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Abstract

While vision language models (VLMs) excel in 2D semantic visual understanding,
their ability to quantitatively reason about 3D spatial relationships remains under-
explored due to the deficiency of spatial representation ability of 2D images.
In this paper, we analyze the problem hindering VLMs’ spatial understanding
abilities and propose SD-VLM, a novel framework that significantly enhances
fundamental spatial perception abilities of VLMs through two key contributions:
(1) propose Massive Spatial Measuring and Understanding (MSMU) dataset with
precise spatial annotations, and (2) introduce a simple depth positional encoding
method strengthening VLMSs’ spatial awareness. MSMU dataset includes massive
quantitative spatial tasks with 700K QA pairs, 2.5M physical numerical annotations,
and 10K chain-of-thought augmented samples. We have trained SD-VLM, a
strong generalist VLM which shows superior quantitative spatial measuring and
understanding capability. SD-VLM not only achieves state-of-the-art performance
on our proposed MSMU-Bench, but also shows spatial generalization abilities
on other spatial understanding benchmarks including Q-Spatial and SpatialRGPT-
Bench. Extensive experiments demonstrate that SD-VLM outperforms GPT-40
and Intern-VL3-78B by 26.91% and 25.56% respectively on MSMU-Bench. Code
and models are released at https://github.com/cpystan/SD-VLM.

1 Introduction

Vision-language models (VLMs) [1, 2, 3, 4, 5, 6, 7, 8, 9] have revolutionized how machines interpret
and reason about visual content, achieving human-level performance on tasks like visual question
answering (VQA). However, these models exhibit significant limitations in understanding 3D spatial
concepts, particularly regarding quantitative spatial reasoning, e.g., absolute distances and physical
dimensions. Even state-of-the-art models struggle with queries like "What is the size of the table in
the image?", which reveals the gap between 2D perception and 3D quantitative spatial understanding.
This limitation is particularly concerning given the increasing demand for models that can be operated
effectively in real-world environments, such as robotics [10, | 1], autonomous vehicles [12, 13], and
augmented reality [14, 15].

Humans perceive spatial relationships based on building a 3D cognitive map of a scene in their
mind. However, images, as the vision input of VLMs, are merely projections from the 3D scene to
planes, losing much of the original 3D structural information. Although some works [16, 17, 18,

, 20] explicitly use 3D scene representations as input to provide sufficient spatial information, we
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avoid introducing 3D structure data into current VLM architectures. One reason is that accurate
point cloud data is hard to acquire in daily life. Besides, current 3D datasets suffer from uneven
distribution and incomplete scene coverage compared with large-scale image datasets, limiting the
training effectiveness and scalability with existing VLM frameworks. Recent studies [21, 22, 23]
have incorporated depth maps as additional inputs to enhance the spatial comprehension of VLMs.
However, depth maps alone are not enough to fully transform an image into a 3D structure due to the
lack of camera intrinsics. The camera intrinsics are typically calibrated by geometric priors, such as
using a checkerboard-like calibration board. Inspired by this, an intriguing idea is that if we provide
not only a depth map but also sufficient and accurate physical measurements, VLMs could implicitly
learn the “camera intrinsics”, having a better understanding of 2D to 3D mapping.

Therefore, we assume that the unsatisfactory spatial ability of existing VLMs stems from two
fundamental factors: (1) the scarcity of datasets featuring precise spatial quantitative annotations, and
(2) the deficiency of the image inputs, preventing VLMs from fully understanding spatial context and
conducting spatial reasoning.

Several studies have explored how to improve the spatial ability of VLMs by constructing spatial
understanding datasets [24, 25, 26, 27, 28]. These datasets predominantly focus on basic qualitative
spatial concepts, such as relative relations, which can be effectively addressed using only 2D visual
cues. As a result, they fail to be competent in complex spatial reasoning. Datasets proposed in Spa-
tial VLM [29] and SpatiaRGPT [21] include both basic qualitative and quantitative spatial reasoning
data. But their data construction pipeline relies on specific models, e.g., detection, segmentation,
metric depth estimation, and camera calibration, instead of accurate physical annotations. Such a
model-driven property may introduce systematic errors into the quantitative labels within the dataset.

Instead, we utilize 3D scene data with real-world scales to provide comprehensive metrically accurate
annotations for 2D images. Hence, we propose MSMU dataset, namely Massive Spatial Measuring
and Understanding dataset shown in Figure 1, a large-scale quantitative spatial reasoning dataset
comprising about 25K images and 700K QA pairs (including 10K chain-of-thought samples) from
2K real 3D scenes, with 2.5M numerical annotations.

Furthermore, depth priors serve as an essential link bridging 2D visual perception and 3D scene
understanding [2 1, 22, 23]. We comprehensively compare various ways to integrate depth information
into VLMs and introduce a simple but effective approach, depth positional encoding (DPE). Building
upon the success of positional embeddings in Transformer architectures [30, 31], DPE introduces
the information along the third dimension (z-axis) orthogonal to the input image plane. It effectively
upgrades the model’s spatial awareness from 2D to 3D space by simply adding the depth positional
embeddings on image features. Equipped with the depth positional encoding, we have trained a spatial
generalist, SD-VLM, with our proposed MSMU data. Extensive experiments show that SD-VLM has
a remarkable advantage on spatial tasks over image-only models or other VLMs with depth priors.
Our contributions can be summarized as follows:

o MSMU dataset, a large-scale dataset is proposed for quantitative spatial reasoning, with 700K
QA pairs with 2.5M numerical annotations, generated from real 3D scenes. A novel benchmark,
MSMU-Bench, is also introduced to fully evaluate quantitative spatial reasoning capabilities of
VLMs.

© We analyze different ways to integrate depth into VLMs and design a simple but effective depth
positional encoding module, that equips VLMs with explicit spatial priors, bridging the gap between
2D perception and spatial understanding.

o Comprehensive experiments demonstrate that SD-VLM outperforms both previous VLMs and
depth-encoded models achieving state-of-the-art performance on quantitative spatial reasoning
tasks, validating the effectiveness of MSMU dataset and depth positional encoding.

2 Related Work

Datasets Related to Spatial Analysis. The boom of multi-modal datasets facilitates the rapid
development of advanced VLMs [32, 33, 34, 35]. Many studies work on 2D spatial relationships and
comprehensively evaluate the 2D spatial ability of VLMs [24, 25,26, 27,28, 36, 37, 38, 39]. Although
spatial concepts are explicitly or implicitly included in these datasets, they are still insufficient for
advanced and precise spatial understanding. Some works rely on complete 3D scans, which pose high
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Figure 1: Demonstration of VQA pairs in MSMU. Our proposed dataset covers a range of quantitative
spatial tasks involving multiple objects in the scene.

demands for integrating specific modules (e.g., a point cloud encoder) that can effectively capture
3D information [40, 41, 42, 43, 44]. Q-spatial [45] has been proposed to benchmark the quantitative
spatial ability of VLMs. Although it obtains accurate manual labels, the limited data volume restricts
its applicability for model training. Several datasets have tried to tackle this issue by gathering
abundant images from the web. However, these datasets often rely on estimation models and lack
accurate 3D annotations [29, 21].

