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Abstract
In recent years, considerable work has been done to tackle the issue of designing control laws based
on observations to allow unknown dynamical systems to perform pre-specified tasks. At least as
important for autonomy, however, is the issue of learning which tasks can be performed in the
first place. This is particularly critical in situations where multiple (possibly conflicting) tasks and
requirements are demanded from the agent, resulting in infeasible specifications. Such situations
arise due to over-specification or dynamic operating conditions and are only aggravated when the
dynamical system model is learned through simulations. Often, these issues are tackled using reg-
ularization and penalties tuned based on application-specific expert knowledge. Nevertheless, this
solution becomes impractical for large-scale systems, unknown operating conditions, and/or in on-
line settings where expert input would be needed during the system operation. Instead, this work
enables agents to autonomously pose, tune, and solve optimal control problems by compromising
between performance and specification costs. Leveraging duality theory, it puts forward a counter-
factual optimization algorithm that directly determines the specification trade-off while solving the
optimal control problem.
Keywords: Autonomous systems, optimal control, constrained optimization, feasibility, constraint
learning.

1. INTRODUCTION

Autonomous systems are machines that can modify their behavior in response to unforeseen events
and/or operating conditions. They are (or are set to become) key tools in robotics (Kober et al.,
2013) and smart (grid, home, city) applications (Gharaibeh et al., 2017). One important aspect of
autonomy that has attracted considerable attention in recent years is that of learning to perform
tasks in uncertain or unknown environments. Here, the agent has limited (or no) knowledge of the
underlying dynamical system and operational conditions and must design control laws to perform
a pre-specified task based only on observations. System identification (Johansson, 1993), adaptive
control (Kokotović, 1991), and reinforcement learning (Sutton and Barto, 2018), to name a few,
have been used to address these issues.

Though learning how to perform tasks is paramount to achieve autonomous behavior, at least
as important is the issue of learning which tasks can be performed in the first place. This decision-
making aspect of autonomy is both fundamental and challenging, especially when agents must make
decisions that violate their specifications. This is critical when multiple tasks and constraints are
simultaneously required from the agent, resulting in infeasible settings. These situations arise due to
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over-specification, scenario uncertainty, or changing operating conditions, and are only aggravated
when dynamical system models are learned through simulations.

When faced with the problem of dealing with (possibly conflicting) goals and requirements,
agents are often designed using domain expert knowledge and/or prior information to weight and
combine multiple objectives into a single cost, leading to so-called regularized problems. Although
solutions obtained using this approach are often Pareto optimal (Ehrgott, 2005; Boyd and Vanden-
berghe, 2004), i.e., none is better than the others in every aspect, their performance in practice
can vary widely. Thus the importance of properly tuning the regularization parameters, a task that
is both application- and scenario-specific. This well-known issue has lead to several alternative
formulations and heuristics (Miettinen, 1998; Das and Dennis, 1998; Messac et al., 2003; Mueller-
Gritschneder et al., 2009). Alternatively, chance constraints can be used to relax the hard require-
ments by imposing a minimum probability of satisfying them, an approach often used in controlled
Markov decision processes (Howard and Matheson, 1972; Geibel and Wysotzki, 2005; Paternain
et al., 2019a,b), optimal control (Caillau et al., 2018; Ono et al., 2010), and model predictive con-
trol (Schwarm and Nikolaou, 1999; Li et al., 2000).

The main issue with these approaches is that they heavily rely on expert knowledge to inform
the solution of multi-objective problems. Hence, adapting to the varying trade-offs of non-stationary
environments would require additional input from experts during the system operation, renouncing
on a key component of autonomy. What is more, designing regularization parameters or chance
constraints that encode trade-off preferences is a challenging task in and of itself. Since properly
encoding this information may be difficult, it may lead to solutions with poor practical performance
despite their theoretical optimality.

