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Abstract—SlidesScriber presents a novel solution for the au-
tomated extraction of presentation slides from teaching videos
in university recording platform. The system offers efficiency
and robustness in identifying and extracting slides. Leveraging
image processing and sequential outlier detection algorithms,
SlidesScriber accurately samples video frames to detect and
extract slides, facilitating efficient content retrieval. Through
massive uses by students, the system demonstrates robust perfor-
mance across various video recording environments, providing a
valuable tool for learners in accessing and utilizing educational
resources effectively.

Index Terms—automated extraction, image processing, sequen-
tial outlier detection, content retrieval

I. INTRODUCTION

In recent years, the use of digital learning platforms [1] has
led to an exponential increase in the availability of educational
resources, particularly in the form of teaching videos captured
during university lectures. These videos often contain valuable
content in the form of presentation slides [2], which serve
as key reference materials for students. However, manually
extracting these slides from lengthy video recordings before
final examination can be time-consuming and labor-intensive,
presenting a significant challenge for learners in university.

To address this challenge, we present SlidesScriber, a
cutting-edge system designed for the automated extraction
of presentation slides from teaching videos within university
recording platforms. SlidesScriber offers efficiency and robust-
ness, leveraging image processing techniques and sequential
outlier detection algorithms to accurately identify and extract
slides from video frames. By intelligently sampling frames
and detecting sequential outliers indicative of slide transitions,
SlidesScriber ensures precise extraction with minor computa-
tional overhead.

In this paper, we provide an overview of the SlidesScriber
system, detailing its architecture, underlying algorithms, im-
plementation, and case study evaluation. We demonstrate the
system’s effectiveness through massive uses across various
video recording environments, showcasing its ability to re-
liably extract slides from diverse video content. Ultimately,
SlidesScriber represents a valuable tool for learners, enabling
seamless access to presentation slides within teaching videos

and enhancing the efficiency of educational resource utiliza-
tion.

II. RELATED WORKS

A. Computer vision and image processing

Computer vision [3] and image processing [4] are interdisci-
plinary fields at the intersection of computer science, artificial
intelligence, and engineering, aiming to enable machines to
interpret and understand visual information from the real
world. These fields encompass a broad range of techniques
and algorithms designed to extract meaningful insights from
digital images and video streams.

At its core, computer vision involves the development of
algorithms and systems that enable computers to perceive,
analyze, and interpret visual data much like humans do. This
includes tasks such as object detection, recognition, tracking,
image segmentation, and scene understanding. By harnessing
the power of computer vision, machines can autonomously
extract valuable information from visual inputs, enabling ap-
plications in various domains. Image processing, on the other
hand, focuses on the manipulation and enhancement of digital
images to improve their quality, extract useful features, or
facilitate subsequent analysis. Image processing techniques
encompass operations such as filtering, transformation, feature
extraction, and noise reduction. These operations are applied
to raw image data to achieve specific objectives, such as
enhancing image contrast, removing noise, detecting edges,
or segmenting objects of interest.

In the context of automated slide extraction from teaching
videos, computer vision and image processing techniques play
a vital role in preprocessing to enhance the robustness. By
analyzing video frames, these techniques enable automated
systems to transform critic information to the following outlier
detection pipeline, facilitating efficient content retrieval for
educational purposes.

State of the art techniques in these domains involve utilizing
deep learning architectures such as convolutional neural net-
works [5] (CNNs), which great at capturing semantic features
within images. However, for our particular application context,
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Fig. 1. Architecture workflow overview The architecture of our system for extracting slides from teaching videos from university recordings is designed to
efficiently process student inputs, leverage WebDriver scripts to navigate through web pages, extract video URLs, sample frames, preprocess data to enhance
robustness, detect sequential information, identify outliers as critical frames, and save them as PDF slides.

where semantic representation isn’t essential, using these net-
works would introduce unnecessary computational overhead.

B. Sequential outlier detection

Sequential outlier detection algorithms [6] are a class of
techniques used to identify anomalies or outliers within a
sequence of data points ordered by time or another sequential
attribute. These algorithms are particularly useful in various
domains, including finance, manufacturing, cybersecurity, and
environmental monitoring, where detecting unusual patterns
or deviations from expected behavior is crucial for decision-
making and anomaly detection.

