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ABSTRACT

Camouflaged Object Detection (COD) holds significant potential in various high-
stakes applications, yet its progress is fundamentally bottlenecked by a heavy re-
liance on large-scale, pixel-level annotated data. While Unsupervised Domain
Adaptation (UDA) offers a promising path forward, real-world scenarios often
impose stricter constraints due to data privacy, leaving us with only a pre-trained
source model—a more challenging setting known as source-free domain adapta-
tion. A critical flaw in current methods is their direct use of the source model
(e.g., one trained for salient object detection) to generate pseudo-labels. The in-
herent ”saliency bias” of such models—an inclination to find objects that ”stand
out” rather than ”blend in”—results in incomplete and noisy labels that only cap-
ture the most conspicuous parts of a target. Self-training on this flawed guidance
inevitably falls into confirmation bias, amplifying initial errors and limiting per-
formance. We introduce a paradigm shift in addressing this problem. Instead
of treating the biased predictions as mere noise, we innovatively reframe their
high-confidence fragments as reliable ”hints”. Based on this philosophy, we pro-
pose HGT-UCOD, a novel Hint-Guided Teacher framework designed to guide the
model in inferring the complete object from these sparse yet trustworthy cues.
The cornerstone of our framework is a unique teacher pre-adaptation stage. Here,
we first cultivate an ”expert teacher” by compelling it to learn to infer the full
object from partial views containing only these ”hints,” thus building specialized
knowledge. Subsequently, during student refinement, this expert teacher collabo-
rates with the source model to generate high-quality pseudo-labels via a dynamic
fusion strategy. This process is further enhanced by strong consistency regular-
ization, which forces the student to learn robust, perturbation-invariant features.
To empower this inference, both our teacher and student models are equipped
with a novel Dynamic Convolution Mixture (DCM) module, which adaptively
generates content-aware kernels to capture the subtle, context-dependent features
of camouflaged objects. Extensive experiments on multiple benchmark datasets
demonstrate that our method achieves superior performance, establishing a new
state-of-the-art for source-free unsupervised COD.

1 INTRODUCTION

Camouflaged Object Detection (COD) (Fan et al., 2020a) is a critical and highly challenging task
in computer vision, focusing on segmenting objects that blend into their surroundings (Price et al.,
2019). This technology is crucial for high-stakes domains like automated biodiversity monitor-
ing for detecting well-camouflaged species, high-stakes medical lesion detection in complex scans
(Fan et al., 2020b), and enhanced situational awareness in search and rescue operations (Pérez-de la
Fuente et al., 2012). While recent methods based on fully-supervised learning have spurred sig-
nificant progress, their success reveals a fundamental bottleneck: a heavy reliance on large-scale,
pixel-level annotated data. This issue is particularly acute for COD, as creating such datasets is not
only prohibitively expensive and time-consuming but also requires domain experts to delineate the
often-ambiguous boundaries of camouflaged objects, making high-quality data acquisition excep-
tionally difficult.
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To mitigate this dependency on labeled data, Unsupervised Domain Adaptation (UDA) (Liu et al.,
2022) offers a promising alternative, aiming to transfer knowledge from a label-rich source domain
(e.g., Salient Object Detection, SOD) to an unlabeled target domain (COD). However, in real-world
applications and research, we often lack access to the source training dataset and can only utilize a
pre-trained source model. This gives rise to a more challenging and practical problem: Source-Free
Domain Adaptation (SFDA) (Li et al., 2024). Consequently, our core research question becomes:
How can we effectively adapt a pre-trained model to the demanding task of camouflaged object
detection, using only the source model itself and unlabeled target images?

Existing SFDA methods face a fundamental conflict when applied to COD. The source models
they typically rely on (i.e., SOD models) are trained to find objects that ”stand out,” whereas the
goal of COD is precisely the opposite: to find objects that deliberately ”blend in.” This inherent
conflict of objectives leads to a severe ”saliency bias.” Specifically, when the source model is used
to generate pseudo-labels for camouflaged images, it can only identify the most conspicuous, least
”camouflaged” parts of the target, resulting in incomplete and noisy pseudo-labels. Worse still,
standard self-training or adaptation methods that naively trust these low-quality labels fall into a
vicious cycle of ”confirmation bias.” The model progressively reinforces the initial errors caused
by saliency bias during training, leading it to overfit to misleadingly ”salient” fragments and failing
to learn the true, complete structure of the camouflaged object. This severely limits its ultimate
performance.

We argue that the key to overcoming this dilemma lies in a complete shift in perspective. Instead
of treating the biased predictions from the source model as pure noise to be cleaned or filtered,
we innovatively reframe their high-confidence regions as reliable ”hints.” Although these hints are
spatially sparse, they represent the model’s most certain knowledge about the target. Based on
this core insight, we propose a novel ”Hint-Guided” learning paradigm. Its motivation is not to
passively correct biased pseudo-labels, but to actively use these sparse yet reliable hints to ”compel”
the model to infer the complete object form. This process forces the model to learn the generalizable,
underlying features of camouflage itself (such as subtle differences in contour and texture from the
background), rather than merely overfitting to the deceptive signals produced by saliency bias.

