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Abstract

Adapting large language models (LLMs) for specific tasks usually involves fine-
tuning through reinforcement learning with human feedback (RLHF) on preference
data. While these data often come from diverse labelers’ groups (e.g., different
demographics, ethnicities, company teams, etc.), traditional RLHF approaches
adopt a "one-size-fits-all" approach, i.e., they indiscriminately assume and optimize
a single preference model, thus not being robust to unique characteristics and needs
of the various groups. To address this limitation, we propose a novel Group Robust
Preference Optimization (GRPO) method to align LLMs to individual groups’
preferences robustly. Our approach builds upon reward-free direct preference opti-
mization methods, but unlike previous approaches, it seeks a robust policy which
maximizes the worst-case group performance. To achieve this, GRPO adaptively
and sequentially weights the importance of different groups, prioritizing groups
with worse cumulative loss. We theoretically study the feasibility of GRPO and
analyze its convergence for the log-linear policy class. By fine-tuning LLMs with
GRPO using diverse group-based global opinion data, we significantly improved
performance for the worst-performing groups, reduced loss imbalances across
groups, and improved probability accuracies compared to non-robust baselines.

1 Introduction
As the usage of large language models (LLMs) has grown in recent years, the question of their
alignment has come to the forefront. Their remarkable capability to address a wide range of tasks
(Radford et al. [36]) stems from pre-training on a self-supervised objective over internet-scale
text. This vast internet-scale content, however, carries a higher risk of biases, inaccuracies, and
controversial content than smaller, curated datasets. Thus, ensuring that the model’s responses and
behaviors correspond to human intentions and values is crucial.

Typical approaches to alignment [11, 34, 37] involve gathering preference feedback from human
labelers to train models that reflect their desires. Such approaches often treat individual preferences
as samples from a broader preference distribution. However, this perspective often oversimplifies the
complex reality that human societies consist of numerous distinct groups (e.g., different demographics,
ethnicities, company teams, etc.), each with their own set of preferences that can significantly
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Figure 1: Current reward-free preference optimization methods typically optimize based on average
human feedback. This often aligns predominantly with the preferences of the majority group (G1, R1
> R2) at the expense of minority groups (G2, R2 > R1). In contrast, our GRPO algorithm introduces
adaptive weighting for different user groups and prioritizes optimizing for the worst-case group
performance, leading to better alignment for the most disadvantaged groups.

diverge. Consequently, prevalent alignment strategies tend to adopt a "one-size-fits-all" model and
disproportionately favor the preferences of the majority group, often at the expense of minority groups
and their preferences, as illustrated in Figure 1.

To improve alignment performance for even the most disadvantaged groups, we propose to robustly
solve the problem of diverse group preferences by (i) including group information in the context of
the LLM and (ii) optimizing against the worst-case alignment performance across all groups. We
develop policies that guarantee equitable performance across all groups, ensuring that no group is
disproportionately disadvantaged due to inherent biases or imbalances in the training data.

Related work. The established process for alignment of LLMs using Reinforcement Learning from
Human Feedback (RLHF) is set out in [45, 60] and [34]. The RLHF fine-tuning process consists of
learning a reward model from human comparisons between responses to a given prompt, using the
Bradley-Terry model [5]. Then, one performs policy optimization using Proximal Policy Optimization
[40] to learn a policy that maximizes the learned reward function. For a comprehensive overview and
perspective of the RLHF topic, we refer the reader to [24, 7, 23].

Due to the challenges of tuning PPO and the vulnerability of reward models ([50, 37, 17, 49]), alterna-
tive approaches to PPO-based RLHF have been proposed, including rejection sampling fine-tuning [14,
18, 49, 30] and conditional supervised fine-tuning [20, 54, 9]. In particular, Rafailov et al. [37] intro-
duce Direct Preference Optimization (DPO), which optimizes policies directly based on human prefer-
ences, avoiding the need for a separate reward model. This approach simplifies training and reduces re-
ward overfitting. Other studies, such as [1, 58, 47, 43, 16], propose novel reward-free RLHF methods,
with some bypassing preference datasets altogether ([16, 6]). We utilize a reward-free framework simi-
lar to [37, 1], however, unlike previous works that assume a single preference distribution, we consider
multiple preference distributions from diverse groups. Further, we aim to robustly fine-tune the LLM
to ensure minimal disparity in performance across all groups. Other studies addressing robustness
in preference optimization include [21] and [26]. However, these works primarily focus on different
aspects of robustness, such as robustness to noise and resilience against out-of-preference data.

Robust language modeling techniques have been studied by [33, 52] to optimize performance of
language models over a wide-range of topics. They consider robust pre-training of language models
based on the group Distributionally Robust Optimization (DRO) approach. A concrete theoretical
study of the group DRO approach was performed in [39] and applied to vision problems. These
are designed by extending previous minimax algorithm for solving DRO from [31]. In the RLHF
setup, [3] consider weighting of loss from different topics (harmless vs helpful) for robust reward
learning. Also, Chakraborty et al. [8] consider robust policy optimization by learning multiple
reward functions corresponding to sub-populations and learning a robust policy w.r.t. the learned
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rewards. Differing from these works, we embed group robustness directly into the reward-free tuning
paradigm. We provide an concrete algorithm that adaptively weighs the loss for different groups
and optimizes for a policy that minimizes the weighted loss. Further, our algorithm employs a novel
gradient estimator tailored to the group robust DPO problem.

In the non-robust setup, [57] also explore group-based preference learning with LLMs by including
group information in prompts with a transformer module that is trained optimally to choose an
example sequence of prompts, LLM responses, and group preferences for in-context learning. [49]
consider alignment with user preferences assuming that each user has varied importance over the
distinct metrics in their multi-objective reward model. In contrast, we are not modeling multi-reward
objectives but consider a reward-free setting. And, our methodology directly models each group’s
preferences through a group-dependent latent reward model where the group dependency is injected
through the prompt. Further, unlike the non-robust problem setups of [57, 49], we consider the
robust alignment problem optimizing for the worst group performance. We detail other related works
extensively in Appendix A.

Main Contributions. The following are the main contributions of this work: (i) We present GRPO,
the group robust formulation of Direct Preference Optimization (DPO) [37], wherein we augment
the context of the LLM with the group information, and pose the problem as a robust optimization
problem to minimize the worst-case loss amongst the diverse groups. We also show that a naive
application of group robustness to the LLM policy maximization objective does not offer robustness
benefits. To the best of our knowledge, this is the first study that focuses on group robustness in
RLHF preference optimization; (ii) We analyze the theoretical aspects of GRPO by examining the
convergence and the feasibility of finding optimal solutions within the log-linear policy class. (iii)
We present a tailored algorithm to tackle this robust optimization challenge, providing convergence
guarantees for certain loss functions; (iv) We show the versatility of our approach by demonstrating
how our algorithm can be utilized with other reward-free preference optimization methods such
as Identity Preference Optimization (IPO) [1]. In particular, for the GR-IPO objective optimized
over the log-linear policy class, we derive a closed-form weighted regression update for the policy
parameters rather than a gradient update. To the best of our knowledge, this is a novel contribution
towards efficient fine-tuning through preferential data; (v) Our empirical evaluations across synthetic
datasets, real-world data, and publicly available LLMs show that the proposed GRPO significantly
improves performance for the worst-performing groups, reduces loss imbalances across groups, and
increases probability accuracies compared to non-robust baselines.

2 Background
We address the challenge of fine tuning a large language model (LLM) to align with user preferences.
This process usually follows the Reinforcement Learning from Human Feedback (RLHF) protocol,
using either an explicit reward model ([3, 34, 45, 60]) or an implicit reward model ([37]). RLHF
typically comprises three key phases: (i) supervised fine-tuning of an initial (pre-trained) large-
language model, (ii) reward learning, and (iii) RL fine-tuning.

In the supervised fine-tuning phase (SFT), the goal is to fine-tune a pre-trained LLM on a specific high-
quality dataset suited for the downstream task of interest. It results in a probabilistic model expressing
the probability of the response y given a prompt x as πref(y|x). Subsequently, in the reward learning
phase, the goal is to learn a reward model from a dataset of prompts x and responses yw, yl, with yl ≺
yw | x meaning that human labellers preferred yw over yl. It is typically assumed that preferences
follow some choice models with an unknown reward (utility) r∗(x, y) function. A popular model
is the Bradley-Terry model [5] that assumes the preference distribution p admits the following form :

p(y1 ≺ y2 | x) =
exp(r∗(x, y2))

exp(r∗(x, y1)) + exp(r∗(x, y2))
. (1)

Based on the above model, a maximum likelihood estimate of the reward function is obtained as:

min
r
{LR(r;D) := −E(x,yw,yl)∼D [log (σ (r(x, yw)− r(x, yl)))]}, (2)

where σ(·) is the sigmoid function and D represents the dataset consisting of {(x, yw, yl)}.
Then, in the RL fine-tuning phase the objective is to train a policy π that maximizes the learned
reward function. Simultaneously, the policy should stay closely aligned with the reference, πref, as
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quantified by the KL divergence, leading to the following KL-regularized optimization problem:

max
π

Ex∼Px

[
Ey∼π [r(x, y)]− βKL [π(y|x)∥πref(y|x)]

]
. (3)

Direct Preference Optimization (DPO). The recent approach proposed by [37] exploits the
closed-form solution of the problem in Equation (3) and sidesteps the explicit modelling of rewards
to directly optimize the policy. Specifically, under the Bradley-Terry preference model, the reward
function can be expressed directly in terms of the optimal policy π∗ as follows:

r(x, y) = β log
π∗(y | x)
πref(y | x)

+ β logZ(x), (4)

for a partition function Z(x) =
∑

y πref(y|x) exp( 1β r(x, y)). Via a change of variable, finding the
optimal reward function in Equation (2) is equivalent to finding the optimal policy π∗ utilizing the
given set of preference data D. With a slight abuse of notation, we use π to denote π∗. Denote
hπ(x, yw, yl) := log( π(yw|x)

πref(yw|x) )− log( π(yl|x)
πref(yl|x) ). Then, Equation (2) translates into the DPO loss:

LDPO(π,D) = − E
(x,yw,yl)∼D

[
log
(
σ(β · hπ(x, yw, yl))

)]
. (5)

With a parameterized policy model πθ, minimizing the DPO loss involves calculating the gradient
over θ using backpropagation and the log-probabilities of each completion, yw and yl, given the
prompt x for both the policy πθ and the reference policy πref.

3 Group Robust Preference Optimization

In this section, we discuss Group Robust Preference Optimization (GRPO), i.e., instead of learning a
reward function that maximizes the likelihood, we aim to derive (implicitly) a robust reward function
and subsequently learn a robust DPO policy.