The primary objective of sequential outlier detection al-
gorithms is to distinguish abnormal data points from the
normal or expected ones within a time-ordered sequence.
Unlike traditional outlier detection methods that analyze static
datasets, sequential outlier detection techniques consider the
temporal ordering of data points, recognizing that anomalies
may manifest as temporal deviations or irregularities.

Sequential outlier detection algorithms typically operate by
analyzing the sequential relationships and temporal dependen-
cies among data points. They may utilize statistical models,
machine learning approaches, or rule-based techniques to iden-
tify outliers based on various factors such as trend analysis,
seasonality, periodicity, or sudden deviations from historical
patterns.

One common approach is based on time series analysis,
where statistical measures such as mean, median, standard
deviation, or autoregressive models are employed to character-
ize the underlying temporal structure of the data. Deviations
from expected values or patterns are then flagged as potential
outliers. Another approach involves the use of dynamic thresh-
olding techniques, where thresholds for anomaly detection
are adaptively adjusted based on the evolving characteristics
of the data stream. This allows the algorithm to adapt to
changes in data distribution or behavior over time, enhancing
its sensitivity to outliers while minimizing false positives.

Such detection algorithm has been employed in our SlidesS-
criber system to detect slide transitions within video se-
quences. By analyzing temporal changes in visual frames,
these algorithms can identify instances where new slides are

displayed, enabling precise extraction of slide content. We
made numerous adjustments to align with our application’s
scenario.

C. WebDriver

WebDriver is a powerful tool for automating web browsers
[7]. It provides a programming interface for controlling and
interacting with web browsers programmatically. Developed
as an open-source project, WebDriver has gained widespread
adoption in web testing, web scraping, and web automation
tasks.

At its core, WebDriver allows developers to write code that
simulates user interactions with web browsers. This includes
actions such as clicking links, filling out forms, submitting
data, and navigating through web pages. WebDriver supports
various programming languages such as Python, Java, and
JavaScript, making it accessible to developers across different
platforms. One of the key features of WebDriver is its cross-
browser compatibility. It provides drivers for popular web
browsers like Google Chrome, Mozilla Firefox, Microsoft
Edge, Safari, and Opera, allowing developers to automate tasks
across multiple browsers seamlessly.

WebDriver operates by sending commands to a browser’s
native automation engine using a protocol called the Web-
Driver protocol. This protocol defines a standardized way
for interacting with web browsers, ensuring consistency and
interoperability across different implementations. With Web-
Driver, developers can create automated tests to verify the
functionality and behavior of web applications across different
browsers and platforms. It also enables the creation of web
scraping scripts to extract data from web pages and perform
repetitive tasks efficiently.

In our system, tools such as WebDriver play a crucial role in
automating the extraction of video URLs from digital learning
platforms.

III. ARCHITECTURE

Our SlidesScriber system, depicted in Figure 1, functions
highly autonomously, requiring only the course name or iden-
tifiers specified by students. Upon input, the system generates
PDF-format slides corresponding to the desired course.



A. Modules

• Input Module: Students provide the course name or ID,
which serves as the only input to the automated system.

• WebDriver Scripts: WebDriver scripts are employed to
automate web browsing tasks. These scripts navigate
through digital learning platforms, locate the specified
course, and extract the URLs of teaching videos(the slides
part) associated with the course.

• Sample Frames: Video content is sampled to extract
frames according to it’s playing rates, which serve as
the basis for slide extraction. A queue data structure
facilitates the management of sampled frames as they
traverse through the preprocessing and analysis pipeline.
The queue operates within a multi-threaded producer-
consumer model, ensuring efficient handling of frame
extracting and processing tasks.

• Preprocessing Module: Feedback from earlier users in-
dicates that certain recordings from the platform contain
background noise, prompting the need for noise reduction
techniques. Thus the sampled frames undergo preprocess-
ing to enhance their robustness to noise.

• Sequential Information Analysis: Processed frames are
analyzed to identify sequential information, such as tem-
poral patterns within the video content.

• Outlier Detection: An efficient outlier detection algorithm
is applied to the sequential information to identify anoma-
lous frames or critical points as slide transitions within
the sampled video stream.

• Slides Creation: The critical frames are compiled into pdf
format slides, preserving the visual content and structure
of the original presentation.

