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Abstract

Establishing String Similarity based on pho-001
netics has been widely used in information re-002
trieval systems to identify differently spelled003
but similar-sounding words. Another common004
application often involves calculating a similar-005
ity score between two words coming from two006
different sources which possibly can be two007
different spelling representations of the same008
word. A very interesting and common subset of009
this is estimating the phonetic similarity of two010
words that are transliterated to Roman script011
from a different language. For such a use case,012
it would be more effective if we can use the013
knowledge of the nature of the concerned writ-014
ing system from which the words originated as015
people usually tend to carry over the nuances of016
the underlying writing system during transliter-017
ation. We propose Xrphonetic, a novel phonetic018
similarity algorithm, for words transliterated to019
Roman script from languages using Abugida-020
based scripts by treating aksharas as the most021
fundamental atomic unit of words with conso-022
nant and vowel phonemes as its further sub-023
atomic units, and by having weighted phoneme024
mappings to get a more continuous spectrum025
of phonetic similarity.026

1 Introduction027

Phonetic string similarity is used to identify strings028

with different spellings but similar pronunciations.029

A lot of proper nouns have multiple valid spellings030

but with similar pronunciations. For example, at031

various places, people might need to communicate032

their name verbally which may sometimes lead033

to inconsistencies of name spellings in different034

documents of the same person. In such a scenario,035

it is important to have a method to compare two036

names with similar pronunciations, irrespective of037

their spelling.038

A lot of times words being compared may have039

been represented in the Roman script but have040

origin in a different language, and differences in041

spelling might have crept in during the translitera- 042

tion process. Since different languages use scripts 043

with different underlying writing systems, it can 044

be effective to make use of the rules and structures 045

of the underlying writing system of the originating 046

language and script during comparison, as most of 047

the time people tend to carry over these nuances 048

during the transliteration process. 049

Broadly writing systems can be classified into 050

Alphabets, Syllabaries, Logographies, Abjads, and 051

Abugidas and have been covered extensively both 052

from linguistic and computational points of view 053

(Coulmas, 2003; Daniels and Bright, 1996; Sproat, 054

2000; Sproat, 2002; Sproat, 2003). 055

Emeneau, 1956, showed that most Indian lan- 056

guages use scripts derived from Brahmi, which can 057

be classified as an Abugida-based system. The 058

basic unit in these scripts is Akshara which more 059

or less corresponds to a syllable, but the mapping 060

between syllables and Aksharas is not exactly one- 061

to-one (Singh, 2006). Usually, Akshara consists 062

of a consonant followed by one or more vowels 063

represented as diacritics. 064

Singh et al., 2007 highlighted the advantages 065

of exploiting the characteristics of the Abugida- 066

based writing system to enhance the performance 067

of fuzzy text search for Indian languages in their 068

corresponding scripts. We can exploit these same 069

characteristics even while comparing words written 070

in Roman script which is an Alphabetic writing 071

system, if they have origin in a language with an 072

Abugida-based writing system since people tend 073

to preserve these characteristics regardless of the 074

script of representation. 075

In this paper, we focus on the phonetic similarity 076

of words transliterated to Roman script from lan- 077

guages that use an Abugida-based writing system. 078

2 Related Works 079

Soundex (Odell and Russell, 1918) is the most com- 080

monly used phonetic coding scheme. It converts 081
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the name into a four-character phonetic code with082

