA-GAN (Carrillo-Perez et al., 2023) inject
transcriptomic information only once and operate at a fixed resolution, while cascaded diffusion
models (Carrillo-Perez et al., 2025) improve visual fidelity but still rely on static conditioning and
fail to account for confounders. Motivated by these challenges, we propose a multi-stage, coarse-to-
fine Gene-to-WSI framework that injects transcriptomic guidance throughout decoding, preventing
signal decay, and explicitly disentangles causal signals from spurious variation, thereby enabling
more robust and biologically faithful histology synthesis.
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Figure 2: Overview of GeneAR. RNA-Seq embeddings are injected into a multi-scale autoregres-
sive pipeline, where morphology is reconstructed from f

′

K via the MSVQ decoder and reinforced by
Causal MeanFlow with counterfactual supervision (see Sec. 3 for details).

Autoregressive Image Generation. Autoregressive transformers have reframed image synthesis
as sequential token modeling (Van Den Oord et al., 2017; Razavi et al., 2019; Chen et al., 2020;
Esser et al., 2021), further extended through residual quantization (Lee et al., 2022a), iterative re-
finement (Chang et al., 2022; Lee et al., 2022b), and scalable codebooks (Yu et al., 2023). Coarse-
to-fine autoregression (Tian et al., 2024) achieves diffusion-level quality at lower sampling cost. De-
spite these advances, applications in computational pathology remain absent, where Gene-to-WSI
pipelines still rely on GANs or diffusion (Carrillo-Perez et al., 2023; 2025). Our study introduces
the first multi-scale autoregressive framework for RNA-guided WSI tile generation that preserves
transcriptomic guidance and cross-scale consistency.

Causal Generative Modeling. Gene-to-WSI methods remain vulnerable to confounders such as
staining or tumor purity (Leek et al., 2010; Macenko et al., 2009; Aran et al., 2015), with nor-
malization or domain adaptation providing only partial remedies. In contrast, causal generative
modeling (Schölkopf et al., 2021; Wu et al., 2024; Gao et al., 2025) and flow-based dynamics (Geng
et al., 2025) offer new approaches to disentangling causal signals and improving stability, yet these
advances have not been applied in pathology. We introduce a Causal MeanFlow module that em-
beds causal constraints into autoregressive training, ensuring persistent gene-driven semantics and
suppressing spurious correlations.

3 METHODOLOGY

3.1 PRELIMINARIES

Reformulation. Recent studies show that transcriptomic programs are tightly coupled with tissue
morphology and can even define layered cytoarchitectural organization in development (Schmauch
et al., 2020; Qian et al., 2025). This suggests that Gene-to-WSI synthesis should preserve tran-
scriptomic guidance dynamically across scales. However, existing methods collapse RNA-Seq into
static embeddings injected once, leading to signal decay, scale rigidity, and spurious correlations.
To overcome these issues, we reformulate Gene-to-WSI synthesis as a coarse-to-fine autoregressive
process, where an image is quantized into hierarchical token maps S = {sk}nk=1 and generated
sequentially under recurrent guidance from g:

sk = PΘ(s<k, g). (1)

Here, g is injected at multiple stages rather than only once at initialization, ensuring that transcrip-
tomic signals remain persistently active throughout the generative trajectory while leveraging the
distributional strength of autoregressive models (Esser et al., 2021; Lee et al., 2022a; Tian et al.,
2024).

Multi-Scale Vector Quantization. We employ the multi-scale vector quantization (MSVQ) (Tian
et al., 2024) to discretize a WSI tile X ∈ RH×W×C into K hierarchical token maps S = {sk}Kk=1,
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where each sk ∈ Rhk×wk denotes a discrete map at scale k. Unlike single-token quantization,
MSVQ outputs entire token maps, which reduces inference cost and preserves cross-scale structure.
For autoregressive modeling, the final-scale map sK is excluded, and the remaining maps are em-
bedded by W and interpolated by U , producing latent features F = {fk}Kk=1 and token embeddings
R = {rk}Kk=2:

fk =

k∑
i=1

U(W(si), hK × wK), rk+1 = U(fk, hk+1 × wk+1), (2)

where fk ∈ RhK×wK×d aggregates multi-scale information up to level k, and rk+1 ∈
Rhk+1×wk+1×d provides scale-aligned embeddings.

During decoding, similar to (Li et al., 2024b), the MSVQ decoder progressively reconstructs the tis-
sue tile from fK by residual refinement across scales, combining quantized maps and convolutional
upsampling to recover both semantic structure and fine-grained details.

3.2 AUTOREGRESSIVE GENE-TO-WSI TILE MODELING

We propose GeneAR, which reformulates gene-conditioned pathology synthesis as an iterative,
coarse-to-fine generative process. As shown in Fig. 2, GeneAR incorporates transcriptomic sig-
nals through three key components: (1) Gene-Expression Feature Extractor, which encodes RNA-
Seq profiles g ∈ R17655 into a compact latent prior z ∈ R200; (2) Causal MeanFlow, which refines
scale-wise responses rk into causality-enhanced features f̂k under the guidance of z; (3) RNA-guided
Masked Autoregression, which constructs masks Mk from discrepancies between f̂k and fk to high-
light transcriptomic cues, and concatenates z with {Mkrk}Kk=2 for autoregressive decoding into the
reconstructed token maps Ŝ = {s′

k}Kk=1, together with features F̂ = {f ′

k}Kk=1.

Gene-Expression Feature Extractor. Transcriptomic (RNA-Seq) profiles are inherently high-
dimensional, necessitating compact yet biologically meaningful representations for effective inte-
gration into generative models. Following RNA-CDM (Carrillo-Perez et al., 2025), we adopt a
β-VAE (Higgins et al., 2017) with a two-layer encoder fψ and decoder gθ. Each RNA-Seq profile g
is projected into a latent code z, from which a reconstruction g′ is generated. The training objective
is

Lψ,θ = −Efψ(z|g)[log(gθ(g|z))] + β ·KL(fψ(z|g)||p(z)), (3)
with β regulating the trade-off between reconstruction fidelity and latent regularization. The result-
ing z serves as a compact molecular prior that conditions downstream generative modeling.

