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ABSTRACT

The cuneiform writing system served as the medium for transmitting knowledge
in the ancient Near East for a period of over three thousand years. Cuneiform
signs have a complex internal structure which is the subject of expert paleographic
analysis, as variations in sign shapes bear witness to historical developments and
transmission of writing and culture over time. However, prior automated techniques
mostly treat sign types as categorical and do not explicitly model their highly varied
internal configurations. In this work, we present an unsupervised approach for
recovering the fine-grained internal configuration of cuneiform signs by leveraging
powerful generative models and the appearance and structure of prototype font
images as priors. Our approach, ProtoSnap, enforces structural consistency on
matches found with deep image features to estimate the diverse configurations
of cuneiform characters, snapping a skeleton-based template to photographed
cuneiform signs. We provide a new benchmark of expert annotations and evaluate
our method on this task. Our evaluation shows that our approach succeeds in
aligning prototype skeletons to a wide variety of cuneiform signs. Moreover, we
show that conditioning on structures produced by our method allows for generating
synthetic data with correct structural configurations, significantly boosting the
performance of cuneiform sign recognition beyond existing techniques, in particular
over rare signs. We will release our code and data to the research community,
foreseeing their use in a variety of applications in the digital humanities.

1 INTRODUCTION

The earliest forms of decipherable scripts date back to the late 4th millennium BCE, with the invention
of the cuneiform writing system in ancient Mesopotamia, which came to be used for a number
of historically significant ancient languages such as Sumerian and Akkadian (Radner and Robson,
2011; Streck, 2021). Cuneiform signs have complex internal structures which varied significantly
across the eras, cultures, and geographic regions among which cuneiform writing was used. The
study of these variations is part of a field called paleography, which is crucial for understanding the
historical context of attested writing (Biggs, 1973; Homburg, 2021). However, while computational
methods show promise for aiding experts in analyzing cuneiform texts (Bogacz and Mara, 2022),
they are challenged by the vast variety of complex sign variants and their visual nature: Represented
as wedge-shaped imprints in clay tablets which have often sustained physical damage, cuneiform
appears as shadows on a non-uniform clay surface which may even be difficult for human experts to
identify under non-optimal lighting conditions (Taylor, 2015).

Prior work has focused on digitization of cuneiform tablets at a coarse resolution, localizing and
classifying signs from photographs of whole tablets (Dencker et al., 2020; Stötzner et al., 2023a).
However, these methods treat sign types as categorical while neglecting sign-internal configurations
of strokes in each character, which provides crucial information for identifying rare signs and
distinguishing between sign variants. In this work, we aim to recover the fine-grained internal
configuration of real cuneiform signs, given coarse-grained categorical information as input. In
particular, our method is provided with a prototype image and its associated skeleton indicating the
canonical structure of a sign, and aligns this structure to a target image depicting a corresponding real
cuneiform sign. As illustrated in Figure 1, our technique is analogous to the laborious hand copies
produced by expert Assyriologists; when applied to a tablet with existing character-level annotations,
this outputs the outlines of signs in the style of the original document. Furthermore, we show that
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Figure 1: ProtoSnap applied to a full tablet by cropping each sign using existing bounding boxes
(such as those depicted in unique colors), and matching prototypes of the signs (illustrated in the
center). Our technique “snaps” the skeletons of the prototypes to the target images depicting real
cuneiform signs. These aligned results can be used to produce an automatic digital hand copy (right).
We also show that our approach can be used to boost performance of cuneiform sign recognition.

these aligned skeletons may be used to boost optical character recognition (OCR) performance, by
training a generative model with structural conditioning as detailed below.

To this aim, we present ProtoSnap, an unsupervised approach leveraging deep diffusion features to
snap a skeleton-based prototype to a target cuneiform sign, revealing its structure without requiring
any labelled examples of real photographed signs. By using a fine-tuned generative model as a prior
on the appearance of cuneiform images, and enforcing global and local consistency, we are able
to localize the constituent strokes in real cuneiform images. We make use of the key insight that
pairwise similarities between regions of the prototype and target images encode information about
both coarse global alignment and fine-grained local deviations of each stroke from its canonical
pose. Our technique distills this information with a multi-stage process performing global alignment
followed by local refinement of stroke positions.

We provide a new benchmark of expert-annotated photographed signs for evaluation, and show
that our system succeeds at identifying their internal structures, significantly outperforming generic
correspondence matching techniques. We also show the downstream utility of ProtoSnap for au-
tomatic digitization of cuneiform texts, by using aligned prototype skeletons as a condition for a
generative model to produce structurally-correct synthetic data to train cuneiform OCR. Our results
show that this achieves state-of-the-art results on cuneiform sign recognition, particularly enhancing
performance on rare signs where naive synthetic data generation struggles to produce instances of the
correct sign.

Stated explicitly, our key contribution are:

• ProtoSnap, an unsupervised prototype alignment method capturing the structure of pho-
tographed cuneiform signs.

• A novel benchmark with expert annotations, and results showing that our method outper-
forms generic correspondence methods at this task.

• State-of-the-art OCR results for cuneiform when using synthetic data produced using our
method’s alignments for conditional generation.

