
ZPI 2024

SNS
Inventory Management System with
Barcode and QR Code Integration 2024

Autors: Adam Klementowski • Adam Rudnicki • Adam Skowron • Wojciech
Skrzypiec
Supervisor: Rafał Palak

Abstract

The project aimed to improve the inventory management experience for small and large scale enterprises by
implementing the application as a Progressive Web App (PWA) with functionalities such as scanning of bar and
QR codes or pinpointing the warehouse based on the user’s geolocation. We successfully designed a responsive
and intuitive application with the most vital functionalities that is accessible on multiple devices. We learned
about the restrictions and strengths of PWA as well as the process of integrating into a complete application. It
will help future developers to better design and integrate this technology in their projects.

1 INTRODUCTION

1.1 Problem characteristics
Inventory management is a key element in the efficient operation of many companies, especially in
industries related to logistics, trade and manufacturing. This issue becomes particularly relevant in
the context of growing expectations of process automation and minimization of errors resulting from
manual management.

1.2 Goal
Our goal is to create a tool that will help companies track and manage resources more efficiently.
The main technical assumption was to create an MVP (Minimal Viable Product) version of the PWA
application, i.e. one that has CRUD functions to manage warehouses, inventory, product availability and
assigned product categories. The application’s functionality has been expanded to include a QR code
and barcode scanning module. Another feature is the implementation of geolocation, which is designed
to speed up warehouse identification based on user location.

1.3 Business and technical benefits
In the business context, the project aimed to increase the efficiency of inventory management, reduce
the time required to handle warehouse processes and minimize errors resulting from manual oper-
ations. On the other hand, the key technical task was to create an intuitive and functional tool that
could be easily integrated with existing enterprise systems, as well as used on both mobile devices and
computers.

2 RELATED WORKS
Enterprise Resource Planning (ERP) systems, such as SAP [2], Oracle NetSuite [9], and Odoo [11], are
popular solutions in this domain offering comprehensive features ranging from inventory tracking to
financial management. However, these platforms often require significant resources for deployment
and maintenance, making them less accessible for smaller enterprises.

For small- and medium-scale enterprises, SaaS (Software as a Service) solutions like Zoho Inventory
[13] and TradeGecko [1] are popular alternatives. These tools are user-friendly, lightweight, and integrate
well with other software but often lack scalability and deep customization for larger operations.

In the context of technology, barcode and QR code integration has become a cornerstone of modern
inventory systems. Libraries such as ZXing [12] offer reliable and efficient methods for decoding these
codes, making product identification and tracking much easier.

https://orcid.org/0009-0003-8693-3601
https://orcid.org/0009-0006-7009-813X
https://orcid.org/0009-0009-0543-0038
https://orcid.org/0009-0002-7523-0276


ZPI 2024

Progressive Web Apps (PWAs) [10] are gaining traction for their ability to combine the accessibility of
web applications with the native performance of mobile apps. Their features include offline function-
ality, simple installation, and access to device capabilities such as cameras and geolocation. PWAs also
enable unified development across platforms, reducing costs and maintenance efforts.

3 RESULTS

3.1 Summary
Our project builds upon these insights to deliver a PWA-based inventory management system tailored
for enterprises of varying sizes. This project represents an initial exploration of PWA technology in the
context of inventory management. Rather than aiming to create a superior alternative to existing, pro-
fessional systems, our goal is to assess the potential of PWAs for such applications. We are focused on
experimenting with and testing the unique capabilities of PWAs to determine their viability for small
and medium-sized enterprises in real-world business applications scenarios. By integrating technolo-
gies such as Angular [4], Spring Boot [8], PostgreSQL [5], and AWS [3], we aim to create a scalable,
cost-effective, and accessible solution that combines the simplicity of SaaS tools with the power of ERP
platforms.

The implementation of the project proceeded as planned and was successful. We managed to in-
clude all important functionalities, and comprehensively tested the usability and ease of use of PWA
technology.

3.2 Project assumptions
At the beginning of the project we set multiple restrictions and assumptions to limit the scope and
guide the development in the right direction.

We set out to create a simple and intuitive application to allow users across all skill levels to suc-
cessfully use our application. Thanks to the PWA technology we wanted to achieve an application that
is available on multiple devices with simple installation and a native feel.

We decided to limit the scope and support only a single company owning multiple warehouses.
Those warehouses can contain items shared between them and have individual stocks. There will not
be a registration form - each employee in the company will have to be manually added by the admin-
istrator.

3.3 Business goals
1. Enhanced Inventory Management: The system integrates barcode and QR code scanning to im-

prove asset tracking, streamline inventory control, and provide quick access to details such as
stock levels and locations.

2. Improved Efficiency: Simplified management of incoming and outgoing deliveries enhances orga-
nization, reduces processing times, and boosts overall productivity.

3.4 Technical goals
1. Cross-Platform Compatibility: Using Progressive Web App (PWA) technology ensures the app works

seamlessly across devices while maintaining a single codebase, reducing development and main-
tenance efforts.

2. Scalable Architecture: The backend, designed with Spring Boot and deployed on AWS using Ter-
raform, is built to handle increasing data loads and user demands.

3. Secure Data Management: With Amazon Cognito for authentication and other security measures,
the app protects user data and ensures resource access is authorized.

4. Modern Development Practices Technologies like Terraform, Docker and Nginx highlight the use
of efficient, modern tools for development, deployment, and infrastructure management.

Although this project is part of an academic course and lacks real-world deployment or metrics, it
successfully demonstrates the feasibility of effective inventory management solutions while showcasing
the educational value of applying industry-standard technologies.