3D Spatial Understanding with VLMs. Recent studies have sought to extend capabilities to 3D
spatial understanding by integrating 3D information as inputs. On one hand, some works that
concentrate on scene-level 3D understanding, such as scene-level captioning and scene-level visual
question answering, which enable VLMs to directly process the entire scene by providing complex
3D representations like videos or point clouds [16, 17, 18, 19, 20]. On the other hand, several works
discard explicit 3D inputs and use standard VLM backbones to achieve 3D spatial understanding
by introducing depth information. For example, SpatialRGPT [21] incorporates the depth maps
as auxiliary inputs. These depth maps are encoded and concatenated with RGB embeddings to
provide additional spatial context. SpatialBot [22] is trained to adaptively call APIs to convert depth
information into textual descriptions, which are then fed to the VLM as the prompt.

3 Problem Analysis

We review techniques for recovering 3D structures from an image. Given an image Z, there exists a
mapping F transforming the image Z to 3D points P, i.e. P = F(Z). For any homogeneous pixel
coordinates p = [u, v, 1|7 on the image, the corresponding depth value d and the camera intrinsics
K are required for mapping p to the 3D point P = [X,Y, Z]:

P=d -K 'p. (D

Therefore, an image can be mapped to its corresponding 3D points, if the depth map and camera
intrinsics are available. The depth map alone is insufficient to derive a 3D point from a pixel due to
missing intrinsics. The camera intrinsics could be calibrated when sufficient constraints based on the
geometric priors, like using a checkerboard calibration board [46]. Theoretically, at least four line
segment lengths (i.e., physical distances of corresponding 3D point pairs) in an image can be used as
constraints to calibrate the intrinsics. We provide proofs in Section A.

Although 3D point clouds can be recovered from estimated depth maps and camera intrinsics
[47, 48, 49, 50], we avoid explicitly integrating 3D modality into current VLMs considering the
training effectiveness and scalability with existing VLM frameworks. To further avoid explicitly
integrating the camera intrinsic as the input of VLMs, we tend to provide enough accurate physical
measurements, enabling VLMs to implicitly learn a better mapping from 2D to 3D spatial concepts.
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Figure 2: Overview of the data generation pipeline of MSMU. It consists of scene graph construction,
3D to 2D mapping, and QA generation.

We observe that current LLMs and MLLMs [51, 52, 53, 2, 9] demonstrate an insufficient grasp of
spatial concepts like the physical sizes of objects. Their training data is not equipped with abundant
spatial concepts or lacks precise numerical annotations [29, 21, 45], which motivates us to propose
massive and precise spatial data.

In Section 4, we introduce the MSMU dataset with massive spatial measuring data. In Section 5,
we delve into multiple approaches to fuse depth into VLMs and design a simple but effective depth-
encoding strategy to integrate depth maps into VLM inputs. In Section 6, we conduct comprehensive
experiments to investigate this problem.

4 MSMU Dataset

We elaborately design a series of spatial questions, establish a data generation pipeline to acquire
spatial VQA pairs with metrically accurate annotations, and leverage LLM collaboration to generate
chain-of-thought (CoT) augmented pairs.

4.1 Task Categories and Definitions

In contrast to previous spatial datasets [2 1] which mainly focus on the basic spatial understanding
tasks, MSMU is designed to introduce more complex quantitative spatial tasks requiring a comprehen-
sive and precise spatial perception ability of VLMs. MSMU contains fundamental quantitative spatial
tasks, including scale estimation (e.g., height, width, or size), object grounding (2d coordinates). It
also encompasses more sophisticated quantitative spatial tasks involving multiple objects or numerical
outcomes, such as relative position (e.g., before/after, left/right, stand higher/lower), absolute distance
measurement between two objects, scale comparison (e.g., bigger/smaller, biggest/smallest), and
reference object estimation (given one scale/distance, predict the scales/distances of other objects).
Furthermore, the counting task is included to assess the model’s ability to discern the quantity of
objects present. In addition, to eliminate the hallucination problem in VLMs, we introduce existence
tasks in MSMU. In these tasks, a nonexistent object is deliberately chosen for question-answering
construction. The VLM must accurately detect the absence of the object and refrain from providing
misleading information. Several examples of QA pairs are shown in Figure 1.

4.2 Data Generation

As demonstrated in Figure 2, starting from 3D scene point clouds, we first collect the spatial
information (e.g., locations, sizes, relative distances) of objects in the scene to construct a scene
graph. Next, we rasterize 3D instances onto 2D images and establish a 3D-to-2D mapping, which
enables transferring spatial annotations to images. We also perform filtering on both images and
objects to ensure the quality of the QA pairs. Finally, we design human-verified QA templates and
employ LLM collaboration to generate a rich set of QA pairs.
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Figure 3: Comparison of different spatial datasets and benchmarks.

Building Scene Graph. Given a 3D point cloud of a scene, we first construct a scene graph (stored as
a JSON file) to systematically organize all annotations and metadata. This graph includes the object
categorization and corresponding 3D spatial localization data which provides bounding boxes for
each object, defined by centroid coordinates and dimensional parameters (width, length, height).

Rasterize 3D instances to 2D images. We rasterize 3D instances onto images as masks using official
tools [54]. This process bridge an object in the 3D scene and 2D image plane, making transferring
spatial annotations from 3D scene graph to each image feasible.

Image Filtering and Object Selection. We first sparsely sample the RGB images to reduce redun-
dancy. After that, we carefully select objects in each image, which is guided by three principal criteria:
(1) Prevalence and functionality. We focus on objects demonstrating clear functional purposes which
are commonly encountered in indoor environments. Architectural components (e.g., walls, ceilings)
are excluded due to their limited interactive potential. (2) Instance visibility. Objects that are partially
occluded (e.g., a chair mostly hidden behind a table), truncated by image borders (e.g., only a corner
of a table is visible), or too small to annotate reliably (e.g., distant objects occupying fewer than 50
pixels) are excluded from our dataset. (3) Semantic disambiguation. Addressing linguistic ambiguity
is important before generating annotations. For example, tables which exist in one image may vary
in color or texture but are all labeled as "fable", which brings noisy correspondence and finally
misleads VLMs. To mitigate this issue, we resort to Qwen2.5-VL [&] to re-label these objects with
more detailed descriptions, such as "the white table" or "the wooden table". Finally, we filter out
non-informative images that have no valid objects.

Template-based Generation. We carefully design a set of templates based on the task definitions
which include various placeholders, denoted as [-]. For instance, one template for measuring the
size of a single target object is structured as follows: “Q: What is the size of [object A]. A: The size
of [object A] is [Length]x [Width]x [Height].” For each image, we enumerate the selected objects
and replace these placeholders with the corresponding object labels or spatial annotations. In tasks
involving two or more target objects, we also meticulously craft instructions that incorporate all
relevant object labels and spatial information. More template details are in Section B.