Causal MeanFlow. At higher scales, token maps expand rapidly; many positions become trivially
predictable from earlier steps, inducing redundancy that over-smooths attention and erodes mor-
phological fidelity (Guo et al., 2025). Moreover, conventional autoregressive models lack causal
grounding, resulting in spurious correlations and weakened transcriptomic conditioning. To over-
come these limitations, we propose Causal MeanFlow (r-CM), an RNA-conditioned module that
enforces causality and preserves gene-driven guidance across scales.

a.) RNA-conditioned Average Velocity Modeling. Departing from classical flow matching based on
instantaneous velocity v, we adopt an average-velocity formulation, inspired by Geng et al. (2025),
where u is defined as the displacement between two time steps normalized by their interval. This
design reduces multi-step integration to a single step, while the instantaneous velocity v can be
derived from the interpolated latent f tk at time t and a noise sample ϵk, expressed as:

f tk = tfk + (1− t)ϵk, ϵk ∼ N (0, 1),

v(f tk, t) =
d(f tk)

dt
= fk − ϵk.

(4)

By exploiting the correlation between the average velocity u and the instantaneous velocity v, dif-
ferentiation with respect to t yields a closed-form expression for u:

(t− r)u(f tk, rk, z, t, r) =

∫ t

r

v(fτk , τ) dτ, (5)

u(f tk, rk, z, t, r) = v(f tk, t)− (t− r)(v(f tk, t)∂fku+ ∂tu). (6)
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We then employ a network Φ, to estimate u conditioned on z and rk, with the target average velocity
utgt expressed as:

utgt = v(f tk, t)− (t− r)(v(f tk, t)∂fkuϕ + ∂tuϕ),

where uϕ = Φ(f tk, rk, z, t, r).
(7)

Our network Φ extends beyond Geng et al. (2025) by coupling semantic features from rk with
transcriptomic signals from z in the prediction process. This fusion is implemented via biology-
enhanced adaptive layer normalization block (adaLN) (Peebles & Xie, 2023), enabling position-wise
integration of semantic and biological cues. The procedure is expressed as follows.

α1, β1, γ1 = mlp(z+ t+ r); α2, β2, γ2 = mlp(rk + t+ r),

f̃ = f tk + attn(β1 ⊙ LN(f tk) + γ1)⊙ α1,

ḟ = mlp(β2 ⊙ LN(f̃ + cattn(f̃ , rk)) + γ2)⊙ α2,

(8)

where ḟ and f̃ denote intermediate features in r-CM, ⊙ is the Hadamard product, and “attn,” “cattn,”
and “LN” correspond to attention, cross-attention, and layer normalization, respectively. At infer-
ence, r-CM performs one-step sampling to reconstruct f̂k from the scale-aligned embedding rk:

f̂k = ϵk − Φ(ϵk, rk, z, 1, 0), ϵk ∼ N (0, 1). (9)

b.) Counterfactual Regularization. Autoregressive modeling can be viewed as an iterative reconstruc-
tion of quantized features, producing latent representations {f ′

k}Kk=1. Within our framework, f
′

k is
reconstructed from rk under the guidance of gene embedding z, progressively enriching semantics
across scales. To prevent spurious enhancements from non-causal factors such as color, contrast,
or local frequency (Macenko et al., 2009; Tellez et al., 2019; Leek et al., 2010; Aran et al., 2015),
we introduce a causal regularization strategy based on counterfactual interventions. Following the
principle that interventions must destruct non-causal cues (Zhang et al., 2025), we apply three per-
turbations—color anomaly (to model stain variation), contrast adjustment (to capture batch effects
and scanner differences), and sharpening (to simulate high-frequency artifacts) to generate coun-
terfactual variants Xa, Xc, Xs for each WSI tile X . After quantization, these yield feature maps
{fak , f ck , fsk}Kk=1, which force Φ to emphasize causal, scale-invariant morphology.

To endow r-CM with causal regularization, we enlarge the discrepancy between the predicted aver-
age velocity uϕ and the target velocities {uatgt, uctgt, ustgt} obtained from degraded counterfactuals,
thereby stabilizing reconstruction. For example, uatgt is not derived via costly partial derivatives in
Eq. 8. Instead, we decompose average velocity into magnitude and direction, where the direction is
computed by normalizing the flow between two sampled fields fa,tk and fa,rk , and the magnitude is
estimated by scaling ||utgt|| with a stochastic factor λ. Targets {uctgt, ustgt} are constructed analo-
gously. The procedure is formally expressed as:

uatgt = λa||utgt|| ·
fa,tk − fa,rk

||fa,tk − fa,rk ||
. (10)

c.) Learning Objective. We further define a causality-driven learning objective to disentangle scale-
invariant morphological semantics (causal factors) from degradation-related cues (non-causal fac-
tors). For the k-th iteration, utgt from fk serves as the anchor, while fk−1 is treated as an extreme
counterfactual, yielding ultgt via Eq. 10. Additional degradation samples {uatgt, uctgt, ustgt} derived
from independent WSIs, distinct from the source of utgt, forming the counterfactual set Cu. This
design blocks potential shortcuts that exploit non-causal signals and enforces reliance on scale-
invariant morphology. The training objective is:

LΦ = E
[
||uϕ − sg(utgt)||2

]
− α

N

∑
untgt∼Cu

E
[
||uϕ − sg(untgt)||2

]
, (11)

where sg(·) denotes stop-gradient and α controls the strength of causal regularization.