To realize this philosophy, we designed HGT-UCOD, a novel framework based on a ”Hint-Guided”
Teacher-Student paradigm. Our contributions are multi-layered, spanning a comprehensive set of
innovations from core ideology to framework design and specific optimization strategies:

• Core Ideological Innovation: We introduce a novel ”Hint-Guided” learning paradigm. This
paradigm fundamentally reframes the problem, shifting from correcting noisy predictions
to inferring complete objects from reliable cues. By repurposing high-confidence regions
of biased predictions as trustworthy ”hints,” our approach actively counters and leverages
the ”saliency bias” by guiding the model to reason from sparse information.

• Synergistic Framework and Architectural Innovation: We propose a unique framework that
operationalizes our paradigm. It features: A Teacher Pre-adaptation stage that cultivates an
”expert teacher” specialized in inferring global structure from local hints. A novel Dynamic
Convolution Mixture (DCM) module that empowers both teacher and student models. The
DCM generates content-adaptive kernels, providing the architectural foundation necessary
to capture the subtle, context-dependent patterns of camouflaged objects—a crucial capa-
bility for reasoning beyond sparse hints.

• Strategy Optimization Innovation: In the student refinement phase, we devised a sophisti-
cated set of strategic optimizations. This includes a dynamic fusion strategy to adaptively
combine knowledge from the expert teacher and the source model for high-quality pseudo-
label generation. This is coupled with strong consistency regularization to force the student
model to learn robust, perturbation-invariant features, significantly boosting its generaliza-
tion capabilities.

Extensive experiments on multiple authoritative COD benchmark datasets demonstrate that our
method achieves superior performance, with its combined effect surpassing existing unsupervised
approaches on most evaluation metrics and establishing a new state-of-the-art (SOTA) for source-
free unsupervised camouflaged object detection.
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2 RELATED WORK

2.1 UNSUPERVISED CAMOUFLAGED OBJECT DETECTION

Unsupervised Camouflaged Object Detection (UCOD) (Zhang & Wu, 2023) has emerged as a key
research direction to alleviate the heavy reliance on manual annotations. The predominant strategy
in this field is UDA, which aims to transfer knowledge from a label-rich auxiliary domain—typically
SOD to the unlabeled target COD domain.

Early UCOD research primarily drew upon classical UDA techniques. For instance, Ganin & Lem-
pitsky (2015); Ding et al. (2023) employed adversarial learning with a domain discriminator to
encourage the model to learn domain-invariant features, thereby aligning the distributions of the
source and target domains within a shared feature space. Other approaches focused on aligning the
second-order statistics of feature maps between the two domains.

More recently, the research trend has shifted towards a self-training paradigm, which leverages
pseudo-labels generated for target domain images to conduct supervised learning. Methods such
as those by Lu et al. (2025); Shou et al. (2025) typically initialize pseudo-labels using predictions
from the source SOD model, which are then refined through various strategies. However, these
methods are highly susceptible to confirmation bias, where initial errors from the source model are
progressively reinforced and amplified during training, ultimately limiting the model’s performance.

2.2 SOURCE-FREE DOMAIN ADAPTATION

Source-Free Domain Adaptation (SFDA) addresses the practical constraint of source data unavail-
ability during adaptation, leaving only a pre-trained source model and the unlabeled target data. This
scenario has spurred the development of innovative techniques that rely solely on the knowledge en-
capsulated within the source model. A prominent line of work focuses on generating high-quality
pseudo-labels for the target data and using them for self-supervision. Pioneering methods like SHOT
(Liang et al., 2020) accomplish this through information maximization and by promoting confident,
class-separated predictions. Other approaches have explored estimating the quality of pseudo-labels
to filter out noise (Kaushik et al., 2024) or leveraging generative models to synthesize features that
mimic the source distribution (Chopra et al., 2024).

The Teacher-Student framework has also become a cornerstone of modern SFDA, heavily inspired
by its success in semi-supervised learning (Tarvainen & Valpola, 2017). In this paradigm, a ”teacher”
model provides more stable pseudo-labels to guide the training of a ”student” model. The teacher is
then updated via the Exponential Moving Average (EMA) of the student’s weights, which ensures a
stabilizing effect and prevents the model from collapsing into a state of high confidence in its own
errors. While these methods have proven effective for tasks like classification (Song & Wang, 2024),
their application to the fine-grained, pixel-level task of COD is non-trivial, given that Camouflage
objects often lack strong semantic or visual cues, making pseudo-label generation inherently less
reliable.

Our work, HGT-UCOD, builds upon this powerful Teacher-Student paradigm but introduces a cru-
cial innovation: a hint-guided teacher pre-adaptation stage. We distinguish our approach by first
enabling the teacher to learn robust object-centric priors from sparse yet reliable hints before it
guides the student. This core strategy, combined with a novel pseudo-labeling mechanism and a
dynamic architectural component designed for capturing camouflaged patterns, enables our method
to effectively tackle the unique challenges of UCOD.