Eliciting Reasoning Path with LLM collaboration. Inspired by SpatialPrompt [45] which signifi-
cantly improves the quantitative spatial ability of VLMs by eliciting reasoning paths with reference
objects, we augment the QA pairs with CoT reasoning rationale via LLM collaboration. Specifically,
we randomly select one object as the reference object and combine its spatial annotations along with
the image as inputs to the advanced VLM, Qwen2.5-VL. The VLM is then prompted to construct
a reasoning path that leverages the reference object to infer the spatial properties of another object
within the image. Subsequently, we utilize a large language model, DeepSeek-V3, to assess and
filter the CoT pairs by evaluating the factual consistency and logical coherence. Related prompts are
provided in Section B.

Dataset statistics. We employ this data generation pipeline to construct VQA pairs from ScanNet
[55] and ScanNet++ [54]. The resulting MSMU dataset contains 2K scenes, 25K images, 75K objects,
700K QA pairs, and 2.5M numerical values, covering a wide range of quantitative spatial tasks, as
shown in Figure 3 (left). Besides, the CoT augmented group, named MSMU-CoT, consists of 10K
quantitative spatial reasoning QA pairs.

4.3 MSMU-Bench

Existing spatial datasets struggle with annotations that lack precision, limited data volume, or
insufficient task types [29, 22, ]. To address this issue, we have meticulously developed
MSMU-Bench, a held-out benchmark from MSMU, designed to rigorously assess the advanced
spatial reasoning capabilities of VLMs. As shown in Figure 3 (right), MSMU-Bench contains more
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Figure 4: Illustrations of different approaches for integrating depth information.

quantitative QAs compared to other spatial benchmarks. Comprising about 1K spatial VQA pairs,
this benchmark features samples from unseen scans.

We leverage GPT-4 to assess the responses generated by different models in MSMU-Bench. In the
case of qualitative questions, GPT-4 assigns a score of the model’s answer on a scale from 0 to 1.
For quantitative queries, GPT-4 first extracts all numerical items in responses. Then, we compute the
success rate by setting a threshold. For a estimated distance d and its ground truth value d*, this ratio
d da

is calculated as 6 = max ( I 7). The prompts used for scoring by GPT-4 and other details are

included in Section C.

5 Integrating Depth into VLMs

In this section, we explore various methods to integrate depth information into VLMs, and introduce
a simple but effective depth encoding method.

5.1 Approaches for Integrating Depth

Previous research has tried various techniques to utilize depth maps for VLMs, as shown in Figure 4.
The first technique, “depth as image”, was initially introduced in SpatialRGPT [21]. This method
treats the depth map as a regular image and leverages a vision encoder to convert depth maps into
embeddings. Besides, a learnable depth connector is required to align the depth embeddings with
image embeddings. The second technique, “depth as prompt”, draws inspiration from [22], of which
depth values are retrieved by an API and subsequently textualized as prompts. The third technique,
“depth as token”, directly concatenates the depth embeddings with image embeddings.

The first method relies on the vision encoder to extract features from depth maps and introduces
additional modules for training. In the second case, it is unavoidable to teach the model to utilize depth
APIs. The third approach has to extend the sequence length and finally compromise the efficiency
of training. Therefore, we aim to discover a straightforward integration method for incorporating
depth data into VLMs, requiring minimal structural changes and training cost, while still being able
to enhance spatial capabilities.

5.2 Depth Positional Encoding

We introduce the depth positional encoding (DPE), which can encode the depth maps into depth
positional embeddings, allowing for a straightforward combination through addition.

An input depth map is represented as D € R7>W>1_ Suppose the image feature map output from

CLIP is E'maze ¢ RE'>W'xd We first divide the depth map into small patches P(i, 7), matching the
number of image patches. We then use adaptive mean pooling to calculate the mean depth values

for each patch, and get a pooled depth map D’ € R 'XW'x1 The compact nature of these patches
ensures that the average depth values provide adequately detailed depth positional information.
Alternative ways of pooling depth maps are also explored in the ablation study.

Following [30], we utilize sine and cosine functions of varying frequencies to generate the depth
positional embeddings E%P" ¢ RH "xW'xd which can be formulated as follows:
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E%*Ph (i j,2t) = sin (D'(i, 4)/10000%*/ d) , BP0, 5,2t +1) = cos (D’(i,j)/ 10000/ d)
@)

where D’ (i, j) denotes the depth value, (i, j) represents the patch index, and ¢ = 0,--- ,d/2 — 1.
Each dimension of the depth positional encoding corresponds to a sinusoidal wave.

Finally, we obtain the final vision embedding E"°" by integrating depth positional embeddings into
image embeddings by adding, expressed as:

Evision _ Eimage 4 Edepth. (3)
Depth-empowered vision embeddings are flattened and sent to the LLM as the final input.

The architecture of our proposed model is visualized in Figure 5. The model consists of a vision
encoder to encode image features, a depth encoding module to incorporate depth information, and
a large language model to process sequences of tokens. When depth maps are unavailable during
inference, we employ an external depth estimation model to generate the depth map. This allows our
model to adapt to various datasets and scenarios effectively.

6 Experiments

6.1 Inplementation Details

SD-VLM is built upon pretrained LLaVA-1.5-7B. The model is fine-tuned with LoRA [56] on
MSMU for one epoch. The model is trained on 8 V100 GPUs, with the batch size of 2 per GPU,
using 32 GPU hours. The vision encoder is CLIP-ViT/14. The external depth estimation model is
Depth-Anything-V2 [48]. In the training phase, the vision encoder remains frozen. The learning rates
for LLM and the projector are 2e-4 and 2e-5, respectively. The threshold for GPT-4 evaluation in
MSMU-Bench is 1.25.

6.2 Results on MSMU-Bench

We evaluate the spatial reasoning ability of the most advanced models on MSMU-Bench. The tested
models encompass a variety of proprietary VLMs, including GPT-40 [2] and Gemini-2 [3], as well
as open-source alternatives that vary in model scale, such as Qwen2.5-VL [57], Intern-VL3 [9],
and LLaVA-1.5-7B [4]. Additionally, we include models that incorporate depth information like
SpatialRGPT [21] and SpatialBot [22]. Furthermore, we broaden our assessment to encompass LLMs,
such as GPT-4-Turbo [53], Qwen2.5 [51], and DeepSeek-V3 [52]. The purpose of this evaluation is
to measure these models’ capacity to infer accurate responses based on common knowledge without
visual inputs. The results are shown in Table 1.