While designing an efficient outlier detection algorithm
tailored to our specific task remains the most important, the
core focus of our system development lies in the evolution of
this algorithm. We will propose the foundational framework
for its advancement.

IV. OUTLIER DETECTION ALGORITHM DESIGN

A. Outliers and Two Types of Errors

In a teaching video, where most of frames are stationary,
outliers identified through sequential outlier detection are
primarily characterized as slide transitions. These transitions
represent significant temporal shifts within the video content,
marking the transition from one slide to another. There are
two types of errors are encountered by the detection algorithm:
false positives and false negatives.

• False Positives: False positives occur when the algorithm
incorrectly identifies a normal data point as an outlier.
In the context of our system for extracting slides from
teaching videos, the algorithm mistakenly flags a frame
as a transition frame, which lead to unnecessary alerts
and duplicated pages in the resulting slides.

• False Negatives: False negatives occur when the algo-
rithm fails to detect an actual outlier in the dataset. In

other words, the output will miss certain pages compared
with original slides.

Minimizing both false positives and false negatives is crucial
for precise outlier detection, with a particular emphasis on
mitigating False Negatives due to their significance in our
task. Our algorithm is specifically designed to achieve a zero
False Negatives rate while simultaneously striving to mini-
mize false positives. This approach ensures that no important
slide transitions or critical events are missed.

B. A Naive Approach

The most straightforward approach to identifying transition
frames is by computing the Euclidean Distance between two
consecutive sampled frames.

Distance(Framei, F ramei+1)

=

√∑
j

(Framei[j]− Framei+1[j])2

Algorithm 1 Distance Based Detection
1: procedure DETECTTRANSITIONS(frames, threshold)
2: transitions← ∅
3: for i← 1 to len(frames)− 1 do
4: distance← Distance(frames[i], frames[i+ 1])
5: if distance > threshold then
6: transitions.append(frames[i])
7: end if
8: end for
9: return transitions

10: end procedure

However, this method presents two notable drawbacks.
Firstly, it needs manually setting a threshold value to determine
transitions, a parameter that can vary significantly across
different videos. Secondly, when adjusting the threshold to
meet our zero false negatives constraint, this method often
results in a high number of false positives.

C. Bounded Metric and Critical Observation

We have turned to calculate the cosine similarity between
two consecutive frames to circumvent the unpredictability of
the distance threshold. Through observation, we have found
that the angle associated with the cosine value is significantly
more distinguishable between normal and transition frames.

θ = arccos
Framei · Framei+1

‖Framei‖‖Framei+1‖
We opt to compute the Euclidean angle directly instead of

utilizing their visual representation through a vision encoder
for several reasons:

1) With numerous videos per course and a considerable
number of frames generated per video, the computa-
tional overhead grows dramatically upon introducing a
vision encoder.
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Fig. 2. Similarity angle θ distribution in a case study

2) Teaching slides primarily change pixel-level rather than
semantic understanding. Consequently, visual represen-
tations derived from a vision encoder do not align with
our requirements.

3) As illustrated in our case study depicted in Figure 2, our
straightforward metric proves to be highly effective and
efficient for our task.

This approach not only addresses computational concerns
but also ensures alignment with the specific objectives of
our task, ultimately enhancing efficiency and effectiveness in
transition frames detection.

Here we show a case study. By examining the distribution
of these theta values in Figure 2, we gain a deeper under-
standing of the variability in frame-to-frame similarity within
the video content. This analysis highlights the effectiveness of
cosine similarity as a metric for distinguishing between normal
frames and transition frames in teaching videos for three key
reasons:

1) Theta bounded between 0 and π
2 : The nature range

of angle provides a clear normed boundary that doesn’t
change significantly among different video input.

2) The observation of distinct distributions: The case
study reveals the presence of two obvious peaks in
the distribution of theta values. Normal frames pre-
dominantly cluster in the blue region, corresponding
to smaller theta values, indicating higher similarity be-
tween consecutive frames. In contrast, transition frames
are concentrated in the red region, characterized by
larger theta values, signifying a greater deviation or
change between consecutive frames. This clear boundary
in the distributions underscores the efficacy of cosine
similarity in distinguishing between normal and transi-
tion frames within teaching videos.

3) Strong universality While this case study provides
valuable insights, its applicability extends universally to
various teaching videos despite potential differences in
content or context. More specifically, the two peaks dis-
tinguishability remains consistent across diverse video
datasets in practice.