3 METHOD

3.1 OVERVIEW

As illustrated in Fig.1 and inspired by UCOS-DA Zhang & Wu (2023) and UCOD-DPL Yan et al.
(2025), our method comprises three core components: a source model, a teacher model, and a
student model, which are trained through a two-stage process for unsupervised binary segmentation.
The first stage pre-adapts the teacher to learn discriminative features representations. To achieve this,
a Difference Perception Module adaptively selects target regions based on the prediction uncertainty
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Figure 1: The pipeline of our proposed HGT-UCOD framework. It consists of two core stages:
Pre-Adaption and Refinement. The bottom panel details the architecture of our custom Dynamic
Convolution Mixture (DCM) module.

of the source model, compelling the teacher model to capture distinct feature paradigms within these
areas and consequently produce divergent predictions from the source. In the second stage, the
source and teacher models are jointly utilized to generate high-quality pseudo-labels for supervising
the student model’s training. Both the teacher and student models are built upon an architecture
incorporating our novel Dynamic Convolution Mixture (DCM) module. This module is specifically
designed to tackle the core challenge of COD by synergizing local feature extraction with dynamic,
global context modeling. Its ability to generate content-adaptive kernels is vital for inferring the full
object shape from the sparse cues learned during pre-adaptation and for delivering highly refined
final predictions.

3.2 TEACHER MODEL PRE-ADAPTATION

Before the main training of the student model commences, a crucial preliminary step is the pre-
adaptation of the teacher model. The goal of this stage is not merely to replicate the source model,
but to cultivate a more specialized instructor whose capabilities are complementary to the pre-trained
source model. As illustrated in Fig.1, we employ a specialized training strategy that guides the
teacher model to learn to infer an object’s complete form from partial yet highly reliable information,
inspired by the idea in Chen et al. (2024).

Difference Perception and Hint Region Generation: We posit that regions with stable predic-
tions under the perturbations of strong data augmentation represent the most confident parts of the
object as identified by the source model, Mf . To locate these high-confidence areas, we first com-
pute the discrepancy between the foreground prediction probability map from the original image,
P orig
f = Mf (I), and the augmented image, P aug

f = Mf (Aug(I)), where Aug(·) is the augmen-
tation function. Specifically, this function is composed of a series of transformations, including
random rotation, horizontal flipping, Gaussian blur, color jittering, and random cropping. These
techniques are combined to create significant visual perturbations, ensuring that only the most struc-
turally stable and confident regions of the object yield consistent predictions. The difference map,
D, is calculated as:

D = Dist(P orig
f , P aug

f ), (1)

where Dist(·, ·) is a distance metric. Lower values in D correspond to higher confidence.
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To generate K spatially diverse hint points, we employ an iterative greedy selection strategy. First,
we select the point p1 with the global minimum value in the difference map D as our initial hint.
Then, for each subsequent point pi+1 (where i ranges from 1 to K − 1), we select the point with the
lowest D value from all candidate locations that lie outside an exclusion zone of radius r from all
previously selected points {p1, . . . , pi}. This sequential selection is governed by the equation:

pi+1 = argmin
p∈P, ∀j≤i, ∥p−pj∥2>r

D(p). (2)

Here, P represents the set of all pixel coordinates, and the condition ∥p − pj∥2 > r ensures that
the new point pi+1 is at least a distance r from every previously selected point pj . To maintain
consistency in our ablation studies on K, we fix r = 100. This iterative process guarantees that our
high-confidence cues are spatially distributed across the target.

Finally, centered on these K selected points, we generate K fixed-size patches. The union of these
patches forms the final binary Hint Mask Mhint. Applying this mask to the original image I yields
the ”adaptive hint image,” Ih:

Ih = I ⊙Mhint, (3)

where ⊙ denotes element-wise multiplication.

The core of this training process lies in its unique supervision mechanism: the teacher model Mt

receives the original image I as input, but its learning target is not a ground-truth label. Instead, it is
supervised by the source model Mf ’s prediction on the ”adaptive hint image” Ih, denoted as Psup =
Mf (Ih). This asymmetric training encourages a functional divergence: while Mf preserves its
global sensitivity to salient features, Mt is compelled to specialize in subtle, previously overlooked
discrepancies within the constrained yet informative hint regions.

3.3 STUDENT MODEL REFINEMENT

Once the teacher model has been pre-adapted to develop its specialized ability to infer the full extent
of camouflaged objects from partial cues, we proceed to the training phase of our final prediction
model: the student. The core challenge at this stage is how to intelligently fuse the global, general-
ized knowledge of the source model (Mf ) with the localized, specialized knowledge of the teacher
model (Mt) to provide high-quality supervision for the student model (Ms).

Inspired by recent works (Yan et al., 2025), we move beyond using a single model for guidance
and instead design a dynamic pseudo-label generation strategy. This strategy adaptively adjusts the
instructional weights of the source and teacher models based on both the training progress and
the inter-model consistency. The central idea is that in the early stages of training, the source
model’s generalized predictions are more reliable. However, as training progresses, the teacher
model—which continuously absorbs knowledge from the student via an EMA—becomes increas-
ingly expert and trustworthy.

Specifically, we dynamically compute a weight Wmix at each training step:

Wmix = (
t

T
+ ∥Pf , Pt∥)/2, (4)

where t, T denote the current and total number of epochs, Pf and Pt are the predictions from the
source and teacher models for the original image I .The term ∥...∥ calculated as the Mean Absolute
Error to quantify their overall inconsistency.