Among all the baseline models, our SD-VLM stands out with the highest success rate of 56.31%. It
excels not only in basic spatial tasks such as scale estimation, where it achieves a 51.35% success rate,



Exis- Object Scale Relative  Absolute Scale Ref. Object

Model X L Grounding . K i o Average
tence Counting Estimation Position Distance Comparison  Estimation
Large Language Models (LLMs): Only Text as Input
GPT-4-Turbo[53] 12.76 5.21 13.51 12.64 24.84 7.50 36.79 12.04 15.66
Qwen2.5[51] 4.25 0.00 0.78 13.79 0.62 0.00 16.04 1.57 4.63
DeepSeek-V3[52] 0.00 524 1.54 6.90 10.56 0.00 25.47 524 7.39
Vision-Language Models (VLMs): Image + Text as Input
GPT-40[2] 44.68 41.67 3.86 27.59 67.08 20.00 54.72 2.09 32.28
Gemini-2[3] 38.30 43.75 23.94 19.54 54.66 12.50 69.81 18.85 35.17
Qwen2.5-VL-72B[¢] | 59.57 35.42 1.54 13.79 57.76 2.50 66.04 9.95 30.82
Qwen2.5-VL-32B[¢] | 29.79 41.67 10.81 18.39 60.25 2.50 46.23 10.99 27.59
Qwen2.5-VL-7B[&] 12.76 4.17 0.00 1.15 1.24 0.00 5.66 0.52 3.19
Intern-VL3-78B[9] 47.62 42.71 6.47 26.32 56.94 13.33 64.10 16.46 33.63
Intern-VL3-8B[9] 36.17 41.67 4.63 18.39 60.25 2.50 49.06 8.38 28.54
LLaVA-1.5-7B[6] 1.54 36.46 5.02 20.69 42.86 5.00 38.68 0.52 19.45
Depth-Encoded Vision-Language Models : Image + Depth Map + Text as Input
SpatialBot[22] 10.64 46.88 15.83 28.74 66.46 5.00 50.94 8.90 29.17
SpatialRGPT[21] 10.64 36.46 20.08 17.24 60.25 15.00 62.26 9.95 28.98
Ours 87.23 47.92 51.35 4253 75.16 40.00 55.66 46.07 56.31
Ours w/ MSMU-CoT | 87.23 42.71 51.74 49.43 73.29 50.00 69.81 49.32 59.19

Table 1: Overall results of various models on MSMU-Bench. We report the results of LLMs, VLMs,
and depth-encoded VLMs as a comprehensive comparison.

Question:

Answer:

What s the size of the pipe?

Question:

Answer:

What is the width of the wall shelves?

GT: There is no pipe in the image.
GPT-40: The size of the pipe is 2cm.
LLaVA-1.5: The pipe is small.

SpatialRGPT: The size of the pipe is 1/2 inch.
Ours: No pipe in the scene.

Question:

The height of the table is 77.0 cm, can you measure the height of
the door frame?

Answer:

GT: The door frame is 276.0 cm in height.

GPT-40: I'm unable to measure the exact height of the door frame from
the image.

LLaVA-1.5: N/A

SpatialRGPT: The height of the door frame is 2.0 meters.

GT: The wall shelves measures 0.37 meters in width.

GPT-40: I'm unable to determine the exact width of the wall shelves.
LLaVA-1.5: The wall shelves are 12 inches wide.

SpatialRGPT: The width of the wall shelves is 1.5 meters.

Ours: The width of the wall shelves is 0.31 meters.

Ours: To determine the height of the door frame, I should think it step by step
carefully. Firstly, the table height can be used as a reference, which is known as 77.0
cm. Observing the image, the door frame appears to be significantly taller than the
table. By comparing the proportions in the image, the door frame seems to be
approximately three times the height of the table. Therefore, multiplying the table's
height by three gives us an estimated height for the door frame: 77.0 cm * 3 = 231.0
cm. Converting this to meters, the height of the door frame is approximately 2.31
meters.

Figure 6: Examples of response from various models.

but also demonstrates significant prowess in complex spatial reasoning tasks like reference object
estimation, reaching a 40% success rate compared to the second-best model’s 20%. Additionally, our
model’s performance in the existence task is noteworthy, with the highest success rate of 87.23%,
indicating its robust ability to identify the presence or absence of objects within images, with less
hallucination. We also illustrate various models’ responses in Figure 6.

Within the group of text-only Large Language Models, Qwen2.5, DeepSeek-V3, and GPT-4-Turbo
show average success rates of 4.63%, 7.39%, and 15.66%. These results reflect the complexity of
MSMU-Bench, where questions demand more than just common knowledge and benefit greatly from
visual information integration. It shows the potential of our proposed MSMU dataset for improving
the general spatial ability of VLMs.

MSMU-CoT can strengthen the model’s quantitative spatial ability. We observe that employing
additional CoT pairs during training can improve the spatial reasoning abilities of VLMs, particularly
in complex tasks such as scale comparison, with an improvement in success rates from 55.66% to
69.81%. The average success rate also increases from 56.31% to 59.19%.

6.3 Results on Other Spatial Benchmarks

We have also evaluated our model on other spatial datasets including Q-Spatial++ [45] and
SpatialRGPT-Bench [21]. It is important to note that SpatialRGPT-Bench refers to objects using
bounding boxes or masks, which are not directly compatible with language-driven models. To address
this, we have refined the benchmark by using Qwen-2.5-VL to re-annotate the objects and select the
quantitative (object scales and distances) and qualitative tasks (relative positions and scale compar-



. SRGPT-Bench
Model Q-Spatiak+ Quan.  Qual. Model MSMU-Bench
GPT-40[2] 52.0 13.0 605 Bascline 46.73
Gemini-2[3] 51.0 230 576 + depth as image 22.64
Qwen2.5-VL-72B[8] 43.6 163 614 + depth as prompt 48.78
InternVL-3-78B[9] 53.6 235 62.2 + depth as token 35.72
LLaVA-1.5-7B[5] 11.2 162 263 + DPE w/ estimated depth 55.35
Spat?alBot[ ] 337 132 359 + DPE-learnable 56.18
gpatlalRGPT[ ] :2; gg; zzi + DPE-sincos 56.31
urs . . g

Table 2: Left: Results on other spatial datasets (Q-Spatial++ and SpatiaRGPT-Bench). Right:
Comparison of models with various approaches of incorporating depth priors.

Model | MSMU-Bench | Q-Spatial++ | SpatialRGPT-Bench (Quan.) | SpatialRGPT-Bench (Qual.)
LLaVA-1.5-7B 17.3 11.2 10.3 26.3
LLaVA-1.5-7B + DPE 18.8 23.0 184 275

Table 3: Overall results of models which are fine-tuned with LLaVA-1.5-mix665k and tested on
spatial datasets.

isons) for evaluation in SpatiaRGPT-Bench. We follow the official setting when evaluating these
benchmarks. As shown in Table 2 (left), SD-VLM achieves a 56.2% success rate on Q-Spatial++,
surpassing all the other baselines. SD-VLM also achieves the state-of-the-art performance on the
quantitative (33.3% success rate) and qualitative tasks (65.5% success rate) of SpatiaRGPT-Bench
which contains many outdoor scenes, revealing the strong generalization capabilities of our model.
More details are included in Section D.

6.4 Comparison between Different Depth Integrations

We have examined various methods for incorporating depth information into our models, as shown in
Table 2 (right). The result of “depth as image” suggests that treating depth maps as images may not
be an effective way to integrate depth data. The subpar performance of “depth as token” suggests that
adding extra tokens not only increases training costs but also makes it more challenging for VLMs to
learn the interactions between depth maps and image embeddings. The approach of “depth as prompt”
achieves a slight improvement from 46.73% to 47.78%. Our proposed depth positional encoding
demonstrates a marked advantage, achieving a success rate of 56.18%.