RNA-Guided Masked Autoregression. We formulate GeneAR as an autoregressive model over
tokenized sequences:

p(s1, s2, · · · , sK) =

K∏
k=1

p(sk|s<k, s0 = z), (12)

5
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Table 1: Quantitative comparison on TCGA benchmarks. Fréchet Inception Distance (FID,
lower is better) is reported along with model parameters (#Para) and generation steps (#Step).
GeneAR consistently achieves the best performance across all cohorts.

Type Method #Para #Step GBM CESC KIRP COAD LUAD ALL

Diff. RNA-CDM (Carrillo-Perez et al., 2025) 1146M 2000 24.15 25.76 24.46 33.60 27.98 23.36
PathLDM (Yellapragada et al., 2024) 400M 50 22.46 19.87 20.39 26.96 21.28 20.29
U-ViT (Bao et al., 2023) 297M 100 13.89 15.74 21.83 26.75 17.86 18.55
DiT (Peebles & Xie, 2023) 305M 250 15.03 18.75 21.53 29.13 18.57 18.11

FM SiT (Ma et al., 2024) 305M 25 14.63 19.48 22.10 29.47 19.52 18.84

AR LlamaGen (Sun et al., 2024) 343M 256 15.48 18.34 19.89 27.91 17.52 17.43
VQGAN (Esser et al., 2021) 227M 256 21.74 23.48 26.10 32.47 26.48 25.09

VAR VAR (Tian et al., 2024) 310M 10 12.96 17.21 17.32 25.84 15.40 16.83
ImageFolder (Li et al., 2025) 314M 10 23.75 23.97 25.81 33.25 25.46 24.81
GeneAR (Ours) 310M 10 11.24 14.17 14.99 21.02 13.70 13.66

This factorization is realized by a ViT-based transformer with a causal mask, ensuring that genera-
tion proceeds strictly left-to-right under continuous transcriptomic conditioning, akin to GPT-2.

a.) Gradient-Guided Masking. After r-CM converges, it produces stable reconstructions f̂k from rk
before passing them to the transformer. We define the gradient as the derivative of the MSE loss
between fk and f̂k with respect to rk, and compute its ℓ2 norm along the channel dimension:

Gk = ∇rk(E||fk − f̂k||2), Mk = I(∥Gk∥2 > γ) , γ ∼ N (0, 1)hk×wk . (13)

Here I(·) denotes the indicator function. Tokens with large gradient responses are deemed RNA-
conditioned salient regions, as perturbations there strongly affect reconstruction. These positions
are therefore preferentially retained, dynamically injecting transcriptomic cues at the k-th iteration.

b.) Masked Autoregressive Decoding. Following class/text-conditioned VAR models, the latent gene
embedding z is used as the initial condition token r1. For subsequent steps, tokens at positions with
Mk = 0 are replaced by a learnable embedding e. The autoregressive generation and cross-entropy
training objective are formulated as:

{s
′

k}Kk=1 = PΘ({r1, · · · ,Mkrk−1,MKrK}), LΘ =

K∑
k=1

CE(s
′

k, sk). (14)

For efficiency, masking is applied only when k ≥ Km, balancing accuracy and cost. Together,
these advances endow GeneAR with causality-aware, biologically grounded generation, which we
validate in the next section through comprehensive experiments.

4 EXPERIMENTS

We evaluate GeneAR on five TCGA1 cohorts following the RNA-CDM protocol (Carrillo-Perez
et al., 2025). Each cohort comprises diagnostic WSIs paired with bulk RNA-Seq profiles and covers
five cancer types with case counts: lung adenocarcinoma (LUAD, n=520), kidney renal papillary
cell carcinoma (KIRP, n=298), colon adenocarcinoma (COAD, n=289), cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC, n=277), and glioblastoma multiforme (GBM,
n=212). Following (Li et al., 2021), we extract non-overlapping 256×256 tiles from gigapixel WSIs
at 20× magnification; thus each RNA-Seq profile is associated with the set of tiles from its paired
WSI. For generative quality, we report Fréchet Inception Distance (FID; 50K samples) (Heusel et al.,
2017). For downstream evaluation, we train tile-level and WSI-level classifiers on synthetic tiles and
report F1-score, accuracy (ACC), and AUC.

4.1 MAIN RESULTS

Comparison with State-of-the-Art Methods. We benchmark our GeneAR against nine strong
baselines spanning four families—diffusion (Diff.), flow matching (FM), token-wise autoregres-

1The Cancer Genome Atlas Program
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Figure 3: Synthetic vs. real tiles. Panel A. Cell-type distributions in real and synthetic tiles across
TCGA cohorts. Panel B. HoverNet (Graham et al., 2019) visualizations showing consistent cellular
composition between synthetic and real samples. Best viewed in color.

sion (AR), and scale-wise visual autoregression (VAR). All models are trained on the same cohorts
under authors’ recommended settings; when a class embedding is required, we replace it with an
RNA-Seq embedding layer for parity. We report FID (50K, consisting of average samples spanning
all RNA-Seq profiles) per cohort and on the pooled set (ALL). As shown in Tab. 1, our GeneAR
achieves record-setting results on all five cohorts: GBM (11.24), CESC (14.17), KIRP (14.99),
COAD (21.02), and LUAD (13.70). On the challenging COAD cohort, GeneAR improves over
VAR (Tian et al., 2024) by 4.82 FID. Aggregated across cohorts, GeneAR achieves the best overall
FID of 13.66 (ALL), outperforming LlamGen (Sun et al., 2024) by 3.77, DiT (Peebles & Xie, 2023)
by 4.45, SiT (Ma et al., 2024) by 4.89, and RNA-CDM (Carrillo-Perez et al., 2025) by 9.70.

Table 2: Cell distribution comparison.
Mean±std of cell proportions across cohorts.
Extended results in Tab. 6 (Appendix).

