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Abstract

This paper proposes a novel universal quantile regression approach for solving a
multi-product inventory management problem, leveraging the in-context learning
(ICL) capability of time-series transformers. Our work not only provides a new
meta-learning approach for multi-product inventory management, but also extends
the state-of-the-art in ICL of transformers by showing how they can be used as
universal quantile regressors for data that is not i.i.d. In numerical experiments
using a large real-world dataset, our meta-learner consistently outperforms state-of-
the-art benchmark models. Remarkably, it outperforms task-specific benchmarks,
even when applied to new, unseen inventory management tasks.

1 Introduction

Many companies have to take inventory decisions for thousands of different products in the face
of demand uncertainty. Typically, these products have heterogeneous demand patterns that may be
correlated, both across products and in time. Conventional methods in Operations Management (OM)
for single-product inventory management rely on first fitting a distribution to the historical demand
data or Sample Average Approximation (SAA) [4] and then solving a stochastic optimization problem.
More recently, various works utilized associated feature information to make inventory prescriptions
in an integrated, data-driven manner (e.g. [3, 2, 12]). The single period, single product inventory
management problem is referred to as the Newsvendor (NV) problem. The optimal solution to the
NV is a conditional quantile that can be estimated using quantile regression. The main limitation of
existing approaches is that their extension to multiple products requires a separate quantile regression
model for each product. Such task-specific models suffer from a limited availability of task-specific
historical (time series) data—especially for new products—and may induce high costs associated
with training and tuning. The emergent phenomenon in modern transformer models, called in-context
learning, can provide an elegant solution to these challenges. ICL can be considered as an instance of
meta-learning (i.e., learning to learn), where a transformer learns a learning algorithm (e.g., linear
regression [6, 24]) instead of just learning weights. However, extending ICL to learning complex
function classes that can deal with non-i.i.d. data is a challenging task. Few recents works such
as [10] look at ICL for non-i.i.d. time series data, but do not consider features. To the best of our
knowledge, we are the first to study in-context quantile regression for non-i.i.d. data. We make the
following main contributions: (1) We leverage the ICL capability of transformers to build a universal
quantile regressor that can act as a meta-learner to prescribe inventory quantities for different products
and service levels (target quantile levels), (2) We extend the state-of-the-art in modern transformers
by showing that they are capable of learning in-context beyond simple functions accounting for
auto-correlation in time-series data, and (3) We provide numerical results on a large real-world dataset
to show that our ICL time-series transformers outperforms task-specific models, both for seen and
unseen tasks.
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2 Problem setup

The objective of the decision-maker in the NV problem is to find an optimal order quantity q⋆ ∈ Q ⊆
R for a product with random demand D ∈ D ⊆ R. In real-world scenarios, the distribution of the
demand may depend on associated contextual feature information X ∈ X ⊆ Rk. The NV problem
can be formulated as a stochastic optimization problem of minimizing the expected cost conditioned
on a given feature vector

q⋆α = argmin
q∈Q

E [c(D, q) | X = x] ,with c(d, q) := cu(d− q)+ + co(q − d)+ (1)

In (1), the expectation is with respect to the conditional distribution PD|X, and (·)+ denotes the
max{·, 0} operation, cu is the underage cost when inventory is not sufficient to fulfill demand,
and co is overage cost for excess inventory. The optimal order quantity for (1) is q⋆α = F−1

D|X (α),
where F−1

D|X denotes the inverse of the conditional CDF of the random demand D given X, and
α := cu

cu+co
∈ (0, 1) is called the service level [13, 16]. By definition, the optimal order quantity is

given by the α−conditional quantile function that can be estimated using quantile regression [8, 19].
Let fθ be a parameterized function that comes from a sufficiently expressive class of functions
F = {fθ : X → Q | θ ∈ Θ ⊆ Rp}, and maps our feature realizations to order quantities. To
determine the optimal parameters of fθ, we want to solve

fθ⋆ ∈ argmin
fθ∈F

E
[
cu(D − fθ(X))+ + co(fθ(X)−D)+

]
(2)

= argmin
fθ∈F

E [ℓ (D, fθ(X), α)] , (3)

with the pinball loss ℓ(d, d̂, α) :=
(
d̂− d

)(
I{d ≤ d̂} − α

)
. The equality above holds because the

expression in (3) differs from the expression in (2) only by a constant scaling factor (cu+ co). Finally,
we replace the expectation over the true conditional by the sample average approximation for the
historical data {xt, dt}Tt=1 to estimate the optimal order quantity q̂⋆α = fθ̂⋆(x)

fθ̂⋆ ∈ argmin
fθ∈F

1

T

T∑
t=1

ℓ (dt, fθ(xt), α) (4)