An alternative way of encoding depth maps involves utilizing learnable layers that adaptively condense
the depth map and convert it into depth positional embeddings. As shown in the bottom of Table 2
(right), the success rate of 56.18% is comparable to the performance of sinusoidal depth positional
encoding.

We have trained our model with estimated depth maps from Depth-Anything-V2. Although its
performance is not as good as the one with ground-truth depth maps due to the relatively noisy depth,
it still shows a significant superiority over other depth integration methods. More experimental results
on depth are included in Section E and F.

Further investigation of depth encoding. We have conducted further investigations into the efficacy
of our proposed depth positional encoding technique. We resort to general visual instruction datasets,
LLaVA-1.5-mix665k [5], to fine-tune LLaVA-1.5-7B with DPE in its instruction following training
stage. This dataset, which is not explicitly equipped with spatial knowledge, allows us to examine the
extent to which depth positional embeddings can enhance a VLM’s spatial reasoning ability implicitly
without massive spatial data. The results are demonstrated in Table 3. Our observations indicate that
while models trained on general datasets may not excel on spatial tasks, incorporating depth encoding
can still enhance their performance across all three spatial benchmarks, with a notable 25% relative
improvement in model accuracy, which reflects the potential of depth positional encoding in eliciting
the model’s spatial reasoning ability.



Depth Estimator | MSMU-Bench ~ Q-Spatial++  SpatiaRGPT-Bench | Average

DepthAnything 56.3 56.2 333 48.6
UniDepth 56.2 54.7 32.0 47.6

Table 4: Overall results of different depth estimators.

NoNoise | 6 =0.1 §=0.3 §=0.5 6 = 0.7  No Depth
56.3 | 55.1(-1.2) 54.0(-2.3) 53.3(-3.0) 51.4(-4.9) 46.7(-9.6)

Table 5: Model performance with various depth noise.

6.5 Robustness of DPE

Variations of depth estimators. We have conducted an ablation study on the depth estimation
backbone by replacing DepthAnything with another powerful depth estimator, UniDepth [49]. As
shown in Table 4, our model maintains competitive performance across spatial benchmarks. On
MSMU-Bench, the scores are nearly identical (56.3% vs. 56.2%). The average performance decreases
slightly from 48.6% to 47.6% when switching to UniDepth. The results indicates that our model has
learned generalizable depth priors rather than overfitting to any specific depth-estimation architecture.

Depth noise. We have conducted further ablation studies to evaluate the robustness of our model
against depth estimation noise on the MSMU-Bench as shown in Table 5. Specifically, we inject
zero-mean Gaussian noise with different standard deviations into the normalized depth maps. As
shown in Table 5, as the noise level d increases, the performance gradually declines from 56.3% under
no noise to 51.4%. Despite this degradation, the model maintains competitive performance even
under significant noise conditions, outperforming the setting without depth input by a clear margin.
These results indicate that our DPE exhibits strong robustness to depth perturbations, effectively
leveraging depth priors.

6.6 Performance on General Benchmarks

In this section, we evaluate whether incorporating spatial VQA data and depth information affects the
model’s performance on general VQA benchmarks. To ensure a fair comparison, we incorporate the
LLaVA-1.5-mix665k dataset into our training data. As shown in Table 6, our model still achieves
superior performance on MSMU-Bench (55.8% vs. 19.5%). Regarding other benchmarks, our model
shows comparable performance to the baseline and even exhibits a slight edge on Whatsup, GQA,
and VQA-v2. The overall competitive results confirm that our approach can significantly enhance
spatial understanding abilities of VLMs without compromising general capabilities.

\ MSMU-Bench Whatsup[26] GQA[58] TextVQA[59] VQA-v2[60] Vizwiz[61]
LLaVA-1.5-7B 19.5 58.3 61.9 58.2 78.5 50.1
Ours 55.8 60.9 62.9 57.5 79.1 49.2

Table 6: Comparison of SD-VLM and base model performance on general benchmarks.

7 Conclusion

In this work, we identified a critical gap in the ability of Vision-Language Models (VLMs) to perform
quantitative spatial reasoning. To address this, we developed MSMU, a large-scale dataset comprising
700K QA pairs and 2.5M numerical physical annotations derived from real 3D scenes, designed
to provide precise metric supervision for enhancing VLMs’ spatial reasoning capabilities. We
introduced a simple but effective depth positional encoding module that integrates the third-dimension
information into the VLM architectures, effectively upgrading the model’s spatial awareness from 2D
to 3D. This innovation was shown to significantly enhance spatial reasoning abilities, outperforming
both RGB-only VLMs and depth-encoded VLMs. We anticipate that our contributions will pave
the way for further advancements in VLMSs’ spatial reasoning capabilities, enabling more effective
application in real-world environments.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction reflect the paper’s contributions and scope.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitaions are discussed in the supplementary.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Complete proofs are shown in the supplementary.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: It is shown in Section 6.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: Code and data will be open-sourced after acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: It is included in Section6.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: No error bars are reported.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: It is included in Section6.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research is conducted in the paper conform.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The broader impacts are dicussed in the supplementary.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Non-commercial research and educational purposes of our source data are
permitted.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: A new dataset is introduced in this paper. The dataset details are discussed in
Sec. 4. The dataset will be open-sourced after acceptence.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [Yes]
Justification: It is described in the Section 4.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Mapping from 2D to 3D with Distance Constraints

In this section, we prove that given an image with its depth map and enough annotated physical
lengths, the mapping from the image to its 3D structure can be established.

Mapping from a 2D image to 3D points. Given an image Z, there exists a mapping J transforming
the image Z to 3D points P, i.e. P = F(Z). For any homogeneous pixel coordinates p = [u, v, 1]T
on the image, the corresponding metric depth value d and the camera intrinsics are required for
mapping p to the 3D point P = [X,Y, Z]|T:

X (u—cm)%
P=|Y| =d-K'p=|(v-c)+|- )
Z d Y

K is the camera intrinsic matrix with four unknown parameters,

fz 0 ¢
K= [0 Iy cy] , (%)
0O 0 1

Constraints Based on Metric Distances. Camera intrinsics are necessary for mapping depth map
to 3D structure. 3D point coordinates in a camera coordinate system are hard to obtain in daily
scenarios, while measuring metric distances between two points is feasible.

Suppose two pixels p; and p, are the endpoints of a line segment with physical length L in the image
Z. The corresponding depth values are d; and dy and 3D points from the mapping are P; and Ps.
Hence, the physical length is calculated by

L* = | Py = Py, ©)
Explicitly, the constraint based on the metric distance is

U] — Cq Uy — Cq V] —C Vg — C
lfr dy — sz d2)? + ( 1fy Y, — 2fy Ydy)? + (dy — da)?. )

This is one nonlinear equation for four unknowns f;, fy, cs, ¢,. Suppose there are N line segments
labeled with physical lengths in an image. We define

L* = (

Ei(fo, fyscorcy) = |Pa — Pal3 = L, i=1,--- ,N. (8)
The residual vector is
r=I[Ey,--,Exn]". ©)

Hence, the intrinsic parameters are estimated by optimization algorithms with the objective:

min  ||r]|?. (10)

fLL'7fy7c(L')Cy

Solving above optimization problem needs at least four segments (/N > 4) with ground truth length.
Actually, the depth values are sometime noisy and the ground-truth depth map is difficult to acquire
in daily scenarios. Besides, if the given depth map is relative, i.e. d = a - d,-¢; + b, there exists two
more parameters. Empirically, abundant constraints would produce a more robust estimation, which
improves robustness to noise and improve stability.