Dataset Method Neoplastic Dead

GBM
VAR 9.96%±21.99 69.55%±34.59
Ours 5.04%±12.07 78.67%±26.91
Real 6.04%±16.29 77.49%±30.90

LUAD
VAR 25.06%±27.38 55.99%±30.00
Ours 20.20%±22.78 61.10%±26.56
Real 19.32%±25.21 63.12%±29.60

Table 3: Tile classification performance. AC-
C/F1 under varying substitution (p) and pretrain-
ing (q) ratios. Full results in Tab. 7 (Appendix).

Method p=0.0 p=0.75
ACC F1 ACC F1

R-CDM 0.573±0.020 0.556±0.022 0.492±0.016 0.472±0.046
VAR 0.573±0.034 0.556±0.015 0.521±0.030 0.510±0.035
Ours 0.579±0.032 0.570±0.039 0.592±0.029 0.588±0.031

q=0.5 q=1.0

R-CDM 0.618±0.026 0.612±0.030 0.650±0.021 0.641±0.031
VAR 0.661±0.020 0.662±0.019 0.708±0.011 0.709±0.010
Ours 0.722±0.023 0.722±0.020 0.767±0.015 0.766±0.017

Cell Distribution Comparison. While FID captures visual fidelity, biological plausibility is critical
for clinical relevance. We therefore evaluate whether synthetic tiles preserve realistic cell composi-
tion using HoverNet (Graham et al., 2019), which segments and classifies cells into five categories:
neoplastic, inflammatory, connective, dead, and non-neoplastic epithelial. For each benchmark, we
randomly sample 2000 tiles from real WSIs and generate equal synthetic counterparts conditioned
on RNA-Seq profiles with GeneAR. Quantitative results (Tab. 2) show that cell distributions in our
GeneAR closely match real tissues and consistently outperform the strongest baseline VAR (Tian
et al., 2024). For example, neoplastic cell proportions are 6.04%±16.29 vs. 5.04%±12.07 in GBM
and 19.32%±25.21 vs. 20.20%±22.78 in LUAD. Visual comparisons in Fig. 3 further confirm that
GeneAR not only preserves overall cell composition but also generates morphologies consistent
with cancer type, demonstrating biological realism beyond mere visual fidelity.
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A.

B.

Vanilla MeanFLow

CausalMeanFLow

C.

TCGA-COAD

TCGA-LUAD
TCGA-GBM

TCGA-CESC

t = 0 t = 1

t = 0 t = 1

t = 0 t = 1

t = 0 t = 1

Figure 4: Classification fidelity and causal dynamics.Panel A. Conventional synthetic tiles degrade
classification, whereas GeneAR preserves accuracy. Panel B. Pretraining with GeneAR-generated
tiles yields the largest performance gains. Panel C. Causal MeanFlow disentangles trajectories,
revealing class-specific dynamics absent in vanilla MeanFlow. Best viewed in color.

Effect of Causal Regularization. Fig. 4 C illustrates the impact of causal regularization on Mean-
Flow learning. We employ t-SNE visualization, where points at t = 0 denote initial noise and those
at t = 1 represent one-step generation outcomes; connecting lines approximate the average veloc-
ity u. Colors indicate different datasets. For vanilla MeanFlow (Geng et al., 2025), susceptibility
to non-causal factors causes substantial overlap of velocity trajectories, reflecting poor class sepa-
rability. In contrast, our Causal MeanFlow produces clearly separated trajectories, demonstrating
its ability to emphasize scale-invariant morphological semantics (causal factors) and capture more
fine-grained, class-specific histopathological features.

Tile-Level Validation with Synthetic Data. We used 5,000 model-generated tiles and 5,000 real
tiles across five cancer types to evaluate whether synthetic data can sustain classification, employing
a ResNet-18 (He et al., 2016) backbone for validation. Substituting up to 75% of real tiles with
GeneAR-generated counterparts preserved or slightly improved performance (ACC: 0.579→0.592;
F1: 0.570→0.588), whereas RNA-CDM (Carrillo-Perez et al., 2025) and VAR (Tian et al., 2024)
caused notable drops (Tab. 3, Fig. 4 A). Pretraining with synthetic tiles further boosted performance,
with GeneAR yielding the largest gains (+0.188 ACC, +0.196 F1) and outperforming baselines by
clear margins (Tab. 3, Fig. 4 B). These results highlight the clinical utility of GeneAR, showing that
model-generated tiles can serve as reliable training data.

WSI-Level Gains with Synthetic Pretraining. Extending to downstream WSI
classification under the MIL paradigm, we benchmarked four state-of-the-art

Table 4: Performance comparison of MIL meth-
ods (w/ vs. w/o pretraining). Our GeneAR gener-
ates 512 patch-wise tiles using each RNA-Seq.

Method
ACC F1-score AUC

w/o w/ w/o w/ w/o w/
TransMIL 0.849 0.877 0.847 0.875 0.894 0.934
ACMIL 0.767 0.863 0.749 0.858 0.817 0.938
WiKG 0.767 0.822 0.753 0.818 0.820 0.917
MambaMIL 0.836 0.918 0.833 0.917 0.925 0.941

methods—TransMIL (Shao et al., 2021),
ACMIL (Zhang et al., 2024), WiKG (Li
et al., 2024a), and MambaMIL (Yang et al.,
2024)—on COAD (MSS vs. MSI). As shown
in Tab. 4, synthetic pretraining consistently
improved all metrics, with ACMIL achieving
the largest gains (ACC +0.096, F1 +0.109,
AUC +0.121). These findings demonstrate that
GeneAR-generated tiles not only substitute real
data effectively but also enable highly discrim-
inative slide-level representations, thereby enhancing downstream clinical classification tasks.