3 Multi-product Newsvendor using in-context quantile regression

Simultaneous quantile regression. The first step towards building a universal quantile regressor
that can act as a meta-learner to prescribe inventory quantities across products and α-quantiles is
to train our model fθ across all possible α-quantiles. This notion has been introduced in literature
[18, 5, 7] (albeit, in a different context namely, uncertainty quantification) as simultaneous quantile
regression (SQR). The standard quantile regression (4) can be transformed into a simultaneous
quantile regression (5), by training the model on all quantile levels α ∼ U(0, 1), and using the class
of functions F = {fθ : X × (0, 1) → Q | θ ∈ Θ ⊆ Rp}:

fθ̂⋆ ∈ argmin
fθ∈F

Eα∼U(0,1)

[
1

T

T∑
t=1

ℓ (dt, fθ(xt, α), α)

]
(5)

Note that (5) gives us a solution for a single product across all α−quantiles. Therefore, if we
use traditional machine learning models such as MLP to solve (5), the multi-product case would
necessitate either training separate models for each product, or fine-tuning on new products. We
now detail how to leverage ICL capability of transformers to build a universal quantile regressor for
multiple products.

In-context quantile regression. ICL refers to the capability of a transformer trained on prompts
consisting of input-output pairs (corresponding to some task), to produce an output given a new prompt
(corresponding to some new task), without fine-tuning [6]. In the context of inventory management,
the prescription of the order quantities {q̂it}Tt=τ+1 for a product i ∈ [I] can be considered as a single
task. The context length τ is a hyperparameter that is fixed during training but may take different
values at inference time. At each time-step t, the model receives a prompt that includes a τ−recent
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history of features and demands. Unlike existing works on ICL for regression or classification, we
cannot assume the demand and feature observations to be i.i.d., because there may be correlations
across time as well as products. To account for these dependencies, we utilize the causal self-attention
mechanism of transformers and follow a similar approach as [10]. We define the input vector at
any time t as x̃i

t := (xi
t, d

i
t−1, α

i
t) and build a prompt sequence to make a prescription at time t

as P i
t =

{(
x̃i
t′ , d

i
t′

)t−1

t′=t−τ
,
(
x̃i
t, 0

)}
. For training, we randomly sample αi

t from U(0, 1) for each

prompt P i
t′ and train the model fθ to minimize the quantile loss over all prompts

fθ̂⋆ ∈ argmin
fθ∈F

Eαi
t∼U(0,1)

[
1

I

I∑
i=1

1

T − τ

T∑
t=τ+1

ℓ
(
dit, fθ(P

i
t ), α

i
t

)]
, (6)

where the expectation is with respect to the joint distribution of α−service levels over all prompts.
The backward pass involves calculating gradients for the quantile loss, which is conditioned on the
randomly generated service level. For testing, a prompt has the same structure as defined for training,
except that α ∈ (0, 1) is now a predetermined parameter. There is no gradient-based learning during
testing, even for new products that were not part of the training data.

Time-series transformer. Our parameterized model fθ is represented by a transformer architecture.
It has been proven theoretically that transformers [22] are sufficiently expressive to universally
approximate sequence-to-sequence functions [1, 23], including time-series [20]. Inspired by previous
work on time-series transformers such as Lag-Llama [15], we use a decoder-only transformer
architecture based on GPT [14] and LLaMA [21]. Mathematically, the transformer will be a function
of the form fθ : R(k+3)×τ → R, where the input for any task i ∈ [I] is a matrix X̃i with (k+3) rows
(corresponding to k features, the lagged demand and the service level as input, and current demand as
output) and τ columns (see Appendix A.1). The transformer processes the input-vectors (columns of
X̃i) for each timestep (from t− τ to t) as individual tokens. We use a simple linear layer to transform
the (k + 3)−dimensional tokens into the appropriate input dimension of the transformer. We also
account for the sequential nature of our time-series data using Rotary Positional Embeddings (RoPE)
introduced in [17]. Since we meta-learn a universal quantile regressor across all quantiles, we do
not need sophisticated distributional heads used in other time-series transformers [15]. Therefore,
our output layer consists of a linear layer that transforms the transformer output into a scalar value,
directly representing q̂it, conditioned on the αi

t−quantile.