2 RELATED WORKS

Machine learning (ML) for cuneiform. Ancient texts provides a window into our history, but their
decipherment and interpretation require painstaking work and expert knowledge of esoteric languages,
complex writing systems, and historical context which serve as a barrier to their translation and
analysis on scale. Due to the high societal value of these tasks and the scarcity of expert knowledge
and time, machine learning promises to provide an invaluable aid for understanding the ancient world.
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In the context of a number of works on ML applied to diverse ancient inscriptions (Assael et al., 2019;
Yin et al., 2019; Huang et al., 2019; Luo et al., 2021; Hayon et al., 2024), the cuneiform script poses
particular challenges. These include the nature of the physical writing media (indentations in textured
and often damaged clay under various lighting conditions), and the diverse nature of cuneiform signs
which changed over thousands of years of use in vast geographical regions.

Various approaches have been applied to modeling cuneiform signs for the purpose of downstream
tasks such as optical character recognition. Some works apply recognition directly to image data (Bo-
gacz et al., 2017; Dencker et al., 2020; Stötzner et al., 2023a), while others have treated cuneiform as
structured graphs to recognize signs based on their internal configurations (Kriege et al., 2018; Chen
et al., 2024). A handful of works have explicitly modeled cuneiform signs as compositions of wedges,
though these mainly focus on segmentation from 3D meshes or localizing strokes on the bounding
box level (Bogacz and Mara, 2022; Stötzner et al., 2023b; Hamplová et al., 2024). By contrast, our
approach provides a pixel-aligned skeleton indicating the relative positions, sizes, and orientations of
the strokes, and unlike prior works we operate exclusively on 2D photographs of cuneiform signs and
without any strong supervision.

Skeleton-based template alignment. Our approach to inferring the configuration of cuneiform
images as compositions of strokes by aligning a skeleton-based template bears partial similarity to
various existing methods that typically operate over generic natural images.

Our method resembles template matching in that we use a template image (our font prototype) and
search for relevant regions in the target image. While earlier approaches used naive comparisons of
image intensities or low-level features when sliding the template across the target image (Ben-Arie
and Rao, 1993; Cole et al., 2004; Kim et al., 2011), this is not robust to complex relations between
the template and target. To handle these challenges, more recent works have adopted deep image
features along with modeling complex non-rigid deformations (Oron et al., 2017; Talmi et al., 2017;
Cheng et al., 2019; Gao and Spratling, 2022). Our method similarly searches for matches to our
template using deep features and allowing for deformations, although we differ from conventional
template matching in explicitly using the skeletonized graph structure of the template and matching
each of its constituent strokes separately.

We also note similarity to pose estimation methods, as we infer the structure of a sign by localizing
keypoints. Pose estimation methods align a graph of keypoints to an image, most commonly applied
to a single category such as humans (Fang et al., 2022; Zheng et al., 2023), animals (Li and Lee, 2021;
Yang et al., 2022), or vehicles (Reddy et al., 2018; López et al., 2019), where the same fixed graph
applies to all instances. However, in our setting the number and connectivity of keypoints depends
on the sign type under consideration. In this respect our method resembles category-agnostic pose
estimation methods (Xu et al., 2022; Hirschorn and Avidan, 2023), though our input also includes a
template image rather than only using an abstract graph.

In the context of images depicting text, a number of works address the problem of text spotting,
which searches for matches to a given visual text representation in images (He et al., 2018; Huang
et al., 2022; Ye et al., 2023). This may include alignment or dewarping of detected text, but does not
typically explicitly leverage the internal shape of symbols as in our method. We also note several
works performing transcript alignment using dense correspondence methods, which align visual text
but do not explicitly handle character-internal structure (Hassner et al., 2013; 2016).

3 THE CUNEIFORM WRITING SYSTEM

Cuneiform, one of the earliest known writing systems, was a logo-syllabic script indicating both units
of sound and meaning with signs. Unlike the Latin alphabet which uses less than thirty basic letters
to indicate sounds, cuneiform signs numbered upwards of one thousand unique types, which varied
dramatically in their realizations across eras, languages, and geographical regions (Walker, 1987).
See, for instance, the two right-most examples in Figure 5, both variants of the same sign AN from
different eras. Scholars have attempted to collate lists of known signs and their variants (Labat and
Malbran-Labat, 1988; Borger, 2003), and canonical representations of the most common variants for
different time periods have been encoded in digital fonts.

Cuneiform was written on clay tablets by scribes using a stylus to create wedge-shaped impressions,
also known as strokes, which combine to form signs. Scribes used styli with triangular edges to create
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Figure 2: Method Overview. Given a prototype image with annotated skeleton and a target image
of a real cuneiform sign, ProtoSnap first extracts best-buddy correspondences from deep diffusion
features (extracted with our fine-tuned SD- model), globally aligning the target image to the skeleton
of the prototype. Our method then “snaps” the individual strokes into place with a local refinement
stage by optimizing a per-stroke transform.

impressions on the moist clay in three possible directions: horizontal, vertical, or oblique (Cam-
marosano, 2014; Cammarosano et al., 2014). Various encoding schemes proposed to encode these
strokes digitally (Bogacz and Mara, 2022); we adopt the four-keypoint scheme, treating all strokes as
being composed of a triangular head indicated with three keypoints and a fourth keypoint indicating
the stroke’s tail; see Figure 2 (second to left) for an example. We refer to the graph of these keypoints
and the edges connecting them as a sign’s skeleton. Our method’s prototype input consists of both
a rasterized font image along with its skeleton encoding the configuration of its strokes; we collect
these skeletons via manual annotation as described in the appendix.