4.2 ABLATION STUDY

Analysis of RNA-conditioned Causal MeanFlow. We assess the role of RNA-Seq conditioning
and causal inference learning in r-CM under diverse settings. Reconstruction fidelity is measured
by rFID, while FID quantifies overall generative quality within the autoregressive framework. A
vanilla MF directly predicting from rk serves as the control. As shown in Tab. 5a, incorporating
causal inference learning reduces rFID to 3.70 compared with 4.41 when relying solely on RNA-
Seq guidance, but yields a slightly higher FID (15.78 vs. 15.23). This indicates that while causal
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Table 5: Ablation experiments. We systematically analyze (a) the components of r-CM, (b) RNA-
Seq embeddings, (c) core modules of GeneAR, (d) degradation strategies, (e) compatibility with
different autoregressive models, and (f) masking strategies.

Settings rFID (↓) FID (↓)

Vanilla MF 6.63 16.05

MF w/ RNA 4.41 15.23

MF w/ CI 3.70 15.78

r-CM 2.03 13.66
(a) Key Components of r-CM.

Settings. FID (↓)

class-label emb. 27.70

linear emb. 22.15

β-VAE 13.66
(b) RNA-Seq Embedding.

Settings FID (↓)
base.(∆) 16.83

∆
+ ViT 15.89
+ FM 14.02
+ r-CM 13.66

(c) Key Components of GeneAR.

uatgt uctgt ustgt rFID (↓) FID (↓)

✔ ✔ 2.25 14.36

✔ ✔ 2.43 14.78

✔ ✔ 2.78 15.01

✔ ✔ ✔ 2.03 13.66
(d) Degradation Methods.

Method FID (↓)
ImageFloder 24.81
+ r-CM 20.93 (3.88↓)
VAR 16.83
+ r-CM 13.66 (3.17↓)

(e) Compatibility of r-CM.

Settings FID (↓)
w/o masking 16.83
Random 16.26
E-distance 14.97
Gradient 13.66

(f) Masking Strategy.

learning enhances fidelity, RNA-Seq conditioning remains essential for optimal generative quality.
Further analysis (Tab. 5d) on counterfactual sample combinations reveals consistent rFID gains of
2.16, 1.98, and 1.63 in rFID across different configurations relative to the baseline (4.41), with
FID exhibiting a similar trend. Using all counterfactual variants achieves the lowest rFID and FID,
confirming that the full set of degradation strategies is critical for effective causal regularization.

Ablation for Components in GeneAR. We first examine the role of RNA-Seq conditioning
(Tab. 5b). Replacing RNA-Seq with class labels leads to a substantial FID degradation of 14.04,
highlighting the necessity of biological modulation, while linear embeddings yield moderate im-
provements but remain 8.49 worse than the β-VAE, reflecting their limited ability to capture complex
biological signals. At the model level (Tab. 5c), substituting r-CM with a non-generative ViT results
in a 2.23 FID drop, indicating insufficient capacity to recover fine-grained morphology, whereas
flow matching achieves a comparable FID of 14.02 but requires 25× more steps, underscoring the
efficiency advantage of r-CM in autoregressive modeling.

Compatibility for Visual Autoregressive Modeling. To assess scalability, we integrate r-CM with
gradient-guided masking into two leading visual autoregressive frameworks, VAR (Tian et al., 2024)
and ImageFolder (Li et al., 2025). Both benefit substantially, with FID gains of 3.17 for VAR
and 3.88 for ImageFolder (Tab. 5e), demonstrating the broad compatibility and effectiveness of our
design.

Ablation for Masking Strategy. We compare three masking strategies for selecting causality-
enhanced tokens (Tab. 5f). Random masking slightly improves performance (+0.57 over base-
line). Euclidean distance-based masking, which prioritizes poorly reconstructed tokens, further re-
duces FID by 1.86 relative to random masking, but fails to capture causal importance. In contrast,
gradient-guided masking achieves the lowest FID of 13.66, outperforming Euclidean masking by
1.31, demonstrating its effectiveness in identifying causally salient tokens and enhancing generation
quality.

5 CONCLUSION

In this work, we introduced GeneAR, an autoregressive Gene-to-WSI tile synthesis model that unites
multi-stage transcriptomic conditioning with causality-aware modeling. By reformulating synthesis
as an iterative, coarse-to-fine autoregressive process, GeneAR continually reinforces transcriptomic
signals, mitigating signal decay and ensuring cross-scale consistency. At its core lies the Causal
MeanFlow module, guided by RNA-Seq embeddings, which uses counterfactual interventions to
suppress spurious variation and enforce causal fidelity in morphology. Experiments on five TCGA
cohorts show that GeneAR achieves state-of-the-art generative fidelity and delivers consistent gains
in downstream classification. Beyond benchmarking, GeneAR serves as a controllable tool for prob-
ing gene–morphology relationships under transcriptomic perturbations, opening new avenues for
integrative studies in computational pathology.
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Calderaro, Aurélie Kamoun, Meriem Sefta, Sylvain Toldo, Mikhail Zaslavskiy, et al. A deep
learning model to predict rna-seq expression of tumours from whole slide images. Nature Com-
munications, 2020.

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of
the IEEE, 2021.

Zhuchen Shao, Hao Bian, Yang Chen, Yifeng Wang, Jian Zhang, Xiangyang Ji, et al. Transmil:
Transformer based correlated multiple instance learning for whole slide image classification. In
NeurIPS, 2021.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv, 2024.
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A APPENDIX

This appendix provides a comprehensive set of supplementary materials that extend and deepen
the contributions presented in the main paper. We begin by revisiting the theoretical underpinnings
of MeanFlow, offering a detailed derivation that clarifies its role in modeling average velocity and
its integration into GeneAR. Next, we describe the construction of counterfactual samples and the
implementation details of training, which together provide greater transparency and reproducibility
of our method. Beyond methodology, we report expanded experimental results, including extensive
ablation studies, complete quantitative evaluations, and large-scale comparisons with state-of-the-art
baselines. Finally, we present supplementary qualitative visualizations that highlight the diversity
and realism of the synthesized tiles across multiple cancer types. Taken together, these materials
serve to reinforce the rigor of our approach, demonstrate its robustness across varied conditions, and
provide deeper insights into its practical implications.

