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Abstract

Conventional Vision Transformer streamlines visual modeling by employing a
uniform input resolution, which underestimates the inherent variability of natural
visual data and incurs a cost in spatial-contextual fidelity. While preliminary explo-
rations have superficially investigated native resolution modeling, existing works
still lack systematic training recipe from the visual representation perspective. To
bridge this gap, we introduce Unified Vision Transformer with NAtive Resolution,
i.e. UniViTAR, a family of homogeneous vision foundation models tailored for
unified visual modality and native resolution scenario in the era of multimodal.
Our framework first conducts architectural upgrades to the vanilla paradigm by
integrating multiple advanced components. Building upon these improvements,
a progressive training paradigm is introduced, which strategically combines two
core mechanisms: (/) resolution curriculum learning, transitioning from fixed-
resolution pretraining to native resolution tuning, thereby leveraging ViT’s inherent
adaptability to variable-length sequences, and (2) visual modality adaptation via
inter-batch image-video switching, which balances computational efficiency with
enhanced temporal reasoning. In parallel, a hybrid training framework further
synergizes sigmoid-based contrastive loss with feature distillation from a frozen
teacher model, thereby accelerating early-stage convergence. Finally, trained ex-
clusively on public accessible image-caption data, our UniViTAR family across
multiple model scales from 0.3B to 1.4B achieves state-of-the-art performance on
a wide variety of visual-related tasks. The code and models are available herel
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Figure 1: The figure presents: (left) a systematic overview of model scaling performance across
downstream tasks when increasing parameter size from 0.3B to 1B, and (right) a comprehensive
comparison of multimodal capabilities against SOTA baselines on diversified benchmarks.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/MM-MVR/UniViTAR

1 Introduction

In the era of rapid advancements of multimodal large models, Vision Transformer [1]], characterized
by its simplicity and scalability, has emerged as a foundational architecture for visual representation
learning. Drawing inspiration from transformer-based large language models, conventional ViT
usually uniformly converts raw visual data into square aspect ratio and standardized resolution to
reduce modeling complexity and simplify the training workflow. While this paradigm simplifies
feature extraction and aligns with existing engineering practices, it inherently imposes artificial
constraints on real-world visual data by disregarding the inherent variability of natural images.

Recent studies have preliminarily investigated the vision backbone within a native resolution paradigm.
FlexViT [2] introduces a flexible ViT architecture featuring dynamical patch size selection in the patch
embedding layer, which facilitates smooth variation of token sequence length through parametric
scaling. In contrast, NaViT [3] maintains fixed patch size while directly processing native resolution
images with varying aspect ratios, where the token sequence length of different images changes
dynamically. This approach demonstrates the feasibility and benefits of adopting natural language
processing style packing strategies for vision foundational model. Qwen-VL’s [4, 5] vision encoder
inherits NaViT’s core configuration while specifically investigating native resolution impacts from
a multimodal large model perspective. While the aforementioned approaches have attracted initial
research attention, the field still lacks a comprehensive series of architecture-homologous vision
backbones that can simultaneously support native- and fixed-resolution processing, achieve high-
fidelity feature extraction for both images and videos.

To address this gap, we present the Unified Vision Transformer with NAtive Resolution, termed
as UniViTAR, a family of vision foundational backbones designed to uniformly process visual
modalities (image or video) with native resolution and dynamic aspect ratio. Building upon insights
from large language model recent practices and architectural innovations in visual transformers, our
approach firstly conduct systematic architectural upgrades to the vanilla ViT paradigm by integrating
multiple advanced components: 2D Rotary Position Embedding, SwiGLU activation function,
RMSNorm layer, QK-Norm mechanism, and LayerScale module. These modifications collectively
establish a more robust architectural foundation compared to conventional implementations. Secondly,
we develop a progressive training paradigm with two complementary adaptation strategies: /) the
progressive resolution adaptation strategy employs curriculum learning from fixed low-resolution
(e.g., 224) pretraining to native-resolution fine-tuning. Notably, our experiments reveal that the
advanced ViT architecture exhibit remarkable adaptability - models pretrained at fixed resolution can
efficiently generalize to variable-length visual sequences through limited native resolution tuning.
2) the progressive visual modality adaptation strategy addresses computational challenges in video
processing by deferring video data integration to the final training phase. We further demonstrate that
alternating image-video training sequences (inter-batch modality switching) significantly outperforms
mixed-batch (intra-batch modality mixing) in preserving image understanding capabilities while
acquiring temporal reasoning skills. Thirdly, we implement a hybrid training framework combining
contrastive learning objectives with distillation techniques. Our primary optimization employs a
sigmoid-based contrastive loss [6] for unified image-video representation learning. To accelerate
early-stage convergence, we further incorporate feature distillation from a frozen vision teacher model
as an auxiliary training objective during initial phases, then gradually phasing out this regularization
as the model matures. Finally, through this comprehensive approach trained on public-accessible
datasets, we successfully scale a family of vision backbones supporting native resolutions and
both visual modalities, with parameter counts ranging from 0.3B to 1.4B. Extensive evaluations
demonstrate the effectiveness of our proposed methods.

Specifically, the contributions of our UniViTAR family are summarized as follows:

* We introduce a family of homogeneous visual foundation models that support native res-
olution and unified feature extraction across visual modalities, offering the community a
versatile framework for multimodal research.

* We develop an efficient and effective progressive training strategy that addresses the com-
putational challenges of native resolution modeling while systematically enhancing the
model’s image-caption alignment capability.

* We train our models with public-accessible datasets, achieve leading performance with
limited resources, and observe a trend of performance increasing with parameter scaling.
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Figure 2: Architecture of UniViTAR family. All visual inputs are uniformly transformed into patch
sequences and fed into Vision Transformer. In addition to using the Pre-Norm approach, we also
adopt RMS-Norm as the normalization layer in both MHA and FFN module.

2 Method

2.1 UniViTAR: Homologous Visual Foundation Model

2.1.1 Architecture Design

UniViTAR is a Transformer-based encoder model that inherits the original architecture of the
conventional Vision Transformer [[1] but incorporates the following advanced modifications:

Unified Patchify for Native Image and Video Modality. As illustrated in the Figure2] given the native
input visual data X € RT*C>*HXW of any vision modality (image, video), where T = 1 represents
image and 7" > 1 represents video, UniViTAR firstly patchifies X into a series of dynamic length
visual patch sequences P = (N, S), where IV is the number of patches per image/video and S is the
number of pixels per patch. Then a 3D convolution layer is adopted as the Patch Embedding Layer
to consistently convert the above patch sequence into a visual token sequence T = (N, D), where D
is the hidden size of the following attention layers.