This work provides a systematic approach to tune the agent specifications according to the in-
herent trade-offs of the underlying dynamical system and operating environment. This approach
leverages counterfactuals, conditional statements that describe alternative versions of the world, to
interrogate optimal control problems as to what would happen if the specifications had been differ-
ent. This counterfactual evidence can then be used to automatically tune compromises and update
requirements in a principled way without having to repeatedly solve different versions of the con-
trol problem. To do so, it first puts forward a mathematical formulation of compromise (Section 2)
and shows that Lagrange multipliers can be used to counterfactually determine specifications that
balance performance gains and costs (Section 3). This result leads to a low complexity saddle point
algorithm that simultaneously solves the original optimization problem while tuning its compro-
mises (Section 3.1). This method enables, for instance, an agent to autonomously pose control
problems adapted to its operating conditions (Section 4).

2. PROBLEM FORMULATION

Let f0 : Rn → R be a performance metric we wish to optimize while abiding by a set of require-
ments determined by the functions fi : Rn → R and the specifications si ≥ 0, i = 1, . . . ,m.
These requirements may represent tasks that the agent must perform, specify system limitations
and/or available resources, or describe desired behaviors (see example in Section 4). Formally, we
consider the optimization program

p?(s) , min
z∈Rn

f0(z)

s. to fi(z) ≤ si, i = 1, . . . ,m,
(PI)
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where the vector s ∈ Rm
+ collects the specifications si. Problem (PI) explicitly captures the trade-off

between performance and requirements. Indeed, let s = 0 denote a nominal, reference specification
and denote its performance by p? = p?(0). Then, if si > 0, the i-th requirement becomes easier to
satisfy and the performance p?(s) of the solution improves accordingly. Naturally, there is a cost
associated with modifying requirements that must be taken into account when adjusting s. To do
so, let h : Rm

+ → R+ be a non-decreasing function in each argument, so that h(s) describes, in
units of performance (f0), the cost associated with specification s. Without loss of generality, we
assume the nominal specification to be free, i.e., h(0) = 0.

Our goal is to tune s so as to trade off the specification cost h(s) and the performance improve-
ment p? − p?(s), i.e., to find specifications that cost at most as much as they enhance performance.
Formally, we seek s† such that

p? − p?(s†) ≥ h(s†). (1)

Though useful, (1) does not consider the case in which the nominal requirements are either con-
flicting or so stringent that (PI) is infeasible, i.e., there is no z′ ∈ Rn such that fi(z′) ≤ 0 for
all i. In this case, we define p?(0) = +∞. Under these circumstances, we wish to fall back into a
laxer notion of feasibility by choosing a different reference specification in (1). Since this choice is
arbitrary, we require instead that the compromise s† holds for all valid references, i.e.,

p?(s0)− p?(s†) ≥ h(s†)− h(s0), (2)

for all s0 ∈ Rm
+ such that (PI) is feasible, i.e., such that p?(s0) < +∞. We call s† a compromise

because it describes a specification of (PI) that trades off performance improvement and cost in a
manner that is more profitable that any other feasible specification. Observe that the compromise
in (2) takes into account not only the specification cost, but also how hard the requirement is to
satisfy in the first place. To see this is the case, note that the left-hand side of (1) is a measure of
constraint satisfaction difficulty for the nominal specification of (PI). Indeed, for a fixed specifica-
tion budget δ > 0, the value ∆i = p? − p?(δei), where ei is the i-th vector of the canonical basis,
quantifies the performance enhancement obtained by relaxing the i-th requirement.

It is not immediate from (PI) that the equilibrium (2) exists and, if it does, whether it can be
determined efficiently. Indeed, note that (2) involves the optimal value of (PI). If finding s† involves
repeatedly solving (PI), the computational costs would hinder the usefulness of this approach in
practice, specially in online settings [e.g., for MPC (Borrelli et al., 2017; Rawlings et al., 2017)]. In
the next section, we show that under mild conditions, the compromise s† in (2) exists and can be
determined counterfactually, i.e., without repeatedly solving (PI). Based on these results, we then
put forward a modified Arrow-Hurwicz algorithm that directly solves (PI) for s† without checking
multiple specifications (Section 3.1).