A.1 FURTHER DERIVATION OF MEANFLOW

MeanFlow (Geng et al., 2025) introduces the concept of an average velocity u, defined as the dis-
placement between two time steps t and r, normalized by their interval. This reformulation reduces
the multi-step integration of conventional flow matching to a single-step computation, thereby sim-
plifying the generative process. Given Eq. 5, differentiating both sides with respect to t, we can
rearrange this formulation to obtain u,

u(f tk, rk, z, t, r) = v(f tk, t)− (t− r)
d

dt
u(f tk, rk, z, t, r). (15)

where d
dtu(f

t
k, rk, z, t, r) denotes the time derivative.

By further expanding the time derivative d
dtu via the chain rule, u can be explicitly expressed as:

d

dt
u(f tk, rk, z, t, r) =

df tk
dt︸︷︷︸

v(f tk,t)

∂fku+
drk
dt︸︷︷︸
0

∂rku+
dz

dt︸︷︷︸
0

∂zu+
dt

dt︸︷︷︸
1

∂tu+
dr

dt︸︷︷︸
0

∂ru,

= v(f tk, t)∂fku+ ∂tu.

(16)

In conclusion, the total derivative can be written as a Jacobian–vector product (JVP), where
[∂fku, ∂rku, ∂zu, ∂tu, ∂ru] constitutes the Jacobian matrix of u(f tk, rk, z, t, r) along the tangent vec-
tor [v, 0, 0, 1, 0]. Since the ground-truth function u is inaccessible, we employ a network Φ to ap-
proximate it. Specifically, in Eq. 16, u is replaced by uϕ learned via Φ, and the target average
velocity utgt is ultimately given by:

utgt = v(f tk, t)− (t− r)(v(f tk, t)∂fkuϕ + ∂tuϕ),

where uϕ = Φ(f tk, rk, z, t, r).
(17)

Here, ∂fkuϕ and ∂tuϕ can be efficiently computed using the jvp interface in PyTorch. The proce-
dure for training Φ with the target utgt in Eq. 17 is summarized in Alg. 1.

A.2 COUNTERFACTUAL SAMPLE CONSTRUCTION

Effective interventions should perturb non-causal factors while preserving causal content, thereby
enabling meaningful causal inference. To this end, we empirically apply three interventions to the
ground-truth tiles to construct counterfactual samples, as illustrated in Fig. 5.

Color Anomaly. Following CWNet (Zhang et al., 2025), we apply a color degradation procedure to
the original tile X in order to suppress color disturbances. The degradation is defined as:

Xa = ∆H(X) + ∆S(X) +
∑

K∈{R,G,B}

∆K(X) + ϵ, (18)

where H , S, and K denote the hue, saturation, and RGB channel offsets, respectively.
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Algorithm 1 Causal MeanFlow: Training

Note: jvp interface in PyTorch returns the function output and du
dt .

# fn(fk, rk, z, t, r): function to predict u
# fk: gt quantinized feature at k scale
# rk: token embeddings map at k scale
# z: compact molecular prior from RNA_Seq
# t,r: two sampled timestamps
# Counterfactual batch:

# fl
k: rk, fa

k: color anomaly, fc
k: contrast, fs

k: sharpening

N = len([fl
k, fa

k, fc
k, fs

k])
t, r = sample_t_r()
ϵ = randn_like(fk)

ft
k = (1 - t) * fk + t * ϵ

vtk = ϵ - ft
k

u, du
dt

= jvp(fn, (fk, rk, z, t, r), (vtk, 0, 0, 1, 0))

utgt = vtk - (t - r) *
du
dt

utgt_m = ||utgt||

for fj
k in {fl

k, fa
k, fc

k, fs
k}:

ϵj = randn_like(fj
k)

fj,t
k = (1-t) * fj

k + t * ϵj
fj,r
k = (1-r) * fr

k + r * ϵj
dj = fj,t

k - fj,r
k

norm(dj) =
dj

||dj ||

uj
tgt = λj * utgt_m * norm(dj)

Cu = {ul
tgt, ua

tgt, uc
tgt, us

tgt}
error = u - sg(utgt)
for un

tgt in Cu:
error_inven += (u - sg(un

tgt))

loss = metric(error) - α
N * metric(error_inven)

Contrast Adjustment. To prevent spurious semantic enhancement caused by contrast variation, we
introduce a contrast adjustment intervention:

Xc =
∑

K∈{R,G,B}

[
αK · (XK − µK) + µK

]
+ ϵ, (19)

where αK and µK are the contrast coefficient and channel-wise mean of the K-th channel.

Sharpening Operation. Similarly, to mitigate spurious semantic enhancement introduced by local
spatial frequency distributions, we design a sharpening intervention:

Xs = X + α · (X − Blur(X)) · k, (20)

where α and k control the sharpening intensity and lightness coefficient, respectively, and Blur(·)
denotes Gaussian blurring.

A.3 IMPLEMENTATION DETAILS

MSVQ Q. All scales share a unified codebook V ∈ R4096×32, comprising 4096 entries of 32-
dimensional vectors, with the number of discrete token maps per image fixed at K = 10. A
DINOv2-based encoder (Oquab et al., 2023) is used to obtain continuous latent representations,
followed by a decoder that reconstructs images from the quantized token maps. Subsequently, we
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Figure 5: Visualizations of counterfactual samples. Our degradation procedures perturb non-
causal factors while maintaining the morphology information.

randomly sample approximately 31 tiles per WSI associated with each RNA-Seq profile, construct-
ing a total of 50,000 tiles, yielding an rFID of 2.11.