2D Rotary Position Embedding. Drawing on the architecture designs of language models, the original
ViT regards the position information among different visual tokens as a one-dimensional association.
In fact, considering that visual data usually has spatial association (row and column) and temporal
association (time), the position information between different tokens is usually considered to be multi-
dimensional. Thence we remove the original absolute position encoding and introduce 2D-RoPE [7]
into each subsequent encoder layer to capture the two-dimensional positional information of images.
Furthermore, we found that the presence or absence of the class token in the original ViT has almost
no effect on model performance. To ensure the consistency of position encoding, we also empirically
remove the design of class token.

SwiGLU and RMSNorm. By leveraging the recent advances of LLaMA [§]] architecture design
for language modeling, UniViTAR incorporates SwiGLU as the feed-forward network (FFN) and
replaces all normalization layers with RMSNorm. In addition, we adds an extra RMSNorm to each
SwiGLU-FFN for good expressivity and improving the training stability.

Query-Key Normalization. In order to improve the stability of model training, we adopt the QK-
Norm technique [9}[10] , which applies normalization to the queries and keys before the dot-product
attention computation, to directly controls the norm growth of input to the softmax and avoid abnormal
attention logits. Note that we still utilize RMSNorm as the norm function to ensure the consistency
of the architecture.

2.1.2 Homologous Model Scaling

The UniViTAR family consists of a comprehensive suite of foundational and scratch-train models,
encompassing a parameter range from 0.3 to 1.4 billion, i.e. UniViTAR-0.3B/0.6B/1B. The hyper-
parameters and important information are listed in Table|l|in details.



Table 1: Detailed architectural configuration for UniViTAR family.

Model Hidden-Size Intermediate-Size Encoder-Layers Attention-Heads Parameters (M)
UniViTAR-0.3B 1024 4224 24 16 310
UniViTAR-0.6B 1280 5184 32 16 637
UniViTAR-1B 1920 7680 32 24 1419

Table 2: Detailed training strategy illustration of UniViTAR family.

Stage 2 Stage 3 Stage 4
() W SLEEN (TR
Train Strategy Contrastive ( Contrastive | {_ Contrastive )
& UniViTAR BunivitaAR -~ BunivitAR -~
' DataModality ~ Image  Image  Image  Image, Video
Resolution 224 x 224 224 x 224 Native Native
Loss Function Sigmoid, KL Sigmoid Sigmoid Sigmoid
Seen Samples 12B 1B 1B 0.6B

2.2 Contrastive Vision-Language Pretrain with UniViTAR

2.2.1 Architecture Design

In general, the acquisition of UniViTAR largely follows the basic training paradigm of CLIP [[11]].
Specifically, the native-resolution visual input v is encoded into the visual feature space via the
UniViTAR encoder to obtain F,, € RV>*Pv_while the textual input ¢ is projected into the textual
feature space through a pretrained LLaMA [12] decoder to obtain F; € RN+*Pt_ The dynamic-length
visual features F), are then uniformly converted into the visual embedding f,, € R through a global
average pooling and the feature corresponding to the <EOS> token in F; is utilized as the textual
representation f; € Rt of the input caption. Subsequently, f, and f; are further projected into the
same shared semantic space via a linear projection layer respectively. Then a simple pairwise sigmoid
loss [6] is employed as the contrastive supervision to align the visual and text modalities semantically.

2.2.2 Optimized Contrastive Training Strategy

To ensure that the model can converge efficiently and the training cost is controllable, we carefully
design the training pipeline of UniViTAR into four stages in sequence, as shown in Table 2]

Stage 1: Visual knowledge pre-acquisition with hybrid paradigm training. The primary objective of
this phase is to efficiently pretrain a visual foundation model from scratch by integrating two classic
learning paradigms: vision-text contrastive learning and visual knowledge distillation. Specifically,
the proposed architecture employs a triple-branch parallel design: (1) a xavier-initialized UniViTAR,
(2) a frozen pre-trained text encoder, and (3) a frozen pre-trained visual teacher. During training, only
the target visual foundation model receives gradient updates, with other branches fixed to minimize
computational overhead while preserving knowledge integration. For implementation, we adopt
LLaMA [12] and DINOv2-g [13]] as default components, though the framework supports substitution
with alternative pre-trained foundation models. The composite training objective is defined as:

iViT A LLaMA i ViT A Di
‘Coverall = Econtrastive(fgn7vz Ra ft “ ) + A Edistillation (fgn”/l Ra fv ”m) (1)

where Leontrastive 18 the sigmoid loss from SigLIP [6] and £4;stiiiation 1S the KL Divergence [[14]].
The target visual foundation model functions as a visual knowledge bridge, simultaneously performing
image-text alignment and feature distillation. This phase processes 12B samples with all images
resized to 224, constituting 82.2% of the total training data (12B/14.6B).

Stage 2: Finetune with full-parameter for superior alignment. The objective of this stage is to
further enhance the upper limit of image-text alignment through full-parameter fine-tuning of both
vision and text encoders, establishing a unified semantic-visual space. The visual distillation branch
is deactivated during optimization. Training employs identical image-caption pairs as Stage 1 at 224
resolution. Considering the high computational cost of full parameter fine-tuning, the training process
is conducted on 1B samples, accounting for 6.9% of the total training data.



Stage 3: Unlock the model-capacity of native-resolution. In this stage, our strategy extends the
model capability to handle native-resolution, thereby achieving robust image-text alignment for
dynamic-resolution inputs. However, enabling native-resolution capacity necessitates addressing
two critical challenges: (1) ensuring positional encoding are thoroughly trained across variable
sequence lengths, and (2) transfering feature distribution from uniformly-resized patches to native
patches through efficient training. In practice, visual data is batched in its native form to preserve
original resolutions and aspect ratios. Then the intra-batch images are dynamically scaled (with
aspect ratios maintained) to align total sequence lengths L;,; with a predefined token limit L, -
That is to say, when the value of L./ Liota is greater than 1, all data will be uniformly enlarged,
and vice versa the shape of all data will be reduced, ensuring consistent computational loads across
batches. Within attention blocks, each token’s receptive field is confined to tokens from the same
image via masking, enabling isolated intra-image contextual modeling while preserving inter-sample
independence. During training, resolution diversity within batches ensures comprehensive training
of positional encoding across varying context lengths, progressively refining the model’s ability to
generate features aligned with native patch distributions. At inference, inputs are processed directly
at their native resolutions without resizing. In this stage, 1B samples (6.85% of the total training)
were trained with the text branch frozen throughout the process.