Next, we use it to blend the predictions from both models, generating a final soft pseudo-label Pgt:

Pgt = Wmix · Pt + (1−Wmix) · Pf . (5)

Consistency-Regularized Training: During training, the student model Ms receives a strongly
augmented image Ie = Aug(I) and is tasked with making its prediction Ps align with the dynamic
pseudo-label Pgt generated on the original, un-augmented image I . This consistency learning strat-
egy between strongly and weakly augmented views, inspired by similar methodologies (Lai et al.,
2024; He et al., 2023), compels the student model to learn robust features that are invariant to visual
perturbations. This significantly enhances its generalization ability and final performance. Con-
currently, the student’s weights are smoothly transferred to the teacher model via EMA, creating a
closed-loop system of continuous self-improvement.
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Methods CHAMELEON (87) CAMO-Test (250) COD10K-Test (2026) NC4K (4121)
Sm ↑ Fw

β ↑ Fm
β ↑ Eϕ ↑ M↓ Sm ↑ Fw

β ↑ Fm
β ↑ Eϕ ↑ M↓ Sm ↑ Fw

β ↑ Fm
β ↑ Eϕ ↑ M↓ Sm ↑ Fw

β ↑ Fm
β ↑ Eϕ ↑ M↓

Fully-supervised
SINet21(Fan et al., 2020a) .872 .806 .827 .946 .034 .751 .606 .675 .771 .100 .771 .551 .634 .806 .051 .808 .723 .769 .871 .058
UGTR21(Yang et al., 2021) .887 .794 .819 .940 .031 .784 .684 .735 .851 .086 .817 .666 .711 .890 .036 .839 .746 .787 .899 .052
ZoomNet22(Pang et al., 2022) .902 .845 .864 .958 .023 .820 .752 .794 .878 .066 .838 .729 .766 .888 .029 .853 .784 .818 .896 .043
HitNet23(Hu et al., 2023) .921 .897 .900 .972 .019 .849 .809 .831 .906 .055 .871 .806 .823 .935 .023 .875 .834 .853 .926 .037
FSPNet23(Huang et al., 2023) .908 .851 .867 .965 .023 .856 .799 .830 .899 .050 .851 .735 .769 .895 .026 .879 .816 .843 .915 .035
ZoomNeXt24(Pang et al., 2024) .924 .885 .896 .975 .018 .888 .859 .875 .945 .041 .898 .838 .857 .955 .017 .900 .865 .884 .949 .028
BiRefNet24(Zheng et al., 2024) .929 .911 .922 .968 .016 .904 .890 .904 .954 .030 .913 .874 .888 .960 .014 .914 .894 .909 .953 .023

Semi/Weakly-supervised
CRNet23(He et al., 2023) .818 .744 - .897 .046 .735 .641 - .815 .092 .733 .576 - .832 .049 .775 .688 - .855 .063
PCOD24(Chen et al., 2024) - - - - - .798 .727 - .872 .074 .784 .650 - .859 .042 .822 .748 - .889 .051
CamoTeacher24(Lai et al., 2024) .756 .617 .684 .813 .065 .701 .560 .742 .795 .112 .759 .594 .836 .854 .049 .791 .687 .842 .868 .068

Unsupervised
BigGW21(Voynov et al., 2021) .547 .244 .294 .527 .257 .565 .299 .349 .528 .282 .528 .185 .246 .497 .261 .608 .319 .391 .565 .246
TokenCut22(Wang et al., 2022) .654 .496 .536 .740 .132 .633 .498 .543 .706 .163 .658 .469 .502 .735 .103 .725 .615 .649 .802 .101
TokenCut22w/B.S.(Wang et al., 2022) .655 .351 .393 .582 .169 .639 .383 .434 .595 .195 .666 .334 .399 .609 .127 .735 .478 .547 .683 .133
SelfMask22(Shin et al., 2022) .617 .483 .536 .698 .176 .637 .431 .469 .679 .131 .716 .593 .634 .777 .114
SelfMask22w/U.B.(Shin et al., 2022) .629 .447 .491 .683 .169 .627 .495 .547 .708 .182 .645 .440 .478 .687 .125 .723 .601 .642 .784 .110
FOUND23(Siméoni et al., 2023) .684 .542 .590 .810 .095 .685 .584 .633 .782 .129 .670 .482 .520 .751 .085 .741 .637 .674 .824 .084
FOUND23 ∗ (Siméoni et al., 2023) .832 .761 .789 .915 .038 .780 .715 .751 .861 .086 .764 .638 .665 .843 .048 .812 .749 .779 .887 .055
UCOD-DA23(Zhang & Wu, 2023) .715 .591 .629 .802 .095 .701 .606 .646 .784 .127 .689 .513 .546 .740 .086 .755 .656 .689 .819 .085
UCOD-DPL25(Yan et al., 2025) .864 .825 .838 .931 .031 .793 .747 .779 .862 .077 .834 .763 .779 .916 .031 .850 .818 .835 .923 .043
EASE25(Du et al., 2025) .819 .741 - .899 .044 .749 .684 - .831 .098 .773 .656 - .866 .040 .800 .735 - .884 .056
Ours .869 .815 .843 .938 .033 .813 .761 .791 .877 .075 .839 .766 .785 .913 .034 .858 .827 .843 .929 .044

Table 1: Performance comparison of state-of-the-art models on CAMO, COD10K, and NC4K
datasets. The best results are highlighted in Bold, and the second-best are underlined. * indicates a
version reimplemented by us.