Causal MeanFlow. r-CM adopts the SiT architecture (Peebles & Xie, 2023) for the network Φ,
with model depth and feature dimension set to 6 and 768, respectively. The hyperparameter α is
fixed at 0.1, and λ is uniformly sampled from [0.8, 1.2]. r-CMΦ is trained for 100 epochs using 50
tiles per WSI. Additionally, we randomly sample approximately 31 tiles per WSI associated with
each RNA-Seq profile, yielding a total of 50,000 tiles for rFID evaluation in Tab. 5a and Tab. 5d.

RNA-Guided Masked Autoregression. The VAR transformer follows the standard architecture
with depth d = 16, head count h = d, and width w = 64h. Training is performed using an AdamW
optimizer with initial learning rate 10−4, batch size 256, β1 = 0.9, β2 = 0.95, and weight decay
0.05. After pretraining r-CM, we freeze its parameters and integrate it into the training of PΘ

for 200 epochs using 200 tiles per WSI. The MSVQ module Q is trained jointly on the same tile
sampling protocol.

Code Availability. The implementation of GeneAR, including training scripts and pretrained mod-
els, will be made publicly available upon publication.

A.4 EXTENDED EXPERIMENTAL RESULTS

Comprehensive Cell Distribution Comparison. Tab. 6 reports the complete cell distributions of
five cell types across five datasets, provided as a supplement to Tab. 2. For each dataset, we synthe-
size 2,000 tiles using all RNA-Seq profiles and randomly sample 2,000 real tiles. HoverNet (Graham
et al., 2019), trained on the PanNuke dataset (Gamper et al., 2020), is employed to detect neoplastic,
inflammatory, connective, dead, and non-neoplastic cell types. For each dataset, cell distributions are
first quantified at the tile level, and then aggregated to obtain overall statistics across the 2,000 tiles.
The results demonstrate that synthetic tiles generated by GeneAR better capture realistic cell-type
distributions and further improve the morphological fidelity of synthesized tissue. Representative
visualizations are provided in Fig. 6.

Comprehensive Tile Classification Analysis. Comprehensive results under different proportions
p and q are reported in Tab. 7. For GeneAR, classification accuracy does not decline even as the
fraction of synthetic tiles steadily increases within the 5000 mixed tiles, whereas all competing
methods exhibit significant performance degradation. Moreover, classification accuracy continues
to improve with the progressive incorporation of synthetic tiles during pretraining. Notably, GeneAR
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Table 6: Comparison of various cell distributions. We systematically analyze the distributions
of cell populations at the tile level across five cancer types, reporting both the mean and standard
deviation (mean±std) of the corresponding cell proportion.

Dataset Method Neoplastic Inflammatory Connective Dead Non-Neoplastic

GBM
VAR 9.96% ± 21.99 1.64% ± 5.46 15.87% ± 26.84 69.55% ± 34.59 2.95% ± 12.01

Ours 5.04% ± 12.07 2.80% ± 7.60 8.97% ± 17.15 78.67% ± 26.91 4.49% ± 12.70

Real 6.04% ± 16.29 2.82% ± 8.86 8.39% ± 19.19 77.49% ± 30.90 5.24% ± 16.06

CESC
VAR 30.92% ± 31.89 1.44% ± 5.20 19.04% ± 26.68 47.47% ± 32.18 1.10% ± 6.53

Ours 27.19% ± 24.82 2.05% ± 5.52 13.31% ± 19.57 56.67% ± 26.64 0.77% ± 3.21

Real 25.67% ± 28.43 2.73% ± 9.43 12.21% ± 21.66 58.77% ± 30.56 0.60% ± 2.95

LUAD
VAR 25.06% ± 27.38 2.99% ± 6.84 15.23% ± 20.63 55.99% ± 30.00 0.71% ± 3.42

Ours 20.20% ± 22.78 3.95% ± 5.86 13.16% ± 15.14 61.10% ± 26.56 1.56% ± 6.64

Real 19.32% ± 25.21 3.57% ± 6.86 12.46% ± 19.40 63.12% ± 29.60 1.52% ± 7.04

KIRP
VAR 20.59% ± 25.29 3.52% ± 8.01 9.22% ± 18.70 60.78% ± 26.97 2.72% ± 8.30

Ours 22.61% ± 23.44 2.91% ± 4.64 9.36% ± 13.89 63.32% ± 25.53 1.78% ± 4.76

Real 23.07% ± 26.71 2.44% ± 5.78 8.04% ± 16.01 64.43% ± 29.85 2.00% ± 7.23

COAD
VAR 33.37% ± 33.08 2.01% ± 7.29 27.39% ± 28.00 36.08% ± 29.55 1.13% ± 6.71

Ours 38.14% ± 28.25 2.81% ± 5.00 20.09% ± 20.19 38.25% ± 24.69 0.69% ± 2.37

Real 35.54% ± 32.95 3.32% ± 7.77 19.87% ± 24.85 40.49% ± 29.66 0.76% ± 3.45

Table 7: Tile classification performance under different substitution ratios p of real tiles with
synthetic ones, and varying proportions q of synthetic tiles used for pretraining. Four different
proportions for the pretraining 25% (1,250 samples), 50% (2,500 samples), 75% (3,750 samples)
and 100% (5,000 samples). All experiments are conducted under a 5-fold cross-validation (CV)
protocol to guarantee the stability and reliability of the results.