Stage 4: Unifying visual modalities with image-video alternation training. The goal of this stage is
to unify image and video input modalities with native-resolution and dynamic video length. Inspired
by the InternVideo series [15] [16], we utilize both image-text and video-text pairs to optimize
the UniViTAR checkpoint from Stage 3 with an image-video alternating training strategy. This
strategy addresses three critical considerations: (1) leveraging image data’s superior scale and
diversity compensates for video data scarcity while maintaining visual content continuity; (2) joint
image-video training preserves cross-modal comprehension capabilities; (3) alternating modality-
specific updates enforce focused parameter adaptation through sequential modality optimization.
The alternating training protocol first initiates each epoch with random permutation of image-
video data to enhance stochasticity. Subsequently, data batches are partitioned into global batch
units and alternately sequenced at global batch granularity. Through this structured approach, the
configuration effectively maintains modality purity within individual training batches by enforcing
strict image-video alternation. To accommodate native-resolution video processing with dynamic
lengths, we implement adaptive frame sampling: full temporal retention when frame count F' < F), 4.,
and uniform subsampling to F,,,, frames when exceeded. With the predefined token constraints
(Limin, Lmaz) and the calculated frame length F', all frames are subsequently resized within these
computed bounds while preserving original aspect ratios.

2.3 UniViTAR as a Vision Encoder for MLLMs.

In this section, we introduce a simple strategy for constructing an effective native resolution MLLM
based on the UniViTAR series. The common and industry-validated Vision-Language Models (VLMs)
paradigm typically combines pretrained visual backbones with large language models, followed
by multimodal training on a rich mixture of vision language tasks. To ensure fair comparison and
minimize bias, we adhere to this established configuration. Specifically, we employ UniViTAR as the
vision encoder and employ Qwen2.5-1.5B [J5] as the large language model. Following established
practices [17], we implement a three-layer MLP with pre-normalization and a 2x pixel-unshuffle
operation [18]] along the width dimension as the vision-language adapter to bridge the visual and
linguistic modalities. For native-resolution modeling, we identify two primary challenges. On one
hand, due to the varying lengths of input samples, the boundary between vision and language tokens
is not fixed. To enhance "modality isolation", we introduce specialized prompts, known as Boundary
Markers, such as <image_start> and <image_end>, at the beginning and end of the vision token
sequence. On the other hand, 2D-to-1D flattening of vision tokens may compromise the information
of the height-width ratio. To mitigate this, we incorporate Line Anchors, such as <line-idx>, into the
vision tokens, where idx denotes the corresponding vertical positions in the original patchified image,
thereby potentially strengthening positional awareness in compressed tokens. For a vision token
sequence of length haw, the original arrangement z>!, .. 2™ . 2% . z™" is transformed as:

<image_start>,z" .. 2t <line—1>, 2%, ... 2"V, <line—h>, <image_end> (2)

Notably, these added markers are string-based identifiers rather than special tokens of the tokenizer.
To systematically evaluate multimodal comprehension capabilities, we adopt a dual-stage training
paradigm motivated by established methodologies in vision-language alignment like [19] 20].



3 Experiments

3.1 Training Recipe

Data Details. We collect public accessible image-text pairs and build our Merged-1B dataset, which
is composed of DataComp-1B [21], COYO [22], LAION-2B [23]], LAION-400M [24], DFN-2B [22],
CCI12M [25] and CC3M [26]. Moreover, to further enhance the video feature extraction capabilities
of UniViTAR, we meticulously constructed a dataset Merged-65M of roughly 65 million samples
by randomly selecting video clips from three public accessible video datasets, i.e., Panda-70M [27],
WebVid-10M [28]], and InternVid-10M-FLT [29]. We refer to the combined image and video data
mentioned above as Merged-1.1B. The detailed data composition is summarized in the Appendix.

Hyperparameter Details. The detailed hyperparameter configurations for each training stage are
presented in the Appendix. As tabulated, we utilize a progressive reduction of the peak learning rate
in correlation with increasing visual backbone scale to ensure optimal training stability. Notably,
the learning rate of text branch in Stage 2 remains consistently one-tenth of the visual component
throughout this phase. To enhance training efficiency, we integrated the DeepSpeed library [30] by
employing ZeRO optimizer sharding [31]], gradient checkpointing [32]], and flash attention [33]].

3.2 Results on Zero-shot Image Classification & Retrieval

Evaluation Setup. Our evaluation protocol encompasses both zero-shot classification and cross-
modal retrieval tasks. For zero-shot classification, we conduct evaluation on ImageNet [34]] and its
established variants [35]136, (377, 38} 39]. Each class is represented by multiple text prompts curated
from [L1,140]. The Top-1 accuracy is utilized to evaluate the model performance. For cross-modal
retrieval assessment, we adopt the benchmark protocols defined in [41]], evaluating on Flickr [42]
and MS-COCO [43] using their official partitions. The retrieval paradigm involves bidirectional
image-text matching, namely image-to-text retrieval and text-to-image retrieval tasks.

Results Comparison and Analysis. Table [3]demonstrates the exceptional performance of our model
at comparable parameter scales. As the model size increases from 0.3B to 1.4B, the average zero-shot
classification accuracy across six benchmarks exhibits a progressive improvement trend, rising from
80.5% to 81.9% and further to 83.4%. Notably, all models of varying scales employ identical training
samples and strategies, with this performance enhancement attributed to parameter scaling effects—a
finding consistent with established scaling laws in transformer-related research. As detailed in the
table, our UniViTAR-1B shows superior performance despite utilizing a smaller training corpus,
outperforming its counterparts with more parameters, such as InternViT-6B [12]] and EVA-8B [44].
We posit that this advantage stems from two key factors: optimized model atchitecture and training
strategy, and preservation of native input resolution, which generates higher-quality visual tokens.

3.3 Results on Zero-shot Video Classification & Retrieval

Evaluation Setup. We evaluate the zero-shot video classification performance on three popular
benchmarks as K-400 [S0], UCF-101 [S1] and HMDBS51 [S2], using the class names as text prompts.
Also, we evaluate the zero-shot video-text retrieval performance on ActivityNet [S3], MSR-VTT [54]
and MSVD [55]. Following [15}[16]], for each video in the 1K version of the test split, we sample one
sentence from every set of 20 sentences for MSR-VTT. Following [56], we concatenate the multiple
descriptions to form a paragraph and perform a paragraph-to-video retrieval on ActivityNet. All
videos are sampled with a dynamic frame rate, with each frame dynamically resized to maintain the
original aspect ratio while ensuring the total token within the range of 576 to 16,384.

Results Comparison and Analysis. Table ] shows the performance of our UniViTAR series models
on video benchmarks across comparable parameter scales. As the model size scales from 0.3B to
1B, UniViTAR exhibits consistent performance gains on video benchmarks, with average zero-shot
classification metrics improving from 68.0 to 69.0. When compared to models trained on image-
caption data under similar parameter scales, UniViTAR achieves notable improvements. These
advancements can be attributed to two key design choices: (1) preserving the aspect ratio of each
frame to retain the original semantic information of visual content, and (2) employing dynamic video
frame sampling to effectively capture detailed temporal information. However, when compared to
the models trained exclusively on video-caption data, UniViTAR still has room for improvement
compared to some of the latest models [57, [58| [16]], as shown in the Table 4] with gray color.