ZPI 2024

3.5 The Solution
Our use of PWA functionalities makes the application easy to use and implement on multiple devices
while maintaining a single code base. And at the same time it provides access to device sensors, like
the camera or geolocation, which we used to add additional functionalities: scanning of bar codes and
QR codes, pin pointing the exact warehouse the user is currently stationed in.

3.6 Functionalities
• Create, Read, Update and Delete (CRUD) operations, allowing for full modification of data stored

in the database, such as: items, warehouses, inventory, etc.,

• Ability to scan barcodes and QR codes in an intuitive way to quickly access a specific product in
stock,

• Inventory management across multiple warehouses,

• Management of users and their access to functionalities offered by the system layer,

3.7 Tech Stack
Our project uses a modern and robust tech stack designed to deliver both scalability and reliability:

• Angular: A dynamic frontend framework for building interactive and responsive web applications.
[4]

• Spring Framework: A backend framework that simplifies the creation of scalable and reliable APIs.
[8]

• AWS (Amazon Web Services): A suite of cloud services for hosting, databases, and scaling applica-
tions etc. [3]

• Docker: A containerization tool for consistent and efficient deployment. [7]

• Hashicorp Terraform: Infrastructure as Code (IaC) to automate and manage cloud resources. [6]

• ZXing: A library for barcode and QR code processing. [12]

During the selection process, we considered other technologies:

• Frontend: Alternatives like Next.js [14] (for server-side rendering) and Vue.js [15] (for simplicity and
flexibility) were evaluated.

• Backend: While we chose Java with Spring Boot for its maturity and scalability, Kotlin was consid-
ered for its modern syntax and null safety.

3.8 Additional highlights
• Feasibility Demonstration: The app proves the potential of PWAs for inventory management, levarag-

ing their core features and capabilities.

• Technical Design: Built with scalability and security in mind, the system employs modern tools
such as AWS and Terraform, aligning with enterprise-level best practices and conventions.

• Practical Value: Offers hands-on experience with technologies like Angular and Spring Boot, prepar-
ing us for real-world challenges.



ZPI 2024

4 CONCLUSIONS
In summary, the application we designed is intuitive to use and provides the basic functionality required
by warehouse workers. It will allow for more efficient and simpler inventory management.

Thanks to PWA technology, it is accessible on both mobile devices and computers, supports instal-
lation and quick and easy access in conditions of limited internet access.

What matters to a technological audience is that we have tested the capabilities of PWA technology
and proved that it is viable for developing applications for multiple devices while maintaining a single
code base.

5 FURTHER RESEARCH
For further development of the project, it would be important to consider what other functionality might
be useful for warehouse workers and managers, such as:

• optimization of the layout of items in the warehouse,

• use of geolocation to determine the shortest route to the desired section in the warehouse,

• calculation of the route and cart capacity requirements to complete an order from the warehouse,

• expansion of the application to a commercial version that can support multiple companies in a
comprehensive way,

• and much more.

REFERENCES
[1] Cameron Priest (CEO). Tradegecko website. http://www.tradegecko.com. Accessed: 2024-11-30.

[2] Christian Klein (CEO). Sap website. https://www.sap.com/cmp/dg/na-corporate-brand/index.
html. Accessed: 2024-11-30.

[3] Matt Garman (CEO). Aws documentation. https://docs.aws.amazon.com. Accessed: 2024-11-30.

[4] Google. Angular documentation. https://angular.dev. Accessed: 2024-11-30.

[5] PostgreSQL Global Development Group. Postgresql website. https://www.postgresql.org. Ac-
cessed: 2024-11-30.

[6] HashiCorp. Hashicorp terraform documentation. https://developer.hashicorp.com/terraform/
docs. Accessed: 2024-11-30.

[7] Docker Inc. Docker documentation. https://docs.docker.com. Accessed: 2024-11-30.

[8] Rod Johnson. Spring boot documentation. https://docs.spring.io/spring-boot/index.html.
Accessed: 2024-11-30.

[9] Oracle. Oracle netsuite website. https://www.netsuite.com/portal/home.shtml. Accessed: 2024-
11-30.

[10] Alex Russell. Pwa website. https://web.dev/explore/progressive-web-apps. Accessed: 2024-
11-30.

[11] Odoo SA. Odoo website. www.odoo.com/. Accessed: 2024-11-30.

[12] ZXing Team Sean Owen, Daniel Switkin. Zxing repository. https://github.com/zxing/zxing. Ac-
cessed: 2024-11-30.

[13] Tony G. Thomas Sridhar Vembu, Sreenivas Kanumuru. Zoho inventory website. https://www.zoho.
com/inventory/. Accessed: 2024-11-30.

[14] Vercel. Nextjs website. https://nextjs.org. Accessed: 2024-11-30.

[15] Evan You and the Core Team. Vuejs website. https://vuejs.org. Accessed: 2024-11-30.

http://www.tradegecko.com
https://www.sap.com/cmp/dg/na-corporate-brand/index.html
https://www.sap.com/cmp/dg/na-corporate-brand/index.html
https://docs.aws.amazon.com
https://angular.dev
https://www.postgresql.org
https://developer.hashicorp.com/terraform/docs
https://developer.hashicorp.com/terraform/docs
https://docs.docker.com
https://docs.spring.io/spring-boot/index.html
https://www.netsuite.com/portal/home.shtml
https://web.dev/explore/progressive-web-apps
www.odoo.com/
https://github.com/zxing/zxing
https://www.zoho.com/inventory/
https://www.zoho.com/inventory/
https://nextjs.org
https://vuejs.org

	 Introduction 
	 Problem characteristics 
	 Goal 
	 Business and technical benefits 

	 Related works 
	 Results 
	 Summary 
	 Project assumptions 
	 Business goals 
	 Technical goals 
	 The Solution 
	 Functionalities 
	Tech Stack
	 Additional highlights 

	 Conclusions 
	 Further research 