3.4 DYNAMIC CONVOLUTION MIXTURE

To effectively reason about the complete form of a camouflaged object from sparse ”hints”, a model
requires a powerful ability to perceive subtle, context-dependent patterns. Standard convolutions
with static kernels are ill-suited for this task. Therefore, we equip both our teacher and student mod-
els with a novel Dynamic Convolution Mixture (DCM) module, the architecture of which is detailed
in Fig.1. The core design philosophy of the DCM is to synergize the strength of traditional convolu-
tion in extracting local, static patterns with the capability of attention-like mechanisms in modeling
long-range, dynamic contextual dependencies. Its objective is to generate a feature representation
that adaptively adjusts to each specific input image, thereby providing robust support for the final,
fine-grained segmentation task.

Dynamic Kernel Generation: The generation of dynamic convolutional kernels is pivotal for the
module to achieve content awareness. This process is designed to dynamically convolutional kernels
for each spatial location in the image based on the global information of the input features.

Initially, the input feature map F is passed through a lightweight 1 × 1 convolutional layer and
pooling layer. Its output is subsequently split into two parallel feature branches, yielding feature
maps Fl and Fs.

Then, We compute the affinity between Fq and Fk via Matrix Multiply. The core objective of
this operation is to aggregate global context and generate a dynamic feature Fv . Unlike a simple
attention map, Fv encodes parameters for constructing convolutional kernels, enabling subsequent
convolutions to move beyond static weights and adapt effectively to image content. The above
content can be expressed as:

{
Fl = ϕl(F ), Fs = ϕs(F )

Fk = Fl

⊗
Fs

, (6)

where ϕ denotes a convolutional layer and
⊗

represents matrix multiplication.

Multi-scale Dynamic Convolution Application: To generate multi-scale convolutional kernels, the
context tensor Fk is first passed through a projection layer ϕproj . The resulting output is then split
into three independent sets of parameters to form three distinct kernels: Ks, Km, and Kl. This
approach facilitates multi-scale feature extraction within a single module. By deriving three distinct
kernel sets from the same context-aware feature, the model learns to apply its dynamic context across
different scales with high parameter efficiency. This process can be formally expressed as:

Ks,Km,Kl = Split(ϕproj(Fk)). (7)

6
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Images GT Ours UCOS-DA FOUND TokenCut Spectral SelfMask BigGW

Figure 2: Visual example comparison: Comparison of our method with some of the previous state-
of-the-art methods. Our method significantly outperforms other methods in capturing the contour
details of camouflaged objects, and does not suffer from the fragmentation prediction seen in other
methods.

The dynamic convolution operation with a kernel Ka applied to the feature map F at spatial location
(i, j) and output channel c can be expressed as:

(F ∗Ka)(i, j, c) =
∑
u

∑
v

∑
d

Ka(u, v, d, c)F (i+ u, j + v, d), (8)

where the summations are over the spatial support of the kernel and the input channels d. Here,
Ka(u, v, d, c) denotes the dynamically generated kernel weight.

The three dynamically generated kernels {Ks,Km,Kl} are applied in parallel, yielding three feature
maps that are concatenated along the channel dimension and fused by a standard convolution layer
to produce the final mask:

M(i, j) = Conv
([
(F ∗Ks)(i, j, :), (F ∗Km)(i, j, :), (F ∗Kl)(i, j, :)

])
. (9)

3.5 LOSS FUNCTION

Our optimization strategy is systematically organized into two distinct training stages, each employ-
ing a tailored loss function. Initially, in the Teacher Pre-adaptation stage, the objective is to cultivate
a specialized teacher model. This is achieved by using a Binary Cross-Entropy (BCE) loss:

Ladapt = LBCE(Pt, Psup), (10)

where the teacher’s prediction (Pt) is supervised by the prediction of the frozen source model on a
”hint image” (Pf ).

Subsequently, in the main Student Model Refinement stage, the student model is optimized using a
composite objective:

Ltotal = LBCE(Ps, Pgt) + LL1(Ps, Pt), (11)

This loss function jointly performs two tasks: the BCE term aligns the student’s output (Ps) with
a dynamically fused pseudo-groundtruth (Pgt), while the L1 term enforces structural consistency
by directly distilling knowledge from the refined teacher’s prediction (Pt) to the student. This two-
phase approach first creates an expert teacher and then leverages it to guide the student with both
probabilistic and structural constraints.

7
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4 EXPERIMENTS

4.1 EXPERIMENTS SETTINGS

Datasets: We utilize the identical test dataset employed in prior works (Yin et al., 2024; Fan et al.,
2021; Shou et al., 2025), employing a composite training dataset comprising 1,000 images from
the CAMO-Training (Le et al., 2019) subset and 3,040 images from the COD10K-Training (Fan
et al., 2020a) subset. Following standard unsupervised learning protocols, no ground-truth labels
were utilized during training. For comprehensive evaluation, we test our model on three established
benchmark datasets: CAMO-Test, COD10K-Test, and NC4K (Lv et al., 2021), collectively repre-
senting diverse challenging scenarios in camouflaged object segmentation.