Group Preferences. Suppose that preferences come from an underlying latent reward r∗(x, y, g),
with g ∈ G = {1, 2, . . . ,K} indexing the groups. When group information is available (e.g., as a
text), we can represent the reward as r∗(xg, y), where xg = x⊕ g denotes merging1 of the prompt
with group information (e.g., string concatenation). We continue to apply a Bradley-Terry model as
described in Equation (1), substituting x with xg . Moreover, we assume access to a collective dataset
D =

⋃K
g=1Dg whereDg = {(x(i)

g , y
(i)
w , y

(i)
l )}Ng

i=1 with the available group information. Additionally,
our dataset accommodates the exposure of different groups to identical prompts, meaning that the same
x can appear across various groups g in our dataset, and these groups may favor different responses y.

Given such D, although one may obtain a common reward model using Equation (2), it could result
in poor generalization for particular groups, especially with significant group-wise disparities in the
data (see Figure 1). Such disparities might stem from imbalanced data across groups or difficulties
associated with learning different groups.

GRPO Objective. Consequently, we propose to measure the alignment of the reward model on
the worst-case group loss:

max
g∈G

LR(r;Dg). (6)

Incorporating the reward expression from (Equation (4)) into (Equation (6)), we establish the group
robust preference optimization (GRPO) objective for a specified policy π:

LGR(π) :=max
g∈G
LDPO(π,Dg) = max

g∈G

(
− E(xg,yw,yl)∼Dg

[
log
(
σ
(
βhπ(xg, yw, yl)

))])
. (7)

Leveraging the equivalent formulation of maximizing over discrete set, the GRPO problem becomes

min
π
LGR(π) = min

π
max

α∈∆K−1

K∑
g=1

αg

(
− E(xg,yw,yl)∼Dg

[
log
(
σ(βhπ(xg, yw, yl)

)])
, (8)

1The group information added to the prompt can represent, e.g., an index or a textual description of the group.
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where ∆K−1 represents the (K − 1)-dimensional simplex of probabilities.2 The inner maximization
becomes a linear programming over simplex such that α represents the weights of groups. In addition,
it forms a two-player zero-sum game (see Section 3.1), where the policy π and α act as opponents
with inversely related payoffs. The DPO loss (logistic log loss) in Equation (7) can be replaced with
alternatives like hinge or squared loss (see [47]). We label this objective GR-DPO when using DPO
loss, and explore GRPO with squared loss in Section 4.1.

Applications. In this study, we do not assume any specific distribution for groups Dg. The col-
lection of prompts per group, Pxg , may have varying degrees of overlap. The GRPO framework
accommodates both distinct and overlapping prompt scenarios across different groups.

Apart from human groups, GRPO can be useful in scenarios where groups Dg represent distinct tasks
or topics within preference datasets, like helpful/harmful, truthful/unanswerable instances, or domain-
specific categories (e.g., math, physics, chemistry). Typically, these prompt distributions {Pxg}Ng=1
are disjoint, and GRPO seeks to optimize performance even across the most challenging categories.

GRPO is also applicable in scenarios where groups reflect diverse user preferences for a shared set
of prompts, with the goal of achieving equitable performance across user groups. This contrasts with
non-robust DPO, which aims to optimize preferences on average and might overlook minority groups.

Lastly, we acknowledge that the max-min objective of Equation (8) might be overly conservative,
potentially degrading average performance. We explore a more balanced approach between worst-case
and standard preference optimization objective in Appendix B.4.

3.1 Further Discussion and Insights

This section provides two insights regarding the GR-DPO loss in Equation (8).

Log-linear policy class. The zero-sum game perspective allows us to explore the presence of a Nash
equilibrium, serving as a benchmark for convergence during the policy optimization process. Given
that the domain of α is a simplex ∆K (in Equation (8)), we further define a parameterized policy
class Πθ for the policy πθ. We assume that the parameterized policy πθ is of the form πθ(y | x) =

exp fθ(x,y)∑
y∈Y exp fθ(x,y)

, where fθ is a linear function or a neural network, and θ belongs to a convex set Θ.

In LLM fine-tuning, sometimes practitioners concentrate on modifying solely the final layer. It
corresponds to a linear function, fθ(x, y) = θTϕ(x, y), with ϕ(x, y) denoting the embedding derived
from the language model removing its last layer, and θ as the parameters of the last layer. When
applying this linear parameterization, in conjunction with a uniform reference policy πref, the robust
objective outlined in Equation (8) is as follows (details in Appendix B.1):

min
θ∈Θ

max
α∈∆K−1

K∑
g=1

αg

(
− E(xg,yw,yl)∼Dg

[
log
(
σ
(
β⟨ϕ(x, yw)− ϕ(x, yl), θ⟩

))])
. (9)

The objective defined in Equation (9) is concave with respect to α and convex with respect to θ. This
structure allows the invocation of the minimax theorem for convex-concave functions ([42]) to assert
the existence of a Nash equilibrium.
Proposition 3.1. Under log-linear parameterization of the policy class, there exists a Nash equilib-
rium for the group robust direct preference optimization problem in Equation (9).

Robust policy optimization. The earlier derivation for the GR-DPO objective LGR−DPO(π) relies
on incorporating robustness in the reward modeling step (in Equation (7)) while using the solution to
the non-robust KL-regularized reward maximization objective in Equation (4).

Interestingly, we can obtain the identical expression for LGR−DPO(π) if incorporating robustness
in the KL-regularized reward maximization objective and using the reward function learnt in a
non-robust way. Consider the robust KL-regularized reward maximization

max
π

min
g∈G

Exg∼Pxg ,y∼π(·|xg)

[
r(xg, y)− βKL

[
π(y | xg)||πref(y | xg)

]]
. (10)

The following proposition characterizes such an invariant property.
2From a distributionally-robust viewpoint, this is equivalent to defining the uncertainty set as

{∑K
g=1 αgDg :

α ∈ ∆K

}
, and minimizing the worst-case expected loss across the uncertainty set.
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Algorithm 1 Mirror Descent for Group Robust Preference Optimization (GRPO)

1: Initialize: Step size ηα for group weights α, step size ηθ for policy π with weights θ, initial
weights θ(0) of the policy and weights over each group α(0), Projection operator PΘ

2: Input: Dataset D with size N = |D|, group size Ng for g = {1, 2, · · · ,K}, loss l(πθ; ·)
3: for t = 1, . . . , T do
4: α′ ← α(t−1)

5: g ∼ Categorical(N1/N, · · · , NK/N), (xg, yw, yl) ∼ Dg

6: α′
g ← α′

g exp ηα

(
N ·l(π

θ(t−1) ;(xg,yw,yl))

Ng

)
// Update weights for group g

7: α(t) ← α′/
∑

g′ α′
g′ // Renormalize α

8: θ(t) ← PΘ

(
θ(t−1) − ηθ

(
Nα(t)

g ∇θl(πθ(t−1) ;(xg,yw,yl))

Ng

))
// Use α to update θ

9: end for
10: Return: Output the robust policy π(θ(T ))

Proposition 3.2. Substituting the closed-form solution of the robust KL-regularized policy
maximization problem (Equation (10)) into the robust reward maximization objective in Equation (6)
leads to the same group robust DPO loss LGR−DPO in Equation (8) .

The analysis leverages the fact that the optimal policy of Equation (10) is identical to the solution of
the non-robust KL-regularized reward maximization in Equation (4) and is derived in Appendix B.2.

4 Algorithm

In this section, we discuss the policy optimization algorithm for solving the group robust DPO problem
in Equation (8). In particular, we aim to design an algorithm that performs updates in the parameter-
ized space Θ ⊂ Rd, i.e., updating θ of the parameterized policy πθ. Leveraging the perspective of the
2-player zero-sum game, we propose an alternating updating algorithm wherein one updates α and θ
alternatively. We summarize the overall approach in Algorithm 1, which we discuss and analyze next.

We employ the DPO loss l(πθ; ·) = log (σ(βhπθ
(·))) (Equation (5)) in Algorithm 1, however, our

algorithm can support other preference optimization losses (see Section 4.1). The algorithm performs
a gradient descent type update on θ and a deterministic mirror ascent on α using a Bregman divergence
with the distance generating function as the KL divergence. Since the α lies in a simplex and the
objective is linear, the update of α becomes multiplicative weights update with renormalization to a
simplex via softmax (see Nemirovski et al. [32] for details). Further, the weights α are determined
by the cumulative losses l(πθ; ·) accrued by each group, ensuring that groups with higher cumulative
losses get higher weights. The size of the group Ng appears as the empirical distribution Dg involves
Ng . We call it alternating update as the updated αt is used in the update from θt−1 to θt. In particular,
the gradient descent type update on θ is weighted by α in order to orient the update towards groups
with higher losses. The projection operator PΘ ensures the updated θt lies within Θ.

What does the weighted DPO update do? In Line 9 in Algorithm 1, the algorithm performs parame-
ter updates based on the weighted gradients. By using the DPO loss, i.e., l(πθ; ·) = log

(
σ(βhπθ

(·)
)

(see Equation (5)), we obtain the following gradient update expression ignoring the N/Ng constant

α(t)
g ∇θl(πθ(t−1) ; (xg, yw, yl)) = α(t)

g ∇θ log
(
σ(βhπ

θ(t−1)
(xg, yw, yl))

)
(11)

= α(t)
g σ

(
rθ(t−1)(xg, yl)− rθ(t−1)(xg, yw)

)
× [∇θ log πθ(t−1)(yw|xg)−∇θ log πθ(t−1)(yl|xg)].

The final term plays the critical role of enhancing the likelihood of the preferred response while
simultaneously diminishing the likelihood of the rejected response. This adjustment is proportional
to the disparity in rewards between the two responses. Moreover, the inclusion of αg is pivotal
for ensuring group robustness. This coefficient scales the gradient w.r.t. θ based on the cumulative
loss previously received by all samples within a specific group. Such a mechanism ensures that the
model’s focus is increasingly directed towards groups that have historically suffered higher losses.
Additionally, the scaling factor Ng guarantees that groups with a smaller volume of data do not face
a disadvantage.We defer further details in obtaining the gradient update expression to Appendix B.3.
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We demonstrate the global convergence with the following proposition.
Proposition 4.1. Suppose that the loss l(·; (xg, y, y

′)) is non-negative, convex, B∇−Lipschitz con-
tinuous, and bounded by Bl for all (xg, y, y

′) ∈ X ⊕ G × Y ×Y and ∥θ∥2 ≤ BΘ for all θ ∈ Θ with
convex Θ ⊂ Rd. The error of the average iterate of Algorithm 1, i.e., πθ̄(1:T ) = 1

T

∑T
t=1 θ

t, satisfies

E[LGR(πθ̄(1:T ))]−min
θ∈Θ
LGR(πθ) = O

(
T−1/2

)
.

We defer the proof of this proposition to Appendix E. The analysis follows from an adaptation of
the analysis in Nemirovski et al. [32] for the proposed sampling strategy in Algorithm 13. We note
that when fine-tuning only the final layer of a LLM, the output policy exists within the log-linear
policy class (see Section 3.1), and the corresponding loss function satisfies the assumptions in
Proposition 4.1 (see Lemma E.1).

