

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HGT-UCOD: A HINT-GUIDED TEACHER FRAME- WORK FOR UNSUPERVISED CAMOUFLAGED OBJECT DETECTION

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 Camouflaged Object Detection (COD) holds significant potential in various high-
014 stakes applications, yet its progress is fundamentally bottlenecked by a heavy re-
015 liance on large-scale, pixel-level annotated data. While Unsupervised Domain
016 Adaptation (UDA) offers a promising path forward, real-world scenarios often
017 impose stricter constraints due to data privacy, leaving us with only a pre-trained
018 source model—a more challenging setting known as source-free domain adapta-
019 tion. A critical flaw in current methods is their direct use of the source model
020 (e.g., one trained for salient object detection) to generate pseudo-labels. The in-
021 herent “saliency bias” of such models—an inclination to find objects that “stand
022 out” rather than “blend in”—results in incomplete and noisy labels that only cap-
023 ture the most conspicuous parts of a target. Self-training on this flawed guidance
024 inevitably falls into confirmation bias, amplifying initial errors and limiting per-
025 formance. We introduce a paradigm shift in addressing this problem. Instead
026 of treating the biased predictions as mere noise, we innovatively reframe their
027 high-confidence fragments as reliable “hints”. Based on this philosophy, we pro-
028 pose HGT-UCOD, a novel Hint-Guided Teacher framework designed to guide the
029 model in inferring the complete object from these sparse yet trustworthy cues.
030 The cornerstone of our framework is a unique teacher pre-adaptation stage. Here,
031 we first cultivate an “expert teacher” by compelling it to learn to infer the full
032 object from partial views containing only these “hints,” thus building specialized
033 knowledge. Subsequently, during student refinement, this expert teacher collabo-
034 rates with the source model to generate high-quality pseudo-labels via a dynamic
035 fusion strategy. This process is further enhanced by strong consistency regular-
036 ization, which forces the student to learn robust, perturbation-invariant features.
037 To empower this inference, both our teacher and student models are equipped
038 with a novel Dynamic Convolution Mixture (DCM) module, which adaptively
039 generates content-aware kernels to capture the subtle, context-dependent features
040 of camouflaged objects. Extensive experiments on multiple benchmark datasets
041 demonstrate that our method achieves superior performance, establishing a new
042 state-of-the-art for source-free unsupervised COD.

1 INTRODUCTION

044 Camouflaged Object Detection (COD) (Fan et al., 2020a) is a critical and highly challenging task
045 in computer vision, focusing on segmenting objects that blend into their surroundings (Price et al.,
046 2019). This technology is crucial for high-stakes domains like automated biodiversity monitor-
047 ing for detecting well-camouflaged species, high-stakes medical lesion detection in complex scans
048 (Fan et al., 2020b), and enhanced situational awareness in search and rescue operations (Pérez-de la
049 Fuente et al., 2012). While recent methods based on fully-supervised learning have spurred sig-
050 nificant progress, their success reveals a fundamental bottleneck: a heavy reliance on large-scale,
051 pixel-level annotated data. This issue is particularly acute for COD, as creating such datasets is not
052 only prohibitively expensive and time-consuming but also requires domain experts to delineate the
053 often-ambiguous boundaries of camouflaged objects, making high-quality data acquisition excep-
 tionally difficult.

To mitigate this dependency on labeled data, Unsupervised Domain Adaptation (UDA) (Liu et al., 2022) offers a promising alternative, aiming to transfer knowledge from a label-rich source domain (e.g., Salient Object Detection, SOD) to an unlabeled target domain (COD). However, in real-world applications and research, we often lack access to the source training dataset and can only utilize a pre-trained source model. This gives rise to a more challenging and practical problem: Source-Free Domain Adaptation (SFDA) (Li et al., 2024). Consequently, our core research question becomes: How can we effectively adapt a pre-trained model to the demanding task of camouflaged object detection, using only the source model itself and unlabeled target images?

Existing SFDA methods face a fundamental conflict when applied to COD. The source models they typically rely on (i.e., SOD models) are trained to find objects that "stand out," whereas the goal of COD is precisely the opposite: to find objects that deliberately "blend in." This inherent conflict of objectives leads to a severe "saliency bias." Specifically, when the source model is used to generate pseudo-labels for camouflaged images, it can only identify the most conspicuous, least "camouflaged" parts of the target, resulting in incomplete and noisy pseudo-labels. Worse still, standard self-training or adaptation methods that naively trust these low-quality labels fall into a vicious cycle of "confirmation bias." The model progressively reinforces the initial errors caused by saliency bias during training, leading it to overfit to misleadingly "salient" fragments and failing to learn the true, complete structure of the camouflaged object. This severely limits its ultimate performance.

We argue that the key to overcoming this dilemma lies in a complete shift in perspective. Instead of treating the biased predictions from the source model as pure noise to be cleaned or filtered, we innovatively reframe their high-confidence regions as reliable "hints." Although these hints are spatially sparse, they represent the model's most certain knowledge about the target. Based on this core insight, we propose a novel "Hint-Guided" learning paradigm. Its motivation is not to passively correct biased pseudo-labels, but to actively use these sparse yet reliable hints to "compel" the model to infer the complete object form. This process forces the model to learn the generalizable, underlying features of camouflage itself (such as subtle differences in contour and texture from the background), rather than merely overfitting to the deceptive signals produced by saliency bias.

To realize this philosophy, we designed HGT-UCOD, a novel framework based on a "Hint-Guided" Teacher-Student paradigm. Our contributions are multi-layered, spanning a comprehensive set of innovations from core ideology to framework design and specific optimization strategies:

- Core Ideological Innovation: We introduce a novel "Hint-Guided" learning paradigm. This paradigm fundamentally reframes the problem, shifting from correcting noisy predictions to inferring complete objects from reliable cues. By repurposing high-confidence regions of biased predictions as trustworthy "hints," our approach actively counters and leverages the "saliency bias" by guiding the model to reason from sparse information.
- Synergistic Framework and Architectural Innovation: We propose a unique framework that operationalizes our paradigm. It features: A Teacher Pre-adaptation stage that cultivates an "expert teacher" specialized in inferring global structure from local hints. A novel Dynamic Convolution Mixture (DCM) module that empowers both teacher and student models. The DCM generates content-adaptive kernels, providing the architectural foundation necessary to capture the subtle, context-dependent patterns of camouflaged objects—a crucial capability for reasoning beyond sparse hints.
- Strategy Optimization Innovation: In the student refinement phase, we devised a sophisticated set of strategic optimizations. This includes a dynamic fusion strategy to adaptively combine knowledge from the expert teacher and the source model for high-quality pseudo-label generation. This is coupled with strong consistency regularization to force the student model to learn robust, perturbation-invariant features, significantly boosting its generalization capabilities.

Extensive experiments on multiple authoritative COD benchmark datasets demonstrate that our method achieves superior performance, with its combined effect surpassing existing unsupervised approaches on most evaluation metrics and establishing a new state-of-the-art (SOTA) for source-free unsupervised camouflaged object detection.