4 METHOD

Given a prototype consisting of a font image annotated with a skeleton composed of strokes and a
target image of a real cuneiform sign, our system aligns the prototype skeleton to match the sign
structure in the target image. An overview of this process is shown in Figure 2.

Our system consists of three steps: First, we calculate a semantically-adapted 4D similarity volume
which encodes the pairwise feature similarities of each pair of regions in the two images. This similar-
ity volume uses diffusion features to encapsulate the complex geometry and semantics of cuneiform
images. We then calculate a global alignment between the prototype font image and the target image,
using best-buddies sparse correspondences, extracted from the similarity volume, as a robust signal
to fit this alignment. Finally, we perform local refinement to optimize the relative positions of each
stroke and their internal configurations, when deviation from the canonical configuration is necessary.
We describe each step in turn below, with further implementation details provided in the appendix.

4.1 SEMANTICALLY-ADAPTED 4D SIMILARITY VOLUME

Our system is based on the guiding assumption that local similarities between regions in the two
images can be used to compute a structurally-consistent matching between the prototype sign
structure and the target cuneiform sign. As a backbone for computing meaningful similarity scores,
we use diffusion features (DIFT Tang et al. (2023)), which leverage the strong geometric and semantic
understanding of a generative text-to-image model to represent image features for discriminative tasks.
These features are calculated as intermediate activations the model’s denoising component, applied
to the input image with added random noise. However, standard generative models are typically
pretrained on natural images from the Internet, with cuneiform scans being out-of-distribution. We
thus fine-tune the generative model Stable Diffusion (Rombach et al., 2022) on cuneiform image
scans, which we indicate as SD- , using the cuneiform sign name as its accompanying text prompt.
We use this as our vision backbone for calculating DIFT features.

We apply DIFT with SD- to our prototype and target images to obtain feature vector maps F (p) =

(f
(p)
i,j )i,j and F (t) = (f

(t)
i,j )i,j respectively of unit-normalized feature vectors. Each feature map is

a C ×H ×W tensor, where C is the number of feature dimensions and H and W are the spatial
dimension of the feature map (lower-resolution than the original image, as each feature vector has a
larger receptive field in the image). Using these features, we calculate the four-dimensional similarity
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Figure 3: DIFT-Based Best-Buddies Correspondences. Noised images are passed through our fine-
tuned denoising diffusion model SD- to extract deep Diffusion Features (DIFT), used to calculate
the 4D similarity volume S. For each region (i, j) in the target image, we examine the 2D slice
S[i, j, ·, ·], and determine the indices (k, ℓ) which maximize its value. Symmetrically, for each region
(k, ℓ) in the prototype we find the corresponding region in the target by maximizing the 2D slice
S[·, ·, k, ℓ]. If these two regions correspond to each other, they are identified as best buddies.

volume S = (f
(p)
i,j · f (t)k,ℓ)i,j,k,ℓ. This H ×W ×H ×W tensor, visualized in Figure 3, contains the

pairwise cosine similarities between features encoding patches of the prototype and target images.

4.2 GLOBAL ALIGNMENT FROM BEST-BUDDIES CORRESPONDENCES

While S provides a strong similarity measure, it does not encode geometric constraints on the overall
matching between the two images. For instance, multiple regions in one image may all have high
similarity scores with a single region in the other image, but mapping them all to the same target
region will result in a degenerate solution. To robustly identify a sparse set of best-matching pairs
of regions, we follow prior work (Oron et al., 2017; Drory et al., 2020) by identifying best buddies,
defined as pairs of patches in the two images which are mutual nearest-neighbors according to their
similarities scores in S. Formally, this is defined as pairs of coordinates (i, j) and (k, ℓ) such that
(i, j) = argmaxi,j Si,j,k,ℓ and (k, ℓ) = argmaxk,ℓ Si,j,k,ℓ. See Figure 3 for an illustration.

Using these sparse correspondences, we fit an affine transformation with least squares estimation,
defining a global alignment G of the prototype to the target image. This transformation allows for
basic deformations while preserving the overall structure of the prototype. We learn the parameters

G =

[
g11 g12 g13
g21 g22 g23
0 0 1

]
permitting scaling, rotation, and shear (g11, g12, g21, g22) as well as translation (g13, g23). This is
applied in projective space P2, i.e. mapping a point v = [x, y, 1]

T ∈ P2 to the point v′ = Gv =

[x′, y′, 1]
T .

To handle outliers in a robust manner, we perform the fitting with RANSAC. For further robustness,
we incorporate a prior on inlier points being spread over the majority of the area of prototype and
target images, by performing this procedure multiple times (including the stochastic calculation of
DIFT features and correspondences from Section 4.1) and selecting the result with the best spread of
inlier points across the relevant regions in the images, following Hassner et al. (2014) and as further
described in the appendix.