Before proceeding, we introduce a pertinent remark addressing a common alternative approach
for dealing with the trade-off of multiple objectives.

Remark 1 A typical approach for dealing with multi-objective optimization problems, such as
requirement-performance trade-offs, and infeasibility is to use regularization, wherein (PI) is re-
placed by minz∈Rn f0(z) +

∑m
i=1 γifi(z) for regularization parameters γi ≥ 0 (Miettinen, 1998;

Ehrgott, 2005). However, whereas (2) explicitly states the trade-off of interest, this compromise is
implicit in the regularized version through the relation among the γi and between the γi and the
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performance objective f0. Since there is typically no straightforward way to tune γi, they are typi-
cally selected by domain experts by trial-and-error or computationally intensive grid searches (e.g.,
cross-validation). In contrast, Algorithm 1 can be used to efficiently determine s†.

3. LAGRANGE MULTIPLIERS AS COUNTERFACTUALS

In the end of Section 2, we argued that finding s† in (2) is only feasible in practice if it does not in-
volve repeatedly solving (PI). Our goal in this section is to extract counterfactual evidence from (PI)
to tune its requirements so as to achieve (2) without testing multiple specifications. A counterfac-
tual is a conditional proposition in which the premise is false and the consequent describes how the
world would have been if the premise were true (Pearl, 2009; Woodward, 2005; Lewis, 1974). It
is immediate that (PI) yields counterfactuals of the form “if the requirements had been s, then the
optimal performance value would have been p?(s).” This causal relation is represented by the blue
arrow in Fig. 1. Less straightforward is the fact that (PI) can also provide counterfactual evidence
for the trade-off (2) (red arrows in Fig. 1). Next, we show that this evidence comes from the dual
variables of (PI), which allows us to derive an algorithm that directly solves (PI) for s†.

To proceed, start by defining the Lagrangian associated with (PI) as

L(x,λ, s) = f0(x) +
m∑
i=1

λifi(x)− λTs, (3)

where λ ∈ Rm
+ collects the dual variables λi ≥ 0 for i = 1, . . . ,m. Likewise, define its dual func-

tion as g(λ, s) = minx∈Rn L(x,λ, s). The dual function is a lower bound on p?(s) for all λ, s ∈
Rm
+ . The dual value is the best of these lower bounds, namely d?(s) , maxλ∈Rm

+
g(λ, s). Under

Assumptions 1 and 2 below, this best lower bound can be shown to attain p?(s), i.e., d?(s) = p?(s).
In duality theory, this is known as strong duality (Boyd and Vandenberghe, 2004, Ch. 5).

Assumption 1 The fi and h are differentiable and convex and f0 is differentiable and strongly
convex.

Assumption 2 The set
{

(x′, s′) ∈ Rn × Rm
+ | fi(x′) < s′ for i = 1, . . . ,m

}
is not empty.

Under these conditions, it is well-known that the optimal dual variable λ?i (s) of (PI) identifies
how hard the i-th constraint is to satisfy. Specifically, they locally quantify how much the objec-
tive would change if the constraint were tightened or relaxed. The following theorem provides an
additional counterfactual property by showing that it also uniquely identifies the compromise (2).

Theorem 2 Let λ?(s) be the dual variables of problem (PI) with slack s and s† be the compromise
in (2). Under Assumptions 1 and 2,

∇h(s) = λ?(s)⇔ s = s†. (4)

Proof We start by proving necessity (⇒). Note that under Assumptions 1 and 2, h and p? are
convex, differentiable functions. Indeed, p? is the perturbation function of (PI), a strongly dual,
convex program with a strongly convex objective (Shapiro, 2000; Bertsekas, 2009). Hence, for
all s0, s ∈ Rm

+ such that p?(s0) < +∞ and p?(s) < +∞ it holds that

p?(s0) ≥ p?(s) +∇p?(s)T (s0 − s) and h(s0) ≥ h(s) +∇h(s)T (s0 − s), (5)
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which add up to

p?(s0)− p?(s) ≥ h(s)− h(s0) + [∇p?(s) +∇h(s)]T (s0 − s). (6)

Using the fact that λ?(s) = −∇p?(s) for all s ∈ Rm
+ so that (PI) is feasible (Boyd and Vanden-

berghe, 2004, Section 5.6.3), the hypothesis from (4) yields ∇p?(s) + ∇h(s) = 0. Hence, (6)
imply (2) and we obtain that s = s†.