Table 3: Evaluation of zero-shot performance on various image benchmarks. The symbol
& indicates that the image-caption data used by the corresponding method is not publicly available.

ImageNet Variants Flickr CoCco
Method Data Source Res. Overall IN-TK NG Ail%-ﬁ NI IN-S O-Net” Overall TSIIST TSI IST
CLIP-L [11] WIT400M @ 224 72.1 755 70.8 87.8 69.8 59.6 689 60.8 650 852 365 56.3
OpenCLIP-L [45] DataComplB 224 757 792 69.6 90.8 72.1 68.0 743 679 734 89.0 457 633
MetaCLIP-L [46] CC-2.5B @ 224 76.6 792 723 921 726 69.0 746 695 764 90.1 47.1 644
DFN-L [47] DFNS5SB & 224 77.1 822 675 91.8 757 704 748 69.8 755 89.6 48.6 65.6
EVAO2-L [44] Merged-2B 336 715 798 762 927 730 68.1 749 699 780 89.6 479 642
CLIPAv2-L [48] DataComplB 336 78.1 80.3 77.7 933 735 709 73.1 69.5 746 904 472 656
SigLIP-L [6] WebLI10OB-En® 384 794 8.1 766 951 759 736 728 752 814 937 539 719
" UniViTAR-0.3B Merged-1B° =~ ~ Native 80.6 ~81.5 841 939 751 69.7 791 763 84.0 951 547 712
OpenCLIP-H [45] LAION2B-en 224 723 780 59.4 893 709 66.6 694 687 755 895 465 634
MetaCLIP-H [46] CC-2.5B & 224 784 805 753 934 742 705 764 713 783 91.8 48.8 66.2
CLIPAV2-H [48] DataComplB 336 80.8 81.8 827 944 756 728 774 708 763 90.3 492 67.2
DFN-H [47] DFN5B & 378 80.5 844 79.6 938 783 732 734 759 820 940 55.6 719
SigLIP-SO [6] WebLI10B-En® 384 81.7 83.1 825 958 772 745 77.0 760 83.0 943 542 724
" UniVITAR-0.6B Merged-1B° =~ ~ Native 82.1° 823 86.8 949 76.1 71.6 811 76.6 841 955 554 71.7°
OpenCLIP-g [45] LAION2B-en 224 73.0 785 609 902 716 675 69.1 71.1 777 914 488 664
OpenCLIP-G [45] LAION2B-en 224 762  80.1 69.3 92.1 73.6 689 728 728 79.6 929 514 674
EVAOl-g [49] Merged-2B 224 769 793 742 925 721 68.1 749 723 79.0 91.7 50.3 68.2
EVAOQ2-E [44] Merged-2B 336 809 820 822 946 756 716 794 732 789 94.1 51.1 68.7
CLIPAV2-G [48] DataComplB 336 82.7 83.1 860 954 773 745 797 722 783 922 504 678
InternViT-6B [12] InternVL-5B 224 82.5 832 838 957 773 743 80.6 753 81.7 947 541 70.6
EVA-8B [49] Merged-2B 224 829 835 852 953 777 743 812 749 80.8 95.6 53.0 703
" TUniViTAR-1B Merged-1B° =~ ~ Native 83.5 829 891 957 773 734 828 763 835 951 553 713"

Table 4: Evaluation of zero-shot performance on various video benchmarks. The symbol
signifies that the reported metrics are based on our own evaluations.

Method Type Res. Frames Overall —KZ‘)%]a%SICﬁI?E:I%;ﬁB— Overall Vo %N%t;V vl\i%l#g v VQN’[ITS"ZFIL?V
T OpenCLIP-L [435] Image 224 16 584 615 692 445 41.0 320 342 301 375 637 485
TDFN-L [47] Image 224 16 564 56.8 67.7 44.8 404 316 341 321 352 619 477
TEVA02-L [44] Image 336 16 644 644 760 52.8 447 358 372 354 397 69.1 510
T SigLIP-L [6] Image 384 16 648 642 792 509 453 343 358 357 40.0 730 53.0
ViCLIP-L [29] Video 224 8 - 648 - - 412 240 151 413 424 751 49.1
InterVideo-L [15] Video 224 16 - 643 80.5 - 422 314 307 39.6 40.7 675 434
UMT-L [59] Video 224 16 - - - - 4777 394 419 386 42,6 745 49.0

" 7 UniViTAR-0.3B Image&Video Native 2~32 ~68.0 66.0° 82.6 554 ~ 539 479 499 480 488 778 507

TOpenCLIP-H [45] Image 224 16 620 61.7 725 51.6 435 361 389 345 389 633 494
TDFN-H [47] Image 378 16 629 638 76.7 482 462 39.7 429 361 39.6 666 524
TSigLIP-SO (6] Image 384 16 673 66.8 83.0 52.1 475 366 393 375 41.1 755 547
TVTSV2-H [60] Video 224 12 632 59.6 780 52.1 - - - - 413 - -

" 7 UniViTAR-0.6B Image&Video Native 2~32 ~68.6 67.6 829 552 ~ 549 ~48.7 515 486 502 758 3543
T OpenCLIP-g [43] Image 224 16 63.1 615 766 51.1 444 368 39.8 364 392 643 50.1
*OpenCLIP-G [45] Image 224 16 642 632 762 534 460 367 414 369 418 675 515

TEVAOI-g [49] Image 224 16 628 634 72.1 529 455 37.0 40.1 372 40.1 676 50.8
InternViT-6B [12] Image 224 8 - 69.1 - - - - - 424 463 - -
"7 " UniViTAR-IB Image&Video Native 2~32 ~69.0 686 81.0 57.3 ~ 540 478 496 483 47.6 755 552~

1571
1581
[16]

3.4 Results on Image Classification by Linear Probing

Following common prectices [12, 161], we assess the performance of UniViTAR family as off-the-
shelf backbones on image classifications. Specifically, we train a linear classifier on the last feature
layer with a frozen backbone on ImageNet-1K [34]] and evaluate the performance on the validation
set and other ImageNet variants [62} 35} 36, 37, 38]]. In addition, we also report the classification
performance with attentive probing setting as used in [61]], which adopts a cross-attention layer
with random initialized queries. Table [5]represents the downstream classification performance of
our models. First, as the model size increases, the average performance across six benchmarks
demonstrates consistent improvement. Second, we observe that the attentive probing performance
shows stable improvements over linear probing. Furthermore, compared to public methods, our
UniViTAR family shows superior performance across various parameter scales.



Table 5: Evaluation of classification performance on various image benchmarks. The § signifies
that the reported metrics are based on our own evaluations.