108 **2 RELATED WORK**
109110 **2.1 UNSUPERVISED CAMOUFLAGED OBJECT DETECTION**
111112 Unsupervised Camouflaged Object Detection (UCOD) (Zhang & Wu, 2023) has emerged as a key
113 research direction to alleviate the heavy reliance on manual annotations. The predominant strategy
114 in this field is UDA, which aims to transfer knowledge from a label-rich auxiliary domain—typically
115 SOD to the unlabeled target COD domain.116 Early UCOD research primarily drew upon classical UDA techniques. For instance, Ganin & Lem-
117 pitsky (2015); Ding et al. (2023) employed adversarial learning with a domain discriminator to
118 encourage the model to learn domain-invariant features, thereby aligning the distributions of the
119 source and target domains within a shared feature space. Other approaches focused on aligning the
120 second-order statistics of feature maps between the two domains.121 More recently, the research trend has shifted towards a self-training paradigm, which leverages
122 pseudo-labels generated for target domain images to conduct supervised learning. Methods such
123 as those by Lu et al. (2025); Shou et al. (2025) typically initialize pseudo-labels using predictions
124 from the source SOD model, which are then refined through various strategies. However, these
125 methods are highly susceptible to confirmation bias, where initial errors from the source model are
126 progressively reinforced and amplified during training, ultimately limiting the model’s performance.
127128 **2.2 SOURCE-FREE DOMAIN ADAPTATION**
129130 Source-Free Domain Adaptation (SFDA) addresses the practical constraint of source data unavail-
131 ability during adaptation, leaving only a pre-trained source model and the unlabeled target data. This
132 scenario has spurred the development of innovative techniques that rely solely on the knowledge en-
133 capsulated within the source model. A prominent line of work focuses on generating high-quality
134 pseudo-labels for the target data and using them for self-supervision. Pioneering methods like SHOT
135 (Liang et al., 2020) accomplish this through information maximization and by promoting confident,
136 class-separated predictions. Other approaches have explored estimating the quality of pseudo-labels
137 to filter out noise (Kaushik et al., 2024) or leveraging generative models to synthesize features that
138 mimic the source distribution (Chopra et al., 2024).139 The Teacher-Student framework has also become a cornerstone of modern SFDA, heavily inspired
140 by its success in semi-supervised learning (Tarvainen & Valpola, 2017). In this paradigm, a “teacher”
141 model provides more stable pseudo-labels to guide the training of a “student” model. The teacher is
142 then updated via the Exponential Moving Average (EMA) of the student’s weights, which ensures a
143 stabilizing effect and prevents the model from collapsing into a state of high confidence in its own
144 errors. While these methods have proven effective for tasks like classification (Song & Wang, 2024),
145 their application to the fine-grained, pixel-level task of COD is non-trivial, given that Camouflage
146 objects often lack strong semantic or visual cues, making pseudo-label generation inherently less
147 reliable.148 Our work, HGT-UCOD, builds upon this powerful Teacher-Student paradigm but introduces a cru-
149 cial innovation: a hint-guided teacher pre-adaptation stage. We distinguish our approach by first
150 enabling the teacher to learn robust object-centric priors from sparse yet reliable hints before it
151 guides the student. This core strategy, combined with a novel pseudo-labeling mechanism and a
152 dynamic architectural component designed for capturing camouflaged patterns, enables our method
153 to effectively tackle the unique challenges of UCOD.154 **3 METHOD**
155156 **3.1 OVERVIEW**
157158 As illustrated in Fig.1 and inspired by UCOS-DA Zhang & Wu (2023) and UCOD-DPL Yan et al.
159 (2025), our method comprises three core components: a source model, a teacher model, and a
160 student model, which are trained through a two-stage process for unsupervised binary segmentation.
161 The first stage pre-adapts the teacher to learn discriminative features representations. To achieve this,
162 a Difference Perception Module adaptively selects target regions based on the prediction uncertainty

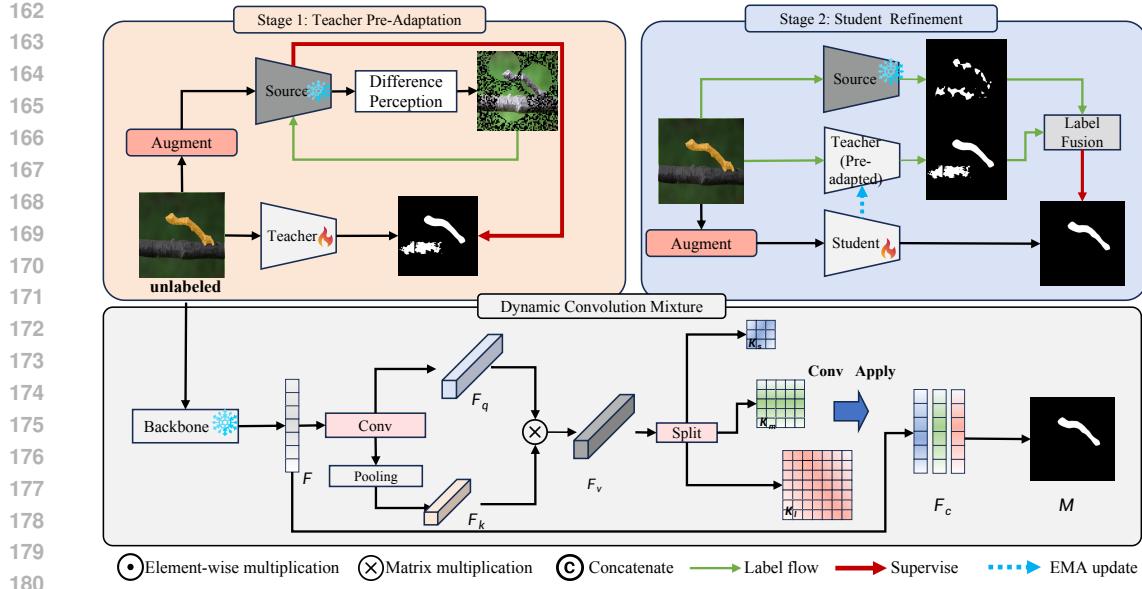


Figure 1: The pipeline of our proposed HGT-UCOD framework. It consists of two core stages: Pre-Adaption and Refinement. The bottom panel details the architecture of our custom Dynamic Convolution Mixture (DCM) module.

of the source model, compelling the teacher model to capture distinct feature paradigms within these areas and consequently produce divergent predictions from the source. In the second stage, the source and teacher models are jointly utilized to generate high-quality pseudo-labels for supervising the student model’s training. Both the teacher and student models are built upon an architecture incorporating our novel Dynamic Convolution Mixture (DCM) module. This module is specifically designed to tackle the core challenge of COD by synergizing local feature extraction with dynamic, global context modeling. Its ability to generate content-adaptive kernels is vital for inferring the full object shape from the sparse cues learned during pre-adaptation and for delivering highly refined final predictions.

3.2 TEACHER MODEL PRE-ADAPTATION

Before the main training of the student model commences, a crucial preliminary step is the pre-adaptation of the teacher model. The goal of this stage is not merely to replicate the source model, but to cultivate a more specialized instructor whose capabilities are complementary to the pre-trained source model. As illustrated in Fig.1, we employ a specialized training strategy that guides the teacher model to learn to infer an object’s complete form from partial yet highly reliable information, inspired by the idea in Chen et al. (2024).

Difference Perception and Hint Region Generation: We posit that regions with stable predictions under the perturbations of strong data augmentation represent the most confident parts of the object as identified by the source model, M_f . To locate these high-confidence areas, we first compute the discrepancy between the foreground prediction probability map from the original image, $P_f^{orig} = M_f(I)$, and the augmented image, $P_f^{aug} = M_f(Aug(I))$, where $Aug(\cdot)$ is the augmentation function. Specifically, this function is composed of a series of transformations, including random rotation, horizontal flipping, Gaussian blur, color jittering, and random cropping. These techniques are combined to create significant visual perturbations, ensuring that only the most structurally stable and confident regions of the object yield consistent predictions. The difference map, D , is calculated as:

$$D = \text{Dist}(P_f^{orig}, P_f^{aug}), \quad (1)$$

where $\text{Dist}(\cdot, \cdot)$ is a distance metric. Lower values in D correspond to higher confidence.