Sufficiency in (4) (⇐) stems from the fact that (2) can be rearranged into p?(s†) + h(s†) ≤
p?(s0) + h(s0). Hence, s† must be the unique minimizer of the strongly convex function q(s) =
p?(s) + h(s), so that ∇p?(s†) +∇h(s†) = 0. Once again using the fact that λ?(s) = −∇p?(s)
for all s (Boyd and Vandenberghe, 2004, Section 5.6.3) concludes the proof.

Theorem 2 replaces the global compromise between p? and h in (2) by the local relation
between λ?(s) and h(s) in (4) (red arrows in Fig. 1). Effectively, it states that the dual vari-
ables λ?(s) of (PI) can be used to determine s† without solving it for different specifications. In-
deed, (4) provides counterfactual of the form “if∇h(s) had been a dual variable of (PI), then p?(s)
and h(s) would have obeyed (2).” For Pearl (2009), ∇h(s) = λ?(s) is the “surgical interven-
tion” used to modify the causal model in Fig. 1 to evaluate this counterfactual. We could then state
that∇h(s) = λ?(s) causes (2). Theorem 2 also provides a backtracking counterfactual of the form
“if p?(s) and h(s) were to obey (2), then ∇h(s) = λ?(s).” By enforcing (4) as we solve (PI), we
therefore simultaneously obtain s† and p?(s†), i.e., solve (PI) for the compromise (2). In the sequel,
we derive a method to do so based on a modified Arrow-Hurwicz algorithm (Arrow et al., 1958).

3.1. A modified Arrow-Hurwicz algorithm

Theorem 2 suggests a way to exploit the counterfactual information in the dual variables λ to di-
rectly obtain a solution of (PI) for the optimal slack s? without ever solving (PI). Indeed, observe
that due to Assumptions 1 and 2, it holds that the primal-dual solution (x?(s),λ?(s)) is a saddle
point of the Lagrangian (3) (Boyd and Vandenberghe, 2004, Section 5.4.2), i.e.,

L(x?(s),λ, s) ≤ L(x?(s),λ?(s), s) ≤ L(x,λ?(s), s) (7)

for all x ∈ Rn, λ ∈ Rm
+ , and s such that Assumption 2 holds. In the sequel, we put forward a

procedure to find points that satisfy both (4) and (7).
Start by considering the classic Arrow-Hurwicz algorithm for solving (PI) when the slacks s are

constant (Arrow et al., 1958). This method seeks a saddle point as in (7) by updating the primal and
dual variables using gradients of the Lagrangian (3). Explicitly, the primal variables x are updated
by descending along the negative gradient of the Lagrangian

ẋ = −∇xL(x,λ, s) = −

(
∇f0(x) +

m∑
i=1

λi∇fi(x)

)
, (8)

and the dual variables λ are updated by ascending along the gradient of the Lagrangian as in

λ̇ = ΠRm
+

[λ,∇λL(x,λ, s)] = ΠRm
+

[λ, fi(x)− si] , (9)

where ΠRm
+

refers to a projected dynamical system over the positive orthant of Rm (Nagurney and
Zhang, 1996). This projection is introduced to ensure that the Lagrange multipliers are non-negative.
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Let x(0) = 0, λ(0) = 1, s(0) = 1, and 0 < η � 1.
for t = 1, 2, . . . do

g(t)x = ∇f0
(
x(t−1)

)
+

m∑
i=1

λ
(t−1)
i ∇fi

(
x(t−1)

)
x(t) = x(t−1) − ηg(t)x

λ
(t)
i =

[
λ
(t−1)
i + η

(
fi

(
x(t−1)

)
− s(t−1)i

)]
+

end
Algorithm 1: Counterfactual optimization algorithm

f0 fi s

p?(s) h

λ?