ImageNet Variants

Method Classifier Res. Overall - INGIR T TIN-Real ~ CIN-V2T T INA T TIN-R T CIN-S
CLIP-L [L1] Linear 336 - 85.3 88.8 75.8 - - -
SigLIP-L [6] Attentive 224 - 86.5 - - - - -
AIMV2-L [61] Attentive 224 - 86.6 - - - - -
" " UniViTAR-0.3B ~ " Linear =~ = Native =~ 830~ 876 =~ 903 ~ ~ 795 = " 81 906 660
UniViTAR-0.3B Attentive Native 83.3 87.7 90.5 79.8 83.8 91.1 66.8
CLIP-H [11] Linear 224 - 84.4 88.4 75.5 - - -
TDFN-H [47] Linear 378 81.6 87.3 90.4 78.8 74.8 90.3 68.3
SigLIP-SO [6] Attentive 384 - 87.3 - - - - -
AIMvV2-H [61] Attentive 224 - 87.5 - - - - -
" T UniViTAR-0.6B =~ ~Linear ~ = Native =~ 844~ ~ "832 ~ 7 906 ~ 806 8.1 920 = “680
UniViTAR-0.6B Attentive Native 84.8 88.3 90.7 81.0 87.3 92.5 68.8
OpenCLIP-G [45] Linear 224 78.5 86.2 89.4 77.2 63.8 87.8 66.4
DINOv2-g [13] Linear 224 78.6 86.5 89.6 78.4 75.9 78.8 62.5
EVAO1-g [49] Linear 224 79.1 86.5 89.3 774 70.5 87.7 63.1
AIMV2-1B [61] Attentive 224 - 88.1 - - - - -
InternViT-6B [12] Linear 224 82.5 88.2 90.4 79.9 71.5 89.8 69.1
EVA-8B [49] Linear 224 - 88.5 - - - - -
"7 "UniViTAR-1B = " Linear =~ ~ Native = 860 =~ 889 ~ = 908 ~ 815 = T 901 940 ~ 707
UniViTAR-1B Attentive Native 86.0 89.2 91.0 81.7 90.1 93.6 70.6

3.5 Results on Dense prediction.

In this section, we evaluate the dense prediction performance of our UniViTAR family by transferring
to semantic segmentation. Following [[12,|63]], we fine-tune a decoder with freezing backbones under
two different structures, i.e., Linear and UperNet. Linear decoder transforms the dimension of one
single layer visual feature to number of semantic classes, while the UperNet decoder employs PPM
and FPN to integrates multi-scale features. Experiments are conducted on the ADE20K [64] dataset.
In terms of data preprocessing, we employed the same fixed-resolution input and data augmentation
strategies as those used in InternViT [12]. Corresponding results are shown in Table[6] We can
observe a performance gap between these two types of decoder, this can be understand that UperNet
has significantly more trainable parameters than Linear decoder. Taking UniViTAR-0.6B as an
example, Linear decoder has a parameter count of 0.2M, whereas UperNet contains approximately
200M parameters. Notably, our UniViTAR Family demonstrates an obvious performance advantage
compared with existing state-of-the-art vision encoders. Under the setting of Linear decoder, our
UniViTAR-1B achieves a performance of 45.4 mloU, which is +6.1 points over OpenCLIP-G [45]
and +10.8 points over ViT-22B [10]]. In the case of UperNet decoder, our UniViTAR-1B reaches
56.2 mloU, also surpassing larger parameter-scale model like InternViT-6B [12].

Table 6: Evaluation of semantic segmentation on ADE20k dataset with frozen backbones.

Method CropSize mloULinear mloUUrerNet
CLIP-L [11] - 39.0 -
SigLIP-SO [6] - 40.8 -
TDFN-H [47] - 413 -
OpenCLIP-G [45] 5122 39.3
InternViT-6B [12] 5042 47.2 54.9
ViT-22B [10] 5042 34.6 52.7
"~ " UniViTAR-03B 5047~ 7 407 546
UniViTAR-0.6B 5042 429 55.1
UniViTAR-1B 5042 454 56.2

3.6 Results on Multimodal Understarding

Evaluation Setup. To assess the potential of multimodal understanding, we employ a dual-stage
training paradigm, similar to common practices [19, [20]. In the pretraining stage, we train the
projector with a learning rate of 1e~3 using a merged 2.5M dataset comprised of LLaVA-CC3M-
Pretrain [17]], ALLaVA-Caption [19], ShareGPT4V-PT [20]. In the fine-tuning stage, we unfreeze
the whole model, and train it with a learning rate of 1e~>, using the high-quality instrution-tuning



dataset LLaVA1.5-Finetune [65]. Note that the native-resolution strategy of Boundary Markers
and Line Anchors are only applied in the fine-tuning stage. All evaluations are conducted using
VLMEvalKit [66]], assessing performance across 16 popular benchmarks, including GQA [67],
DocVQA [68]], InfoVQA [69], ScienceQA [[70]], TextVQA [71], VizWiz [[72], OCRVQA [73], OCR-
Bench [74], MME [75], MMMU [76]], SEEDBench_IMG [77], MathVista_MINI [78]], AI2D [79],
HallusionBench [80]], POPE [81], HRBench4K [&2]].

Results Comparison and Analysis. As illustrated in Table [7] under exactly the same training data
and training strategy, the proposed UniViTAR surpasses various state-of-the-art vision encoders [47,
61, /6] on numerous multimodal understanding benchmarks. Notably, UniViTAR demonstrates
exceptional capabilities in scenarios involving dense information, such as document parsing [68]],
graphic parsing [69], and high-resolution tasks [82]]. We argue that the native resolution plays a
crucial role in achieving outstanding performance in these areas, ensuring minimal loss of image
information. We also assess the effectiveness of the proposed strategy of Boundary Markers and Line
Anchors on 0.6B model size, as demonstrated in Table[7] which highlights their impact.

Table 7: Evaluation of multimodal understanding on various vision-language benchmarks.
Note the superscript A represents model with Boundary Markers and Line Anchors.

. . : . . . UniViTAR

Benchmarks SigLIP-L [6] DFN-H [47] AIMv2-H [61] SigLIP-SO [6] - 0385 068 ~ 0.6BS T iBS T
Resolution 378 378 448 384 Native

" GQAtespev 615 ~ T 60.6 ~ T 615 ~ T T 7 61.0 ~ ~ T 608 582 T 6037 T 612 ~
DocVQAvAL 30.8 259 36.2 32.0 47.7 46.3 48.2 47.0
InfoVQAvAL 22.7 22.1 25.8 232 27.8 28.0 28.5 27.5
ScienceQAvyar 63.6 62.7 64.8 66.4 64.5 65.0 63.6 65.3
TextVQAvaL 48.0 41.7 53.2 50.9 50.8 52.0 50.7 52.0
VizWiz 30.5 28.5 30.3 30.8 29.1 29.8 29.4 29.3
OCRVQA 31.2 32.0 31.0 30.9 322 31.6 322 32.1
OCRBench 35.2 30.6 22.4 36.0 33.6 37.0 36.9 36.4
MME 59.3 62.6 59.8 60.0 57.9 58.6 59.0 60.7
MMMUvaL 359 342 37.1 35.4 36.1 38.7 36.6 37.0
SEEDBench_IMG 70.0 70.3 70.9 71.2 68.2 67.8 68.0 69.3
MathVista_ MINI 28.6 29.9 30.1 29.6 275 279 28.5 28.7
AI2Dpege 60.5 58.3 60.4 60.6 58.0 57.7 58.7 59.3
HallusionBench 56.8 56.6 53.9 54.8 57.0 55.2 57.8 54.1
POPE 87.2 88.0 85.4 87.7 87.1 88.1 87.9 88.1
HRBench4K 39.9 39.5 44.5 45.0 44.1 43.6 46.1 46.4