Theoretically, given an image with its depth map, we can fully mapping pixels to corresponding 3D
point cloud when enough annotated physical lengths are provided. We believe that providing enough
physical labeled lengths in images would facilitate the spatial understanding of images.

B Details for Data Generation

In this section, we provide more details for the data generation procedure.
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B.1 Prompt Details

Prompts for semantic disambiguation. We crop instances from an image, which are fed to Qwen-
2.5-VL with the prompt as below:

Describe the object class in the image and directly return a term. For example, the red car,
the wooden table, the man in white.

Output:

Prompts for CoT data generation. To elicit reasoning paths with reference objects, we randomly
select an object as the reference object, combining its spatial annotations and the image as inputs to
Qwen2.5-VL with the prompt as below:

Please help me rephrase the following VQA (Visual Question Answering) pairs to improve
their rationale. I will give you an image which shows an indoor environment and contains
various objects. Based on the image, I will also give you a question and answer, the question
containing a reference object. You need to propose a robust step-by-step plan to answer the
question by using the reference scales and the information from the image.

For example:
Q: The height of the chair is 0.7 m, can you measure the height of the wooden table?
A: Since the height of the chair is 0.7 m, I think the height of the wooden table is 1.4 m

Example Output:

To determine the height of the table. I should think it step by step carefully. Firstly, the
chair height can be used as reference, which is known as 0.7 m. The wooden table appears
to be about double the height of the counter. So, the height of the wooden table is 1.4 m.

Please process the following VQA pairs in the same way:

Q: [Q]
A: [A]

Output:

Prompts for CoT data quality assessment. We employ a large language model, DeepSeek-V3, to
evaluate and filter the CoT pairs based on their factual accuracy and logical coherence. The relevant
prompts are provided below:
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Please help me evaluate the factual consistency and logical coherence between the original
VQA pairs and the generated ones. The goal is to ensure that the generated answers align
with the original facts and maintain logical reasoning.

Task:

Compare the original VQA pair with the generated one.

Check for factual consistency: Ensure that the generated answer does not contradict the
original facts.

Check for logical coherence: Ensure that the generated answer and its reasoning (if
provided) are logically sound and aligned with the original context.

Finally give a score between 0 and 10, where O indicates a poor match and 10 indicates a
perfect match.

Input:

Original VQA Pair:

Q: [Original Question]

A: [Original Answer]

Generated VQA Pair:

Q: [Generated Question]

A: [Generated Answer]

The output should follow the format:
Factual Consistency: [Yes/No]
Logical Coherence: [Yes/No]

Score: [Score]. An example of output is
Factual Consistency: Yes,

Logical Coherence: Yes,

Score: 10.

Now return your output:

B.2 Statistics of MSMU

We categorize the spatial tasks in MSMU into 8 types, the distribution of which is illustrated in Figure
7 (left). The QA distribution of MSMU-Bench is also shown in Figure 7 which provides a detailed
breakdown of these eight categories.

size

height

ung,

Figure 7: The left shows the QA distribution of the MSMU dataset. The right shows the QA
distribution of MSMU-Bench and the specific numbers of each category.
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B.3 QA Templates

We provide templates that are used to construct the spatial tasks. Since MSMU consists of eight
spatial tasks, the templates can also be grouped into eight types, which are demonstrated as below:

Scale Estimation

# Scale Estimation

size_template_questions = [ "What is the size of [A]?", "How big is [A
]J?", "Can you provide the size measurement of [A] 7", ]
size_template_answers = [ "The size of [A] is [Length] x [Width] x [
Height]. ", "[A] is with the length of [Length], width of [Width],
and height of [Height]."]
height_template_questions = [ "What is the height of [A]?", "How tall
is [A]l?", "Can you measure the height of [A] 7", ]
height_template_answers = [ "The height of [A] is [Height].", "[A] is
with the height of [Height].","[A] measures [Height] in height."]
width_template_questions = [ "What is the width of [A]?", "Determine
the width of [A].", "Can you measure the width of [A] 7", ]
width_template_answers = [ "The width of [A] is [Width].", "[A] is
with the width of [Width].","[A] measures [Width] in width."]
Counting

# Counting

count_template_questions = [ "How many [Als are there in the image 7",
"what’s the total number of [A]ls in the image?" ]
count_template_answers = [ "There are [X] [A]ls.", "There are [X] [Als

in the image.", "[X]."]
Grounding

# Grounding

positionl_template_questions = [ "What object is located at ([x],[yl)~?
", "What can you find at ([x],[yl)?", "What object does the
position ([x],[y]) belong to?", ]

positionl_template_answers = [ "It is [A].", "That is [A].",?[A].’]
position2_template_questions = [ "What is the coordinate of [A] 7", ]
position2_template_answers = [ "([x],[y])." ,"It is located at ([x],[y

]) in the image."]

Existence

# Existence

zero_template_questions=[ "What is the size of [A]?", "How big is [A]?
", "Can you provide the size measurement of [A] 7", "What is the
height of [A]?", "How tall is [A]?", "Where is [A]?",

"How many [A]ls are there in the image 7", "what’s the total number of
[Als in the image?"]

zero_template_answers=[’There is no [A] in the image’,’Can not find [A
].7,’No [A] in the scene.’]

Absolute Distance

# Absolute Distance

distance_template_questions = [ "What is the distance between [A] and
[B]1?", "How far away is [A] from [B]?", "Can you provide the
distance measurement between [A] and [B]1?", 1]
distance_template_answers = [ "[A] and [B] are [X] apart.", "A
distance of [X] exists between [A] and [B].", "[A] and [B] are [X]
apart from each other.","The distance is [X]." ]
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Relative Position

# Relative Position

left_template_questions = [ "Is [A] to the left/right of [B] from the
viewer’s perspective?", "Does [A] appears on the left/right side
of [B]?", "Can you confirm if [A] is positioned to the left/right
of [Bl?", 1]

left_template_answers = ["Yes, [A] is to the left/right of [B].","
Indeed, [A] is positioned on the left/right side of [B]."]

closer_template_questions=["From the viewer’s perspective, what is
closer, [A] or [B] 7"]
closer_template_answers=["[X] is more closer."]

stands_template_questions=["Which stands higher/lower in the image, [A
1 or [B] ?"]
stands_template_answers= ["[X] stands higher/lower."]