To generate K spatially diverse hint points, we employ an iterative greedy selection strategy. First, we select the point p_1 with the global minimum value in the difference map D as our initial hint. Then, for each subsequent point p_{i+1} (where i ranges from 1 to $K - 1$), we select the point with the lowest D value from all candidate locations that lie outside an exclusion zone of radius r from all previously selected points $\{p_1, \dots, p_i\}$. This sequential selection is governed by the equation:

$$p_{i+1} = \arg \min_{p \in \mathcal{P}, \forall j \leq i, \|p - p_j\|_2 > r} D(p). \quad (2)$$

Here, \mathcal{P} represents the set of all pixel coordinates, and the condition $\|p - p_j\|_2 > r$ ensures that the new point p_{i+1} is at least a distance r from every previously selected point p_j . To maintain consistency in our ablation studies on K , we fix $r = 100$. This iterative process guarantees that our high-confidence cues are spatially distributed across the target.

Finally, centered on these K selected points, we generate K fixed-size patches. The union of these patches forms the final binary Hint Mask M_{hint} . Applying this mask to the original image I yields the "adaptive hint image," I_h :

$$I_h = I \odot M_{\text{hint}}, \quad (3)$$

where \odot denotes element-wise multiplication.

The core of this training process lies in its unique supervision mechanism: the teacher model M_t receives the original image I as input, but its learning target is not a ground-truth label. Instead, it is supervised by the source model M_f 's prediction on the "adaptive hint image" I_h , denoted as $P_{\text{sup}} = M_f(I_h)$. This asymmetric training encourages a functional divergence: while M_f preserves its global sensitivity to salient features, M_t is compelled to specialize in subtle, previously overlooked discrepancies within the constrained yet informative hint regions.

3.3 STUDENT MODEL REFINEMENT

Once the teacher model has been pre-adapted to develop its specialized ability to infer the full extent of camouflaged objects from partial cues, we proceed to the training phase of our final prediction model: the student. The core challenge at this stage is how to intelligently fuse the global, generalized knowledge of the source model (M_f) with the localized, specialized knowledge of the teacher model (M_t) to provide high-quality supervision for the student model (M_s).

Inspired by recent works (Yan et al., 2025), we move beyond using a single model for guidance and instead design a dynamic pseudo-label generation strategy. This strategy adaptively adjusts the instructional weights of the source and teacher models based on both the training progress and the inter-model consistency. The central idea is that in the early stages of training, the source model's generalized predictions are more reliable. However, as training progresses, the teacher model—which continuously absorbs knowledge from the student via an EMA—becomes increasingly expert and trustworthy.

Specifically, we dynamically compute a weight W_{mix} at each training step:

$$W_{\text{mix}} = \left(\frac{t}{T} + \|P_f, P_t\| \right) / 2, \quad (4)$$

where t, T denote the current and total number of epochs, P_f and P_t are the predictions from the source and teacher models for the original image I . The term $\| \dots \|$ calculated as the Mean Absolute Error to quantify their overall inconsistency.

Next, we use it to blend the predictions from both models, generating a final soft pseudo-label P_{gt} :

$$P_{\text{gt}} = W_{\text{mix}} \cdot P_t + (1 - W_{\text{mix}}) \cdot P_f. \quad (5)$$

Consistency-Regularized Training: During training, the student model M_s receives a strongly augmented image $I_e = \text{Aug}(I)$ and is tasked with making its prediction P_s align with the dynamic pseudo-label P_{gt} generated on the original, un-augmented image I . This consistency learning strategy between strongly and weakly augmented views, inspired by similar methodologies (Lai et al., 2024; He et al., 2023), compels the student model to learn robust features that are invariant to visual perturbations. This significantly enhances its generalization ability and final performance. Concurrently, the student's weights are smoothly transferred to the teacher model via EMA, creating a closed-loop system of continuous self-improvement.

Methods	CHAMELEON (87)						CAMO-Test (250)						COD10K-Test (2026)						NC4K (4121)					
	$S_m \uparrow$	$F_\beta^w \uparrow$	$F_\beta^m \uparrow$	$E_\phi \uparrow$	$M \downarrow$	$S_m \uparrow$	$F_\beta^w \uparrow$	$F_\beta^m \uparrow$	$E_\phi \uparrow$	$M \downarrow$	$S_m \uparrow$	$F_\beta^w \uparrow$	$F_\beta^m \uparrow$	$E_\phi \uparrow$	$M \downarrow$	$S_m \uparrow$	$F_\beta^w \uparrow$	$F_\beta^m \uparrow$	$E_\phi \uparrow$	$M \downarrow$				
	Fully-supervised																							
SINet ₂₁ (Fan et al., 2020a)	.872	.806	.827	.946	.034	.751	.606	.675	.771	.100	.771	.551	.634	.806	.051	.808	.723	.769	.871	.058				
UGTR ₂₁ (Yang et al., 2021)	.887	.794	.819	.940	.031	.784	.684	.735	.851	.086	.817	.666	.711	.890	.036	.839	.746	.787	.899	.052				
ZoomNet ₂₂ (Pang et al., 2022)	.902	.845	.864	.958	.023	.820	.752	.794	.878	.066	.838	.729	.766	.888	.029	.853	.784	.818	.899	.043				
HitNet ₂₃ (Hu et al., 2023)	.921	<u>.897</u>	<u>.900</u>	.972	.019	.849	.809	.831	.906	.055	.871	.806	.823	.935	.023	.875	.834	.853	.926	.037				
FSNet ₂₃ (Huang et al., 2023)	.908	.851	.867	.965	.023	.858	.799	.830	.899	.050	.851	.735	.769	.895	.026	.879	.816	.843	.915	.035				
ZoomNet ₂₃ (Pang et al., 2024)	.924	.885	.896	<u>.975</u>	.018	.888	.859	.875	.945	.041	.898	.838	<u>.857</u>	.955	.017	.900	.865	.884	.949	.028				
BiRefNet ₂₄ (Zheng et al., 2024)	<u>.929</u>	<u>.911</u>	<u>.922</u>	<u>.968</u>	<u>.016</u>	<u>.904</u>	<u>.890</u>	<u>.904</u>	<u>.954</u>	<u>.030</u>	<u>.913</u>	<u>.874</u>	<u>.888</u>	<u>.960</u>	<u>.014</u>	<u>.914</u>	<u>.894</u>	<u>.909</u>	<u>.953</u>	<u>.023</u>				
Semi/Weakly-supervised																								
CRNet ₂₃ (He et al., 2023)	.818	.744	-	.897	.046	.735	.641	-	.815	.092	.733	.576	-	.832	.049	.775	.688	-	.855	.063				
PCOD ₂₃ (Chen et al., 2024)	-	-	-	-	-	.798	.727	-	.872	.074	.784	.650	-	.859	.042	.822	.748	-	.889	.051				
CamoTeacher ₂₃ (Lai et al., 2024)	.756	<u>.617</u>	.684	<u>.813</u>	.065	.701	.560	.742	.795	.112	.759	.594	.836	.854	.049	.791	.687	.842	.868	.068				
Unsupervised																								
BigGW ₂₁ (Voynov et al., 2021)	.547	.244	.294	.527	.257	.565	.299	.349	.528	.282	.528	.185	.246	.497	.261	.608	.319	.391	.565	.246				
TokenCut ₂₂ (Wang et al., 2022)	.654	.496	.536	.740	.132	.633	.498	.543	.706	.163	.658	.469	.502	.735	.103	.725	.615	.649	.802	.101				
TokenCut _{22w/B.S.} (Wang et al., 2022)	.655	.351	.393	.582	.169	.639	.383	.434	.595	.195	.666	.334	.399	.609	.127	.735	.478	.547	.683	.133				
SelfMask ₂₂ (Shin et al., 2022)	.617	.483	.536	.698	.176	.637	.431	.469	.679	.131	.716	.593	.634	.777	.114	-	-	-	-	-	-	-	-	
SelfMask _{22w/U.B.} (Shin et al., 2022)	.629	.447	.491	.683	.169	.627	.495	.547	.708	.182	.645	.440	.478	.687	.125	.723	.601	.642	.784	.110				
FOUND ₂₃ (Simeoni et al., 2023)	.684	.542	.590	.810	.095	.685	.584	.633	.782	.129	.670	.482	.520	.751	.085	.741	.637	.674	.824	.084				
FOUND ₂₃ * (Simeoni et al., 2023)	.832	.761	.789	.915	.038	.780	.715	.751	.861	.086	.764	.638	.665	.843	.048	.812	.749	.779	.887	.055				
UCOD-DA ₂₃ (Zhang & Wu, 2023)	.715	.591	.629	.802	.095	.701	.606	.646	.784	.127	.689	.513	.546	.740	.086	.755	.656	.689	.819	.085				
UCOD-DPL ₂₃ (Yan et al., 2023)	<u>.864</u>	<u>.825</u>	<u>.838</u>	<u>.931</u>	<u>.031</u>	<u>.793</u>	<u>.747</u>	<u>.779</u>	<u>.862</u>	<u>.077</u>	<u>.834</u>	<u>.763</u>	<u>.779</u>	<u>.916</u>	<u>.031</u>	<u>.850</u>	<u>.818</u>	<u>.835</u>	<u>.923</u>	<u>.043</u>				
EASE ₂₃ (Du et al., 2025)	.819	.741	-	.899	.044	.749	.684	-	.831	.098	.773	.656	-	.866	.040	.800	.735	-	.884	.056				
Ours	<u>.869</u>	<u>.815</u>	<u>.843</u>	<u>.938</u>	<u>.033</u>	<u>.813</u>	<u>.761</u>	<u>.791</u>	<u>.877</u>	<u>.075</u>	<u>.839</u>	<u>.766</u>	<u>.785</u>	<u>.913</u>	<u>.034</u>	<u>.858</u>	<u>.827</u>	<u>.843</u>	<u>.929</u>	<u>.044</u>				