4.1 Group Robust Identity Preference Optimization
The standard regularized reward maximization objective (Equation (3)) in DPO [37], tends to
overlook the KL-regularization and learn deterministic policies. This learned policy assigns preference
probability one to winning responses in the data which is often not realistic (see [1][Section 4.2]
and Appendix C). Recently, Azar et al. [1] show that the standard regularized reward maximization
objective (Equation (3)) in DPO [37] tends to overlook the KL-regularization and learn deterministic
policies (see [1, Section 4.2] and Appendix C). They thus propose an alternative approach called
Identity Preference Optimization (IPO) that is more likely to learn a randomized policy which
assigns appropriate probability to the preferred response and prevents overfitting. Following a
similar derivation as we did for group robust DPO with details given in Appendix C, we develop the
corresponding group robust IPO (GR-IPO):

min
π
LGR(π) := max

g∈G
LIPO(π,Dg) = max

α∈∆K−1

K∑
g=1

αg

(
E

(xg,yw,yl)∼Dg

[
hπ(xg, yw, yl)− 1

2β

]2)
.

For the log-linear policy class (introduced in Section 3.1), the objective function simplifies to

min
θ∈Θ

max
α∈∆K−1

K∑
g=1

αg

(
E(xg,yw,yl)∼Dg

[(
⟨ϕ(xg, yw)− ϕ(xg, yl), θ⟩ − 1

2β

)2])
.

To solve the GR-IPO above, it suffices to use Algorithm 1 with slight modifications, see Algorithm
2 in Appendix C. In particular, the update of θ is replaced by a weighted regression update:

θ̂ ← argmin
θ∈Θ

∑
(xg,yw,yl)∼D

[ αg

Ng

(
⟨ϕ(xg, yw)− ϕ(xg, yl), θ⟩ −

1

2β

)2]
.

For fixed α, we show (in Appendix C) that such an update admits a closed-form solution:

θ̂ =
1

2β
(STWS)−1STW1 with W := Diag

[
αg(1)

Ng(1)

, . . . ,
αg(N)

Ng(N)

]
,

where g(i) is the group of each sample i, Ng(i) is the number of samples in group
g(i) and 1 is a column vector of ones of dimension N . Here S is a matrix S :=[
(ϕ(x

(1)
g , y

(1)
w )− ϕ(x

(1)
g , y

(1)
l ))T , . . . , (ϕ(x

(N)
g , y

(N)
w )− ϕ(x

(N)
g , y

(N)
l ))T

]
. Each row of S

represents the difference in feature mappings ϕ of the preferred and less preferred response for each
prompt. The group robust IPO (GR-IPO) algorithm is presented in Appendix C, and its empirical
results are shown in Section 5.

5 Experiments
In this section, we study the empirical performance of our proposed Algorithm 1 on synthetic
and real-world datasets4. First, we simulate multi-group data disparities by varying the size and

3We study different sampling strategies and their error rates in Appendix E and we present the most
numerically stable one in Algorithm 1.

4Codes for synthetic and real-world experiments can be found at https://github.com/rsshyam/GRPO-bandits
and https://github.com/rsshyam/GRPO, respectively.
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Figure 2: Synthetic experiments: Algorithm 1 (GR-DPO and GR-IPO) leads to a significantly lower worst-case
validation loss and reward error compared to importance sampling (IS-DPO/IPO) and vanilla methods (DPO,
IPO). Results refer to the scenario in which groups have different sizes and responses’ distribution.

preference distributions of two synthetic groups. In the real-world setup, we study the alignment
of an LLM to the real preferences of people from various countries. We examine whether GRPO
aligns the LLM in a more equitable manner to reduce discrepancies in alignment among various
groups. Finally, we demonstrate that performance is improved by explicitly addressing the grouped
nature of the data during alignment.

5.1 Synthetic Experiments

We evaluate the performance of Algorithm 1 using synthetically generated group preference data for
the loss function l(πθ;·) – either DPO loss or IPO loss and denote them as GR-DPO and GR-IPO,
respectively. We compare them against vanilla DPO and IPO ([37, 1]), and the importance-sampling
(IS) variants of DPO and IPO (where the loss of each datapoint is inversely weighted by its group
data size).

Experimental Setup. Our experiments are designed to analyze settings where there exist multiple
groups with distinct characteristics. We adapt the standard (non-group based) experimental setup
proposed by [26] for the group preferences setting by incorporating group information into the
reward function r : X × Y × G → R. Here, X represents a two-dimensional state space [0, 1] ×
[0, 1], Y denotes a discrete action space {0, 1, 2, 3, . . . , n}, and G signifies a discrete group space
{0, 1, 2, . . . ,K}. The reward function, defined by the group-dependent feature vector ϕ(x, y, g) and
parameter vector θg, is given as r(x, y, g) := ⟨ϕ(x, y, g), θg⟩, while the feature vectors ϕ(x, y, g)
have a coordinate-flipped relationship and are defined in Appendix D.1.

We consider the following scenarios: (i) Groups are imbalanced in terms of size but have the same
distribution over responses, (ii) Groups are balanced in terms of size but have different response
distributions, and (iii) Groups are imbalanced in terms of size and also have different response
distributions. Note that having different response distributions leads to a difference in the difficulty
of learning, since groups with responses distant from each other (in terms of rewards or preference
probabilities) are typically more distinguishable and easier to learn. We discuss in Appendix D.2 how
we generate these three scenarios.

Implementation. Leveraging the linearity in the reward model, we utilize a log-linear policy class
parameterized by θ: πθ(y|x) = exp ⟨ϕ(x,y,g),θ⟩∑

y′∈Y exp ⟨ϕ(x,y′,g),θ⟩ . We run Algorithm 1 for both DPO and IPO
loss relative to the policy class detailed above with a dataset of 300 action pairs with preferences.

Evaluation Metrics. We use the following criteria to assess the performance of the algorithms:

Max Validation Loss. For each group g, with preference data denoted as (xi, yiw, y
i
l , g)

Ng

i=1, where Ng

is the number of data points in the group, we compute the DPO/IPO validation loss separately for
each group and identify the maximum loss among them in each run.

Max Reward Error. This metric compares the true reward of the optimal action determined
by θ∗g with that of the action deemed optimal by estimate θ̂ for each group, and identifies the
maximum error across all groups in each run. In particular, for data in the form (xi, g)

Ng

i=1,
which includes only states and groups, we calculate reward errors for every group g as follows:
E
(x,g)∼(xi,g)

Ng
i=1

[maxy⟨ϕ(x, y, g), θ∗g⟩ − ⟨ϕ(x, argmaxy⟨ϕ(x, y, g), θ̂⟩, g), θ∗g⟩].

Results. We present the average performance of Algorithm 1 (error bars over 20 seeds) alongside
baseline methods in Figure 2 for scenario (iii), while scenarios (i) and (ii) are Figures 4 and 5
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in Appendix D.2 due to space constraints. Our findings indicate that the robust methods consistently
surpass both vanilla and importance-sampling approaches. Notably, the robust methods demonstrate
significant superiority in uneven group scenarios, where the importance-sampling technique falls
short as it exclusively deals with data imbalance.

5.2 Global Opinion Experiments
For the real-data experiments, we consider the survey dataset GlobalOpinionQA ([15]) and the
publicly available Gemma-2B model [48]. 5 The data contains multiple choice questions answered by
participants from various countries, amounting to 2,554 questions covering various topics, including
politics, media, technology, religion, race, and ethnicity. For each question, the dataset provides a prob-
ability vector over the choices, signifying the percentage of people from a particular country choosing
each option. Note that this probability vector would be different for different countries. Hence, the
goal is to align the LLM to the probability vector corresponding to each country in a robust manner.

We consider the following five countries in the dataset: Nigeria, Egypt, India, China and Japan, with
data sizes 572, 570, 376, 309, and 712, respectively. We construct our training set as follows: For
the SFT training, we choose the best option (the choice with the highest probability) as the target.
For both IPO and GR-IPO training, we consider the best option as the winning response and another
randomly chosen option as the losing response. We outline the exact prompt we use in Appendix D.

We run the SFT training for one epoch over the training data on the pre-trained Gemma-2B model.
For both IPO/GR-IPO training we use the AdamW [27] optimizer with adaptive learning rates. For
SFT/IPO/GR-IPO training, we apply the LoRA strategy to fine-tune all layers of the model. We
then evaluate both the methods based on the worst group loss and accuracy. Here, the loss refers
to the IPO loss for each group and the accuracy refers to the percentage of winning response and
losing response pairs correctly ordered by the learned preference function (Equation (35)). We defer
further training and hyperparameter details to Appendix D.

Results. We present the average performance of GR-IPO over five seeds alongside IPO in Figure 3
(top plots). Our findings indicate that GR-IPO outperforms IPO in terms of maximum group loss
and minimum group reward accuracies. Moreover, GR-IPO effectively reduces the imbalance in
loss values among different groups. Additionally, we observe an improvement in log-probability
accuracies (which measure if the probability assigned by the fine-tuned model is higher for the winning
response compared to the losing response) for both IPO and GR-IPO, with GR-IPO demonstrating
better alignment for the worst-performing group compared to IPO.

Insights. We further note that the worst-performing groups are Groups-2,5, as shown in Figure 3.
GR-IPO improves the loss for these groups by assigning more weight to them, as illustrated in
Figure 3 (bottom middle plot). Additionally, we plot the initial log-probability accuracies for different
groups in Figure 3 (bottom right plot), assessing how accurately the SFT model classifies the winning
versus losing response for different groups. It is evident that Groups-2,5 are already underperforming.
Given that SFT training converges within one epoch without any discrepancies between groups, this
indicates that the base LLM inherently struggles with classifying responses for Groups-2,5. However,
by employing GR-IPO, we have mitigated the imbalance in the performance of the fine-tuned model.

6 Conclusions
We formalize the problem of robustly aligning an LLM to preference distributions from diverse groups.
To tackle the same, we introduced GRPO, a group robust formulation of reward-free RLHF, aiming
to minimize worst-case loss among groups. We explored the theoretical aspects of GRPO and demon-
strated its improved robust alignment performance through various experiments. We believe our ap-
proach will be highly valuable for future tailored LLM fine-tuning, specifically aimed at aligning with
the needs of diverse teams and user groups. In a broader context, it holds promise for mitigating biases
and discrepancies across various societal groups encountered in the task-specific adaptation of LLMs.