Scale Comparison

# Scale Comparison

taller_template_questions=["Between [A] and [B], which one is taller/
lower?","Which one is taller/lower, [A] or [B]? "]

taller_template_answers=["The height of [A] is [Height A] and [B] is [
Height B], so [X] is taller/lower."]

tallest_template_questions = ["What is tallest/lowest among [A]l, [B],
and [C]?7"]

tallest_template_answers = ["The height of [A] is [Height A], height
of [B] is [Height B], and height of [C] is [Height C], so the
tallest is [X]."]

larger_template_questions=["Between [A] and [B], which one is larger/
smaller?","Which one is larger/smaller, [A] or [B]? "]

larger_template_answers=["The size of [A] is [Length A] x [Width A] x
[Height A] and [B] is [Length B] x [Width B] x [Height Bl, so [X]
is larger/smaller."]

Reference Object Estimation

# two objects

referl_template_questions = [ "The height of [A] is [Height A], can
you measure the height of [B]?7"]

referl_template_answers = ["Since the height of [A] is [Height A]l, i
think [B] is [Height B] in height.", ]

refer2_template_questions = ["The width of [A] is [Width A], can you
measure the width of [B]?7"]

refer2_template_answers = ["Since the width of [A] is [Width A], i
think the width of [B] is [Width B]"]

refer3_template_questions = ["The height of [A] is [Height A], can you
measure the size of [B]?7"]

refer3_template_answers = ["Since the height of [A] is [Height A], i
think the size of [B] is [Length B] x [Width B] x [Height B]."]
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I # three objects
> refer4_three_template_questions=["The height of [A] is [Height A],
what is the height of [B] and [C] 7"]
3 refer4d_three_template_answers=["Since the height of [A] is [Height A],
i think the height of [B] is [Height B] and the height of [C] is
[Height CJ]."]

s refer5_three_template_questions=["The distance between [A] and [B] is
[dis A2B], what is the distance between [B] and [C] ?"]
¢ referb5_three_template_answers=["Since the distance between [A] and [B]
is [dis A2B], i think the distance between [B] and [C] is [dis
B2C]."]

C Evaluation Details

C.1 GPT-4 Evaluation for MSMU-Bench

We resort to LLMs (i.e. GPT-4-Turbo) to evaluate the results. For quantitative queries, GPT-4 extracts
numerical values from the responses, and we calculate the success rate using a predefined threshold.
The prompt used to extract numerical values is shown as below:

You should help me to evaluate the response given the question and the correct answer.
You need to convert the measurement of the correct answer and response to meters. The
conversion factors are as follows: 1 inch = 0.0254 meters. 1 foot = 0.3048 meters. 1
centimeter (cm) = 0.01 meters. You should output two floats in meters, one for the answer,
and one for the response. If the answer or response contains more than one number for
prediction, you should output the List that contains the numbers. The output should be in
JSON format.

Example 1:

Question: How tall is the long brown table opposite the crossed table?

Answer: The height of the long brown table opposite the crossed table is 1.02 m.
Response: It is 2.17 meters wide.

“answer_in_meters”: 1.02, “response_in_meters”: 2.17

Example 2:

Question: what’s the total number of chairs in the image?
Answer: 2.

Response: There are 2 chairs.

“answer_in_meters”: 2,“response_in_meters’: 2

Example 3:

Question: What is the size of the dark pillow?

Answer: The dark pillow is with the size of 0.8 m x 0.63 m x 0.55 m
Response: It is 35.9 inches wide.

“answer_in_meters”: [0.78,0.63,0.55], “response_in_meters”: 0.91

Example 4:

Question: The height of the bed is 0.81 m, what is the height of the table and nightstand?
Answer: Since the height of the bed is 0.81 m, i think the height of the table is 1.02 meters
and the height of the nightstand is 0.93 meters.

Response: Since the height of the bed is 0.81 m, i think the height of the table is 1.36
meters and the height of the nightstand is 0.77 meters.

“answer_in_meters”: [1.02,0.93], “response_in_meters”:[1.36,0.77]

Your Turn:

Question: [Question]
Answer: [Answer]
Response: [Pred]

27



For qualitative questions, GPT-4 scores the model’s answers between 0 and 1. The prompt is shown
as below:

You should help me to evaluate the response given the question and the correct answer. To
mark a response, you should output a single integer between 0 and 1. 1 means that the
response perfectly matches the answer. 0 means that the response is completely different
from the answer. The output should be in JSON format.

Example 1:

Question: Is the blue bed to the left of the curtain from the viewer’s perspective?
Answer: Indeed, the bed is to the left of the curtain.

Response: Yes, the blue bed is positioned on the left side of the curtain.
“your_mark™: 1

Example 2:

Question: Between the wooden table and the black chair, which on is taller?
Answer: The wooden table is taller.

Response: The chair.

“your_mark™: 0

Example 3:

Question: What is the tallest among the table, the chair, and the curtain?
Answer: The tallest is the curtain.

Response: The curtain.

“your_mark”™: 1

Your Turn:

Question: [Question]
Answer: [Answer]
Response: [Response]

C.2 Q-Spatial

Following the official setting, the evaluation threshold for Q-Spatial is 2.0. And the system prompt
used is shown below:

You will be provided with a question and a 2D image.
The question involves measuring the precise distance in 3D space through a 2D image.
You will answer the question by providing a numerical answer.

For example:
Question: What is the distance between the two chairs?
Answer: The minimum distance between the two speckled pattern stool chairs is 1 meter.

C.3 SpatialRGPT

Following the official setting, the evaluation threshold for SpatialRGPT is 1.25. The prompts used to
evaluate the qualitative and quantitative questions are the same as those used in MSMU-Bench.

D Detailed Results on SpatialRGPT-Bench

More detailed results are shown in Table 7 and Table 8. Our SD-VLM shows the best performance
on quantitative tasks such as Height, Vertical Distance, Horizontal Distance, and Direct Distance and
qualitative tasks such as Big/Small, Behind/Front, Left/Right, and Tall/Short.
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Model Spatial RGPT-Bench

Height Width Vertical Distance Horizontal Distance Direct Distance
GPT-40 7.8/0.76 9.0/0.67 15.1/0.61 18.0/0.65 14.9/0.64
Gemini-2 42.2/1.63 26.2/0.51 12.3/0.68 25.0/3.89 9.4/4.75
Qwen2.5-VL-72B 31.8/1.38 23.8/0.57 8.5/0.71 8.0/0.84 9.4/0.70
InternVL-3-78B 38.8/242  23.7/0.70 24.5/1.04 17.0/0.72 13.4/0.72
LLaVA-1.5-7B 31.0/1.33  24.6/0.55 7.510.73 10.0/0.82 7.9/0.73
SpatialBot 28.4/2.16 20.5/0.72 6.6/0.70 8.0/3.39 2.4/0.87
SpatialRGPT 41.3/048 44.2/0.51 24.5/0.58 13.0/0.64 20.5/0.55
Ours 42.2/0.55 26.2/0.50 35.8/0.50 37.0/0.45 25.2/0.55

Table 7: Results on quantitative tasks in SpatialRGPT-Bench. We report the success rate and absolute
relative error for SpatialRGPT-Bench.