Evaluation Metrics: Consistent with established practices in the field, our evaluation employs five
principal metrics: the Structure measure (Sm) (Fan et al., 2017), the weighted F-measure (Fw

β )
(Margolin et al., 2014),the mean F-measure(Fm

β ), the mean E-measure (Eϕ) (Fan et al., 2018), and
the mean absolute error (M ) (Perazzi et al., 2012). These metrics are universally adopted in COD
literature, enabling fair benchmarking across the CAMO, COD10K, and NC4K test sets.

Implementation Details: Our framework is implemented using PyTorch, with training and infer-
ence tasks distributed across four NVIDIA A800 GPUs. We adopt DINOv2 as the backbone encoder,
leveraging its powerful unsupervised visual representation capabilities to ensure rich spatial feature
extraction. Additionally, we employ FOUND (Siméoni et al., 2023) as our source model. All input
images are resized to 518×518. Optimization uses the AdamW algorithm with a learning rate of
3e-4, weight decay of 2e-3, and a batch size of 32 per GPU. The model is trained for 30 epochs.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Quantitative Evaluation:In Tab.1, we compared our proposed method’s performance with com-
peting USOD and UCOD models on three COD test datasets. The results show that our model
outperformed all existing USOD and UCOD methods across all metrics and datasets, thus achieving
State-Of-The-Art performance. Additionally, our model has surpassed several semi-supervised and
fully-supervised methods across all datasets, demonstrating its superior performance, effectiveness,
and robustness.

Figure 3: Visualization of the progressive predic-
tion refinement.

Visual Comparison: We present a visual com-
parison with several SOTA approaches in Fig.2.
As illustrated, our model consistently generates
more coherent and complete masks, exhibiting
a significant advantage in capturing the intri-
cate contour details of camouflaged objects that
are often missed or fragmented by competing
methods. These results compellingly substan-
tiate the robustness and precision of our final
predictions. Furthermore, Fig.3 illustrates the
internal refinement process via heatmaps. This
visualization reveals that while the baseline
source model’s predictions are noisy, our hint-
guided pre-adaptation produces a much cleaner
and more focused Teacher. The final Student refines these robust cues to recover fine-grained details,
clearly demonstrating the effectiveness of our progressive adaptation strategy.

4.3 ABLATION STUDY

Effectiveness of Overall Module: To validate each key component, we conducted a comprehensive
ablation study, with the results summarized in Tab.2. Our analysis follows a progressive integration,
starting from a baseline model and systematically adding each proposed module. The results demon-
strate a clear synergistic effect: the Teacher-Student (Tea-Stu) paradigm first establishes a robust
foundation, which is then significantly amplified by our core contribution, the hint-guided Teacher
Pre-adaptation stage. Subsequently, the Dynamic Convolution Mixture (DCM) module further en-
hances the model’s adaptive capacity, while Consistency-Regularized Training (CRT) stabilizes the
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Settings CAMO-Test (250) COD10K-Test (2026) NC4K (4121)
Tea-Stu Pre-adaption DCM CRT Sm ↑ Fw

β ↑ Fm
β ↑ Eϕ ↑ M↓ Sm ↑ Fw

β ↑ Fm
β ↑ Eϕ ↑ M↓ Sm ↑ Fw

β ↑ Fm
β ↑ Eϕ ↑ M↓

Baseline .703 .635 .671 .781 .101 .684 .584 .611 .753 .088 .722 .613 .645 .775 .084
✓ .753 .684 .721 .807 .094 .749 .676 .685 .813 .074 .788 .717 .743 .829 .062
✓ ✓ .773 .714 .740 .821 .090 .771 .695 .728 .853 .049 .801 .743 .774 .849 .044
✓ ✓ .800 .747 .766 .854 .086 .815 .721 .752 .873 .042 .832 .761 .797 .901 .053
✓ ✓ ✓ .807 .754 .772 .862 .082 .821 .735 .763 .891 .039 .841 .787 .813 .910 .048
✓ ✓ ✓ .793 .731 .752 .851 .090 .802 .721 .751 .889 .045 .831 .793 .810 .904 .056
✓ ✓ ✓ .804 .749 .774 .867 .083 .818 .749 .763 .897 .040 .843 .805 .825 .918 .050
✓ ✓ ✓ ✓ .813 .761 .791 .877 .075 .839 .766 .785 .913 .034 .858 .827 .843 .929 .044

Table 2: Ablation study on the components of our framework. We retrained our model with different
settings on the same learning rate and epochs.

process and boosts generalization. The consistent performance gain at each step validates that every
component plays an indispensable role in achieving our final state-of-the-art results.

k
CAMO-Test (250) COD10K-Test (2026)

w
CAMO-Test (250) COD10K-Test (2026)

Sm ↑ Fm
β ↑ Eϕ ↑ M↓ Sm ↑ Fm

β ↑ Eϕ ↑ M↓ Sm ↑ Fm
β ↑ Eϕ ↑ M↓ Sm ↑ Fm

β ↑ Eϕ ↑ M↓
1 .804 .777 .862 .079 .814 .778 .904 .038 5 .808 .781 .865 .080 .831 .765 .901 .037
2 .809 .789 .871 .078 .821 .781 .908 .036 10 .813 .791 .877 .075 .839 .785 .913 .034
3 .813 .791 .877 .075 .839 .785 .913 .034 15 .804 .774 .873 .081 .834 .768 .908 .038
4 .810 .784 .880 .077 .834 .787 .911 .036 20 .793 .763 .865 .085 .819 .758 .885 .042

Table 3: Ablation studies on the number of selected hint points (k, left) and the number of Pre-
adaptation epochs (w, right). We highlight the best-performing values.