Limitations. When the dataset is balanced among groups and difficulty levels are comparable, our
GRPO approach does not offer a significant advantage over standard reward-free RLHF algorithms.
In addition, minimax methods often improve the worst group’s performance at the cost of reducing
the average or best group’s performance. Our proposed GRPO formulation (see Equation (8)),

5The model and dataset are available on Hugging Face at https://huggingface.co/google/gemma-2b and
https://huggingface.co/datasets/Anthropic/llm_global_opinions, respectively.
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Figure 3: Global opinion data: Top plots: GR-IPO leads to better worst-case final test loss and reward accuracy
compared to IPO. Moreover, it leads to more balanced losses across the different groups, reducing the gap between
best and worst-group loss (Group-1 vs. Group-5). Bottom plots: Log-prob. accuracy (left plot) and group weights
(middle plot) during GR-IPO training. GR-IPO increases the weight on worse-performing groups (Groups-2,5)
and decreases it on high-performing ones (Groups-1,3,4), leading to better worst-case accuracy. Groups-2,5 are
the ones with worse log-prob. accuracy at the beginning of training (right plot with a random subset of the training
data). We show the corresponding end-of-training log-prob. accuracies for GR-IPO in Figure 13 of Appendix D.

stemming from a minimax framework, will comply with the same property. Hence, in scenarios
where optimizing worst-case performance is less critical, we define a trade-off parameter to balance
between the worst-case performance and the average performance. This modified objective and
the necessary algorithmic changes are elaborated in Appendix B.4. The appropriate tuning of the
trade-off parameter for the specific application remains a subject for future investigation. Further,
we focus on settings with known groups, which are common in pluralistic alignment datasets and
tasks (see [57, 44]). When groups are unknown, one can still undertake several approaches such as
clustering, representation learning, feature analysis, expert consultations, etc., to help uncover group
structures in the data.
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Appendix

The supplementary section constitutes the following: An extended related work section in Appendix A,
proofs for the theoretical insights and the weighted DPO gradient expression in Appendix B, an
overview of IPO and the simplification for robust IPO in Appendix C, detailed experimental setup in
Appendix D, and convergence proof for Algorithm 1 and other sampling strategies in Appendix E.

A Additional Related Work

We detail a more extensive related work exposition in this section.

The Reinforcement Learning from Human Feedback (RLHF) is a concrete way to adapt a LLM
towards specific tasks or objectives using human feedback. This framework for fine-tuning LLMs is
inspired from [11] that uses human feedback to improve reinforcement learning policies. For LLMs, it
was first established in [60] and further developed in [45, 34]. It involves learning a reward function us-
ing the pairwise human feedback data that provides comparisons between responses for a given prompt.
This reward learning is performed through the Bradley-Terry model [5]. This learned reward model
is then used as an objective for optimizing the LLM policy using Proximal Policy Optimization [40].

However, obtaining high-quality human feedback data is expensive and several works such as [35, 2,
25] study the usage of AI feedback to reduce reliance on human input. Further, studies like [13, 28,
22] analyze the usage of active learning strategies to minimize the amount of human feedback data
required to perform RLHF. For a comprehensive overview and perspective of the RLHF topic, with
detailed discussions on various approaches and gaps, we refer the reader to [24, 7, 23].

Due to the inherent issues of tuning the hyperparameters of a PPO ([50, 37]) and susceptible nature
of reward models ([17, 49]), alternative approaches to the PPO-based RLHF have been proposed.
Foremost of them is the rejection sampling fine-tuning ([14, 18, 49]) which is inspired by the best-of-n
inference technique ([30]). The technique involves sampling n responses per prompt and fine-tuning
the model based on the highest scoring ones in terms of a learned reward function. Further works such
as [20, 54] avoid reward learning and propose conditional Supervised Fine-Tuning (SFT) inspired by
the reward-conditioned RL ([9]).

Another strategy proposed as an alternative to PPO-based RLPHF is DPO ( Rafailov et al. [37]),
wherein one optimizes the policy directly based on human preferences, bypassing the need for
learning a separate reward model. This method simplifies the training process and potentially reduces
overfitting and model misalignment issues. Theoretical advancements in understanding the dynamics
of DPO have been provided by [21, 53], who analyzed the convergence and stability of DPO policy
learning. Some other works such as [1, 58, 47, 43, 16] also study a similar reward-free RLHF
setup. In particular, [1] analyze the potential overfitting issues in DPO. Further, [16, 6] propose
strategies that bypass the need for preference datasets. [38, 55, 29] adopt a game-theory perspective
to learn Nash equilibrium policies. Typically, the reward-free RLHF approaches utilize a reference
policy trained via supervised fine-tuning, which is then further optimized. However, [19] propose
Monolithic Preference Optimization without reference model, bypassing supervised fine-tuning
entirely. [59] address the RLHF problem from an MDP framework, introducing a DPO-type
algorithm integrated with Proximal Policy Optimization (PPO). Additionally, works such as [51,
46, 10, 41, 56] investigate self-play preference optimization, where new data generated in each round
by the current policy is used to train an improved policy. Our work utilizes a reward-free framework
similar to [37, 1] but differs from all the above works in the following sense. Unlike previous works
that assume a single preference distribution, we consider fine-tuning a LLM given data from multiple
preference distributions across diverse groups. Further, we aim to fine-tune the LLM in a robust
manner such that there is minimal imbalance in performance across all groups.

Robust language modeling technique in the context of language model was first studied in [33] to
optimize performance over a wide-range of topics. It was further improved by [52] wherein they use
smaller model to learn the weights/importance that needs to be assigned to different topics and train a
larger model based on these weights. Both works aim to minimize the worst group loss based on the
group-DRO approach and focus on the pre-training aspects of language models. Concrete theoretical
study of this group-DRO approach was performed in [39] which studies the minimax formulation of
this group-DRO problem based on [31]. In the context of online batch selection, [4] propose a robust
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data downsampling method that performs class-aware priority reweighting to reduce training costs
while preserving worst-class performance.

In the RLHF setup, recent research has increasingly focused on enhancing the robustness of policy
learning to address certain inherent gaps in the RLHF framework as detailed in [7] such as reward
hacking and model misspecification. In particular, [3] formulated a weighted group loss for reward
model learning w.r.t. a parameter λ that determines the importance assigned to a group and apply it to
the anthropic Harmless vs Helpful data (6). In a similar manner,[12] design a weighted objective for
policy optimization w.r.t. parameter λ to trade-off the importance between task reward maximization
and safety cost minimzation. Another work [8] consider alignment to different sub-populations by
learning multiple reward functions corresponding to each sub-population and learning a robust policy
(max-min) w.r.t. the reward functions. Distinct from previous works, our approach circumvents
reward model learning and integrates group robustness directly into the reward-free tuning framework.
This allows us to directly learn a robust policy without the need for learning reward models. To learn
this robust policy, we present a concrete algorithm that adaptively assigns weights to the losses of
different groups and optimizes the policy to minimize this weighted loss. Additionally, our algorithm
features a novel gradient estimator specifically designed for the group robust DPO problem.

Other studies addressing robustness in preference optimization, such as [21] and [26], focus on
different facets of robustness, including robustness to noise and resilience against out-of-preference
data. In the non-robust group preference alignment setup, [57] explores learning group preferences
with LLMs by incorporating group information into prompts. However, their approach does not
involve fine-tuning a LLM but training a separate transformer module that optimally selects an
example sequence of prompts, LLM responses, and group preferences for in-context learning using a
LLM. Also, Wang et al. [49] consider alignment with user preferences assuming that each user/group
has varied importance over the distinct metrics in their multi-objective reward model. The output
policy is trained to output a response based on both the prompt and the importance/weights over
the individual metrics. In contrast, the distinctive feature of our method is that we are not modeling
multi-reward objectives but consider a reward-free setting. Specifically, we consider the robust
alignment problem optimizing for the worst group performance. And, our methodology directly
models each group’s preferences through a group-dependent latent reward model where the group
dependency is injected through the prompt.

B Theoretical Insights

In this section, we detail the proofs for the theoretical insights elucidated in Section 3 and the weighted
DPO gradient expression discussed in Section 4.

B.1 Robust Objective for the Log-linear Policy Class

Here, we describe obtaining the robust objective for the log-linear policy class as in Equation (9).
Starting from the robust objective for a general policy class in Equation (8), LGR can be specialized
as follows:

LGR(π) = max
α∈∆K−1

K∑
g=1

αg

(
− E(xg,yw,yl)∼Dg

[
log
(
σ(βhπ(xg, yw, yl)

)])
(i)
= max

α∈∆K−1

K∑
g=1

αg

(
− E(xg,yw,yl)∼Dg

[
log
(
σ(β log(

π(yw|xg)
πref(yw|xg)

)− β log(
π(yl|xg)
πref(yl|xg)

)
)])

(ii)
= max

α∈∆K−1

K∑
g=1

αg

(
− E(xg,yw,yl)∼Dg

[
log
(
σ(β log(π(yw|xg))− β log(π(yl|xg))

)])

6The data is publicly avaiable in Huggingface website https://huggingface.co/datasets/Anthropic/hh-rlhf
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(iii)
= max

α∈∆K−1

K∑
g=1

αg

(
− E(xg,yw,yl)∼Dg

[
log
(
σ(β log(

exp fθ(xg,yw)∑
y∈Y exp fθ(xg,y)

)−

β log(
exp fθ(xg,yl)∑
y∈Y exp fθ(xg,y)

)
)])

(iv)
= max

α∈∆K−1

K∑
g=1

αg

(
− E(xg,yw,yl)∼Dg

[
log
(
σ(β log(exp θTϕ(xg, yw))−

β log(exp θTϕ(xg, yl))
)])

= max
α∈∆K−1

K∑
g=1

αg

(
− E(xg,yw,yl)∼Dg

[
log
(
σ
(
β⟨ϕ(xg, yw)− ϕ(xg, yl), θ⟩

))])
.

Here, (i) follows from the definition of hπ(xg, yw, yl) = log(
π(yw|xg)
πref(yw|xg)

)−log( π(yl|xg)
πref(yl|xg)

), (ii) follows
from the fact that for a uniform reference policy πref(yw|xg) = πref(yl|xg), (iii) follows from sub-
stituting πθ(y|xg) =

exp fθ(xg,y)∑
y∈Y exp fθ(xg,y)

, and (iv) follows from substituting fθ(xg, y) = θTϕ(xg, y).

B.2 Robust KL-Regularized Policy Maximization

In this section, we consider the robust version of the classical KL-regularized reward maximization
objective (Equation (3)) detailed in Equation (10) for a reward function r(xg, y), reference policy
πref, and a general class of policies Π.

max
π∈Π

min
g∈G

Exg∼Pxg ,y∼π(·|xg)

[
r(xg, y)

]
− βKL[π(y | xg)||πref(y | xg)]. (12)

Lemma B.1. The optimal policy π∗ for the robust KL-regularized reward maximization objective
(Equation (12)) for a reward function r(xg, y), reference policy πref is

π∗(y|xg) =
1

Z(xg)
πref(y|xg) exp

(r(xg, y)

β

)
, (13)

where Z(xg) =
∑

y πref(y|xg) exp(
1
β r(xg, y)) is a partition function.