D. Temporal Information Adaption

This task extends beyond outlier detection within stationary
distributions. We must also leverage temporal information to
address scenario changes, a phenomenon observed in certain
videos that the previous case study did not reveal. The previous
case study retains its value as stationary properties remain
within a time window. Therefore, we can apply a low-pass
filter to capture the temporal scope information effectively.
The Kalman filter [8] is a recursive mathematical algorithm
used to estimate the state of a dynamic system from a series
of noisy measurements over time. We simiplify this algorithm
to estimate the dynamic angle value and its variability.

Subsequently, we utilize the estimated temporal angle mean
and variability values to implement the Dynamic Boundary Es-
timation Based Detection Algorithm (see Algorithm:2) to find
the boundary between normal frames and transition frames
along with temporal scenario dynamically. Transition frames
are flagged when the angle value deviate beyond a predefined
number of variability from the mean.

In order to mitigate the sharp impact of outlier angle values
on our estimation process, we apply a damping mechanism to
control the influence of exceptionally large outlier angle values
during the update phase. This damping is achieved through the
utilization of our introduced f-average method.

E. f-average design

Definition 1. f-average: Let f : D → X be a monotonic
function that maps a subset of real numbers to another space
X . It is easily known that f is reversible within its monotonic
domain. The f-average of a set of real numbers a1, a2, . . . , an
is defined as:

āf = f−1

(
1

n

n∑
i=1

f(ai)

)
where f−1 is the inverse function of f , and n is the number
of elements in the set.

Example: Let f(x) = x2 be a function that maps positive
real numbers to their squares. The f -average of the numbers
1, 2, 3 is calculated as:

āf = f−1

(
1

3

3∑
i=1

f(ai)

)
=

√
1

3
· (12 + 22 + 32)

Theorem 1. If f is twice differentiable, the f -average is
greater than the arithmetic average if and only if sign(f ′(x)) ·
f ′′(x) > 0.

Proof. First, the f -average is greater than the arithmetic
average means:

āf > ā



which means

f−1

(
1

n

n∑
i=1

f(ai)

)
>

1

n

n∑
i=1

ai

by their definition.
If sign(f ′(x)) > 0, indicating that f is increasing, then we

obtain
1

n

n∑
i=1

f(ai) > f

(
1

n

n∑
i=1

ai

)
This demonstrates that f is convex. Given that f is twice
differentiable, f ′′(x) > 0.

Conversely and similarly, we can get when sign(f ′(x)) < 0,
f ′′(x) < 0.

Hence, we conclude that the f -average is greater than the
arithmetic average if and only if sign(f ′(x)) · f ′′(x) > 0.

Theorem 2. If f1 and f2 are both twice differentiable, then
the f1-average is greater than the f2-average if and only if
sign(f ′1(x)) · sign(h′(x)) · h′′(x) < 0, where h(x) = f2 ◦ f−11 .

Proof.
āf1 > āf2

means

f−11

(
1

n

n∑
i=1

f1(ai)

)
> f−12

(
1

n

n∑
i=1

f2(ai)

)
by definition.

If sign(f ′1(x)) > 0, indicating that f1 is increasing, then we
obtain

1

n

n∑
i=1

f1(ai) > f1 ◦ f−12

(
1

n

n∑
i=1

f2 ◦ f−11 (f1(ai))

)
We have

1

n

n∑
i=1

bi > h−1

(
1

n

n∑
i=1

h(bi)

)
where bi = f1(ai) and h(x) = f2 ◦ f−11 , this shows
sign(h′(x)) · h′′(x) < 0 by Theorem 1.

Conversely and similarly, we can get when sign(f ′1(x)) < 0,
sign(h′(x)) · h′′(x) > 0.

Hence, we conclude that the f1-average is greater than the
f2-average if and only if sign(f ′1(x)) · sign(h′(x)) · h′′(x) <
0.

In our damping mechanism, we choose q(x) = ln(x + 1),
which means āq =

∏n
i=1(ai + 1)

1
n − 1 by definition. Addi-

tionally, we observe that if g(x) = ln(x), then the g-average
represents the geometric mean.

Theorem 3. āq is between geometric mean and arithmetic
average.