the aim to have the same code for similar-sounding083

names. It was mainly designed to match phoneti-084

cally similar English surnames. There have been085

various other phonetic coding schemes developed086

ever since like Phonix (Gadd, 1988; Gadd, 1990),087

Double Metaphone (Philips, 2000), and Caver-088

phone (Hood, 2002). There have been some works089

on modification of the Soundex to make it suit-090

able for Indian languages (Chaware and Rao, 2011;091

Shah and Singh, 2014; Gautam et al., 2019).092

Editex is a phonetic distance measure that com-093

bines the properties of edit distances with the letter-094

grouping strategy used by Soundex and Phonix (Zo-095

bel and Dart, 1996). Another method integrating096

approximate string matching with phonetic string097

similarity was presented by Ferri et al., 2018.098

Phonetic codes derived from the above ap-099

proaches usually do not have any resemblance to100

the actual phonetics of the words. While (Zobel and101

Dart, 1996) proposed the idea of leveraging string-102

to-pronunciation conversion algorithms to first con-103

vert the string into a phonetic representation and104

then do the matching on strings of phonemes, Kon-105

drak (Kondrak, 2000; Kondrak, 2003) highlighted106

the idea of phonetic alignment and similarity scor-107

ing methods on the basis of multi-valued articula-108

tory phonetic features.109

Most of the works highlighted above while as-110

sessing the phonetic similarity don’t take into ac-111

count that many times these words might have ori-112

gins in different writing systems. To bridge this113

gap, there have been works focusing on making114

use of the characteristics of the underlying writing115

systems for better estimation of phonetic similarity.116

Particularly, (Singh et al., 2007; Gupta et al., 2014)117

highlighted the advantages of using Akshara-based118

phonetic similarity for the native Indian scripts119

which fall under the Abugida-based writing sys-120

tem.121

Furthermore, it is quite common for words hav-122

ing origin in an Abugida-based writing system to123

be represented in the Roman script which is an124

Alphabet-based writing system. Hindex (Prabhakar125

et al., 2021) has tried to exploit these ideas to pro-126

vide a phonetic coding and similarity approach for127

words transliterated to Roman script from Indian128

languages utilizing the character-wise mapping of129

Soundex and Editex, and Levenstein edit distance130

(Levenshtein et al., 1966) as an approximate string131

matching algorithm.132

Hindex (Prabhakar et al., 2021) and other ap- 133

proaches have failed to fully leverage the charac- 134

teristics of the Abugida-based writing systems in 135

a unified manner. Even while they have implicitly 136

highlighted Aksharas and phonemes as the primary 137

building block of sound units for Abugida-based 138

writing systems, the consistent and primal treat- 139

ment across some of the most critical sub-tasks like 140

segmentation, code mappings or even computing 141

similarity scores is missing. For example, Hindex 142

still leverages Alphabets to prepare the code map- 143

pings and scoring, which one way contradicts the 144

whole notion of using Aksharas or phonemes as the 145

most atomic building blocks for sound. 146

To fully utilize the highly phonetic nature of the 147

Abugida-based writing systems for calculating the 148

phonetic similarity of words with origin in such 149

languages, we propose Xrphonetic, which treats ak- 150

shara as the most fundamental atomic unit of words 151

even if they are represented in a Roman script. Fur- 152

ther, we contribute two novel improvements to the 153

existing works: 154

• Historically, all existing code mapping-based 155

approaches have taken an unweighted ap- 156

proach to mappings. Given that in the real 157

world, different units of sound are not always 158

equally similar or dissimilar to each other, we 159

propose the introduction of code mappings 160

which are grouped into three different groups 161

each associated with an experimentally deter- 162

mined similarity score. Not only it provides a 163

more natural way to arrive at the overall pho- 164

netic similarity score which is a continuous 165

value, but it also helps in striking out a much 166

better balance between the often contradictory 167

precision and recall metrics. 168

• Building on top of akshara-based segmenta- 169

tion and phoneme mappings, Xrphonetic al- 170

lows any edit-distance similarity algorithm to 171

be used to arrive at the final similarity score. 172

In addition to supporting the generally used 173

edit-distance algorithms, we also introduce 174

a new scoring function for calculating pho- 175

netic similarity for use cases requiring higher 176

precision. 177

3 Xrphonetic 178

For languages that use an Abugida-based script 179

Akshara forms the most fundamental and atomic 180

unit of sound in a word which in turn consists of a 181
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consonant phoneme and a vowel phoneme (usually182