4.3 LOCAL REFINEMENT VIA SKELETON-BASED OPTIMIZATION

Our global alignment procedure can roughly align the prototype to the target image. However,
as the target image was written by hand, each stroke’s location may deviate from the canonical
relative position given by the prototype font image. Therefore, we introduce a local refinement stage,
illustrated in Figure 4, which allows each stroke to move from the canonical prototype structure
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Figure 4: Local Refinement via Skeleton-Based Optimization. To adjust the positioning of
individual strokes in a sign, our global alignment is followed by a local refinement stage which
learns transformations for each stroke. The loss function encourages positioning on salient regions
(Lsal) while semantically matching the corresponding regions in the prototype image, as measured by
feature similarity (Lsim). For each stroke (exemplified by the stroke in red above), these objectives
are calculated along points sampled from the skeleton (red dots above). The loss also includes a
regularization term (Lreg) preventing excessive deviation from the global transformation.

and “snap” into place, while avoiding excessive deviations from the global structure representing
the sign’s identity. We model each stroke’s deviation from the global alignment as a projective
transformation, allowing for a higher degree of deformation than the affine global transformation.
The local transformation of stroke i is parameterized by the matrix

P (i) = I +

p
(i)
11 p

(i)
12 p

(i)
13

p
(i)
21 p

(i)
22 p

(i)
23

p
(i)
31 p

(i)
32 0


where I is the 3× 3 identity matrix. These are applied on top of the global transformation, resulting
in per-stroke transformation of the form P (i)G. As a projective transformation, this maps a point
v = [x, y, 1]

T ∈ P2 to P (i)Gv = [x′, y′, z′]
T ∼ [x′/z′, y′/z′, 1]

T . The p(i)jk are all initialized to zero
(i.e. each local transformation is initialized as the identity).

We optimize the parameters p(i)jk via gradient descent with the loss function

L = λsimLsim + λsalLsal + λregLreg

where λsim, λsal, λreg are constant weights. We proceed to define each loss term.

Featural Similarity Loss Lsim. To encourage semantically-correct positioning of strokes, we define
a loss to maximize feature similarities between matching points on the prototype and target images
under the local transformation. Using the similarity volume S from 4.1, we sample points along the
lines connecting skeleton keypoints in the prototype image, calculate their corresponding points under
the current global and local transformations, and evaluate their similarity via S with a temperature-
weighted softmax applied to each slice of S over the prototype image. This uses differentiable grid
sampling to interpolate values of S, as S has a lower spatial resolution in comparison to the images.

Saliency Map Loss Lsal. To encourage the strokes to cover salient regions (i.e. areas which
appear to contain writing), we calculate a saliency map over the target image and use it to define
a loss. The saliency map is calculated using the 4D similarity tensor S from Section 4.1; for each
region in the target image, we calculate the difference between mean similarities to foreground
(black) and background (white) regions in the prototype font image, and post-process by applying
adaptive histogram equalization, scaling and setting low values to zero. This yields an approximate
segmentation map of the cuneiform sign visible in the scanned image. The loss Lsal is calculated as
the mean value of the map sampled at points along the transformed skeleton, selecting points and
using temperature-scaled differentiable grid sampling as in Section 4.1.

Regularization Loss Lreg. To avoid invalid solutions that over-optimize the previous objectives,
we add a regularization term that penalizes excessive deformations and solutions that stray from the
boundaries of the image. This is defined as Lreg = LL1 + Loob. L1 regularization loss is given by

LL1 =
1

N

∑
i,j,k

∣∣∣p(i)jk

∣∣∣ = 1

N

∑
i

∥P (i) − I∥L1
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Figure 5: Qualitative alignment results, aligning the prototypes (first row) to target cuneiform
images (second row). We demonstrate the results after performing global alignment (third row), and
the final result after local refinement (fourth row). As illustrated above, the global alignment stage
provides a coarse placement of the prototype template, while the refinement stage allows each stroke
to slightly diverge from the original prototype, resulting in more accurate alignments.

where N is the number of strokes and I is the 3× 3 identity matrix. This penalizes local transforma-
tions which greatly deviate from the identity.
The out-of-bounds loss Loob is defined as zero if all transformed keypoints are within the image
boundaries, otherwise as the maximum absolute difference between each transformed coordinate
and the image bounds. This models the soft constraint that all keypoints must lie within the image,
handling edge cases where the global transformation pushes part of a stroke outside the image bounds.

5 EXPERIMENTS

We conduct various experiments, evaluating our method both directly on our benchmark of expert-
annotated real photographed signs (Section 5.1) and by testing it on a downstream OCR benchmark
(Section 5.2). We also present qualitative results (Figure 5 and appendix), which further highlight the
complexity and unique challenges of the task and setting addressed in our work. Finally, we discuss
limitations of our approach (Section 5.3). Further implementation details and results are provided in
the appendix.

5.1 ALIGNMENT EVALUATION

To evaluate the quality of alignment, we curate a test set of ground-truth (GT) alignments from
manual annotations by expert archeologists. Provided with photographs of cuneiform signs from
the eBL dataset Cobanoglu et al. (2024), the experts annotated the position of strokes by indicating
groups of four keypoints. Images were marked for exclusion from the test set if they were poor
quality or show sign variants differing from the corresponding prototype font images. In total, our
test set contains 272 images with expert annotations, covering 25 different sign types. A breakdown
of this test set and more details on our annotation procedure are provided in the appendix.