Method
p=0.0 p=0.25 p=0.50 p=0.75

ACC F1-score ACC F1-score ACC F1-score ACC F1-score

RNA-CDM 0.573 ± 0.020 0.556 ± 0.022 0.563 ± 0.024 0.520 ± 0.028 0.533 ± 0.014 0.516 ± 0.036 0.492 ± 0.016 0.472 ± 0.046

VAR 0.573 ± 0.034 0.556 ± 0.015 0.576 ± 0.020 0.565 ± 0.026 0.553 ± 0.022 0.561 ± 0.017 0.521 ± 0.030 0.510 ± 0.035

Ours 0.579 ± 0.032 0.570 ± 0.039 0.580 ± 0.020 0.569 ± 0.020 0.590 ± 0.037 0.585 ± 0.042 0.592 ± 0.029 0.588 ± 0.031

q=25% q=50% q=75% q=100%

RNA-CDM 0.612 ± 0.021 0.606 ± 0.020 0.618 ± 0.026 0.612 ± 0.030 0.635 ± 0.017 0.637 ± 0.018 0.650 ± 0.021 0.641 ± 0.031

VAR 0.628 ± 0.025 0.625 ± 0.024 0.661 ± 0.020 0.662 ± 0.019 0.695 ± 0.013 0.698 ± 0.010 0.708 ± 0.011 0.709 ± 0.010

Ours 0.656 ± 0.023 0.654 ± 0.022 0.722 ± 0.023 0.722 ± 0.020 0.747 ± 0.016 0.747 ± 0.015 0.767 ± 0.015 0.766 ± 0.017

achieves larger gains than the two SOTA baselines. Classification models are trained for 50 epochs,
with each pretraining stage fixed at 20 epochs.

Comprehensive WSI Classification Analysis. WSI classification follows the standard multi-
instance learning framework, where all tiles extracted from an individual WSI form a tile-wise
bag associated with a slide-level label: 0 for microsatellite stability (MSS) and 1 for microsatel-
lite instability (MSI). Tile features are first extracted by a designated feature extractor and then fed
into a classification model to predict the slide-level label. To assess the clinical utility of synthetic
tiles, we adopt two tile feature extractors—ViT (Chen et al., 2021) pre-trained with MoCoV3 and
CTransPath (Wang et al., 2022) pre-trained with SRCL—together with four state-of-the-art WSI
classification models. We evaluate on the COAD MSI dataset (Kather et al., 2019), which includes
298 MSS and 66 MSI slides from 360 patients. Specifically, 292 slides for training and 72 slides for
testing. For each RNA-Seq profile, GeneAR generates 512 synthetic tiles to construct tile-wise bags
for classifier pretraining. As shown in Tab. 8, all classifiers consistently achieve significant gains
across both feature extractors.
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Table 8: Performance comparison of MIL methods with and without pretraining across four
SOTA models. Shaded cells indicate results with pretraining.

Method
ACC F1-score AUC

w/o w/ w/o w/ w/o w/

ViT pre-trained with MoCo V3

TransMIL 0.849 0.877 0.847 0.875 0.894 0.934
ACMIL 0.767 0.863 0.749 0.858 0.817 0.938
WiKG 0.767 0.822 0.753 0.818 0.820 0.917
MambaMIL 0.836 0.918 0.833 0.917 0.925 0.941

CTransPath pre-trained with SRCL

TransMIL 0.822 0.849 0.821 0.843 0.862 0.900
ACMIL 0.808 0.849 0.800 0.847 0.836 0.936
WiKG 0.767 0.836 0.745 0.829 0.876 0.912
MambaMIL 0.781 0.849 0.766 0.844 0.867 0.912

Table 9: Ablation on the injection timing of r-CM. “Time” denotes the relative training time per
epoch, while “Inject.” indicates the number of r-CM injection operations. Shaded cell indicates the
best FID.

Km FID ↓ Time Inject.

7 14.39 1.51× 4
8 13.52 1.30× 3
9 13.66 1.00× 2

10 15.74 0.86× 1

A.5 ADDITIONAL ABLATION RESULTS

Ablation for Km. Injecting r-CM at every autoregressive step incurs considerable computational
redundancy. To address this, we analyze token maps across scales {1, 2, 3, 4, 5, 6, 8, 10, 13, 16} and
find that the final two token maps account for 62.5% of the total sequence length (680). Based on
this observation, the initial value of Km is empirically set to 9. We then evaluate GeneAR under a
range of Km values. As reported in Tab. 9, setting Km = 8 yields only a marginal improvement
in FID (0.14) but comes at the cost of a 1.30× increase in per-epoch training time compared to
Km = 9.

A.6 SUPPLEMENTARY VISUALIZATION RESULTS

To further illustrate the generative capacity of GeneAR, we provide additional qualitative results in
Fig. 7. These synthetic H&E-stained tiles are generated across five representative cancer types
(GBM, CESC, LUAD, KIRP, and COAD). The examples demonstrate that GeneAR is capable
of producing diverse histological patterns that remain visually realistic while preserving disease-
specific morphology. Such results highlight the robustness of GeneAR in synthesizing tissue struc-
tures that are consistent with biological priors, thereby complementing the quantitative evaluations
reported in the main paper.
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Figure 6: Panel A. Comparison of cell-type distributions between synthetic and real tiles across five
cancer types. Panel B. Visualization of cells detected by HoverNet (Graham et al., 2019), showing
neoplastic, inflammatory, connective, dead, and non-neoplastic populations in both synthetic and
real samples.
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(a) Synthetic H&E-stained WSI tiles from GeneAR for GBM.

(b) Synthetic H&E-stained WSI tiles from GeneAR for CESC.

(c) Synthetic H&E-stained WSI tiles from GeneAR for LUAD.

(d) Synthetic H&E-stained WSI tiles from GeneAR for KIRP.

(e) Synthetic H&E-stained WSI tiles from GeneAR for COAD.

Figure 7: Synthetic H&E-stained WSI tiles generated by GeneAR across five cancer types: (a)
GBM, (b) CESC, (c) LUAD, (d) KIRP, and (e) COAD. The results demonstrate that GeneAR can
synthesize diverse and realistic histological patterns.
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