Proof. We recast Equation (12) based on Equation (8) and perform the following analysis similar to
[37][Appendix A.1]:

max
π∈Π

min
α∈∆K−1

K∑
g=1

αg

(
E

xg∼Pxg

[
E

y∼π(·|xg)

[
r(xg, y)

]
− βDKL

[
π(y|xg)||πref(y|xg)

]])
(14)

=max
π∈Π

min
α∈∆K−1

K∑
g=1

αg

(
E

xg∼Pxg

E
y∼π(·|xg)

[
r(xg, y)− β log

( π(y|xg)
πref(y|xg)

)])
(15)

=− βmin
π∈Π

max
α∈∆K−1

K∑
g=1

αg

(
E

xg∼Pxg

E
y∼π(·|xg)

[
log
( π(y|xg)
πref(y|xg)

)
− r(xg,y)

β

])
(16)

=− βmin
π∈Π

max
α∈∆K−1

K∑
g=1

αg

(
E

xg∼Pxg

E
y∼π(·|xg)

[
− log(Z(xg)) + log

( π(y|xg)
1

Z(xg)
πref(y|xg) exp(

r(xg,y)

β )

)])
.

(17)
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Further, by defining π∗(y|xg) =
1

Z(xg)
πref(y|xg) exp(

r(xg,y)
β ), we can rewrite Equation (17) as:

βmin
π∈Π

max
α∈∆K−1

K∑
g=1

αg

(
E

xg∼Pxg

E
y∼π(·|xg)

[
log
( π(y|xg)
π∗(y|xg)

)
− log(Z(xg))

])
(18)

=βmin
π∈Π

max
α∈∆K−1

K∑
g=1

αg

(
E

xg∼Pxg

[
DKL

(
π(·|xg)||π∗(·|xg)

)
− log(Z(xg))

])
(19)

=βmin
π∈Π

roL(π), (20)

where we use

roL(π) := max
α∈∆K−1

K∑
g=1

αg

(
E

xg∼Pxg

[
DKL

(
π(·|xg)||π∗(·|xg)

)
− log(Z(xg))

])
.

It is not hard to show that roL(π) is minimized by π∗. Indeed, let us consider any other policy
π ̸= π∗. Then, we have

roL(π) =β max
α∈∆K−1

K∑
g=1

αg

(
E

xg∼Pxg

[
DKL

(
π(·|xg)||π∗(·|xg)

)
− log(Z(xg))

])
(21)

≥ β max
α∈∆K−1

K∑
g=1

αg

(
E

xg∼Pxg

[
− log(Z(xg))

])
(22)

= β max
α∈∆K−1

K∑
g=1

αg

(
E

xg∼Pxg

[
DKL

(
π∗(·|xg)||π∗(·|xg)

)
− log(Z(xg))

])
(23)

= roL(π∗), (24)

where the inequality follows since DKL

(
π(·|x)||π∗(·|x)

)
≥ 0. This implies π∗ minimises

Equation (20).

Note that, we have proved that the optimal policy expression for Equation (12) aligns with the form
of the optimal policy for standard (non-robust) KL-regularized reward maximization Equation (4).
Proposition 3.2. Substituting the closed-form solution of the robust KL-regularized policy
maximization problem (Equation (10)) into the robust reward maximization objective in Equation (6)
leads to the same group robust DPO loss LGR−DPO in Equation (8) .

Proof. In [37], the DPO loss (see Equation (5)) is obtained by using the following reward loss:

LR(r;D) = LR(r; {Dg}Kg=1) = −
K∑

g=1

E
(xg,yw,yl)∼Dg

[log (σ (r(xg, yw)− r(xg, yl)))] , (25)

and replacing r(·, ·) with the relation

π∗(y|x) = 1
Z(x)πref(y|x) exp

( r(x,y)
β

)
, (26)

which is the solution to

π∗ =max
π∈Π

K∑
g=1

E
(xg∼Pxg ,y∼π(·|xg))

[
rϕ(xg, y)

]
− βDKL

[
π(y|xg)||πref(y|xg)

]
. (27)

However, in our group-robust formulation, we replace Equation (25) with

max
g∈G
LR(r; {Dg}Kg=1) = max

α∈∆K−1

K∑
g=1

αg

(
− E

(xg,yw,yl)∼Dg

[
log
(
σ
(
r(xg, yw)− r(xg, yl)

))])
,

(28)
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while Equation (27) remains the same. Alternatively, we can replace Equation (27) with its robust
version, i.e.,

π∗ = max
π∈Π

min
α∈∆K−1

K∑
g=1

αg

(
E

(xg∼Pxg ,y∼π(·|xg))

[
rϕ(xg, y)

]
− βDKL

[
π(y|xg)||πref(y|xg)

])
,

(29)
however, we have already shown, in Lemma B.1, that this does not change the obtained policy-reward
relation from Equation (26). Hence, this proves Proposition 3.2.

B.3 Analysis of the Gradient

We elucidate the steps to obtain the expression for the loss gradient in Equation (11). We can simplify
the gradient as follows:

αt
g∇θl(πθt−1 ; (xg, yw, yl))

ng

=
αt
g∇θ log

(
σ(βhπθt−1 (xg, yw, yl))

)
ng

(i)
=

αt
g

ng

σ
′
(βhπθt−1 (xg, yw, yl))

σ(βhπθt−1 (xg, yw, yl))
× [βh

′

πθt−1
(xg, yw, yl)]

(ii)
=

βαt
g

ng

(
1− σ(βhπθt−1 (xg, yw, yl))

)
× [h

′

πθt−1
(xg, yw, yl)]

(iii)
=

βαt
g

ng
σ
(
− βhπθt−1 (xg, yw, yl)

)
× [h

′

πθt−1
(xg, yw, yl)

)
]

(iv)
=

βαt
g

ng
σ
(
β
(
log(

πθt−1 (yl|x)
πref(yl|x) )− log(

πθt−1 (yw|x)
πref(yw|x) )

))
× [h

′

πθt−1
(xg, yw, yl)]

(v)
=

αt
g

ng
σ
(
rθt−1(xg, yl)− rθt−1(xg, yw)

)
× [∇θ log πθt−1(yw|xg)−∇θ log πθt−1(yl|xg)]

Here, (i) follows from the derivative of log(·) function and denoting the derivative of sigmoid function
σ(·) as σ

′
(·). (ii) and (iii) follow from the fact that for any s ∈ R, σ

′
(s) = 1 − σ(s) = σ(−s).

Finally, (iv) and (v) follow using the definition of hπ(x, yw, yl) = log( π(yw|x)
πref(yw|x) ) − log( π(yl|x)

πref(yl|x) ),

and substituting rθ(xg, y) = β log(
πθ(y|xg)
πref(y|xg)

)− β logZ(xg) from Equation (4).

B.4 Trading off worst-case vs. average performance

In the robust objective of Equation (8), we intend to minimize the worst-case loss. This often might
adversely impact the average loss leading to bad average performance across the different groups. To
mitigate this, we propose the following robust trade-off direct preference optimization objective for a
specified policy π and set of group weights µ1, . . . , µK :

LGR,χ(π) :=(1− χ)

K∑
g=1

µgLDPO(π,Dg) + χmax
g∈G
LDPO(π,Dg)

=(1− χ)

K∑
g=1

µg

(
− E(xg,yw,yl)∼Dg

[
log
(
σ
(
βhπ(xg, yw, yl)

))])
+

χmax
g∈G

(
− E(xg,yw,yl)∼Dg

[
log
(
σ
(
βhπ(xg, yw, yl)

))])
.

(30)

Here, note that the input weights µg can be equal for all groups leading to a trade-off between
the average and worst-case performance w.r.t. parameter χ. Following Equation (8), this can be
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equivalently recast into:

LGR,χ(π) =(1− χ)

K∑
g=1

µg

(
− E(xg,yw,yl)∼Dg

[
log
(
σ(βhπ(xg, yw, yl)

)])

+ χ max
α∈∆K−1

K∑
g=1

αg

(
− E(xg,yw,yl)∼Dg

[
log
(
σ(βhπ(xg, yw, yl)

)])
,

(31)

= max
α∈∆K−1

K∑
g=1

((1− χ)µg + χαg)
(
− E(xg,yw,yl)∼Dg

[
log
(
σ(βhπ(xg, yw, yl)

)])
(32)

where ∆K−1 represents the (K − 1)-dimensional simplex of probabilities. Hence, minimizing the
loss in Equation (31) implies that one can implicitly find an optimal reward function using human
group preference data that is robust without losing average performance, and obtain a policy that
works effectively in terms of both average and worst-case performance:

min
π
LGR,χ(π). (33)

As Equation (8) involves maximizing with respect to α and minimizing with respect to π, it forms
a two-player game similar to the one considered in Section 3.1, where the policy π and α act as
opponents with inversely related payoffs. However, the contributions of the maximizing player (α)
on the final outcome are limited depending on parameters χ and µ.

C IPO Simplification

Within the context of a finite data setting, it is common to record two responses (y, y′) for each
prompt x. Based on these observations, there might be a tendency to inaccurately deduce that the
preference distribution fulfills p(y ≻ y′|x) = 1. Consequently, and assuming the Bradley-Terry
model of preferences, the reward function r has to satisfy r(y, x)− r(y′, x)→∞. Further, given that
DPO policy π is directly dependent on the reward function (Equation (4)), it holds that π(y′|x)

π(y|x) = 0.
In such a case, the policy overfits irrespective of the KL regularization factor. To circumvent this,
[1] consider reward-free RLHF problem. Specifically, they propose preference optimization in the
policy objective instead of reward optimization as follows:

max
π

Ex∼ρ,y∼π(·|x),y′∼µ(·|x)
[
Ψ(p(y ≻ y′)|x)

]
− βKL

[
π(y|x)||πref(y|x)

]
. (34)

Here, Ψ : [0, 1] → R is a non-decreasing function, ρ refers to the distribution of prompts and, µ
refers to the competing behavior policy. Choosing Ψ as the identity function, the optimal policy
π∗ of Equation (34) has a similar expression to Equation (4) with the reward function r(·) substituted
by the following preference function p(·),

p(y ≻ µ|x) = β log
π∗(y | x)
πref(y | x)

+ β logZ(x). (35)

Recalling the definition of hπ(x, y, y
′) = log( π(y|x)

πref(y|x) ) − log( π(y′|x)
πref(y′|x) ) from Section 2, it follows

from Equation (35) that π∗ adheres to the following identity that equates the true preference with
the policy’s preference of y over y′:

hπ∗(x, y, y′) = β−1(p(y ≻ µ|x)− p(y′ ≻ µ|x)). (36)

where p(y ≻ µ|x) := Eȳ∼µ(·|x)
[
p(y ≻ ȳ|x)

]
. The equation motivates us to find a policy π that

minimizes the squared differences of two sides in Equation (36),

L(π) = Ey,y′∼µ

[
hπ(x, y, y

′)− β−1(p(y ≻ µ|x)− p(y′ ≻ µ|x))
]2
. (37)

For an empirical dataset where one observes if yw is more preferable to yl, the policy minimization
objective in Equation (37) becomes the IPO objective:

LIPO(π,D) = E
(x,yw,yl)∼D

[
hπ(x, yw, yl)− 1

2β

]2
. (38)
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We can simplify Equation (38) for the IPO Loss using Log-linear policy class similar to Equation (9)
as follows

LIPO(π,D) = E
(x,yw,yl)∼D

[(
⟨ϕ(x, yw)− ϕ(x, yl), θ⟩ −

1

2β

)2]
. (39)

Contrary to DPO, the IPO Loss results in a problem formulation equivalent to linear regression for
the linear bandit setting. This leads us to obtain a closed form analytical solution for θ

θ̂IPO =
1

2β
(XTX)−1XT1, (40)

where 1 = {1}N . Here, X ∈ Rd×N . In particular, each row of X is the difference of the preferred
and least preferred feature vectors ϕ(x, yw)− ϕ(x, yl) for (x, yw, yl) ∈ X × Y × Y

X =


ϕ(x1, y1)− ϕ(s1, y

′
1)

ϕ(x2, y2)− ϕ(x2, y
′
2)

...
ϕ(xn, yn)− ϕ(xn, y

′
n)

 .