To quantify performance on this benchmark, we compare the predicted and GT positions of stroke
keypoints; given a fixed distance threshold, we consider a predicted keypoint as a true positive
prediction if it is within the given threshold of a GT keypoint. We report F1 scores for several distance
thresholds (along with precision and recall in the appendix).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Method F1@20 F1@30 F1@40
SIFT (Lowe, 1999) + RANSAC 2.56% 3.78% 5.01%
DINOv2 (Oquab et al., 2024) 12.33% 21.88% 31.04%
DINOv2 + RANSAC 16.12% 28.19% 37.93%
DIFT (Tang et al., 2023) 16.14% 25.80% 33.79%
DIFT + RANSAC 13.13% 21.96% 30.15%

Ours (w/o refinement) 20.49% 35.70% 48.80%
Ours (full) 26.86% 41.71% 52.17%

Table 1: Alignment evaluation, measuring keypoint localization at various distance thresholds.
We compare against several generic correspondence matching baselines, including a geometry-
based method (SIFT) and deep feature-based methods (DINOv2, DIFT). As illustrated above, our
method significantly outperforms these baselines. Furthermore, our local refinement stage provides a
performance boost beyond learning simply a global transform.

In Table 1 we compare our solution to generic correspondence matching techniques. We com-
pare against a traditional geometry-based baseline that computes SIFT (Lowe, 1999) features and
aligns the images using RANSAC. We also compare against two deep feature-based techniques
(DINOv2 (Oquab et al., 2024), DIFT Tang et al. (2023)), applied by assigning each keypoint to
the corresponding point of maximum similarity in the target image. In the case of DIFT, diffusion
features are calculated with our fine-tuned SD- .

We see that ProtoSnap significantly outperforms the baseline methods at localization, as our solution
explicitly considers the complex structure of the sign. We also report performance of our approach
without local refinement (i.e performing the first step of global alignment alone); we see that the final
step of local optimization indeed achieves better alignment as reflected in our metrics. This may also
be seen visually in Figure 5, illustrating the overall global alignment and more precise results yielded
by local refinement. In the appendix, we show an ablation study of the different components of our
system (such as using fine-tuned SD- and each of our loss terms). These results provide further
motivation for the design of our full system. We also provide additional qualitative results.

5.2 LEARNING OCR FROM ALIGNED DATA

We show the downstream benefit of our approach by using ProtoSnap alignments to produce
structurally-diverse synthetic training data for an OCR system. As cuneiform signs are highly
diverse, with number and arrangement of strokes varying significantly between eras, regions, and
individuals, a model trained to produce synthetic data conditioned on sign type alone may struggle to
depict the correct configurations of signs, particularly rare signs with few to no attestations in the
existing data. Furthermore, conditioning on sign type does not allow to specify the exact variant of
the sign, resulting in generation of the most prevalent variant in the data. As we show, conditioning on
a skeleton-based structures provides control over the generated fine-grained structures yielding syn-
thetic data which better captures the real configurations. To demonstrate the benefit of our approach
for the downstream task of OCR, we align prototype skeletons to a set of cuneiform images from the
eBL dataset (Cobanoglu et al., 2024), and fine-tune ControlNet (Zhang et al., 2023) to generate new
cuneiform images using such skeletons as a condition, instead of a text prompt. This model, denoted
as CN- , allows us to produce new cuneiform sign images with any input structure, not limited to a
list of predefined categories or specific structural configurations. We then use this model to generate
synthetic training data, as shown in Figure 6. Further details about the model training are provided in
the appendix.

We examine the benefit of this generated data for learning cuneiform sign classification. Dencker et al.
(2020) report sign classification performance on the CSDD dataset when training a Resnet18 (He et al.,
2016) model with supervision from the CSDD training set alone. We compare this to augmenting
the training set with the CN- -generated synthetic data described above. As an additional baseline,
we also compare with using SD- (see Section 4.1) generations for augmenting sign types which
uses categorical sign names as a textual condition rather than structural conditions. We report
classification accuracy following Dencker et al. (2020); as this dataset is highly imbalanced, we also
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Accuracy Balanced Accuracy

Training Data All Rare All Rare
CSDD⋆ (Dencker et al., 2020) 58.43% 25.84% 34.57% 16.45%
+SD- data 61.56% 38.56% 39.02% 31.13%
+CN- data 64.14% 53.17% 43.57% 39.98%

Table 2: Sign classification performance when training on previously collected real data (CSDD),
and with added data generated using our fine-tuned diffusion model (SD- ) or ControlNet trained
using alignments from ProtoSnap (CN- ). Our solution demonstrates improved OCR results, with
structural augmentations showing increased performance relative to direct unconditional image
generation, especially on rare signs (signs that have less than 50 occurrences in the real train set).
⋆ denotes our reproduced model, as further described in the appendix.

report balanced accuracy and performance on rare sign types (signs with less than 50 occurrences in
the real training set). Results are summarized in Table 2. As seen there, augmenting the CSDD dataset
with synthetic data significantly improves classification performance, with structurally-conditioned
data from CN- providing a significant boost over synthetic data from SD- . These results reflect that
structurally-controlled generation with CN- guarantees generation of the correct sign variant, while
SD- struggles to produce correct configurations from the sign category alone, as seen in Figure 6.

5.3 LIMITATIONS

We note various limitations of our work (visualized in Figure 7). Our alignment procedure requires
a canonical sign image and will still fail if the scan displays a structurally different variant of the
sign in question. Additionally, our method may fail under extreme deformations, or on low-quality
tablets or scans which cannot be feasibly interpreted. Future work might investigate how to calculate
a confidence measure to detect such failure cases.