Hyperparameters of Difference Perception and Hint Region Generation: In our confidence-
guided point selection strategy, the number of hint points, k, and the number of pre-adaptation
epochs, w, are two critical hyperparameters. To determine their optimal values, we conducted a
detailed ablation study. As shown in Tab.3, we evaluated the model’s performance on the CAMO and
COD10K datasets while varying both k and w. The results for w indicate that model performance
reached its zenith at w = 10. A shorter duration appears insufficient for the teacher model to fully
adapt to the target domain, whereas a longer duration leads to a significant performance degradation.
This decline is attributed to the model overfitting to the sparse hint regions.

Methods CAMO-Test (250) COD10K-Test (2026)
Sm ↑ Fw

β ↑ Eϕ ↑ Sm ↑ Fw
β ↑ Eϕ ↑

high-confidence .813 .761 .877 .839 .766 .913
random .801 .745 .852 .814 .732 .883

low-confidence .807 .751 .858 .823 .748 .891

Table 4: Ablation study on different hint genera-
tion strategies.

Ablation Study on Hint Region Generation
Strategy: To validate the principle of our
”hint-guided” approach, we conducted an ab-
lation study on the hint generation strategy,
comparing our high-confidence guided method
with fully random masking and low-confidence
guided masking. As shown in Tab.4, the ran-
dom strategy performed worst, indicating that
unguided masking leads to spurious learning.
The low-confidence strategy was also suboptimal, as focusing on ambiguous regions without re-
liable anchors hindered coherent object representation. In contrast, our method, leveraging stable
high-confidence regions, provided a robust foundation, highlighting that hint reliability is the key
factor for effective adaptation.

5 CONCLUSION

In this work, we addressed the critical challenge of source data inaccessibility in Unsupervised
COD by proposing HGT-UCOD, a novel teacher framework centered on a ”hint-guided” learning
philosophy. The cornerstone of our approach is a unique teacher pre-adaptation stage, where a
confidence-guided strategy compels the teacher to infer complete objects from sparse yet highly
reliable hints, effectively creating an expert guide. During student refinement, this expert knowledge
is synergized with the source model to generate high-quality pseudo-labels, a process enhanced by
our Dynamic Convolution Mixture module for adaptively capturing complex structures. The entire
framework is further stabilized by a consistency learning scheme, which significantly boosts model
generalization and robustness. Extensive experiments on multiple benchmark datasets demonstrate
that HGT-UCOD sets a new SOTA, proving that by first teaching a model to master what it reliably
knows, we can effectively guide it to perceive the unknown.
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6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal exper-
imentation was involved. All datasets were sourced in compliance with relevant usage guidelines,
ensuring no violation of privacy. We have taken care to avoid any biases or discriminatory out-
comes in our research process. No personally identifiable information was used, and no experiments
were conducted that could raise privacy or security concerns. We are committed to maintaining
transparency and integrity throughout the research process.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
codes are available at https://anonymous.4open.science/r/HGT-UCOD anonymous/README.md
to facilitate replication and verification. The experimental setup, including training steps, model
configurations, and hardware details, is described in detail in the paper. Additionally, the datasets
mentioned in this paper are publicly available, ensuring consistent and reproducible evaluation re-
sults.We believe these measures will enable other researchers to reproduce our work and further
advance the field.

REFERENCES

Huafeng Chen, Dian Shao, Guangqian Guo, and Shan Gao. Just a hint: Point-supervised camou-
flaged object detection. In European Conference on Computer Vision, pp. 332–348. Springer,
2024.

Shivang Chopra, Suraj Kothawade, Houda Aynaou, and Aman Chadha. Source-free domain adapta-
tion with diffusion-guided source data generation. arXiv preprint arXiv:2402.04929, 2024.

Yifei Ding, Minping Jia, Jichao Zhuang, Yudong Cao, Xiaoli Zhao, and Chi-Guhn Lee. Deep
imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple
working conditions. Reliability Engineering & System Safety, 230:108890, 2023.

Ji Du, Fangwei Hao, Mingyang Yu, Desheng Kong, Jiesheng Wu, Bin Wang, Jing Xu, and Ping Li.
Shift the lens: Environment-aware unsupervised camouflaged object detection. In Proceedings of
the Computer Vision and Pattern Recognition Conference, pp. 19271–19282, 2025.