When re-written in this form it is trivial to see that the stability of the IPO Loss depends upon the
rank of the matrix X .

Group IPO: We begin by conducting experiments with IPO considering the existence of closed form
solution for this particular setting. In particular, given a set of preference data D = {D1,D2} from
either groups with varying ratio, one aims to find an optimal θ that minimizes the group IPO loss,

LIPO(π,D) = E
(x,yw,yl)∼D1

[(
⟨ϕ(x, yw, 0)− ϕ(x, yl, 0), θ⟩ −

1

2β

)2]
(41)

+ E
(x,yw,yl)∼D2

[(
⟨ϕ(x, yw, 1)− ϕ(x, yl, 1), θ⟩ −

1

2β

)2]
. (42)

Concisely, one can also write this as,

LIPO(π,D) = E
(x,yw,yl,g)∼D

[(
⟨ϕ(x, yw, g)− ϕ(x, yl, g), θ⟩ −

1

2β

)2]
. (43)

We assume that the feature vectors for each group is known, but the reward parameter θ is unknown.
So, given the preference data with group information and the group dependent feature vectors, one
aims to learn an optimal θ that balances both groups by minimizing the above loss. The solution to
this will still be the closed form solution expressed in Equation (40) with feature matrix X consisting
group dependent features.

Group Robust IPO: It is straightforward to see that in such a setting, the group with higher number
of preference data will have an unfair advantage as they contribute more to the loss. Hence, a robust
approach needs to be considered as follows:

roLIPO(π,D) = max∑
g αg=1

E
(x,yw,yl,g)∼D

[
αg

(
⟨ϕ(x, yw, g)− ϕ(x, yl, g), θ⟩ −

1

2β

)2]
. (44)

One can use, Algorithm 1 to find the optimal θ for Equation (44). But considering the weighted
regression form of the loss, one can use the following simplified algorithm Algorithm 2. Note that the
last step, inadvertently leads to a weighted regression whose solution can be obtained in closed form.

D Additional Experiments and Details

In this section, we discuss additional experimental and training details. We use the following
hyperparameters for the synthetic experiments. The importance sampling methods use the same
hyperparameters as the corresponding vanilla ones. Further, we note that there is no learning rates for
IPO and GR-IPO as we use the closed-form solution detailed in Section 4.1 for updates.
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Algorithm 2 Policy Optimization for Robust IPO in Linear Bandits

1: Initialize: Step size ηα for group weights α, initial weights θ(0) of the policy and weights over
each group α(0)

2: Input: Dataset D with size N = |D|, group size Ng for g = {1, 2, · · · ,K}
3: for t = 1, . . . , T do
4: Calculate group loss lg for each group g on Dg

5: α′ ← αt−1; α′
g ← α′

g exp (ηGlg) // Update weights for group g
6: α(t) ← α′/

∑
g′ α′

g′ // Renormalize α

7: θt ← argminθ E(x,yw,yl,g)∼D

[
α
(t)
g

(
⟨ϕ(x, yw, g)− ϕ(x, yl, g), θ⟩ − 1

2β

)2]
8: end for
9: Return: Output the robust policy π(θt)

Training Type Learning Rate β Step Size
DPO 0.9 1 -
IPO - 0.1 -
GR-DPO 0.9 1 0.5
GR-IPO - 0.1 0.01
Table 1: Hyperparameters for synthetic experiments.

D.1 Synthetic Experiments - Experiments setup

Here we provide a full definition of our synthetic experimental setup discussed in Section 5.

We adapt the standard (non-group based) experimental setup proposed by [26] for the group pref-
erences setting by incorporating group information into the reward function r : X × Y × G → R.
Here, X represents a two-dimensional state space [0, 1]× [0, 1], Y denotes a discrete action space
{0, 1, 2, 3, . . . , n}, and G signifies a discrete group space {0, 1, 2, . . . ,K}. The reward function,
defined by the group-dependent feature vector ϕ(x, y, g) and parameter vector θg , is given as:

r(x, y, g) := ⟨ϕ(x, y, g), θg⟩. (45)

Further, we consider n = 7, K = 2 and denote x := (x0, x1) ∈ X . The feature vector ϕ(x, y, g) :=
(ϕ0(x, y, g), ϕ1(x, y, g), ϕ2(x, y, g), ϕ3(x, y, g)) and parameters θg ∀g ∈ G are defined as follows:

ϕi(x, y, g) :=


(

y
n+1 + 1

)
· cos(x⌊i/2⌋ · π) if i%2 = g(

1
y

n+1+1

)
· sin(x⌊i/2⌋ · π) otherwise

, θ0 := (1, 3, 1, 3), θ1 := (3, 1, 3, 1).

By design, this parameterization ensures a coordinate-flipped relationship between groups, effectively
mirroring one group to the other. Also, we study two other feature parameterizations and include
their experimental results in Appendix D.3.

D.2 Synthetic Experiments - Preferences data generation

In our synthetic experiments, we considered three scenarios: (i) Groups are imbalanced in size, (ii)
preferences distribution, and (iii) both of the above. The size imbalance is generated by using ratios
0.2 : 0.8, respectively. Instead, to generate imbalance in terms of preferences we proceed as follows.
In scenario (i), after randomly selecting a state x within group g and an action y1, a second action y2
is randomly chosen (groups have the same distribution over responses). Instead, in scenarios (ii) and
(iii), for one group y2 is the action most distant from y1, while for the other, it is the closest (groups
have different distributions over responses). In both methods, we calculate the rewards r(x, y1, g)
and r(x, y2, g), designating the action with the higher reward as preferred.

Here, we provide the resulting plots for scenarios (i) and (ii).

Trading off worst-case vs. Average performance

We perform ablation studies for various values of χ trading-off between the average and worst-case
performance. We observe in Figure 6, that the max validation loss decreases while moving from
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Figure 4: Algorithm 1 (GR-DPO and GR-IPO) leads to a lower worst-case validation loss and reward
error compared to importance sampling and vanilla methods. Results refer to the scenario in which
groups have different sizes but same responses’ distribution. Note that the gap between Algorithm 1
and importance sampling is smaller than in Figure 4. This is expected considering that the primary
difference between groups arises from data imbalance, which is handled by importance sampling.
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Figure 5: Algorithm 1 (GR-DPO and GR-IPO) leads to a lower worst-case validation loss and reward
error compared to the non-robust vanilla methods. Results refer to the scenario in which groups
have same sizes but different responses’ distribution. Unlike the setups of Figure 4 and Figure 2
importance sampling has no effect here (it coincides with vanilla DPO/IPO since groups have the
same sizes).
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Figure 6: Ablation study for the trade-off parameter χ in the synthetic experimental setup. Results
refer to the scenario in which groups have different sizes and different responses’ distribution. Note
that increasing χ improves worst group performance at the expense of average performance.

χ = 0 to χ = 1, where χ = 0 corresponds to importance sampling with group weights µ1, · · · , µg

mapping to importance sampling weights (see Equation (30)) and χ = 1 corresponds to GR-IPO.
Further, we plot the average validation loss which increases while moving from χ = 0 to χ = 1,
demonstrating the trade-off between average and worst-case performance. Note that, GR-IPO aptly
increases the average loss (as expected) in order to reduce the worst group loss.

D.3 Synthetic Experiments - Additional feature parametrizations

We present further experiments on synthetic preference data, using different configurations of
the ϕ(x, y, g) and θg vectors characterising the group-specific reward distributions r(x, y, g) =
⟨ϕ(x, y, g), θg⟩.
With the same action space n = 7 and group space K = 2, we consider same and flipped configura-
tions of ϕ(x, y, g) = (ϕ0, ϕ1, ϕ2, ϕ3), as follows:
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Same: Here, the feature vectors are the same irrespective of group g and reward vectors are coordinate-
flipped.

ϕi(x, y, g) :=


(

y
n+1 + 1

)
· cos(x⌊i/2⌋ · π) if i%2 = 0(

1
y

n+1+1

)
· sin(x⌊i/2⌋ · π) otherwise

, θ0 := (1, 3, 1, 3), θ1 := (3, 1, 3, 1).

Flipped: Here, the feature vectors include alternating sin, cos terms with swapped order for g =
{0, 1},with alternating coefficients. And the reward vectors are coordinate-flipped as before.

ϕi(x, y, g) :=


(

y
n+1 + 1

)−1·1
[
i%2=1

]
· cos(x⌊i/2⌋ · π) if i%2 = g(

y
n+1 + 1

)−1·1
[
i%2=1

]
· sin(x⌊i/2⌋ · π) otherwise

The experimental results are shown in Figures 7, 8 and 9 for the same experiment, and Figures 10, 11
and 12 for the flipped experiment.
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Figure 7: In this experiment, we consider same feature vectors on even groups imbalanced in size.
We observe similar performance as in Figure 4 where we consider the same setting with swapped
feature vectors for groups. GR-DPO slightly improves over importance sampling DPO, however,
GR-IPO exactly matches the performance of importance sampling. And this is expected considering
that the groups have the same level of difficulty and differ only in terms of data size.
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Figure 8: In this experiment, we consider same feature vectors on uneven groups balanced in size.
Here, GR-DPO/GR-IPO outperforms corresponding importance sampling methods in terms of worst-
case validation loss, but, GR-IPO tends to overfit. This is reflected in the reward errors, where
GR-IPO performs worse than IPO. However,overall, GR-DPO outperforms all other methods in terms
of worst-case reward errors.
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Figure 9: In this experiment, we consider same feature vectors on uneven groups imbalanced in size.
We observe similar performance as in Figure 8 where we consider the same features for groups but
with balanced data. Here, DPO is overfitting and GR-DPO outperforms both DPO and importance
sampling DPO. IPO is stable, considering it has a closed form solution. And in terms of worst-case
validation loss, GR-IPO tends to overfit, even though it outperforms IPO and importance sampling
IPO. The overfitting is more evident in reward errors, where GR-IPO performs worse than IPO and
importance sampling IPO. However,overall, GR-DPO outperforms all other methods in terms of
worst-case reward errors.
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Figure 10: In this experiment, we consider flipped feature vectors on even groups imbalanced in size.
We observe very similar performance as in Figure 4 where GR-DPO/GR-IPO slightly improves over
importance sampling DPO/IPO.
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Figure 11: In this experiment, we consider flipped feature vectors on uneven groups balanced in
size. Here, GR-DPO/GR-IPO outperforms corresponding vanilla methods in terms of worst-case
validation loss and GR-DPO outperforms all other methods in terms of worst-case reward errors.
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Figure 12: In this experiment, we consider flipped feature vectors on uneven groups imbalanced in
size. Here, we observe a similar performance to that of Figure 2 where GR-DPO/GR-IPO outperforms
corresponding vanilla and importance sampling methods in terms of worst-case validation loss. And,
GR-DPO outperforms all other methods in terms of worst-case reward errors.
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D.4 Global Opinion Data Experiments - Setup and Additional Plots