Thm. 2

Figure 1: Causal diagram

To understand the intuition behind this algorithm, observe that the primal variable is updated
in (8) by descending along a weighted combination of gradients from the objective and the con-
straints so as to reduce the value of all functions. The value of the weight of each constraint is given
by its respective dual variable λi. If constraint i is satisfied, its Lagrangian multiplier is zero, so
that its influence on the primal update is decreased by (9). On the other hand, if this constraint is
violated, then fi(x)−si > 0 and the value of the corresponding multiplier is increased. The relative
strength of each gradient in the primal update (8) is therefore related to the history of violation of
each constraint.

The main drawback of the Arrow-Hurwicz dynamics as they stand is that they solve (PI) for a
fixed slack s. However, the compromise s† in (2) is unknown a priori. To overcome this limitation,
we use (4) to replace (9) by

λ̇ = ΠRm
+

[
λ, fi(x)− (∇h)−1(λ)

]
. (10)

The inverse of ∇h exists since h is strongly convex (Assumption 1). Note that (10) takes s =
(∇h)−1(λ), i.e., it enforces that the specifications of (PI) satisfy (4). Hence, (8)–(10) update the
primal/dual variables and specifications s such as to solve (PI) directly for s† in (2). A discretized
version of the counterfactual optimization method is shown in Algorithm 1.

The dynamics (8)–(10) can be shown to converge to a point that satisfies the saddle point rela-
tion (7) as well as the left-hand side of (4) using an argument similar to (Cherukuri et al., 2016).
From Theorem 2, they therefore simultaneously obtain the specification s† that satisfies (2) and the
solution z?(s?) of (PI) that achieve p?(s†). Due to space constraints, details of this proof are left
for a future version of this manuscript.

4. SPECIFYING CONTROLLERS FOR UNKNOWN DYNAMICAL SYSTEMS

Control systems must often trade off control input cost (or energy) and regulation (Anderson and
Moore, 2007; Bertsekas, 2017). The compromise between these objectives depends on the underly-
ing dynamical system, operating conditions, and goals of the agent. What is more, this compromise
may need to be revised to accommodate changes in the operating conditions, due to non-stationary
environment and model uncertainty. Typically, this trade off is adjusted using domain expert knowl-
edge of the problem. Autonomous systems, however, must be able to automatically tune these
specifications without human intervention, a feature especially critical in online applications [e.g.,
MPC (Borrelli et al., 2017; Rawlings et al., 2017)].
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Figure 2: (a) Trajectory of agents in an environment with position-dependent friction (markers size
are proportional to the input energy used at each step): LQR (PIII) (blue curve) and counterfactual
controller (PII) (yellow curve). (b) Counterfactual specifications of (PII).

This problem can be tackled using counterfactual optimization by formulating it in the language
of compromise from Section 2. To do so, we note that the ideal, yet infeasible, controller specifi-
cation is one that regulates the system in one step without acting on it. Explicitly, it is the nominal
specification of

find u1, . . . ,uT

such that ([xt]i)
2 ≤ sx,i, i = 1, . . . , `

([ut]j)
2 ≤ su,j , j = 1, . . . , p

xt = Axt−1 +But, t = 1, . . . , T

(PII)

where xt ∈ R` is the state vector, ut ∈ Rp are the control actions, and gt describes the dynam-
ics of the system at time t. We write [x]i to denote the i-th entry of the vector x. The initial
state x0 ∈ Rn is assumed to be given. When gt describes linear dynamics, this problem is convex
and can be written as in (PI) by taking f0(x) = 0. Notice that the nominal specification of (PII)
for which sx = su = 0 is such that ‖xt‖ = ‖ut‖ = 0. Thus, unless x0 = 0, (PII) is infeasible
for these specifications. Algorithm 1 can then be used to tune (sx, su) to trade-off regulation and
input energy specifications. In the sequel, we illustrate this procedure in the context of navigating
an unknown terrain.