6 CONCLUSION

We have proposed the ProtoSnap method for estimating the internal structure of cuneiform signs
without any direct supervision, by harnessing pairwise comparisons of deep image features in
regions of photographed cuneiform images and skeleton-based prototypes. We have curated expert
annotations to provide a new benchmark for this task, and have shown that our method significantly
outperforms generic correspondence-based techniques. Beyond its direct application for paleographic
analysis, we have also shown our method’s utility for the downstream task of OCR, by using aligned
skeletons for conditional synthetic data generation to achieve SOTA performance on cuneiform sign
recognition.

We foresee a range of applications and possible extensions of our work. The automatic curation
and quantification of precise sign configurations and variants shows potential for performing paleo-
graphic analysis on scale, with implications for dating tablets, identifying genres and authors, and
understanding the development of cuneiform writing across time and space. Our method could be
used to automate the production of hand copies illustrating the contents of a tablet in their original
context and handwriting style, currently produced manually by experts. While we have focused on
the case of single sign scans, we foresee future work extending these results to lines of text, as our
method could be incorporated into a pipeline including text detection and localization of individual
signs applied either to images or directly to 3D scans of inscriptions. Additionally, our method
represents a step towards the goal of compiling a dataset of allographs (sign variants) for each sign,
indicating how individual scribes executed them within a given period, city, archive, scribal school,
or even personal handwriting styles. Finally, we have shown the downstream utility of our method
for producing structurally-diverse training data for OCR, showing promise for the digitization of
cuneiform inscriptions. We hope that our work will spur future research on using the internal structure
of glyphs in complex scripts such as cuneiform to advance downstream tasks.
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Figure 6: We demonstrate the benefit of producing structurally-controlled synthetic data (denoted as
CN- above), in comparison to text-conditional generation (denoted as SD- ), using two different
scenarios: (1) Text-conditional generation cannot succeed in generating signs unseen during training,
while our method can correctly adhere to the structural conditioning provided as input, even for rare
or unseen signs. (2) A text-conditional model often generates the sign variation most prevalent during
training (e.g., the variants on the right sides above), while our method can generate different variants,
yielding a more diverse synthetic set for training downstream models.
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Figure 7: Limitations of our method, illustrating examples with significant deformations from the
prototype skeleton (left) and structurally different sign variants (middle) and corrupt sign image
(right). We visualize correctly-aligned strokes in green, and misaligned strokes in red.
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APPENDIX

A EXPERIMENTAL DETAILS

Below we provide additional experimental details. Our code is also provided (zipped in the supple-
mentary material). For all experiments described below, a single A5000 GPU was used. Running the
method on a single image takes about 1 minute.

A.1 IMAGE AND FONT INFORMATION

For all of our tests, we use RGB images with resolution 512× 512, resizing images as needed.

Font images are rendered from the Santakku and SantakkuM fonts, designed by Sylvie Vanséveren
and available on the Hethitologie Portal Mainz. For a uniform appearance, the white margins of the
image are cropped, than 10 pixels of white margins are added to each side, and finally the image is
resized to 512× 512 resolution.

A.2 MODEL DETAILS

We use the CompVis/stable-diffusion-v1-4 checkpoint as our base Stable Diffusion
model. We fine-tune this on eBL classification train dataset (Cobanoglu et al., 2024), for 50K
iterations with batch size of 4, learning rate of 10−5 and Adam optimizer. For textual prompts,
we use a unique code for each sign type indicated in the eBL dataset. This fine-tuned Stable
Diffusion model, SD- , is used for our DIFT feature calculations as well as in the synthetic
data generation for our OCR application. For tests using ControlNet, we fine-tune the base
illyasviel/sd-controlnet-openpose checkpoint, on 932 samples with their paired align-
ment created by ProtoSnap. We trained it for 20K iteration, with batch size of 4, learning rate of 10−5

and Adam optimizer. This fine-tuned ControlNet, CN- , uses another fine-tuned Stable Diffusion
model, trained with the same parameters as SD- , but without a prior from a textual prompt, using
the same prompt for all signs: "cuneiform single ancient icon".

For DIFT feature calculations, we average an ensemble of results on four random noises, sampled
at timestamp t = 261, following Tang et al. (2023). We concatenate features from the second and
third upscaling U-Net layers, bilinearly interpolated to the same spatial resolution, yielding a set of
64× 64 feature vectors of dimension 1920.

A.3 GLOBAL ALIGNMENT DETAILS

To fit our global alignment, we apply RANSAC with 2000 iterations. At each iteration, 5 correspon-
dences are used to fit a least-squares affine transformation, with a distance threshold of 50 pixels used
to identify outliers. The transformation with the greatest number of inliers is returned.

As a high-quality set of correspondences should explain the relevant regions in both of the images, we
incorporate a prior on inlier points being spread across the images, following Hassner et al. (2014). In
particular, we perform the above procedure 8 times, and assign each result a score using the convex
hulls of the inlier points in the prototype and scanned cuneiform sign images. For the prototype
image, we calculate the proportion pproto of the prototype font foreground contained within the
convex hull of inlier points. For the scanned cuneiform sign image, we calculate the proportion pscan
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of the total area of the image covered by the convex hull of inlier points. Finally, we select the result
with maximum score pproto · pscan, to encourage the global transformation to be based on matches
between regions covering most of the scan and prototype font.

A.4 LOCAL REFINEMENT DETAILS

Our total loss uses coefficients λsim = 1.0, λsal = 3× 10−4, and λreg = 10−4.