Table 1: Performance comparison of state-of-the-art models on CAMO, COD10K, and NC4K datasets. The best results are highlighted in **Bold**, and the second-best are underlined. * indicates a version reimplemented by us.

3.4 DYNAMIC CONVOLUTION MIXTURE

To effectively reason about the complete form of a camouflaged object from sparse "hints", a model requires a powerful ability to perceive subtle, context-dependent patterns. Standard convolutions with static kernels are ill-suited for this task. Therefore, we equip both our teacher and student models with a novel Dynamic Convolution Mixture (DCM) module, the architecture of which is detailed in Fig.1. The core design philosophy of the DCM is to synergize the strength of traditional convolution in extracting local, static patterns with the capability of attention-like mechanisms in modeling long-range, dynamic contextual dependencies. Its objective is to generate a feature representation that adaptively adjusts to each specific input image, thereby providing robust support for the final, fine-grained segmentation task.

Dynamic Kernel Generation: The generation of dynamic convolutional kernels is pivotal for the module to achieve content awareness. This process is designed to dynamically convolutional kernels for each spatial location in the image based on the global information of the input features.

Initially, the input feature map F is passed through a lightweight 1×1 convolutional layer and pooling layer. Its output is subsequently split into two parallel feature branches, yielding feature maps F_l and F_s .

Then, We compute the affinity between F_q and F_k via Matrix Multiply. The core objective of this operation is to aggregate global context and generate a dynamic feature F_v . Unlike a simple attention map, F_v encodes parameters for constructing convolutional kernels, enabling subsequent convolutions to move beyond static weights and adapt effectively to image content. The above content can be expressed as:

$$\begin{cases} F_l &= \phi_l(F), F_s = \phi_s(F) \\ F_k &= F_l \otimes F_s \end{cases}, \quad (6)$$

where ϕ denotes a convolutional layer and \otimes represents matrix multiplication.

Multi-scale Dynamic Convolution Application: To generate multi-scale convolutional kernels, the context tensor F_k is first passed through a projection layer ϕ_{proj} . The resulting output is then split into three independent sets of parameters to form three distinct kernels: K_s , K_m , and K_l . This approach facilitates multi-scale feature extraction within a single module. By deriving three distinct kernel sets from the same context-aware feature, the model learns to apply its dynamic context across different scales with high parameter efficiency. This process can be formally expressed as:

$$K_s, K_m, K_l = \text{Split}(\phi_{proj}(F_k)). \quad (7)$$

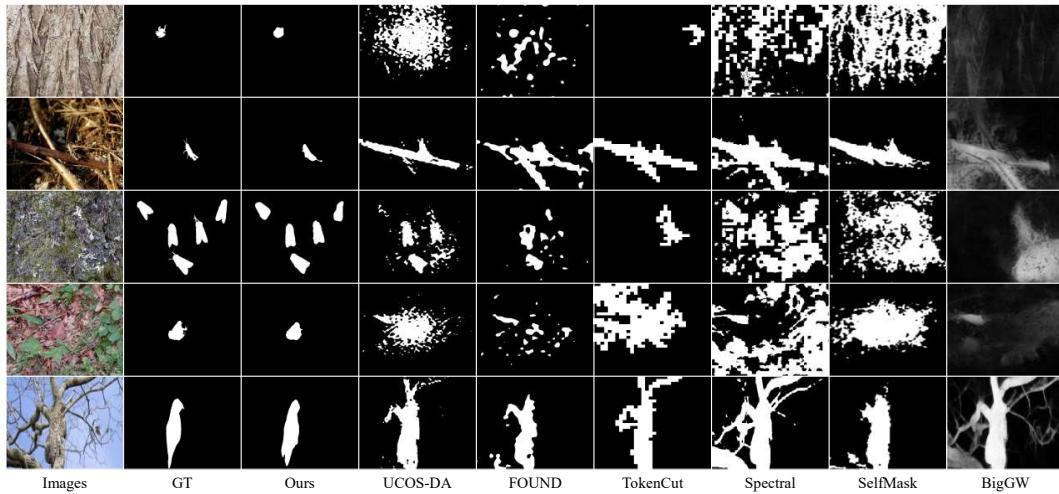


Figure 2: Visual example comparison: Comparison of our method with some of the previous state-of-the-art methods. Our method significantly outperforms other methods in capturing the contour details of camouflaged objects, and does not suffer from the fragmentation prediction seen in other methods.

The dynamic convolution operation with a kernel K_a applied to the feature map F at spatial location (i, j) and output channel c can be expressed as:

$$(F * K_a)(i, j, c) = \sum_u \sum_v \sum_d K_a(u, v, d, c) F(i + u, j + v, d), \quad (8)$$

where the summations are over the spatial support of the kernel and the input channels d . Here, $K_a(u, v, d, c)$ denotes the dynamically generated kernel weight.

The three dynamically generated kernels $\{K_s, K_m, K_l\}$ are applied in parallel, yielding three feature maps that are concatenated along the channel dimension and fused by a standard convolution layer to produce the final mask:

$$M(i, j) = \text{Conv}([(F * K_s)(i, j, :), (F * K_m)(i, j, :), (F * K_l)(i, j, :)]). \quad (9)$$

3.5 LOSS FUNCTION

Our optimization strategy is systematically organized into two distinct training stages, each employing a tailored loss function. Initially, in the Teacher Pre-adaptation stage, the objective is to cultivate a specialized teacher model. This is achieved by using a Binary Cross-Entropy (BCE) loss:

$$\mathcal{L}_{\text{adapt}} = \mathcal{L}_{\text{BCE}}(P_t, P_{\text{sup}}), \quad (10)$$

where the teacher's prediction (P_t) is supervised by the prediction of the frozen source model on a "hint image" (P_f).