" Average. T T 476 ~ T 7 465 ~ T T T 80 T T T 485 7 7 T 489 T 490 T 4957 T 496

3.7 Ablation Study
3.7.1 Robustness verification of resolution mode.

This section analyzes the influence of three resolution modes: fixed resolution, native aspect ratio,
and native resolution in Figure 3] For fixed resolution mode, we resize the shorter edge of each image
to a predefined size S and apply CenterCrop to ensure the sequence length strictly equals (S/14)2,
where 14 represents the patch size. Increasing S proportionally extends the sequence length. In native
aspect ratio mode, we scale images while preserving their original aspect-ratio, ensuring that wh /142
approximates the target sequence length. We evaluate 12 sequence lengths ranging from 256 to 16K
tokens with our 0.6B model. The experimental results reveal three key findings: /) performance
initially improves then declines with increasing sequence length under both fixed and native aspect
ratio modes, peaking at 1024~4096 tokens. 2) native aspect ratio consistently outperforms fixed
resolution, indicating that preserving original aspect ratios retains better image information. 3) native
aspect ratio occasionally surpasses native resolution performance at certain lengths.

3.7.2 Verification of the effectiveness of training strategies.

As introduced in the method, we categorize the training strategy into four distinct stages, based
on resolution modes (fixed or native), visual data modalities (image or video), and model training
parameters (trainable or freeze). As shown in Figure [ for zero-shot image classification (left),
we show that S1, S2, and S3 exhibit progressive performance improvements, while S4 maintains
comparable accuracy despite incorporating alternating training. In contrast, for zero-shot video
classification (right), S1 and S2 show minimal performance variation, with dynamic-resolution



Zero-Shot Performance on ImageNet-1K with Different Resolution Mode Zero-Shot Performance on ImageNet-A with Different Resolution Mode
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Figure 3: Performance comparison of different resolution modes as the length of the vision
sequence increases. The black dashed line shows the performance when using native resolution.

training in S3 significantly boosting video capabilities, followed by further enhancements in S4
through image-video training. This demonstrates that dynamic-resolution training enables model to
process more native visual sequences, while the final unified training stage equips the model with
generalized capabilities for handling diverse visual modalities. Notably, these findings remain highly
consistent across the UniViTAR-0.3B/0.6B/1B model family.

Zero-Shot Classification Performance on Image Benchmarks at Diffenent Training Stages Zero-Shot Classification Performance on Video Benchmarks at Diffenent Training Stages
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Figure 4: Average performance improvement illustration across different training stages.

3.8 Verification of the effectiveness of hybrid training with DINOv2.

To investigate the performance benefits of incorporating DINOv2 as a distillation branch in Stage-1
training, we performed a comprehensive empirical study using the UniViTAR-0.3B model trained
from scratch on 3B image-text pairs. Checkpoints were evaluated at regular intervals throughout
training in Table [8] Our experiments revealed that DINOv2 distillation significantly accelerates
early-stage convergence, after only 0.1B samples, distillation improved zero-shot ImageNet-1K
performance by 17.3 points. Although this gain gradually diminishes as training progresses, it
remains observable at later stages. More importantly, the final model trained with DINOv2 distillation
achieves an average improvement of 2.1 points across six zero-shot classification benchmarks
compared to the baseline without distillation (Table [0). These results demonstrate that DINOv2
distillation not only speeds up early convergence but also enhances the final model performance.

Table 8: The performance gains of hybrid Table 9: Zero-shot classification performance

training on ImageNet-1K as data increases. of hybrid training with DINOv2.

Model DINOv2 0.1B  0.5B 1.0B 1.5B 20B 25B 3.0B Model DINOv2  Avg. IN-IK IN-A IN-R IN-V2 IN-S O-Net
UniViTAR-0.3B No 2688 6371 67.80 69.75 7232 74.88 75.72 UniViTAR-0.3B No 7073 7572 5876 8798 6822 6295 70.78
UniViTAR-0.3B Yes 44.18 68.15 7124 7317 7471 7640 77.33 UniViTAR-0.3B Yes 72.84 7733 63.55 89.81 7040 65.65 7031

A 1730 4.44 3.44 342 2.39 1.52 1.61 A 2.11 1.61 4.79 1.83 2.18 2.70 0.47

4 Conclusion

In this work, we introduce UniViTAR, a family of homogeneous vision foundation models tai-
lored for unified visual modality and native-resolution scenarios in the era of multimodal. By
integrating advanced architectural upgrades, resolution curriculum learning, visual feature distil-
lation, and inter-batch modality adaptation, UniViTAR achieves significant improvements across
diverse tasks, spanning image/video zero-shot classification/retrieval, dense prediction accuracy,
and vision-language model transfer performance. Notably, all models are trained exclusively on
public-accessible datasets, where we observe consistent performance gains with parameter scaling
from 0.3B to 1.4B. We hope that our UniViTAR offers the community a versatile framework for
advancing multimodal research.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Yes. Our main contributions are also detailed in Sec.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We analyzed the performance gap with the pure video model in the experiment
section. In addition, the reduction in inference efficiency caused by native resolution is also
mentioned in the article.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Each experiment in the paper provides a detailed description of its setting,
referring to Sec. [3|and Appendix B]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly-accessable image-caption dataset. Once the blind review
period is finished, we’ll open-source code and model checkpoints.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training hyperparameters are introduced in Table[T] and the test details
are presented along with the experimental results in Sec. [3|and Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: This topic has not been reported with experimental statistical significance in
other works.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report the training resources in Appendix [B]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the guidelines to ensure that our research strictly
adheres to ethical standards.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This research primarily focuses on fundamental network structures, with no
potential social harm.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not foresee any high risk for misuse of work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have carefully reviewed the guidelines and ensured adheres to the standards.
Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This research does not involve crowdsourcing, human subjects, or other related
risks.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This research does not involve crowdsourcing, human subjects, or other related
risks.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We have carefully reviewed the guidelines and ensured adheres to the standards.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A The Overview of UniViTAR Pipeline

The proposed UniViTAR processes visual input at its native resolution, and also supports scaling
the resolution down or up while maintaining the aspect ratio or resizing to certain square size to
accommodate different application scenarios, such as higher computational efficiency or finer-grained
visual details. By treating video inputs as temporally extended image sequences, the framework
uniformly produces longer variable-length visual token sequences.

zoomin

Native Aspect Ratio ~ Square Resize Native Resolution Native Aspect Ratio
[ Seapatches | [ 34patches || 2s6Patches || adpatches 1 480 patches | | 960 Patches
UniViTAR Family
""" 864Tokens ( 384Tokens )  256Tokens |  4320Tokens  » { 480Tokens ; ( 960 Tokens

Figure 5: The brief illustration of UniViTAR family pipeline.