To calculate the saliency map used for the saliency loss, we compute differences in mean similarities
as described in the main paper, apply CLAHE histogram equalization with clip limit 10.0 and tile
grid size (2, 2), set values below the mean to zero, and scale values to the range [0, 1]. This yields a
scalar field of resolution 64× 64.

For both semantic similarity and saliency losses, at each iteration values are sampled at both each
of the keypoints in the skeleton, and at 8 randomly-sampled points along each line segment in the
skeleton connecting keypoints. Loss values are averaged over all of these points. The sampled points
are sampled uniformly from the lines in the prototype images, and then transformed using the current
global and local transformations to obtain corresponding points in the target scanned cuneiform sign
image. Loss values are computed with differentiable grid sampling, using bilinear interpolation over
scalar fields (the similarity values in respective slices of S, and saliency map values) each of which is
passed through a softmax with fixed temperature parameter 100.

To perform optimization, we apply gradient descent for 100 iterations with learning rate 0.01 and
Adam optimizer, updating the the parameters of the local transformations of all strokes.

A.5 DATASET DETAILS

Both the training and the test datasets are taken from the eBL classification dataset Cobanoglu et al.
(2024) which consists of scanned imaged of cuneiform signs. The dataset was originally split to train
and test by source tablet. The train set included 47,820 sign images, representing 387 sign types and
was used to train SD- . The test set was used to select the 272 images for our test set (as described in
5.1), focusing on signs for which we have an available prototype, and the samples in the set match the
prototype structure variant. The final test set consists of 272 samples from 25 different signs, varying
from 2 strokes per sign to 8.

The full dataset comprises around 40% from the Neo-Babylonian period (1000–600 BC), around
20% from the Neo-Assyrian (1000-609 BCE), and less than 10% from the following periods: Ur
III (2100–2002 BCE), Old Babylonian (2002-1595 BCE), Old Assyrian (1950–1850 BCE), Mid-
dle Babylonian (1500–1000 BCE), Late Babylonian (600 BC–100 AD), Persian (539-331 BCE),
Hellenistic (331-141 BCE), Parthian (141 BCE-100 CE). The dataset represents the Akkadian and
Sumerian languages used at those eras.

A.6 OCR EXPERIMENT DETAILS

For the OCR experiment we have generated 50 samples per each sign in the test set (180 signs in
total), using our fine-tuned SD- described above. In addition, we used CN- to generate 50 samples
for each sign we have available prototype (124 signs in total). To better mimic human handwriting,
we augmented the skeletons by applying small random transformation on the entire skeleton and on
each stroke individually, creating a diverse set of controls for each sign. Figure 8 shows examples of
such generated data. Both generations were done using 50 inference steps and classifier-free guidance
scale 7.5.

For the experiment we used 6205 samples from the CSDD data (consisting of data from all URLs
which were not broken in the dataset), 3299 samples in the train set and 2906 in the test. Training
ResNet18 on this dataset alone was done for 10 epochs, using batch size of 64, learning rate of 10−3

and Adam optimizer. Training with generated data (both from SD- and CN- ) was done for 8
epochs, and then fine-tuned 10 more on real data only, using batch size of 64, learning rate of 5−4

and Adam.
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Figure 8: Examples for data generated using our fine-tuned ControlNet model CN- , where the
control is an image of a prototype sign (with two different added transformations).

xxFont xxSkeleton ProtoSnap applied to scanned cuneiform images

Figure 9: Examples of ProtoSnap applied on photographed cuneiform signs of varying structure,
illumination conditions and degrees of intactness.

Note that our reproduced baseline on CSDD achieves slightly higher accuracy than reported by
Dencker et al. (2020), but the test dataset includes URLs which are no longer operational which may
contribute to this slight discrepancy in results.

B ADDITIONAL RESULTS

Figure 9 shows additional examples, illustrating ProtoSnap applied to various samples of the same
sign. Figure 10 shows ProtoSnap results on our manually annotated test set, compared to the baseline
of applying DIFT directly (assigning each keypoint to the region of maximal feature similarity).

Figure 11 shows ProtoSnap results on a new, previously unseen dataset, JOCCH (Rusakov et al.,
2020) , which contains signs from the Hittite language, as opposed to the Akkadian and Sumerian
from which the training and test set are composed. Those results show that our method is robust and
can be generalizable to other usages of the cuneiform writing system.
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Figure 10: Results of ProtoSnap on our manually annotated test set, with DIFT and PoseAnything
(Hirschorn and Avidan, 2023) shown for comparison. We can see that our method produces alignments
which are much closer to expert annotations and is generally less sensitive to outliers.
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Figure 11: ProtoSnap applied on images from a different dataset and language (Hittite), showing
that the method is robust and generalizable to various usages of cuneiform writing system. The 3
images on the left show signs from types (names) unseen in the training data, further emphasizing the
generalizability of the method.
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threshold = 20 threshold = 40

Method Precision Recall F1 Precision Recall F1
SIFT (Lowe, 1999) + RANSAC 2.59% 2.53% 2.56% 5.49% 4.61% 4.91%
DINOv2 (Oquab et al., 2024) 12.42% 12.25% 12.33% 32.09% 30.05% 31.04%
DINOv2 + RANSAC 16.22% 16.01% 16.12% 38.47% 37.42% 37.93%
DIFT (Tang et al., 2023) 16.18% 16.10% 16.14% 34.32% 33.27% 33.79%
DIFT + RANSAC 13.15% 13.11% 13.13% 30.43% 29.88% 30.15%

Ours (w/o refinement) 20.58% 20.39% 20.49% 49.16% 48.44% 48.80%
Ours (full) 26.89% 26.83% 26.86% 52.40% 51.94% 52.17%

Table 3: Precision and recall metrics for the alignment evaluation, on top of F1 metric presented in
the main paper, at two distance thresholds.