Consider an agent navigating an unknown terrain, modeled as a position-dependent friction
coefficient. The states of the underlying dynamical system are x = [ pT vT ]T , describing the
position p = [ px py ]T and velocities v = [ vx vy ]T of the agent, and its control inputs are
accelerations collected in u = [ ax ay ]T . Its state-space representation is ẋ = Ax+Bu for

A =


0 0 1 0
0 0 0 1
0 0 −γ(p) 0
0 0 0 −γ(p)

 ,B =


0 0
0 0
1 0
0 1

 , and γ(p) =

{
‖p‖−2 , ‖p‖ > 0.3

0, ‖p‖ ≤ 0.3
, (11)
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where γ(p) is the gyroscopic friction coefficient at coordinates p. In other words, the terrain be-
comes harder to navigate as the agent approaches the origin (the goal), until we reach a slippery
region in which there is no friction. We assume that γ can be measured by the agent at its current
position only, i.e., no prior information is available about its value in the environment. In the sequel,
we consider a discretized version of (11) with sampling time Ts = 0.5 s.

To deal with changes in the environment, an MPC controller is used by planning for a hori-
zon T = 3 iterations, but applying only the first action. Since the agent only has access to local
information on the environment, the actions are planned assuming that the state transition matrixA
is constant and that the gyroscopic friction is that of the current position. Hence, (PII) is a strongly
convex program. For comparison, Figure 2a (blue curve) displays the trajectory obtained for the
classical LQR

minimize

T∑
t=1

(
xT
t Qtxt + uT

t Rtut

)
subject to xt = Axt−1 +But, t = 1, . . . , T ,

(PIII)

withQt = I andRt = I . Notice that as the agent approaches the origin while outside the slippery
region, it begins to move slowly, i.e., taking small steps. This occurs because the relative importance
between regulation and input energy is set independently of the local friction coefficient in (PIII).
The agent is therefore unwilling to spend the extra energy needed to overcome the high friction
region faster. Thus, it takes 53 iterations (approximately 26 s) to reach ‖xt‖ ≤ 0.1. Though in
certain applications this is the desired behavior, i.e., there is no room for trading off input energy
and regulation, it is clear that agents operating in dynamic conditions can benefit from being al-
lowed to autonomously tune their specifications. Indeed, the trajectory obtained by counterfactually
solving (PII) using h(s) = ‖s‖2 (Figure 2a, yellow curve) attains ‖xt‖ ≤ 0.1 in 19 iterations
spending

∑
t ‖ut‖2 = 1.5. By modifying the relative costs in (PIII) using Qt = γI , the same

completion time can be achieved using
∑

t ‖ut‖2 = 1.81 (γ = 3.3), showing the price of using a
fixed trade-off in a dynamic scenario.

Interestingly, it turns out thatQt andRt can be tuned so as to achieve the same performance as
the controller obtained from (PII) due to the fact that (PII) is related to (PIII) by Lagrangian duality.
Indeed, the Lagrangian of (PII) is given by

L(xt,ut,λt,µt) =

T∑
t=1

[∑̀
i=1

λt,i

(
([xt]i)

2 − sx,i
)

+

p∑
j=1

µt,j

(
([ut]j)

2 − su,j
)]

=
T∑
t=1

(
xT
t Λtxt + uT

t Mtu
T
t − λT

t sx − µT
t su

)
,

(12)

where Λt = diag(λt,i) and Mt = diag(µt,j). It is straightforward from (12) that if (x?
t ,u

?
t ) is a

solution of (PIII) with Qt = Λt and Rt = Mt, then (x?
t ,u

?
t ) = argmin(xt,ut) L(xt,ut,λt,µt)

for the Lagrangian in (12). Using an appropriate sequence of Qt and Rt in (PIII) therefore yields
the same sequence of control actions as counterfactually solving (PII). Nevertheless, even with
complete knowledge of the environment, manually selecting this sequence is a challenging task as
the weights do not have a straightforward behavior (Figure 2b).
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