B More Details of Training Recipe

Data Details. We collect public accessible image-text pairs and build our Merged-1B dataset, which
is composed of DataComp-1B [21], COYO [22], LAION-2B [23]], LAION-400M [24], DFN-2B [22],
CCI12M [25] and CC3M [26]. Moreover, to further enhance the video feature extraction capabilities
of UniViTAR, we meticulously constructed a dataset Merged-65M of roughly 65 million samples
by randomly selecting video clips from three public accessible video datasets, i.e., Panda-70M [27],
WebVid-10M [28]], and InternVid-10M-FLT [29]. We refer to the combined image and video data
mentioned above as Merged-1.1B. The detailed data composition is summarized in the Table[T0]

Table 10: Details of the training data for UniViTAR. Note that Merged-1B and Merged-65M
correspond to image and video modality respectively.

Dataset Source Language Samples Total  Percentage Used by
DataComp-1B En 408M 37.7%
COYO En 248M 22.9%
LAION-2B En 213M 19.7%
Merged-1B DFN-2B [47] En 154M 1.08B 14.3% Stage 1~4
LAION-400M [24] En 52. M 4.9%
CCI2M [23] En 2.94M 0.3%
CC3M En 2.32M 0.2%
7777777777 Panda-70M [27] ~~~ En ~ 52AM " 802%
Merged-65M  WebVid-10M [28] En 6.53M 65M 10.0% Stage 4
InternVid-10M-FLT [29] En 6.31M 9.8%

Hyperparameter Details. The detailed hyperparameter configurations for each training stage are
presented in the Table[TT] As tabulated, we utilize a progressive reduction of the peak learning rate
in correlation with increasing visual backbone scale to ensure optimal training stability. Notably,
the learning rate of text branch in Stage 2 remains consistently one-tenth of the visual component
throughout this phase. To enhance training efficiency, we integrated the DeepSpeed library [30] by
employing ZeRO optimizer sharding [31]], gradient checkpointing [32]], and flash attention [33]. Note
all experiments are conducted on H800 GPUs.
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Table 11: Detailed training hyperparameter of UniViTAR family. Note that the symbol of —
represents the peak learning rate and the minimum learning rate in the LR schedule.

Stage 1 Stage 2 Stage 3 Stage 4
Vision Encoder Init. Xavier init. [83] from Stage-1 from Stage-2 from Stage-3
Text Encoder Init. LLama [12] LLama [12] from Stage-2 from Stage-3
Input Resolution 224 x 224 224 x 224 Native Native
Token Range 256 256 64 ~ 16K 64 ~ 16K
Global Batch Size 32768 32768 32768 ~26K(Image), ~4K(Video)
Patch Dropout 0.5 0.0 0.5 0.5
Warmup Steps 2000 2000 2000 1000
Optimizer AdamW AdamW AdamW AdamW
LR Schedule Cosine Decay Cosine Decay ~ Cosine Decay Cosine Decay
0.3B le™3 — 1le~6 le™® =0 le™® =0 4e78 =0
0.6B  le 3 — 1e”© le5 =0 le5 =0 4e75 >0
1B 8e 4 = le77 6e 6 =0 6e 6 =0 2¢76 =0
T Train Dataset ~ Merged-IB° =~ Merged-1B°~ Merged-1B- ~ Merged-1B, Merged-65M
Seen Samples 12B 1B 1B 0.6B

C More Experimental Results & Ablation Study

C.1 Verification of the effectiveness of image-video alternative strategy.

To validate the efficacy of the alternating image-video training strategy, we conducted initial exper-
iments with 100M image-text pairs and 10M video-text pairs. Note that the image-to-video data
ratio is approximately 10:1, consistent with the ratio used in stage 4 of the UniViTAR series. We
trained a UniViTAR-0.3B model for 3 epochs, comparing mixed training and alternating training
strategies. As shown in Table the alternating training strategy outperforms the mixed strategy
across key image and video benchmark metrics, demonstrating its effectiveness in enhancing visual
representation learning. This performance gain can be attributed to the increased training difficulty
arising from the unification of data modalities within each batch.

Table 12: Zero-shot classification performance of image-video training strategy.

Strategy ImageNet-1K  ImageNet-A K400 UCFI101
Batch-Mixed 70.46 45.89 58.82  75.15
Batch-Alternative 71.25 48.60 61.01 77.66

C.2 Verification of the effectiveness of native resolution for video.

In this section, we conduct an ablation study to explore the role of native resolution in video data
processing. We dynamically sample a maximum of 32 frames (denoted as F) for each video clip.
For frames exceeding the sequence length limit, we resize them while preserving their native aspect
ratio to a smaller resolution. We evaluate 15 maximum video sequence length, ranging from 1024 to
65,536, and test the zero-shot classification performance of UniViTAR-0.6B on the K400 dataset.
Note that the minimum video sequence length is fixed to 576. As shown in Figure[6] the performance
initially improves and then stabilizes as the sequence length limit increases, reaching a plateau at
length 10,240. We attribute this to the fact that, with 32 sampled frames, a sequence length of
10,240 corresponds to a resolution of 490 x 256, enabling most frames in K400 to retain their native
resolution during data processing. This finding underscores the importance of native resolution in
enhancing video understanding capabilities.

C.3 Verification of the effectiveness of data scale.

From an intuitive perspective, data scale has a significant impact on the effectiveness of contrastive
learning. In this section, we conduct cold-start experiments on UniViTAR-0.3B to confirm this view.
For the experiment setup, seen samples is fixed at 1B. We respectively train the UniViTAR-0.3B for 1
epoch using Merged-1B and for 10 epochs using Merged-100M, which contains 100M image-text
pairs that randomly sampled from Merged-1B. Result on zero-shot classification and retrieval is
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Figure 6: Performance changes on the K400 dataset across varying sequence length limits.

shown in Table[I3] There is an observable trend where the performance improves as the dataset
scale increases. With larger dataset scale, the model is exposed to a broader range of image-text
pairs, facilitating a more comprehensive learning and understanding of the visual and linguistic space,
thereby enhancing zero-shot performance.

Table 13: Ablation results of UniViTAR-0.3B under varying data scale.