Sign Name # Samples # Strokes F1@20 F1@30 F1@40
ME 20 2 20.00% 35.62% 46.25%
A 19 3 26.53% 37.49% 48.46%

IGI 18 3 13.43% 25.93% 36.34%
AN 19 3 29.39% 49.34% 62.72%
UD 18 3 16.20% 34.26% 46.53%

GISH 19 3 25.44% 39.91% 52.63%
MA 16 4 30.47% 44.34% 55.27%
EN 5 5 18.00% 34.00% 45.49%
IR 17 5 23.38% 38.38% 45.88%
IB 15 5 33.83% 52.16% 62.66%
HA 3 5 21.67% 46.67% 55.00%
UR 16 5 30.00% 44.69% 55.46%
RI 13 5 26.54% 37.31% 51.15%
RU 15 5 24.00% 38.49% 47.83%

DIM2 2 5 15.00% 41.21% 56.22%
DI 6 5 37.08% 47.08% 54.17%
U2 9 5 26.39% 39.99% 50.56%

DIB 3 6 19.44% 33.33% 44.44%
SA 3 6 40.23% 47.18% 57.56%
GI 1 7 39.29% 50.00% 51.72%
DA 1 7 28.57% 39.29% 48.15%
KA 12 7 27.08% 45.24% 57.14%
ZI 10 7 26.42% 40.71% 48.38%
A2 4 8 31.64% 44.92% 54.69%

ZE2 8 8 40.04% 53.32% 61.33%

Table 4: Performance breakdown by sign type. We report alignment performance of our model
over the different annotated signs. We also provide the number of strokes in each sign (#Strokes) and
number of samples of the sign in the test set (#Samples).

B.1 ADDITIONAL METRICS

Table 3 shows precision and recall metrics for the alignment evaluation, on top of F1 metric presented
in the main paper. Table 4 show alignment evaluation breakdown per signs, and also provides the
number of samples in the test set per sign.

B.2 ABLATION STUDY

We demonstrate the effect of key parts of our system by ablating them and evaluating performance on
our test set. In particular, we ablate the following:
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972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
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995
996
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1000
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1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

• Use of our fine-tuned SD- (rather than base Stable Diffusion)

• Use of best-buddies correspondences for computing the global transformation (rather than
using all correspondences between prototype image regions and the best-matching regions
in the target image according to DIFT)

• Convex hull scoring to select a global alignment from multiple attempts

• Each of the three loss terms in our full loss function

• Including sampled points along the edges of the prototype skeleton for calculating losses
with grid sampling (rather than only using the skeleton keypoints)

As seen in Table 5, each of these ablations has a negative effect on performance, showing the benefit
of all components of our system used together.

F1@20 F1@30 F1@40
ProtoSnap (ours) 26.86% 41.71% 52.17%

−SD- 19.01% 31.89% 41.25%
−best buddies 25.00% 39.55% 49.70%
−convex hull scoring 26.52% 39.79% 48.03%
−Lsim 26.67% 40.77% 49.60%
−Lsal 20.85% 37.03% 49.76%
−Lreg 26.10% 37.88% 46.06%
−edge sampling 25.97% 40.16% 50.92%

Table 5: Ablation study results, demonstrating differences in performance when removing key parts
of our system. Our full method shows the best performance as reflected by the test set metrics above.

C ANNOTATION DETAILS

Our expert annotations were performed by archaeologists who participated in this research.

Below, we provide further details on our annotations collected via crowdsourcing, used to annotate
keypoints in prototype font images and in scanned cuneiform signs. We then connected the keypoints
manually ourselves, creating the prototype skeleton.

C.1 IRB APPROVAL, PARTICIPANT SOURCING, AND COMPENSATION

Our annotation tasks, approved by our institution’s IRB, were conducted on the Amazon Mechanical
Turk (MTurk) crowdsourcing platform. We published our tasks for MTurk workers with at least 1000
completed HITs (MTurk tasks) and a HIT approval rate of at least 95%. Workers were compensated
$0.25 for each font annotation, corresponding to the duration of this task.

C.2 ANNOTATION TASK INSTRUCTIONS

In this task, you will indicate keypoints on ancient character ("cuneiform") to indicate the location of
each stroke. Please indicate each stroke with four keypoints as shown here:

If there are multiple strokes, please indicate each stroke in a separate color using four keypoints per
stroke, as in these examples:
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1047
1048
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1050
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1059
1060
1061
1062
1063
1064
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1078
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Make sure the four keypoints are in the locations as shown above – three indicating the corners of the
stroke’s triangular head, and one indicating the end of its tail.

Use the point tool to place points on the requested target(s) of interest: Four each stroke in the
character, place four keypoints of the same color, using your mouse to click on each keypoint. Use the
four keypoints described in the instructions: for each stroke, three points indicating the corners of the
stroke’s triangular head, and one indicating the end of its tail. Make sure to indicate every stroke
seen in the glyph.
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