Proof. q′(x) = 1
x+1 , q′′(x) = − 1

(x+1)2 , so sign(q′(x)) ·
q′′(x) < 0, which means āq is less than arithmetic average
by Theorem 1.

h(x) = g ◦ q−1 = ln(ex − 1), h′(x) = ex

ex−1 = 1 + 1
ex−1 ,

h′′(x) = − ex

(ex−1)2 , so sign(q′(x)) · sign(h′(x)) · h′′(x) < 0,
which means āq is great than geometric average by Theorem
2.

Hence, we conclude that āq is between geometric mean and
arithmetic average.

We select āq as the damping mechanism for mitigating the
sharp impact of outlier angle values on our estimation process,
guided by the following considerations:

1) The use of āq provides a smooth and gradual adjust-
ment, which helps to prevent abrupt fluctuations in
our estimated angle values and its variability, resulting
in smoother and more consistent estimates that better
reflect the underlying boundary of the two peaks distri-
bution.

2) Upon examining Figure 2, it becomes evident that the
arithmetic average is too large and is prone to cause false
negatives which we desire none, while the geometric
average experiences a sharp decline particularly when
one of the elements approaches zero. We attribute this
behavior to the domain of g−1(x), which spans (0,+∞).
In contrast, the function q(x) lies between the arithmetic
and geometric means by Theorem 3, with its inverse
function q−1(x) having a domain of (−1,+∞). Conse-
quently, the angle data tends to be avoid from the lower
extreme, thereby giving a more stable update process.

F. The Improved Algorithm

By combining all the aforementioned considerations, we
propose the following algorithm for efficient and robust tem-
poral outlier detection.

Algorithm 2 Dynamic Angle Boundary Estimation Based
Detection

1: procedure DETECTTRANSITIONS
2: transitions← ∅
3: Initialize angle estimate θ̂0 and variability estimate d̂0
4: Initialize constant α0, α1 and n
5: Get sampled frame F0 from producer Queue
6: for t← 1 to N do
7: Get sampled frame Ft from producer Queue
8: Compute new angle: θt ← Θ(Ft−1, Ft)
9: Compute new variability: dt ← ‖θt − θ̂t−1‖

10: if θt > θ̂t−1 + n · d̂t−1 then
11: transitions.append(Ft)
12: Damping outlier’s angle: θt ← āq(θt, θ̂t−1)
13: Damping outlier’s variability: dt ← āq(dt,

d̂t−1)
14: end if
15: Update angle estimate: θ̂t ← θ̂t−1 +α0(θt− θ̂t−1)
16: Update variability estimate: d̂t ← d̂t−1 + α1(dt −

d̂t−1)
17: end for
18: return transitions
19: end procedure



While there are parameters yet to be specified during
initialization, they can be hardcoded, and the algorithm is
adaptive enough to videos encountered in practice.

We apply both algorithms to the case study video, and
the Table I presents the respective numbers of false positives
generated by each.

TABLE I
ALGORITHM EVALUATION ON CASE STUDY VIDEO

Algorithm # false positives
Distance 9
Dynamic Angle Boundary Estimation 0

In this case study there are 47 transitions in the ground
truth slides, Algorithm 2 showcases remarkable effectiveness
by providing entirely accurate results, with notably fewer false
positives compared to Algorithm 1 when operating under the
constraint of zero false negatives.

G. Preprocessing & Robustness

Our improved algorithm demonstrates practical utility al-
ready; however, user feedback has highlighted instances of
background color noise in certain videos, often stemming from
camera hardware damage. To further improve our system be
more robust against such challenges, we have refined our
preprocessing pipeline.

We employ a simple yet effective technique: initially, we
compute the histogram of frames and identify the predominant
color as the background value. Subsequently, we reassign these
background pixels by averaging their values, thereby filtered
noise. Additionally, alternative approaches, such as specific
designed histogram refinement [9] to shrink background neigh-
bourhood noise, offer both efficiency and efficacy in noise
reduction.

FUTURE WORK

We profile the time usage of our system and find the
majority of time is used in network transformation, which
shows the efficiency of our detection algorithm, while we can
still optimize SlidesScriber system in network part, such as
Caching and Memoization [10] for users in the same network.
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V. APPENDIX

A. Part of the result of Algorithm 2 on the case study

We show the user input interface, WebDriver display and
part of the result of Algorithm 2 on the case study in
appendix. The data of appendix is from one of our anonymous
user.
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