ImageNet Variants Flickr COCO
Data Seen Samples - Overall -3 g~ {N.A INNR IN-VZ INS ONet” OV 1T 1517 15T 15T
Merged-100M 1B 60.8 69.7 39.6 79.0 61.6 548 60.2 67.0 73.4 883 442 62.0
Merged-1B 1B 64.2 717 457 823 643 573 639 68.9 749 907 460 638

C.4 Verification of the effectiveness of LLM scale.

To verify the model’s effectiveness across language models of varying scales, we integrated
UniViTAR-0.6B with progressively larger language backbones, specifically, Qwen2.5-1.5B, 3B,
and 7B, within a multimodal large language model (MLLM) framework. As the model scale in-
creases, our models achieve average scores of 48.7, 51.9, and 54.6, respectively, across 16 multimodal
benchmarks. The experimental results demonstrate consistent scaling behavior, confirming UniVi-
TAR’s strong compatibility and performance potential when combined with larger language models.
These findings support the conclusion that the UniViTAR architecture possesses promising scalability.

C.5 Comparative analyses of additional relevant visual foundation models.

To provide a comprehensive comparison with other prominent visual encoders, we conduct a system-
atic analysis of several relevant visual foundation models. (1) NaViT [3]: Quantitative evaluations
in Table [T4] on linear-probing classification tasks demonstrate that UniViTAR-0.3B exhibits clear
advantages over NaViT. (2) FlexiViT [2]: Introduced in the main text, FlexiViT supports dynamic
patch size to handle variable-resolution inputs. We include supplementary linear-probing results
on ImageNet variants in Table 4] for direct comparison. (3) Web-DINO [84]]: This self-supervised
model shows that scaling data and parameters can approach CLIP-level performance; however, a
noticeable gap remains relative to CLIP-based paradigms, as indicated by model size (7B vs. 0.3B)
and benchmark performance. Preliminary comparisons are provided in the accompanying Table
(4) Cambrian-1 [85]]: This vision-centric MLLM family uses a Mixture-of-Features (MoF) scheme
over multiple visual encoders to reduce information loss. While effective, MoF introduces higher
computational costs and integration complexity compared to unified models like UniViTAR.

Table 14: Comparison of UniViTAR and other vision encoder on linear-probing classification.

Model Pretrain Data Train Paradigm IN-1IK IN-A IN-Real IN-V2 IN-S IN-R
NaViT-L JFT4B Supervised Learning 76.0  65.5 - - - -

FlexiViT-L ImageNet-1K Supervised Learning 86.1 34.1 90.0 76.7 - 41.2
Web-DINO-7B MC-2B Self-Supervised Learning  86.4 - - - - -

UniViTAR-0.3B  Merged-1B Contrastive Learning 87.6 84.1 90.3 79.5 66.0 90.6
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D Related Work

D.1 Flexible Vision Transformers

Vision Transformers have showcased impressive performance in numerous visual tasks, such as image
classification [1]], image language pre-training [[11], etc. Those methods work only at a single, fixed
resolution. Some works [[86, |87]] attempt to meet the need for fine-grained visual representation by
adapting the model to a higher resolution during the fine-tuning stage. However, directly resizing the
input to a fixed square resolution still limits their representation capacity in diverse visual scenarios.
Recently, there are some works in vision transformers attempting to accommodate images with
native resolutions with variable aspect ratios. ViTAR [88]] proposes an adaptive token merger module
to alleviate the constraints of fixed resolution and adapt to multi-resolution inputs. However, it
still limited by a predefied number of tokens that the model ultimately aims to obtain. NaViT [3]]
introduces sample packing used in language modeling for handling variable sequence length of image
patches. Meanwhile, it introduces a factorized positional embedding schema in vanilla ViT to support
variable aspect ratios and extrapolate to unseen resolutions. Qwen2.5-VL [5] integrates an NaViT-like
approach to support native input resolutions, and employs multiple training phases for adapting it to
multimodal large languages models, including CLIP pre-training, vision-language alignment, etc.

D.2 Vision Foundation Models

The development of vision foundation models has progressed through distinct phases, beginning with
supervised learning paradigm dominated by landmark architectures like ResNet [89] and ViT [l1]],
which established performance benchmarks through reliance on labeled data. However, the field
witnessed a paradigm shift with the rise of self-supervised learning, which circumvented annotation
bottlenecks through three principal branches: contrastive learning frameworks like SimCLR [90] and
MoCo [91], masked image modeling methods such as BEiT [92] and MAE [93]], and self-distillation
techniques including BYOL [94] and DINO [95]. Recently, language-supervised contrastive pre-
training has emerged as a transformative paradigm, exemplified by CLIP [96], which aligns multi-
modal embeddings through noise-robust contrastive objectives, enabling zero-shot task generalization.
This approach has been further refined in works like SigL.IP [6], which employs a more efficient
sigmoid-base loss function while preserving cross-modal transfer capabilities. Besides images, a
robust visual foundation model with effective video alignment capabilities serves as another critical
building block. The existing strategies for training such models can be classified into three main
paradigms: training on video-only data 56,158,115, 197], utilizing multimodal data encompassing both
video and image [15} 87,4} S]], and incorporating multimodal data that integrate video, images, audio
and other modalities [16,[98]. VideoPrism [58]] employs a two-stage video-only pretraining strategy:
contrastive learning followed by token distillation, yet lacks image understanding. VidLA [56] adapts
CLIP [96] via spatio-temporal attention on video-text data. InternVideo [15] combines masked video
modeling with alternating video/image-text pretraining, enhanced by cross-modal attention, while
InternVideo2 [16]] extends this framework with audio/speech modalities for multimodal alignment.

D.3 Multimodal Large Language Models

Recently, multimodal large language models (MLLMs) have witnessed significant advancements and
rapid development [99, (17, 100} [87, 5, 4} [12} [101L [102]. As a critical modality in MLLMs, visual
input encounters inherent limitations when relying on conventional ViT with fixed resolutions, which
may induce shape distortions, content blurring, and suboptimal handling of images/videos with
diverse aspect ratios, high resolutions, or dynamic frame rates. To mitigate these challenges, the
field has converged on two principal technical directions: 1) The tiling-based paradigm, as adopted
by models like [[103} [100} (12} [104], decomposes ultra-high-resolution inputs into a varied number
of fix-resolution tiles, and each tile is processed by a fixed-resolution vision encoder. As such, it
enables MLLMs adaptivity to dynamic-resolution images without padding or shape-distorting resizing.
However, the tile limits the model’s ability to capture spatial information across different tiles and
the primary subjects of the images are often fragmented, leading to the loss of spatial relationships
and quantitative information. 2) native-resolution methodology, exemplified by models such as
[4} (105} [106]], attempts to circumvent the limitations of the tiling-based paradigm by using native
resolution input. However, they typically employ a pretrained fixed-resolution vision transformer as
vision encoder, which leads to additional costs associated with adapting the ViT’s distribution.
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