Subsequently, in the main Student Model Refinement stage, the student model is optimized using a composite objective:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{BCE}}(P_s, P_{\text{gt}}) + \mathcal{L}_{\text{L1}}(P_s, P_t), \quad (11)$$

This loss function jointly performs two tasks: the BCE term aligns the student's output (P_s) with a dynamically fused pseudo-groundtruth (P_{gt}), while the L1 term enforces structural consistency by directly distilling knowledge from the refined teacher's prediction (P_t) to the student. This two-phase approach first creates an expert teacher and then leverages it to guide the student with both probabilistic and structural constraints.

378

4 EXPERIMENTS

379

4.1 EXPERIMENTS SETTINGS

380 **Datasets:** We utilize the identical test dataset employed in prior works (Yin et al., 2024; Fan et al.,
 381 2021; Shou et al., 2025), employing a composite training dataset comprising 1,000 images from
 382 the CAMO-Training (Le et al., 2019) subset and 3,040 images from the COD10K-Training (Fan
 383 et al., 2020a) subset. Following standard unsupervised learning protocols, no ground-truth labels
 384 were utilized during training. For comprehensive evaluation, we test our model on three established
 385 benchmark datasets: CAMO-Test, COD10K-Test, and NC4K (Lv et al., 2021), collectively repre-
 386 senting diverse challenging scenarios in camouflaged object segmentation.
 387

388 **Evaluation Metrics:** Consistent with established practices in the field, our evaluation employs five
 389 principal metrics: the Structure measure (S_m) (Fan et al., 2017), the weighted F-measure (F_β^w)
 390 (Margolin et al., 2014), the mean F-measure (F_β^m), the mean E-measure (E_ϕ) (Fan et al., 2018), and
 391 the mean absolute error (M) (Perazzi et al., 2012). These metrics are universally adopted in COD
 392 literature, enabling fair benchmarking across the CAMO, COD10K, and NC4K test sets.
 393

394 **Implementation Details:** Our framework is implemented using PyTorch, with training and infer-
 395 ence tasks distributed across four NVIDIA A800 GPUs. We adopt DINOv2 as the backbone encoder,
 396 leveraging its powerful unsupervised visual representation capabilities to ensure rich spatial feature
 397 extraction. Additionally, we employ FOUND (Siméoni et al., 2023) as our source model. All input
 398 images are resized to 518×518. Optimization uses the AdamW algorithm with a learning rate of
 399 3e-4, weight decay of 2e-3, and a batch size of 32 per GPU. The model is trained for 30 epochs.
 400

401

4.2 COMPARISON WITH STATE-OF-THE-ARTS

402 **Quantitative Evaluation:** In Tab.1, we compared our proposed method’s performance with com-
 403 peting USOD and UCOD models on three COD test datasets. The results show that our model
 404 outperformed all existing USOD and UCOD methods across all metrics and datasets, thus achieving
 405 State-Of-The-Art performance. Additionally, our model has surpassed several semi-supervised and
 406 fully-supervised methods across all datasets, demonstrating its superior performance, effectiveness,
 407 and robustness.
 408

409 **Visual Comparison:** We present a visual com-
 410 parison with several SOTA approaches in Fig.2.
 411 As illustrated, our model consistently generates
 412 more coherent and complete masks, exhibiting
 413 a significant advantage in capturing the intri-
 414 cate contour details of camouflaged objects that
 415 are often missed or fragmented by competing
 416 methods. These results compellingly substan-
 417 tiate the robustness and precision of our final
 418 predictions. Furthermore, Fig.3 illustrates the
 419 internal refinement process via heatmaps. This
 420 visualization reveals that while the baseline
 421 source model’s predictions are noisy, our hint-
 422 guided pre-adaptation produces a much cleaner
 423 and more focused Teacher. The final Student refines
 424 these robust cues to recover fine-grained details,
 425 clearly demonstrating the effectiveness of our progressive adaptation strategy.
 426

427

4.3 ABLATION STUDY

428 **Effectiveness of Overall Module:** To validate each key component, we conducted a comprehensive
 429 ablation study, with the results summarized in Tab.2. Our analysis follows a progressive integration,
 430 starting from a baseline model and systematically adding each proposed module. The results demon-
 431 strate a clear synergistic effect: the Teacher-Student (Tea-Stu) paradigm first establishes a robust
 432 foundation, which is then significantly amplified by our core contribution, the hint-guided Teacher
 433 Pre-adaptation stage. Subsequently, the Dynamic Convolution Mixture (DCM) module further en-
 434 hances the model’s adaptive capacity, while Consistency-Regularized Training (CRT) stabilizes the
 435

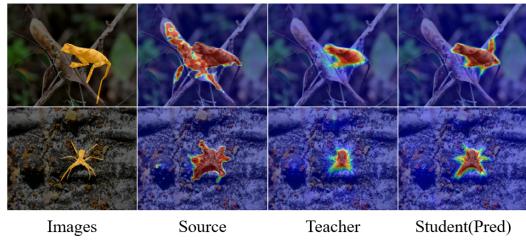


Figure 3: Visualization of the progressive prediction refinement.

432	Settings				CAMO-Test (250)				COD10K-Test (2026)				NC4K (4121)							
	Tea-Stu	Pre-adaption	DCM	CRT	$S_m \uparrow$	$F_\beta^w \uparrow$	$F_\beta^m \uparrow$	$E_\phi \uparrow$	$M \downarrow$	$S_m \uparrow$	$F_\beta^w \uparrow$	$F_\beta^m \uparrow$	$E_\phi \uparrow$	$M \downarrow$	$S_m \uparrow$	$F_\beta^w \uparrow$	$F_\beta^m \uparrow$	$E_\phi \uparrow$	$M \downarrow$	
433					Baseline	.703	.635	.671	.781	.101	.684	.584	.611	.753	.088	.722	.613	.645	.775	.084
434	✓					.753	.684	.721	.807	.094	.749	.676	.685	.813	.074	.788	.717	.743	.829	.062
435	✓	✓				.773	.714	.740	.821	.090	.771	.695	.728	.853	.049	.801	.743	.774	.849	.044
436	✓		✓			.800	.747	.766	.854	.086	.815	.721	.752	.873	.042	.832	.761	.797	.901	.053
437	✓	✓	✓			.807	.754	.772	.862	.082	.821	.735	.763	.891	.039	.841	.787	.813	.910	.048
438	✓		✓	✓		.793	.731	.752	.851	.090	.802	.721	.751	.889	.045	.831	.793	.810	.904	.056
439	✓	✓	✓	✓		.804	.749	.774	.867	.083	.818	.749	.763	.897	.040	.843	.805	.825	.918	.050
440	✓	✓	✓	✓		.813	.761	.791	.877	.075	.839	.766	.785	.913	.034	.858	.827	.843	.929	.044

Table 2: Ablation study on the components of our framework. We retrained our model with different settings on the same learning rate and epochs.

process and boosts generalization. The consistent performance gain at each step validates that every component plays an indispensable role in achieving our final state-of-the-art results.

445	k	CAMO-Test (250)				COD10K-Test (2026)				w	CAMO-Test (250)				COD10K-Test (2026)			
		$S_m \uparrow$	$F_\beta^m \uparrow$	$E_\phi \uparrow$	$M \downarrow$	$S_m \uparrow$	$F_\beta^m \uparrow$	$E_\phi \uparrow$	$M \downarrow$		$S_m \uparrow$	$F_\beta^m \uparrow$	$E_\phi \uparrow$	$M \downarrow$	$S_m \uparrow$	$F_\beta^m \uparrow$	$E_\phi \uparrow$	$M \downarrow$
446	1	.804	.777	.862	.079	.814	.778	.904	.038	5	.808	.781	.865	.080	.831	.765	.901	.037
447	2	.809	.789	.871	.078	.821	.781	.908	.036	10	.813	.791	.877	.075	.839	.785	.913	.034
448	3	.813	.791	.877	.075	.839	.785	.913	.034	15	.804	.774	.873	.081	.834	.768	.908	.038
449	4	.810	.784	.880	.077	.834	.787	.911	.036	20	.793	.763	.865	.085	.819	.758	.885	.042

Table 3: Ablation studies on the number of selected hint points (k , left) and the number of Pre-adaptation epochs (w , right). We highlight the best-performing values.