represented as diacritics unless at the start of the183

word). And these aksharas are usually written pho-184

netically consistent meaning two different sounds185

are rarely represented by the same akshara. So, for186

words originating in these languages, even if they187

are represented in Roman script, if we can prop-188

erly segment them into their constituent aksharas,189

we can utilize the highly phonetic nature of these190

scripts to make phonetic comparisons of the words.191

Even though these languages when written in192

their native script are highly phonetic in nature,193

for words with origin in these languages when rep-194

resented in Roman script, there can be multiple195

characters or groups of characters that can be used196

to represent the same or very similar sound. Hence,197

we prepare a list of consonant and vowel phoneme198

mappings with an assigned similarity score for each199

pair that depends on their perceived phonetic simi-200

larity and use it to calculate the similarity score of201

two words.202

Once, we have the segmentation and the map-203

pings, either simply a weighted edit distance al-204

gorithm (Levenshtein et al., 1966; Wagner and205

Fischer, 1974) can be used to compare the words206

treating aksharas as the fundamental unit instead207

of a character, or one can also use the specialized208

phonetic scoring function that we introduce in sub-209

sequent sections.210

3.1 Segmentation211

We segment a string into its constituent aksharas,212

which is further subdivided into consonant and213

vowel phonemes. The motivation behind the two-214

step segmentation process is to have the scope of215

using different weights to consonant and vowel216

phoneme similarity scores while calculating the217

akshara similarity score since consonants usually218

carry a larger weight in determining the sound. Bar-219

ring a few exceptions, consonant phonemes are al-220

ways a single character whereas vowel phonemes221

can be composed of multiple characters. Each Ak-222

shara can be a single consonant phoneme, a single223

vowel phoneme, or a combination of a consonant224

and a vowel phoneme.225

Alphabets "h", and "y" can act as either a conso-226

nant or a vowel depending on the context, and are227

being treated accordingly for segmentation.228

We use regular expressions to segment the string229

into aksharas and phonemes.230

A few examples are shown in Table 1. In the sec-231

String Segmentation
vaishali [(‘v’, ‘ai’), (‘sh’, ‘a’), (‘l’, ‘i’)]
nayak [(‘n’, ‘aya’), (‘k’, ‘’)]
tamatar [(‘t’, ‘a’), (‘m’, ‘a’), (‘t’, ‘a’), (’r’, ”)]
byaz [(‘b’, ‘ya’), (‘z’, ‘’)]
akanksha [(‘’, ‘a’), (‘k’, ‘a’), (‘n’, ‘’), (‘ksh’, ‘a’)]

Table 1: Segmentation Examples

ond column, each element in parentheses inside the 232

list represents an Akshara, and the sub-elements 233

represent consonant and vowel phonemes respec- 234

tively. 235

3.2 Mappings 236

We define three different groups of consonant and 237

vowel mappings based on their perceived phonetic 238

similarity with an empirically determined similar- 239

ity score for each group. While comparing the 240

phonemes, we check if the phoneme pair belongs 241

to any of the phoneme mappings and use the corre- 242

sponding similarity score. 243

Sometimes some characters maybe repeated or 244

alphabet "h" maybe present without changing the 245

sound, we also check if the phoneme pair belongs 246

to any of the mappings after removing these and 247

accordingly assign the score. 248

Details of consonant and vowel mappings are 249

given in Appendix. 250

3.3 Specialized Phonetic Scoring Function 251

For comparing each akshara-pair, we assign a score 252

of 1.0 for an exact match (exact match for both con- 253

sonant and vowel pairs), else we score consonant 254

and vowel phonemes separately. We then look if 255

the consonant and vowel phoneme pairs can be 256

matched according to some consonant and vowel 257

mappings defined above. We assign some empiri- 258

cally derived scores for each level of mapping. If 259

the pair doesn’t match at any level of mapping, we 260

assign a zero score in case of a consonant phoneme 261

pair while we use Weighted Levenshtein similar- 262

ity in case of vowel phoneme pair, using the same 263

vowel mapping scores as above. Finally, we take a 264

weighted average of consonant and vowel phoneme 265

pairs’ scores to get the Akshara pair score, giving 266

an empirically determined higher weight to conso- 267

nant pair. 268

We introduce a specialized phonetic similarity 269

scoring approach which is more suitable in places 270

where more precision is required. The idea is that 271
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when talking about sound units even one highly dis-272