We use the following prompt type for both SFT and DPO training: "Opinion of people in (country-
name) on: (question). Please select the best response: A) Choice-1, B) Choice-2, ...". The target
response is just the letter ’A’, ’B’, etc. The training data size from each country are as follows:
Nigeria-572, Egypt- 570, India-376, China-309, Japan-712. Further, the data is split as 80% for
training, 10% for validation and 10% for testing. We run the SFT training with learning rate 10−4 for
one epoch over the training data on pre-trained Gemma-2B model. We use this SFT trained model as
the reference model for training IPO and GR-IPO. For the IPO training, the optimal hyperparameters
were learning rate 3 ∗ 10−5, and β = 0.01. For the GR-IPO training, we use the same β but the
optimal learning rate and the exponential step size were 6∗10−5 and 5∗10−7. For both IPO/GR-IPO
training we use AdamW [27] optimizer with adaptive learning rates decreasing by a factor of 10 if
there is no improvement in terms of loss (average group loss for IPO/ worst group loss for GR-IPO)
for 4k iterations on a validation set. Further, for GR-IPO, the exponential step size is decreased by a
factor of 2 whenever learning rate is reduced. This adaptive learning rates and exponential step sizes
ensures stability in training and leads to convergence. We then evaluate both the methods based on
the worst group loss and accuracy. Here, the accuracy refer to the percentage of prompt, winning
response and losing response correctly ordered by the learned preference function (Equation (35)).

All experiments were run on a single node of A100 SXM4 machine with 40GB GPU memory, 30
CPU cores, 200GB RAM, and 525GB SSD memory. Further, for each seed, the execution time of the
experiments is approximately 3-5 hours until convergence. We also provide the exact hyperparameters
used in the table below.

Training Type Learning Rate β Step Size Optimizer
SFT 10−4 - - RmsProp
IPO 3× 10−5 0.01 - AdamW
GR-IPO 6× 10−5 0.01 5× 10−7 AdamW

Table 2: Hyperparameters for SFT, IPO, and GR-IPO training.
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Figure 13: Global opinion data: Evolution of worst-case loss, reward accuracy during IPO and
GR-IPO training. Notably, both IPO and GR-IPO improve their accuracy. However, GR-IPO achieves
better worst-case alignment performance. In the right, we plot the end of training log-prob. accuracies
for GR-IPO.
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E Convergence Proofs for Different Sampling Strategies

In this section, we study the convergence rates for different sampling strategies including the proposed
Algorithm 1.

E.1 Convergence Proof for Algorithm 1

In this section, we prove the convergence of the proposed Algorithm 1 in terms of the error of the
average iterate πθ̄(1:T ) ,

ϵT = LGR(πθ̄(1:T ))−min
θ∈Θ
LGR(πθ), (46)

as stated in Proposition 4.1.

Proposition 4.1. Suppose that the loss l(·; (xg, y, y
′)) is non-negative, convex, B∇−Lipschitz con-

tinuous, and bounded by Bl for all (xg, y, y
′) ∈ X ⊕ G × Y ×Y and ∥θ∥2 ≤ BΘ for all θ ∈ Θ with

convex Θ ⊂ Rd. The error of the average iterate of Algorithm 1, i.e., πθ̄(1:T ) = 1
T

∑T
t=1 θ

t, satisfies

E[LGR(πθ̄(1:T ))]−min
θ∈Θ
LGR(πθ) = O

(
T−1/2

)
.

Proof. We build our proof based upon the online mirror descent algorithm’s regret bound in [32, Eq.
3.1]. [32]’s theorem considers the following saddle-point stochastic optimization problem,

min
θ∈Θ

max
α∈∆K−1

{
ϕ(θ, α) =

K∑
g=1

αgE[Fg(θ, ξ)]
}
. (47)

Denote fg(θ) = E[Fg(θ, ξ)]. In our problem, we consider,

ξ := (xg, y, y
′) ∼ D, (48)

which is equivalent to

ξ := (xg, y, y
′) ∼

K∑
g=1

Ng

N
Dg, (49)

and we define Fg′(θ, (xg, y, y
′)) := N

Ng
1[g=g′]l(θ; (xg, y, y

′)). Then, the expectation

Eξ[Fg(θ, ξ)] =

K∑
g′=1

Ng′

N
EDg′ [Fg(θ, ξ)|g = g′]

=
Ng

N
EDg

[Fg(θ, ξ)|g = g′]

=
Ng

N
EDg

[ N
Ng

l(θ; (xg, y, y
′))|g = g′

]
= EDg [l(θ; (xg, y, y

′))|g = g′]

= fg(θ)

Mirror Descent mapping. We begin by mapping Algorithm 1 to the general mirror descent
framework of [32].

Further, we denote the gradients of the objective ϕ(θ, α) w.r.t. θ and α as

∂ϕ(θ, α) = (∂θϕ(θ, α),−∂αϕ(θ, α)).

Here, the negative sign for the gradient w.r.t. α indicates that we perform maximization w.r.t. α. Let
Φ(θ, α, ξ) :=

∑K
g=1 αg[Fg(θ, ξ)]. Then the stochastic subgradients for ϕ(θ, α) for a given ξ is as

follows:
∂Φ(θ, α, ξ) = (∂θΦ(θ, α, ξ),−∂αΦ(θ, α, ξ)).
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Simplifying the gradients we obtain the following for ξ = (xg, y, y
′):

∂Φ(θ, α, ξ) =

[
∂θ
∑K

g′=1 αg′ [Fg′(θ, ξ)]

−∂α
∑K

g′=1 αg′ [Fg′(θ, ξ)]

]

=

[
∂θ
∑K

g′=1 αg′ [ N
Ng′

1[g=g′]l(θ; (xg, y, y
′))]

−∂α
∑K

g′=1 αg′ [ N
Ng′

1[g=g′]l(θ; (xg, y, y
′))]

]

=

[ Nαg

Ng
∇θl(θ; (xg, y, y

′))

−
(
0, · · · , N

Ng
l(θ; (xg, y, y

′)), · · · , 0
)] .

Based on the above gradient expressions, we can map the updates of θt and αt in Algorithm 1, to
the general mirror descent update rule:

ζt+1 = (θt+1, αt+1) = P(ζt)(γ
t∂Φ(θt, αt, ξ)). (50)

Here, we use the compact notation ζ = (θ, α). Further, γt denotes the step-size at time t of the algo-
rithm and Pζ(·) is the prox-mapping corresponding to the mirror descent algorithm defined as follows:

Pζ(ν) = argmin
ζ′∈(Θ×∆K−1)

{
ν⊤(ζ ′ − ζ) + V (ζ, ζ ′)

}
. (51)

Here, V (·, ·) is the prox-function associated with the distance-generating function (Bregmann Di-
vergence) ω(·). For our setup in Algorithm 1, we define the following combined distance-generating
function over ζ ∈ (Θ×∆K−1):

ω(ζ) =
ωθ(θ)

2D2
ωθ,Θ

+
ωα(α)

2D2
ωα,∆K−1

, (52)

where ωθ(θ) =
1
2∥θ∥

2, ωα(α) =
∑K

g=1 αi lnαi, Dωθ,Θ := (maxθ∈Θ ωθ(θ)−minθ∈Θ ωθ(θ))
1/2,

and Dωα,∆K−1
:=
(
maxα∈∆K−1

ωα(α)−minα∈∆K−1
ωα(α)

)1/2
. Also, the corresponding prox-

functions individually for θ and α would be Vθ(θ, θ
′) = 1

2∥θ− θ′∥22 and Vα(α, α
′) =

∑K
g=1 α

′
i ln

α′
i

αi
.

It can be shown that the above prox-functions Vθ and Vα satisfy the following inequalities ([32]):

max
θ∈Θ

Vθ(θ
′, θ) ≤ D2

ωθ,Θ
, max

α∈∆K−1

Vα(α
′, α) ≤ D2

ωα′ ,∆K−1
. (53)

Due to the above definitions, the corresponding prox-mapping P (·) corresponds to gradient descent
w.r.t. θ and exponentiated gradient ascent w.r.t. α, as defined in Algorithm 1. Moreover, due to the
definition of ω in Equation (52), the combined prox function V (·, ·) over ζ would satisfy

max
ζ∈Θ×∆K−1

V (ζ ′, ζ) ≤ 1. (54)

For further details regarding prox-function, kindly refer to its usage in [32].

Bounding the error. According to the introduced notation, the approximation error ϵT can be
defined and bounded as:

ϵT = max
α∈∆K−1

ϕ(θ̃1:T , α)−min
θ∈Θ

max
α∈∆K−1

ϕ(θ, α)

≤ max
α∈∆K−1

ϕ(θ̃1:T , α)−min
θ∈Θ

ϕ(θ, α̃1:T )

= ϵϕ(ζ̃
1:T )

To bound ϵϕ(ζ̃
1:T ), we invoke the result from [32, Equation 3.23] for mirror-descent convergence

for max-min problems.

ϵϕ(ζ̃
1:T ) ≤ 2

√
10

R2
θM

2
θ + ln(K)M2

α

T
. (55)
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Further, Mθ and Mα correspond to the following upper bounds to the maximum of the expected
norms of Fg(θ, ξ) and ∇θFg(θ, ξ) ,

max
1≤g≤K

E∥∇Fg(θ, ξ)∥2 = max
1≤g≤K

E
∥∥∥ N

Ng
1[g=g′]∇l(θ; (xg, y, y

′))
∥∥∥2 = max

1≤g≤K

Ng

N

N2

N2
g

∥∇l(θ; (xg, y, y
′))∥2

= max
1≤g≤K

N

Ng
∥∇l(θ; (xg, y, y

′))∥2

≤ B2
∇ max

g∈G

N

Ng

= B2
∇

N

ming∈G Ng

= M2
θ

Similarly,

E max
1≤g≤K

∥Fg(θ, ξ)∥2 = E max
1≤g≤K

∥∥∥ N

Ng
1[g=g′]l(θ; (xg, y, y

′))
∥∥∥2 ≤ K∑

g=1

Ng

N

N2

N2
g

∥l(θ; (xg, y, y
′))∥2

=

K∑
g=1

N

Ng
∥l(θ; (xg, y, y

′))∥2

≤ KB2
l max

g∈G

N

Ng

= KB2
l

N

ming∈G Ng

= M2
α

Here, we have used ∥∇θl(θ; (xg, y))∥ ≤ B∇ and ∥l(θ; (xg, y))∥ ≤ Bl. Here, λθ, λα correspond
to the strong convexity parameters of the distance generating functions ωθ(θ) and ωα(α) respectively.
For our given functions, ωθ(θ) =

1
2∥θ∥

2 and ωα(α) =
∑K

g=1 αi lnαi, both λθ = λα = 1 ([32]).