Hyperparameters of Difference Perception and Hint Region Generation: In our confidence-guided point selection strategy, the number of hint points, k , and the number of pre-adaptation epochs, w , are two critical hyperparameters. To determine their optimal values, we conducted a detailed ablation study. As shown in Tab.3, we evaluated the model’s performance on the CAMO and COD10K datasets while varying both k and w . The results for w indicate that model performance reached its zenith at $w = 10$. A shorter duration appears insufficient for the teacher model to fully adapt to the target domain, whereas a longer duration leads to a significant performance degradation. This decline is attributed to the model overfitting to the sparse hint regions.

Ablation Study on Hint Region Generation

Strategy: To validate the principle of our “hint-guided” approach, we conducted an ablation study on the hint generation strategy, comparing our high-confidence guided method with fully random masking and low-confidence guided masking. As shown in Tab.4, the random strategy performed worst, indicating that unguided masking leads to spurious learning. The low-confidence strategy was also suboptimal, as focusing on ambiguous regions without reliable anchors hindered coherent object representation. In contrast, our method, leveraging stable high-confidence regions, provided a robust foundation, highlighting that hint reliability is the key factor for effective adaptation.

Methods	CAMO-Test (250)			COD10K-Test (2026)		
	$S_m \uparrow$	$F_\beta^w \uparrow$	$E_\phi \uparrow$	$S_m \uparrow$	$F_\beta^w \uparrow$	$E_\phi \uparrow$
high-confidence	.813	.761	.877	.839	.766	.913
random	.801	.745	.852	.814	.732	.883
low-confidence	.807	.751	.858	.823	.748	.891

Table 4: Ablation study on different hint generation strategies.

5 CONCLUSION

In this work, we addressed the critical challenge of source data inaccessibility in Unsupervised COD by proposing HGT-UCOD, a novel teacher framework centered on a “hint-guided” learning philosophy. The cornerstone of our approach is a unique teacher pre-adaptation stage, where a confidence-guided strategy compels the teacher to infer complete objects from sparse yet highly reliable hints, effectively creating an expert guide. During student refinement, this expert knowledge is synergized with the source model to generate high-quality pseudo-labels, a process enhanced by our Dynamic Convolution Mixture module for adaptively capturing complex structures. The entire framework is further stabilized by a consistency learning scheme, which significantly boosts model generalization and robustness. Extensive experiments on multiple benchmark datasets demonstrate that HGT-UCOD sets a new SOTA, proving that by first teaching a model to master what it reliably knows, we can effectively guide it to perceive the unknown.

486 **6 ETHICS STATEMENT**
 487

488 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal exper-
 489 imentation was involved. All datasets were sourced in compliance with relevant usage guidelines,
 490 ensuring no violation of privacy. We have taken care to avoid any biases or discriminatory out-
 491 comes in our research process. No personally identifiable information was used, and no experiments
 492 were conducted that could raise privacy or security concerns. We are committed to maintaining
 493 transparency and integrity throughout the research process.

494
 495 **7 REPRODUCIBILITY STATEMENT**
 496

497 We have made every effort to ensure that the results presented in this paper are reproducible. All
 498 codes are available at https://anonymous.4open.science/r/HGT-UCOD_anonymous/README.md
 499 to facilitate replication and verification. The experimental setup, including training steps, model
 500 configurations, and hardware details, is described in detail in the paper. Additionally, the datasets
 501 mentioned in this paper are publicly available, ensuring consistent and reproducible evaluation re-
 502 sults. We believe these measures will enable other researchers to reproduce our work and further
 503 advance the field.

504
 505 **REFERENCES**
 506

507 Huafeng Chen, Dian Shao, Guangqian Guo, and Shan Gao. Just a hint: Point-supervised camou-
 508 flaged object detection. In *European Conference on Computer Vision*, pp. 332–348. Springer,
 509 2024.

510 Shivang Chopra, Suraj Kothawade, Houda Aynaou, and Aman Chadha. Source-free domain adapta-
 511 tion with diffusion-guided source data generation. *arXiv preprint arXiv:2402.04929*, 2024.

512 Yifei Ding, Minping Jia, Jichao Zhuang, Yudong Cao, Xiaoli Zhao, and Chi-Guhn Lee. Deep
 513 imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple
 514 working conditions. *Reliability Engineering & System Safety*, 230:108890, 2023.

515 Ji Du, Fangwei Hao, Mingyang Yu, Desheng Kong, Jiesheng Wu, Bin Wang, Jing Xu, and Ping Li.
 516 Shift the lens: Environment-aware unsupervised camouflaged object detection. In *Proceedings of*
 517 *the Computer Vision and Pattern Recognition Conference*, pp. 19271–19282, 2025.

518 Deng-Ping Fan, Ming-Ming Cheng, Yun Liu, Tao Li, and Ali Borji. Structure-measure: A new way
 519 to evaluate foreground maps. In *Proceedings of the IEEE international conference on computer*
 520 *vision*, pp. 4548–4557, 2017.

521 Deng-Ping Fan, Cheng Gong, Yang Cao, Bo Ren, Ming-Ming Cheng, and Ali Borji. Enhanced-
 522 alignment measure for binary foreground map evaluation. *arXiv preprint arXiv:1805.10421*,
 523 2018.

524 Deng-Ping Fan, Ge-Peng Ji, Guolei Sun, Ming-Ming Cheng, Jianbing Shen, and Ling Shao. Cam-
 525 ouflaged object detection. In *Proceedings of the IEEE/CVF conference on computer vision and*
 526 *pattern recognition*, pp. 2777–2787, 2020a.

527 Deng-Ping Fan, Ge-Peng Ji, Tao Zhou, Geng Chen, Huazhu Fu, Jianbing Shen, and Ling Shao.
 528 Planet: Parallel reverse attention network for polyp segmentation. In *International conference on*
 529 *medical image computing and computer-assisted intervention*, pp. 263–273. Springer, 2020b.

530 Deng-Ping Fan, Ge-Peng Ji, Ming-Ming Cheng, and Ling Shao. Concealed object detection. *IEEE*
 531 *transactions on pattern analysis and machine intelligence*, 44(10):6024–6042, 2021.

532 Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
 533 *International conference on machine learning*, pp. 1180–1189. PMLR, 2015.

534 Ruozhen He, Qihua Dong, Jiaying Lin, and Rynson WH Lau. Weakly-supervised camouflaged
 535 object detection with scribble annotations. In *Proceedings of the AAAI conference on artificial*
 536 *intelligence*, volume 37, pp. 781–789, 2023.

540 Xiaobin Hu, Shuo Wang, Xuebin Qin, Hang Dai, Wenqi Ren, Donghao Luo, Ying Tai, and Ling
 541 Shao. High-resolution iterative feedback network for camouflaged object detection. In *Proceed-
 542 ings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 881–889, 2023.

543

544 Zhou Huang, Hang Dai, Tian-Zhu Xiang, Shuo Wang, Huai-Xin Chen, Jie Qin, and Huan Xiong.
 545 Feature shrinkage pyramid for camouflaged object detection with transformers. In *Proceedings
 546 of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 5557–5566, 2023.