4 Experiments

Experimental setup. We evaluate our approach using a comprehensive dataset from the Kaggle M5
Uncertainty Challenge, widely referenced in forecasting research [11, 9]. This dataset includes daily
demand data for 3,049 products across 10 Walmart stores over 1,941 days. In Inventory Management,
a unique combination of store and product is referred to as Stock Keeping Unit (SKU). In our
terminology in section 3, each SKU corresponds to a single task, implying that each task involves
solving the Newsvendor problem for that specific SKU repeatedly, on a daily basis. For evaluation,
we split the dataset into the last 200 days for testing and the prior 100 days for validation. To assess
the generalization capability of our model, we randomly draw two samples of 512 tasks (SKUs)
that we call ICL-seen and ICL-unseen tasks. The latter are excluded from the training of our ICL
models. We evaluate the performance of all models based on the total costs per task, i.e., the sum
of the overage and underage costs (see Equation 1) over all 200 test days for the two samples. To
compare these costs across service levels and tasks, we report the per-task improvement relative to an
SAA model that computes the optimal demand quantiles without features. We denote this as relative
improvement in Figure 1. We call our model ICL-SQR-Transformer (ICL-SQR-TR) as it learns
across tasks and α quantiles. For benchmarking, we report results for an ICL-Transformer (ICL-TR)
trained on a specific quantile, a Multi Layer Perceptron (MLP) trained similarly to our Transformer
model (ICL + SQR), and to three single-task models (MLP, Extreme Gradient Boosting (XGB), and
Transformer (TR)).

Results. Figure 1 compares the relative improvement over SAA between our ICL-SQR-TR model and
the benchmarks, evaluated at a 70% service level based on the 512 unseen tasks (see Appendix A.4,
A.5, A.6 for significance tests and additional analyses). Our model leads to substantial and statistically
significant performance improvements (at a 1% significance level, based on both Wilcoxon signed
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Figure 1: Average cost improvement of our ICL-
SQR-TR model and benchmark models relative
to SAA, evaluated at 70% service level. Aver-
aged over total costs across the 512 unseen test
tasks and test time steps.
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Figure 2: Average cost improvement of our ICL-
SQR-TR model varied by the number of training
tasks and service level, relative to SAA. Perfor-
mance based on the 512 unseen tasks, averaged
across multiple independent runs.

rank tests and Man-Whitney-U tests), compared to state-of-the-art benchmark models. Within the
class of ICL models, there is no significant difference between our ICL-SQR-TR model and the
ICL-only Transformer. Thus, our much more flexible and scalable model is superior to all available
models specialized on single tasks, and it is on par with a model specialized on a single α-service level.
Most importantly, these results point towards the strong generalization capability of our ICL-SQR-TR
model, our model outperforms all other models—regardless of having seen or not seen the specific
tasks during training.

Impact of the number of training tasks. To understand how the ICL capability depends on the
number of training tasks, we conduct an additional experiment in which we successively increase
the number of training tasks on a power scale from 2 to 30,000 and train various instances of our
ICL-SQR-TR model. We evaluate the performance of each of these models on the 512 unseen tasks,
for α-service levels ranging from 1% to 99%. To ensure the robustness of our results, we draw
multiple samples of training datasets that decrease in the number of tasks according to a power scale,
i.e, for 2 tasks we draw 128 samples, for 8 tasks, we draw 64 samples, etc. (details in Appendix A.2).
We use hyperparameter optimization to adjust the size of the ICL-SQR-TR model and the number of
training epochs for the different numbers of training tasks (see Appendix A.3). The results are shown
in Figure 2. Predictably, performance improves with more training tasks, especially for extreme
service levels (both high and low). While medium-sized models already perform well at moderate
service levels, larger models are required for satisfactory results at extreme levels. There is a visible
performance asymmetry around the 50% service level due to the highly skewed demand distributions,
a common characteristic of real-world data that often features lumpy and/or intermittent demands.

5 Conclusion

Scientific considerations. Our main methodological contribution is the development of a meta-
learner that combines SQR with ICL capabilities of transformers to build a universal quantile regressor
that solves a practically relevant multi-variate and non-i.i.d time-series problem. Our approach can
be applied to any decision-making problem that can be translated into a quantile regression problem.

Practical considerations. We propose a flexible and scalable prescriptive approach for taking
inventory decisions for multiple products (tasks) with different cost characteristics (target quantiles).
Numerical experiments show that our model substantially outperforms state-of-the-art models when
applied to existing products, and, more importantly, to new products with limited historical data.

Limitations and outlook. In this work, we focused on a widely used (static) inventory management
problem. To apply it to a broader range of real-world problems, one could extend this work to
dynamic decision-making problems (where the decision in one period also affects the next period,
e.g., utilizing dynamic optimization or reinforcement learning) or incorporate cross-company data.
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A Appendix

A.1 Prompt details for ICL SQR Transformer

Here in (7) we provide the detailed matrix structure of a prompt P̃ i
t that was defined in section 3. The

first row of the matrix represents features, the second row represents lagged demands and the third
row service levels for each prompt. The first three rows together which have been highlighted in blue
represents the input of the prompt. The last row which has been highlighted in red represents the
output of the prompt. The last column of the matrix represents the query to which we wish to find out
the output using the transformer. Since one do not know the output to this query, we provide a 0 in
the corresponding position of the prompt, to match the token size of the transformer.