similar sound unit can change completely change273

the sound of the word, and hence should bring274

down the score in a non-linear way. To calculate the275

final string similarity score, we divide the akshara276

similarity scores into matches and non-matches277

keeping the threshold for a match at 0.85. Such a278

split is to avoid scores averaging out in the case of279

strings with just one akshara phonetic mismatch280

with lots of aksharas matching. We can combine281

the scores of all matches and all non-matches sepa-282

rately, using either the mean or product of scores.283

The final similarity score is calculated as a mean of284

matches and non-matches scores.285

4 Experiments and Results286

We prepared two separate train and test datasets of287

twenty thousand word pairs each to evaluate our288

proposed algorithm and to determine optimal val-289

ues of the hyperparameters empirically. We are290

using f1-score as the evaluation metric for all the291

experiments. The code for the Python implementa-292

tion of the algorithm, synthetic dataset generation293

and evaluation, train and test datasets will be made294

available as open-source.295

4.1 Dataset Preparation296

To prepare the datasets, we have used Dakshina297

Dataset (Roark et al., 2020) as the source dataset298

and used IndicXlit (Madhani et al., 2022) translit-299

eration models to generate transliteration pairs.300

We have used the lexicons dataset for the ten dif-301

ferent Abugida languages available in the Dakshina302

dataset to generate one thousand positive and one303

thousand negative pairs for each language. For gen-304

erating a positive sample, we take a random Indic305

script sample from lexicons, generate the top five306

Roman transliteration variants for it using IndicXlit307

model, and take any two variants randomly. For308

generating a negative sample, we take a random309

Roman script sample from lexicons, get another310

random Roman script sample from lexicons that is311

within one Levenshtein distance from it, generate312

the top five Indic script transliteration variants for313

words, and accept it as a negative sample if none314

of their top five transliteration variants match.315

There were three different lexicon datasets for316

dev, train, and test in the Dakshina dataset. We317

have used the training dataset for generating the318

training dataset and used the dev and test set for319

generating the test set.320

Algorithm Precision Recall f1-score
Xrphonetic 0.7103 0.8507 0.7742

Double Metaphone 0.6455 0.7761 0.7048
Caverphone 0.6662 0.7101 0.6874

Soundex 0.5956 0.7990 0.6825
Phonix 0.5948 0.7961 0.6809
Editex 0.5138 0.7035 0.5938

Weighted Hindex 0.4450 0.5737 0.5012
Hindex 0.8422 0.2424 0.3764

Table 2: Evaluation Results

We have used the generated training dataset for 321

finding the optimal hyperparameters and used the 322

test dataset for evaluation. 323

4.2 Optimal Hyperparameters Search 324

For calculating the optimal hyperparamets, we took 325

a range of values for each hyperparameter and used 326

the training dataset to get the optimal value based 327

on F1-score metric. 328

4.3 Results 329

We have evaluated Xrphonetic against Soundex, 330

Double Metaphone, Phonix, Caverphone, Editex, 331

Hindex and Weighted Hindex. For Soundex, Dou- 332

ble Metaphone, Phonix and Caverphone, we are 333

considering exact match of the phonetic code. For 334

Hindex, we have considered exact match of pho- 335

netic codes and a threshold of 2 for the Edit dis- 336

tance. For Weighted Hindex, we have considered 337

a threshold of 1 for the edit distance for phonetic 338

codes and 2 for weighted edit distance for the origi- 339

nal words. For Editex and Xrphonetic, we have con- 340

sidered a threshold of 0.85 on normalized similarity 341

scores. We observe that Xrphonetic outperforms 342

all the evaluated algorithms on F1-score metric as 343

shown in Table 8. 344

5 Limitations 345

Xrphonetic provides a holistic way of providing 346

similarity scores for Abugida-based word pairs us- 347

ing the underlying aksharas even if they are rep- 348

resented in Roman script. In order for Xrphonetic 349

to work effectively, the correct identification and 350

treatment of aksharas is paramount and requires 351

a strong understanding of the underlying scripts. 352

This creates a strong inherent dependency on lan- 353

guage experts when one tries to provide similarity 354

scores for words across different Abugida-based 355

languages. 356
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phoneme1 phoneme2
q k
w v
z j

ph f
hr r
wr r
ksh x
ks x
ck k
ck c
ng n
sc s

Table 3: High Similarity Consonant Pairs

phoneme1 phoneme2
c k

ch k
z s
w b
v b
v bh
p f

ksh ch
ksh chh
ksh sh
x ch
x chh
z g
g j
zh l
k g
th dh
d t
ch s

Table 4: Medium Similarity Consonant Pairs

phoneme1 phoneme2
r d
c s
p b
b f

Table 5: Low Similarity Consonant Pairs

phoneme1 phoneme2
oo u
ee i
ea ii
ea ee
ea i
ea e
ea ie
e i
i y
e y
ae y
ai y
ai ei
ai aya
ai ay
ey ay
ey i
ey ie
e ay
e ey
ae e
ae ai
ae a
ai ae
ai e
ou au
ou o
au o
au ao
u o
a e
oe oya
oe oy
oe oai
ei i
ie i
ei e
ei ey
ai ey
ie e
ie y
ia iya
ow au
ow ou
ow o
oa o

yoo yu
yoo eu
yu eu
eu u
yu u

yoo u

Table 6: High Similarity Vowel Pairs
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phoneme1 phoneme2
a u
ia aya
ia ya

aye aya
a o
a ah
i ai

Table 7: Medium Similarity Vowel Pairs

phoneme1 phoneme2
y ”
a ”
h ha
e ”
u ”

Table 8: Low Similarity Vowel Pairs

B Hyperparameters Values457

Optimal values of empirically determined hyperpa-458

rameters are as follows459

• consonant weight = 0.65460

• default scorer = "specialized xrphonetic"461

• score combination mode = "mean"462

• consonant diff "h" penalty = 0.975463

• consonant high similarity score = 0.95464

• consonant medium similarity score = 0.925465

• consonant low similarity score = 0.9466

• vowel diff "h" penalty = 0.975467

• vowel high similarity score = 0.95468

• vowel medium similarity score = 0.925469

• vowel low similarity score = 0.9470
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