547

548 Prakhar Kaushik, Aayush Mishra, Adam Kortylewski, and Alan Yuille. Source-free and image-
 549 only unsupervised domain adaptation for category level object pose estimation. *arXiv preprint
 550 arXiv:2401.10848*, 2024.

551

552 Xunfa Lai, Zhiyu Yang, Jie Hu, Shengchuan Zhang, Liujuan Cao, Guannan Jiang, Zhiyu Wang,
 553 Songan Zhang, and Rongrong Ji. Camoteacher: Dual-rotation consistency learning for semi-
 554 supervised camouflaged object detection. In *European Conference on Computer Vision*, pp. 438–
 555 455. Springer, 2024.

556

557 Trung-Nghia Le, Tam V Nguyen, Zhongliang Nie, Minh-Triet Tran, and Akihiro Sugimoto.
 558 Anabanch network for camouflaged object segmentation. *Computer vision and image under-
 559 standing*, 184:45–56, 2019.

560

561 Jingjing Li, Zhiqi Yu, Zhekai Du, Lei Zhu, and Heng Tao Shen. A comprehensive survey on source-
 562 free domain adaptation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(8):
 563 5743–5762, 2024.

564

565 Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
 566 hypothesis transfer for unsupervised domain adaptation. In *International conference on machine
 567 learning*, pp. 6028–6039. PMLR, 2020.

568

569 Xiaofeng Liu, Chaehwa Yoo, Fangxu Xing, Hyejin Oh, Georges El Fakhri, Je-Won Kang, Jonghye
 570 Woo, et al. Deep unsupervised domain adaptation: A review of recent advances and perspectives.
 571 *APSIPA Transactions on Signal and Information Processing*, 11(1), 2022.

572

573 Zelin Lu, Xing Zhao, Liang Xie, Haoran Liang, and Ronghua Liang. Semantic-aware repres-
 574 entations for unsupervised camouflaged object detection. *Journal of Visual Communication and
 575 Image Representation*, 107:104366, 2025.

576

577 Yunqiu Lv, Jing Zhang, Yuchao Dai, Aixuan Li, Bowen Liu, Nick Barnes, and Deng-Ping Fan.
 578 Simultaneously localize, segment and rank the camouflaged objects. In *Proceedings of the
 579 IEEE/CVF conference on computer vision and pattern recognition*, pp. 11591–11601, 2021.

580

581 Ran Margolin, Lih Zelnik-Manor, and Ayellet Tal. How to evaluate foreground maps? In *Proceed-
 582 ings of the IEEE conference on computer vision and pattern recognition*, pp. 248–255, 2014.

583

584 Youwei Pang, Xiaoqi Zhao, Tian-Zhu Xiang, Lihe Zhang, and Huchuan Lu. Zoom in and out: A
 585 mixed-scale triplet network for camouflaged object detection. In *Proceedings of the IEEE/CVF
 586 Conference on computer vision and pattern recognition*, pp. 2160–2170, 2022.

587

588 Youwei Pang, Xiaoqi Zhao, Tian-Zhu Xiang, Lihe Zhang, and Huchuan Lu. Zoomnext: A unified
 589 collaborative pyramid network for camouflaged object detection. *IEEE Transactions on Pattern
 590 Analysis and Machine Intelligence*, 2024. doi: 10.1109/TPAMI.2024.3417329.

591

592 Federico Perazzi, Philipp Krähenbühl, Yael Pritch, and Alexander Hornung. Saliency filters: Con-
 593 trast based filtering for salient region detection. In *2012 IEEE conference on computer vision and
 594 pattern recognition*, pp. 733–740. IEEE, 2012.

595

596 Ricardo Pérez-de la Fuente, Xavier Delclòs, Enrique Peñalver, Mariela Speranza, Jacek Wierzchos,
 597 Carmen Ascaso, and Michael S Engel. Early evolution and ecology of camouflage in insects.
 598 *Proceedings of the National Academy of Sciences*, 109(52):21414–21419, 2012.

599

600 Natasha Price, Samuel Green, Jolyon Troscianko, Tom Tregenza, and Martin Stevens. Background
 601 matching and disruptive coloration as habitat-specific strategies for camouflage. *Scientific reports*,
 602 9(1):7840, 2019.

594 Gyungin Shin, Samuel Albanie, and Weidi Xie. Unsupervised salient object detection with spectral
 595 cluster voting. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 596 *Recognition*, pp. 3971–3980, 2022.

598 Peiyao Shou, Yixiu Liu, Wei Wang, Yaoqi Sun, Zhigao Zheng, Shangdong Zhu, and Chenggang Yan.
 599 Sdalsnet: Self-distilled attention localization and shift network for unsupervised camouflaged
 600 object detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39,
 601 pp. 6914–6921, 2025.

602 Oriane Siméoni, Chloé Sekkat, Gilles Puy, Antonín Vobecký, Éloi Zablocki, and Patrick Pérez.
 603 Unsupervised object localization: Observing the background to discover objects. In *Proceedings*
 604 *of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 3176–3186, 2023.

606 Huihui Song and Zheng Wang. Automatic classification of white blood cells using a semi-supervised
 607 convolutional neural network. *IEEE Access*, 12:44972–44983, 2024.

609 Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged con-
 610 sistency targets improve semi-supervised deep learning results. *Advances in neural information*
 611 *processing systems*, 30, 2017.

613 Andrey Voynov, Stanislav Morozov, and Artem Babenko. Object segmentation without labels with
 614 large-scale generative models. In *International Conference on Machine Learning*, pp. 10596–
 615 10606. PMLR, 2021.

616 Yangtao Wang, Xi Shen, Shell Xu Hu, Yuan Yuan, James L Crowley, and Dominique Vaufreydaz.
 617 Self-supervised transformers for unsupervised object discovery using normalized cut. In *Pro-
 618 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14543–
 619 14553, 2022.

621 Weiqi Yan, Lvhai Chen, Huaijia Kou, Shengchuan Zhang, Yan Zhang, and Liujuan Cao. Ucod-dpl:
 622 Unsupervised camouflaged object detection via dynamic pseudo-label learning. In *Proceedings*
 623 *of the Computer Vision and Pattern Recognition Conference*, pp. 30365–30375, 2025.

625 Fan Yang, Qiang Zhai, Xin Li, Rui Huang, Ao Luo, Hong Cheng, and Deng-Ping Fan. Uncertainty-
 626 guided transformer reasoning for camouflaged object detection. In *Proceedings of the IEEE/CVF*
 627 *international conference on computer vision*, pp. 4146–4155, 2021.

628 Bowen Yin, Xuying Zhang, Deng-Ping Fan, Shaohui Jiao, Ming-Ming Cheng, Luc Van Gool, and
 629 Qibin Hou. Camoformer: Masked separable attention for camouflaged object detection. *IEEE*
 630 *Transactions on Pattern Analysis and Machine Intelligence*, 2024.

632 Yi Zhang and Chengyi Wu. Unsupervised camouflaged object segmentation as domain adaptation.
 633 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4334–4344,
 634 2023.

636 Peng Zheng, Dehong Gao, Deng-Ping Fan, Li Liu, Jorma Laaksonen, Wanli Ouyang, and Nicu
 637 Sebe. Bilateral reference for high-resolution dichotomous image segmentation. *CAAI Artificial*
 638 *Intelligence Research*, 3:9150038, 2024.

639 640 A APPENDIX

643 A.1 THE USE OF LARGE LANGUAGE MODELS

645 Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
 646 Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
 647 clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
 grammar checking, and enhancing the overall flow of the text.