P̃ i
t =

 xi
t−τ xi

t−τ+1 . . . xi
t

dit−τ−1 dit−τ . . . dit−1

αt
i αt

i . . . αt
i

dit−τ dit−τ+1 . . . 0

 (7)
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A.2 Number of independent runs per number of training tasks

Number of training tasks 21 23 25 27 29 211 213 215

Number of runs 128 64 32 16 8 4 2 1

Table 1: Number of independent runs per number of training tasks

A.3 Hyperparameters for ICL-SQR-TR models by number of training tasks

Number of training tasks 21 23 25 27 29 211 213 215

Model parameters

Number of layers 2 3 4 5 5 5 5 6

Number of heads 8 8 8 8 10 12 12 12

Size of embedding per head 16 16 32 32 32 32 48 48

Training parameters

Training epochs 500 400 300 200 100 50 25 10

Early stopping patience 50 50 30 20 15 10 5 3

Learning rate 3 × 10−2 1× 10−2 1× 10−3 7 × 10−4 7× 10−4 1 × 10−3 1× 10−3 1× 10−3

Learning rate scheduler warmup 500 1000 2000 3000 3000 2000 2000 2000

Regularization

Drop-out probability 0.35 0.3 0.3 0.25 0.25 0.2 0.15 0.1

L-2 regularization 3 × 10−3 1× 10−3 3× 10−4 3 × 10−5 1× 10−5 3 × 10−6 1× 10−6 1× 10−6

Table 2: Hyperparemters used for the ICL-SQR-TR models traind on varying number of training
tasks. Due to high computational cost, a specific tuning was only conducted for some dataset sizes
(columns in bold). For the remaining sizes, hyperparameters were interpolated/extrapolated.

A.4 Significance tests

Service level ICL-SQR-MLP ICL-TR MLP XGB TR SAA

W
ilc

ox
on

si
gn

ed
-r

an
k

1% 0.0000⋆⋆⋆ 0.9846 0.0965⋆ 0.0000⋆⋆⋆ 1.0000
5% 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.9941
10% 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.3005
30% 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆

50% 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆

70% 0.0000⋆⋆⋆ 0.9643 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆

90% 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆

95% 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆

99% 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆

M
an

-
W

hi
tn

ey
-U

1% 0.0000⋆⋆⋆ 0.7958 0.1410 0.0000⋆⋆⋆ 0.9998
5% 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0003⋆⋆⋆ 0.0000⋆⋆⋆ 0.7502
10% 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0006⋆⋆⋆ 0.0000⋆⋆⋆ 0.5397
30% 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆

50% 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆

70% 0.0000⋆⋆⋆ 0.5586 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆

90% 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆

95% 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆

99% 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆ 0.0000⋆⋆⋆

Significance codes: p − value < 0.01 : ⋆⋆⋆, p − value < 0.05 : ⋆⋆, p − value < 0.1 : ⋆, for a single-sided test

Table 3: Statistical differences between our ICL-SQR-TR model and all benchmarks across all service
levels based on the Wilcoxon signed-rank test and Mann–Whitney U test. Calculated based on the
ICL-unseen tasks. The numbers represent the p-values, highlighted with significance codes. The
service-level specific ICL transformer has only been trained on the 70% quantile.
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A.5 Detailed results for 70% service level
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Figure 3: Relative cost of our ICL-SQR-TR model and benchmark models relative to SAA, evaluated
at 70% service level. The boxplots represent the relative distribution of total cost on each of the 512
tasks in the test set. The red lines represent mean-performance.

A.6 Results for additional relevant service levels

A.6.1 Service level of 30%
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Figure 4: Relative cost of our ICL-SQR-TR model and benchmark models relative to SAA, evaluated
at 30% service level. The boxplots represent the relative distribution of total cost on each of the 512
tasks in the test set. The red lines represent mean-performance.
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A.6.2 Service level of 50%
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Figure 5: Relative cost of our ICL-SQR-TR model and benchmark models relative to SAA, evaluated
at 50% service level. The boxplots represent the relative distribution of total cost on each of the 512
tasks in the test set. The red lines represent mean-performance.

A.6.3 Service level of 90%
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Figure 6: Relative cost of our ICL-SQR-TR model and benchmark models relative to SAA, evaluated
at 90% service level. The boxplots represent the relative distribution of total cost on each of the 512
tasks in the test set. The red lines represent mean-performance.
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A.6.4 Service level of 95%
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Figure 7: Relative cost of our ICL-SQR-TR model and benchmark models relative to SAA, evaluated
at 95% service level. The boxplots represent the relative distribution of total cost on each of the 512
tasks in the test set. The red lines represent mean-performance.

A.6.5 Service level of 99%
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Figure 8: Relative cost of our ICL-SQR-TR model and benchmark models relative to SAA, evaluated
at 99% service level. The boxplots represent the relative distribution of total cost on each of the 512
tasks in the test set. The red lines represent mean-performance.
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