Model SpatialRGPT-Bench
Big/Small ~ Behind/Front  Left/Right  Tall/Short =~ Wide/Thin ~ Below/Above

GPT-40 55.1 59.8 63.6 56.3 55.6 72.5
Gemini-2 54.1 44.6 59.1 67.7 55.6 64.2
Qwen2.5-VL-72B 60.2 54.3 67.0 66.7 56.7 63.3
InternVL-3-78B 60.2 554 64.8 66.7 60.0 65.8
LLaVA-1.5-7B 16.3 40.2 23.9 323 17.8 27.5
SpatialBot 61.2 45.7 59.1 583 54.4 56.6
SpatiaRGPT 59.2 56.5 39.8 65.6 55.6 70.0
Ours 61.2 67.4 68.2 69.8 589 67.5

Table 8: Performance of various baselines on the qualitative spatial tasks in SpatiaRGPT-Bench.

E Ablation Study on Estimated Depth

We have conducted a further investigation about the sources of depth maps. From the data presented
in the Table 9, it is evident that the use of ground-truth depth maps during both training and inference
phases leads to the best performance (57.71%) on the MSMU-Bench dataset. This suggests that
the accuracy of depth information is crucial for the model’s ability to process and interpret spatial
data effectively. If the ground-truth depth is not provided, the overall success rate of the model with
estimated depth maps is still competitive. It is noteworthy that a significant disadvantage can be
observed when the model is not equipped with any depth information, revealing the importance of
incorporating depth priors into the VLM framework.

F Ablation Study on Normalization

To bridge the gap between different sources of depth maps, we conduct normalization in the depth
map before depth positional encoding, which can be formulated as:

depth — depthmin
depthmaw - depthwnin

depthnorm = a, (11)

where o represents the normalization coefficient, which restricts the maximum value of the depth
map.

As shown in Table 10, the highest success rate in MSMU-Bench is achieved when « is 100.

G Limitations

MSMU concentrates on indoor settings, featuring objects typical of domestic environments, reflecting
our source datasets’ composition. It narrows the model’s applicability to social or dynamic interaction
contexts. However, our model still exhibits strong adaptability, as evidenced by its solid performance
on benchmarks like SpatialRGPT-Bench, which contains abundant outdoor scenes. In the future, we
will explore larger base models and alternative architectures, such as Qwen-VL, to further investigate
our proposed framework.

29



Training Setting | Inference Setting | MSMU-Bench

w/ GT depth w/ GT depth 57.71
w/ GT depth w/ estimated depth 56.31
w/ estimated depth w/ GT depth 54.17
w/ estimated depth w/ estimated depth 55.35
w/o any depth w/o any depth 46.73

Table 9: Ablation study on the sources of depth maps.

« | MSMU-Bench

50 49.50
100 56.31
200 53.67
500 52.98

Table 10: Ablation study on the normalization coefficient.

H Broader Impact

Our model enhances its role as a robust multi-modal generalist by demonstrating superior precision
in spatial understanding. This capability is particularly valuable in embodied Al applications,
where it aids robots in perceiving their surroundings with greater accuracy and performing precise
manipulations. In addition, our model, which is based on large language models, may encounter
issues with hallucination, posing significant challenges when deploying the model in real-world
environments.

I More Result Comparisons on MSMU-Bench

Figure 8 and 9 illustrate more result comparisons on MSMU-Bench tasks. Our model shows a
consistent advantage in spatial measuring and understanding. It is worth noting that our model is able
to reason about complex spatial tasks with the chain-of-thought while other models fail to answer or
return an incorrect answer.

Question (Reference Object Estimation): ;
i The height of the right shelf is 1.65 meters, can you measure the :
i height of the desk with laptop and water bottle? :
! Answer:
GT: Since the height of the right shelf is 1.65 meters, i think the desk
i with laptop and water bottle is 0.71 meters in height :
! GPT-40: I'm unable to directly measure distances or heights in |
‘images. However, you can possibly estimate the desk height by
comparing it to the 1.65-meter tall shelf if both are on the same :
i plane and at a similar distance from the camera. :
' LLaVA-1.5: N/A. 5
SpatialRGPT: The height of the desk with laptop and water bottle
1is 0.55 meters. :

Ours: To determine the height of the desk with the laptop and water bottle, I should think it through step by step
i carefully. Firstly, the right shelf's height is given as 1.65 meters, which can be used as a reference scale. |
| Observing the image, the desk appears to be slightly shorter than the right shelf. By estimating the proportion, the
desk seems to be around 50% of the shelf's height. Therefore, multiplying 1.65 meters by 0.50 gives an
: approximate height of 0.825 meters for the desk. So, the height of the desk with the laptop and water bottle is !
estimated to be 0.825 meters. :

Figure 8: An example of the reference object estimation question in MSMU-Bench.

30



' Question (Existence):

i Can you provide the size measurement of washing machines?

| Answer:

i GT: Can not find washing machines.

: GPT-40: I'm unable to provide size measurements as there are no
| washing machines visible in the image.

! LLaVA-1.5: N/A.

: SpatialRGPT: The size of washing machines can vary depending
: on the model and brand.

. Ours: There is no washing machines in the image.

 How many chairs are there in the image?

Answer:

{GT: 2.

| GPT-40: There are two chairs in the image.

{ LLaVA-1.5: There are two chairs in the image.
| SpatialRGPT: There are 3 chairs in the image.
! Ours: There are 2 chairs.

Question (Grounding):
‘What object is located at (0.53,0.59)?

| Answer:

' GT: The shower curtain.

GPT-40: The object located at (0.53, 0.59) is a showerhead.
 LLaVA-1.5: The shower curtain is located at (0.53,0.59).

| SpatialRGPT: The object located at (0.53,0.59) is a shower.
Ours: It is the shower curtcain.

v

 Question (Scale Estimation):
! What is the height of the office chair?

Answer:

GT: The office chair measures 1.08 meters in height.
 GPT-40: The height of the office chair is 0.8 meters.
LLaVA-1.5: The office chair is of average height.

! SpatialRGPT: The height of the office chair is 30 inches.
| Ours: The height of the office chair is 1.06 m.

! Question (Relative Position):

i Can you confirm if the coffee machine is positioned to the left of the :
! dishwasher? :
| Answer:

! GT: No, the coffee machine is to the right of the dishwasher. :
| GPT-4o0: Yes, the coffee machine is positioned to the left of the !
| dishwasher. 1
i LLaVA-1.5: N/A. :
| SpatialRGPT: Yes, the coffee machine is located to the left of the !
: dishwasher. :

! Question (Scale Comparison):

! Between the white toilet and the shower curtain, which one is larger? |
| Answer: :
' GT: The size of the white toilet is 0.69 m x 0.64 m x 0.71 m and the :
i shower curtain is 41.29 cm x 30.74 cm x 183.82 cm, so the white !
i toilet is larger. :
: GPT-4o0: In terms of overall size, the shower curtain is larger than ;
 the toilet. :
! LLaVA-1.5: N/A.

! SpatialRGPT: The shower curtain is larger than the toilet. '
 Qurs: The size of the white toilet is 0.74 m x 0.49 m x 0.77 m and !
: the shower curtain is 0.44 meters x 0.31 meters x 1.89 meters, so the |

Figure 9: More results on MSMU-Bench.
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