648
649 Table 5: Quantitative analysis of pseudo-label quality and model evolution on the COD10K dataset.
650
651
652
653
654

Model Variant	$S_m \uparrow$	$F_\beta^w \uparrow$	$F_\beta^m \uparrow$	$E_\phi \uparrow$	$M \downarrow$
Source	.764	.638	.665	.843	.048
Teacher (warmup)	.733	.613	.702	.773	.051
Student (Ours)	.839	.766	.785	.913	.034
Teacher (final)	.812	.758	.769	.900	.037

655
656
657 **B ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS**
658659 **B.1 QUALITY ANALYSIS OF PSEUDO-LABELS**
660661 To quantitatively validate the effectiveness of our "Hint-Guided" paradigm, we evaluated the quality
662 of the pseudo-labels generated at different stages of our framework. Table 5 presents the perfor-
663 mance metrics on the COD10K dataset for the Source model, the Pre-adapted Teacher (after Stage
664 1), the Final Student, and the Final Teacher (after Stage 2).
665666 **B.2 COMPUTATIONAL COMPLEXITY AND EFFICIENCY**
667
668669 Table 6: Comparison of model configurations and complexity.
670

Method	Input Size	Backbone	Parameters (M)	
			Fixed (Backbone)	Learnable
TokenCut	480×480	DINOv1-S	≈ 21	-
SelfMask	224×224	DINOv1-S	≈ 21	-
FOUND	224×224	DINOv1-S	≈ 21	-
UCOD-DA	512×512	DINOv1-B	≈ 85	-
FOUND*	518×518	DINOv2-L	≈ 300	-
UCOD-DPL	518×518	DINOv2-L	≈ 300	-
EASE	476×476	DINOv2-L	≈ 300	-
Ours	518×518	DINOv2-L	≈ 300	16

682 To assess the practical efficiency of HGT-UCOD, we summarize the architectural configurations and
683 computational costs in Table 6. Backbone and Model Size. Following the trend of recent state-of-
684 the-art methods, our framework adopts the powerful DINOv2-L as the backbone to ensure robust
685 feature extraction. While the backbone introduces a substantial parameter count ($\approx 300M$), it is
686 important to note that these parameters are pre-trained and largely shared. The specific learnable
687 parameters introduced by our method amount to only 16M. Notably, our method achieves efficient
688 training completion within merely 1 hour while maintaining a real-time inference speed of 9.8 FPS.
689 This indicates that our architectural innovations yield significant performance gains with minimal
690 additional parameter overhead.
691692 **B.3 SIZE-AWARE PERFORMANCE ANALYSIS**
693
694695 Table 7: Performance Across Different Sizes
696

	COD10K(2026)	SMALL(1379)	MEDIUM(609)	LARGE(38)
S_m	.839	.828	.863	.829
F_β^w	.766	.728	.843	.889
F_β^m	.785	.734	.891	.929
E_ϕ	.913	.902	.936	.895
M	.034	.030	.042	.065

To investigate the robustness of our model across different object scales, we partitioned the COD10K test set into three groups based on the object area ratio: Small ($< 10\%$), Medium ($10\% - 40\%$), and Large ($> 40\%$).

As shown in Tab. 7, our method performs robustly across objects of different scales. In particular, it achieves outstanding results on large camouflaged objects, which often exhibit internal texture inconsistency and ambiguous boundaries that challenge conventional segmentation approaches. The proposed DCM module, especially its large-kernel branch, effectively models long-range contextual dependencies, thereby preserving structural coherence and improving segmentation quality for large-scale targets.

B.4 VISUALIZATION AND INTERPRETABILITY

We provide additional qualitative results to intuitively explain the working mechanism of HGT-UCOD.

Dynamic Perception of DCM.

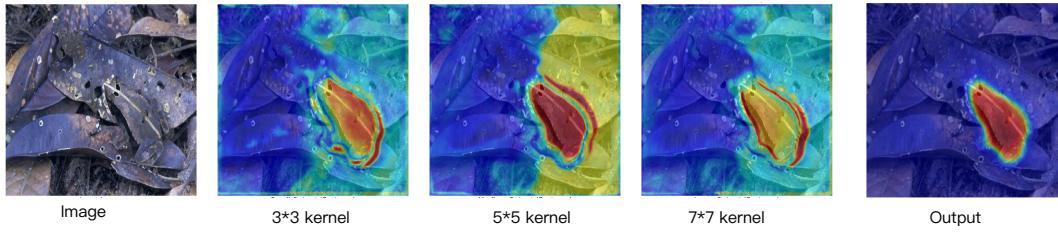


Figure 4: Visualization of DCM modules with different kernel sizes

To understand how the DCM module handles complex camouflage, we visualize the attention weights and output features of its three internal branches in Fig.4 .

- The Small Kernel branch (3×3) focuses on high-frequency details, effectively capturing object boundaries and intricate textures.
- The Large Kernel branch (7×7) exhibits a smoother attention distribution, capturing long-range context and the semantic body of the camouflaged object.
- The Medium Kernel branch (5×5) acts as a bridge, capturing local object parts.

The complementary nature of these branches allows the model to dynamically perceive both fine-grained details and global shapes.

Evolution from Hints to Whole. Fig.5 provides a visual explanation of why our "Hint-Guided"

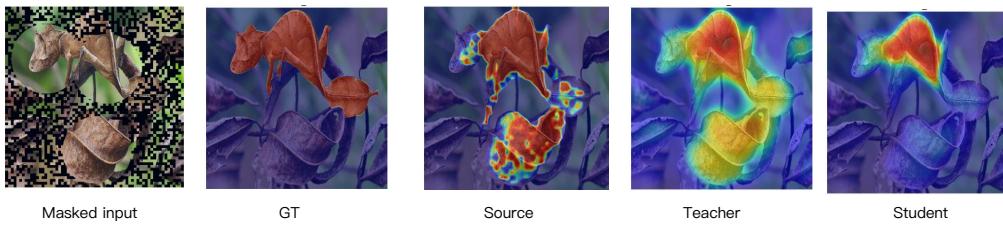


Figure 5: Visualization of the Hint-Guided Pre-adaptation mechanism under occlusion.

strategy works. During the pre-adaptation stage, we intentionally corrupt the input image with random masking and noise (shown as "Masked input"), simulating a scenario where key visual cues are missing or abnormal. Crucially, the Source Model's prediction on this input is highly fragmented and noisy. However, the Teacher Model, having been forced to infer the whole from the parts, successfully reconstructs the complete shape of the leaf-tailed gecko despite the occlusion. This "reconstruction-from-hints" capability is then distilled into the final Student Model, resulting in detection as shown in the last column.

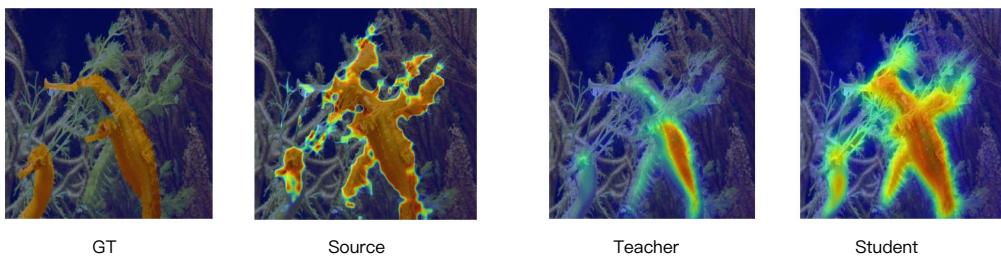
756 **Multi-object Hint Distribution.**
757

Figure 6: Qualitative evaluation in a complex multi-object scenario.

To address concerns regarding the model’s ability to handle scenes with multiple camouflaged instances, we present a visual example in Fig.6. The Source Model fails to separate the targets from the background, generating excessive noise. In contrast, our Student Model, guided by the spatially distributed hints, successfully suppresses the background distractors and segments the individual object. This demonstrates that our hint generation strategy effectively prevents the model from collapsing onto a single salient point.