Let, R2
θ =

D2
ωθ

λθ
= B2

Θ = (maxθ ∥θ∥θ −minθ ∥θ∥2θ), obtaining the overall error bound.

ϵΦ(ζ̃
1:T ) ≤ 2

√
10
( N

ming∈G Ng

)B2
ΘB

2
∇ +KB2

l lnK

T
. (56)

Lemma E.1. For the log-linear policy class parameterized with respect to θ, the DPO loss function
l(πθ; ·) = log (σ(βhπθ

(·))) (see Equation (5)) is convex and Lipschitz continuous in θ. Consequently,
Proposition 4.1 applies to this case.

Proof. We want to show, l(θ; (x, yw, yl)) is convex in θ and Bϕ-Lipschitz in θ for the log-linear
policy class defined as follows:

πθ(y | x) = exp θTϕ(x,y)∑
y∈Y exp θTϕ(x,y)

. (57)

Here θ belongs to a convex set Θ satisfying ∥θ∥ ≤ BΘ and ϕ(x, y) denotes the feature vector such
that ∥ϕ(xg, yw) − ϕ(xg, yl)∥ ≤ Bϕ. In conjunction with a uniform reference policy πref, the loss
function l(θ; (xg, yw, yl)) for the log-linear policy class is as follows:

l(θ; (xg, yw, yl)) = − log
(
σ
(
β⟨ϕ(xg, yw)− ϕ(xg, yl), θ⟩

))
. (58)
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Algorithm 3 Mirror Descent for Group Robust Preference Optimization (GRPO)

1: Initialize: Step size ηα for group weights α, step size ηθ for policy π with weights θ, initial
weights θ(0) of the policy and weights over each group α(0), Projection operator PΘ

2: Input: Dataset D with size N = |D|, group size Ng for g = {1, 2, · · · ,K}, loss l(πθ; ·)
3: for t = 1, . . . , T do
4: α′ ← α(t−1)

5: g ∼ Uniform(1, · · · ,K)
6: (xg, yw, yl) ∼ Dg

7: α′
g ← α′

g exp ηα(l(πθ(t−1) ; (xg, yw, yl))) // Update weights for group g
8: α(t) ← α′/

∑
g′ α′

g′ // Renormalize α

9: θ(t) ← PΘ

(
θ(t−1) − ηθ

(
α
(t)
g ∇θl(πθ(t−1) ; (xg, yw, yl))

))
// Use α to update θ

10: end for
11: Return: Output the robust policy π(θ(T ))

Next, we compute the derivative of l(θ; (x, yw, yl)) w.r.t. θ from Equation (58) to check the Lipschitz
continuity.

∇θl(θ; (xg, yw, yl))

=
σ
(
β⟨ϕ(xg, yw)− ϕ(xg, yl), θ⟩

)(
1− σ(β⟨ϕ(xg, yw)− ϕ(xg, yl), θ⟩)

)
∗ (ϕ(xg, yw)− ϕ(xg, yl)

)
σ
(
β⟨ϕ(xg, yw)− ϕ(xg, yl), θ⟩

)
=
(
1− σ

(
β⟨ϕ(xg, yw)− ϕ(xg, yl), θ⟩

))
∗ (ϕ(xg, yw)− ϕ(xg, yl))

= σ
(
β⟨ϕ(xg, yw)− ϕ(xg, yl),−θ⟩

)
∗ (ϕ(xg, yw)− ϕ(xg, yl)).

Then, the gradient norm can be bounded as follows:

∥∇θl(θ; (xg, yw, yl))∥ ≤ ∥ϕ(xg, yw)− ϕ(xg, yl)∥
≤ Bϕ.

Hence, by the definition of Lipschitz functions for continuously differentiable functions, we have
that l(θ; (x, yw, yl)) is Lipschitz continuous with Lipschitz constant Bϕ. Further, we bound the loss
function using the bounds for θ and ϕ(·, ·).

⟨ϕ(xg, yw)− ϕ(xg, yl), θ⟩ ≥ −∥ϕ(xg, yw)− ϕ(xg, yl)∥∥θ∥
⟨ϕ(xg, yw)− ϕ(xg, yl), θ⟩ ≥ −BϕBΘ

log(σ(⟨ϕ(xg, yw)− ϕ(xg, yl), θ⟩)) ≥ log(σ(−BϕBΘ))

− log(σ(⟨ϕ(xg, yw)− ϕ(xg, yl), θ⟩)) ≤ − log(σ(−BϕBΘ))

≤ log(1 + exp (BϕBΘ))

≤ log(exp (BϕBΘ) + exp (BϕBΘ))

≤ log(2) + (BϕBΘ) = Bl

Hence, the loss function is bounded by Bl for bounded θ and ϕ.

E.2 Alternate Sampling Strategy

In this section, we study the convergence of an alternate algorithm in Algorithm 3, wherein groups
are sampled uniformly rather than a categorical distribution proportional to the group sizes, in terms
of the error ϵT as defined in Equation (46).
Proposition E.2. Suppose that the loss l(·; (xg, y, y

′)) is non-negative, convex, B∇−Lipschitz
continuous, and bounded by Bl for all (xg, y, y

′) ∈ X ⊕ G × Y × Y and ∥θ∥2 ≤ BΘ for all θ ∈ Θ
with convex Θ ⊂ Rd. Then, the average iterate of Algorithm 3 achieves an error at the rate

ϵΦ(ζ̃
1:T ) ≤ 2

√
10

B2
ΘB

2
∇ +KB2

l lnK

T
. (59)
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Proof. We follow a similar proof structure as in the proof of Proposition 4.1. We recall the saddle-
point stochastic optimization problem from [32] stated earlier in Equation (47),

min
θ∈Θ

max
α∈∆K−1

{
ϕ(θ, α) =

K∑
g=1

αgE[Fg(θ, ξ)]
}
. (60)

In lieu of the alternate sampling strategy in Algorithm 3 where groups are sampled uniformly, we
consider,

ξ := (xg, y, y
′) ∼

K∑
g=1

1

K
Dg, (61)

and we define Fg′(θ, (xg, y, y
′)) := K1[g=g′]l(θ; (xg, y, y

′)). Then, the expectation

Eξ[Fg(θ, ξ)] =

K∑
g′=1

1

K
EDg′ [Fg(θ, ξ)|g = g′]

=
1

K
EDg

[Fg(θ, ξ)|g = g′]

=
1

K
EDg

[Kl(θ; (xg, y, y
′))|g = g′]

= EDg
[l(θ; (xg, y, y

′))|g = g′]

= fg(θ)

Mirror Descent mapping. We map Algorithm 3 to the general mirror descent framework of [32] as
done in the proof of Proposition 4.1. We begin by recalculating the gradients of ϕ(θ, α) w.r.t. θ and
α for this alternate definition of Fg(θ, ξ),

∂Φ(θ, α, ξ) =

[
∂θ
∑K

g′=1 αg′ [Fg′(θ, ξ)]

−∂α
∑K

g′=1 αg′ [Fg′(θ, ξ)]

]

=

[
∂θ
∑K

g′=1 αg′ [K1[g=g′]l(θ; (xg, y, y
′))]

−∂α
∑K

g′=1 αg′ [K1[g=g′]l(θ; (xg, y, y
′))]

]

=

[
Kαg∇θl(θ; (xg, y, y

′))

−
(
0, · · · ,Kl(θ; (xg, y, y

′)), · · · , 0
)]

.

Based on the above gradient expressions, we can similarly map the updates of θt and αt in Algorithm 3,
to the general mirror descent update rule with corresponding prox-function as done for Proposition 4.1.
We omit further details regarding the mirror descent related definitions as they follow from the proof
of Proposition 4.1. We directly proceed to bounding the error ϵϕ(ζ̃1:T ) using [32, Equation 3.23],

ϵϕ(ζ̃
1:T ) ≤ 2

√
10

R2
θM

2
θ + ln(K)M2

α

T
. (62)

We recalculate Mθ and Mα for this alternate definition of Fg(θ, ξ) as they correspond to the upper
bounds to the maximum of the expected norms of Fg(θ, ξ) and ∇θFg(θ, ξ) ,

max
1≤g≤K

E∥∇Fg(θ, ξ)∥2 = max
1≤g≤K

E∥K1[g=g′]∇l(θ; (xg, y, y
′))∥2 = max

1≤g≤K

1

K
K2∥∇l(θ; (xg, y, y

′))∥2

= max
1≤g≤K

K∥∇l(θ; (xg, y, y
′))∥2

≤ B2
∇K

= B2
∇K

= M2
θ
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Similarly,

E max
1≤g≤K

∥Fg(θ, ξ)∥2 = E max
1≤g≤K

∥K1[g=g′]l(θ; (xg, y, y
′))∥2 ≤

K∑
g=1

1

K
K2∥l(θ; (xg, y, y

′))∥2

=

K∑
g=1

K∥l(θ; (xg, y, y
′))∥2

≤ B2
l K

2

= B2
l K

2

= M2
α

Here, we have used ∥∇θl(θ; (xg, y))∥ ≤ B∇ and ∥l(θ; (xg, y))∥ ≤ Bl.

Using the alternate Mθ and Mα corresponding to this sampling rule, we obtain the overall error
bound as follows:

ϵΦ(ζ̃
1:T ) ≤ 2

√
10K

B2
ΘB

2
∇ +B2

l K lnK

T
. (63)
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All the claims regarding the proposed methodology in terms of theory and
experiments have been concretely illustrated in Sections 3 and 4(Theory) and Section 5
(Experiments).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are detailed along with conclusions in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All assumptions are mentioned in the theorem statements and the corresponding
proofs are detailed in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental details (models, datasets, configurations, training strategies,
compute resources) are discussed in the experimental sections of the main text and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide links to Github repositories that contain all the codes required to
reproduce the experiments with detailed instructions.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All hyperparameters, optimizers, data splits, etc., are detailed in the experi-
mental section in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars are shown based on different seeds of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Compute resources required and used to run the experiments are mentioned in
the experimental sections in the main text and appendix
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We are using open-sourced data and language model. We do not foresee any
potential harm caused by our work.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader positive societal impacts of our work in Section 6. We
do not foresee any negative societal impacts of our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We are using publicly available model and data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the data and models used have been appropriately cited with URLs which
includes the licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our code and algorithm implementation has been properly documented and
links to the Github repositories have been provided.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not conduct any such experiments for this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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