Deng-Ping Fan, Ming-Ming Cheng, Yun Liu, Tao Li, and Ali Borji. Structure-measure: A new way
to evaluate foreground maps. In Proceedings of the IEEE international conference on computer
vision, pp. 4548–4557, 2017.

Deng-Ping Fan, Cheng Gong, Yang Cao, Bo Ren, Ming-Ming Cheng, and Ali Borji. Enhanced-
alignment measure for binary foreground map evaluation. arXiv preprint arXiv:1805.10421,
2018.

Deng-Ping Fan, Ge-Peng Ji, Guolei Sun, Ming-Ming Cheng, Jianbing Shen, and Ling Shao. Cam-
ouflaged object detection. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 2777–2787, 2020a.

Deng-Ping Fan, Ge-Peng Ji, Tao Zhou, Geng Chen, Huazhu Fu, Jianbing Shen, and Ling Shao.
Pranet: Parallel reverse attention network for polyp segmentation. In International conference on
medical image computing and computer-assisted intervention, pp. 263–273. Springer, 2020b.

Deng-Ping Fan, Ge-Peng Ji, Ming-Ming Cheng, and Ling Shao. Concealed object detection. IEEE
transactions on pattern analysis and machine intelligence, 44(10):6024–6042, 2021.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International conference on machine learning, pp. 1180–1189. PMLR, 2015.

Ruozhen He, Qihua Dong, Jiaying Lin, and Rynson WH Lau. Weakly-supervised camouflaged
object detection with scribble annotations. In Proceedings of the AAAI conference on artificial
intelligence, volume 37, pp. 781–789, 2023.

10

https://anonymous.4open.science/r/HGT-UCOD_anonymous/README.md


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xiaobin Hu, Shuo Wang, Xuebin Qin, Hang Dai, Wenqi Ren, Donghao Luo, Ying Tai, and Ling
Shao. High-resolution iterative feedback network for camouflaged object detection. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 881–889, 2023.

Zhou Huang, Hang Dai, Tian-Zhu Xiang, Shuo Wang, Huai-Xin Chen, Jie Qin, and Huan Xiong.
Feature shrinkage pyramid for camouflaged object detection with transformers. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 5557–5566, 2023.

Prakhar Kaushik, Aayush Mishra, Adam Kortylewski, and Alan Yuille. Source-free and image-
only unsupervised domain adaptation for category level object pose estimation. arXiv preprint
arXiv:2401.10848, 2024.

Xunfa Lai, Zhiyu Yang, Jie Hu, Shengchuan Zhang, Liujuan Cao, Guannan Jiang, Zhiyu Wang,
Songan Zhang, and Rongrong Ji. Camoteacher: Dual-rotation consistency learning for semi-
supervised camouflaged object detection. In European Conference on Computer Vision, pp. 438–
455. Springer, 2024.

Trung-Nghia Le, Tam V Nguyen, Zhongliang Nie, Minh-Triet Tran, and Akihiro Sugimoto.
Anabranch network for camouflaged object segmentation. Computer vision and image under-
standing, 184:45–56, 2019.

Jingjing Li, Zhiqi Yu, Zhekai Du, Lei Zhu, and Heng Tao Shen. A comprehensive survey on source-
free domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(8):
5743–5762, 2024.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In International conference on machine
learning, pp. 6028–6039. PMLR, 2020.

Xiaofeng Liu, Chaehwa Yoo, Fangxu Xing, Hyejin Oh, Georges El Fakhri, Je-Won Kang, Jonghye
Woo, et al. Deep unsupervised domain adaptation: A review of recent advances and perspectives.
APSIPA Transactions on Signal and Information Processing, 11(1), 2022.

Zelin Lu, Xing Zhao, Liang Xie, Haoran Liang, and Ronghua Liang. Semantic-aware represen-
tations for unsupervised camouflaged object detection. Journal of Visual Communication and
Image Representation, 107:104366, 2025.

Yunqiu Lv, Jing Zhang, Yuchao Dai, Aixuan Li, Bowen Liu, Nick Barnes, and Deng-Ping Fan.
Simultaneously localize, segment and rank the camouflaged objects. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 11591–11601, 2021.

Ran Margolin, Lihi Zelnik-Manor, and Ayellet Tal. How to evaluate foreground maps? In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp. 248–255, 2014.

Youwei Pang, Xiaoqi Zhao, Tian-Zhu Xiang, Lihe Zhang, and Huchuan Lu. Zoom in and out: A
mixed-scale triplet network for camouflaged object detection. In Proceedings of the IEEE/CVF
Conference on computer vision and pattern recognition, pp. 2160–2170, 2022.

Youwei Pang, Xiaoqi Zhao, Tian-Zhu Xiang, Lihe Zhang, and Huchuan Lu. Zoomnext: A unified
collaborative pyramid network for camouflaged object detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2024. doi: 10.1109/TPAMI.2024.3417329.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.
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Table 5: Quantitative analysis of pseudo-label quality and model evolution on the COD10K dataset.
Model Variant Sm ↑ Fw

β ↑ Fm
β ↑ Eϕ ↑ M ↓

Source .764 .638 .665 .843 .048
Teacher (warmup) .733 .613 .702 .773 .051
Student (Ours) .839 .766 .785 .913 .034
Teacher (final) .812 .758 .769 .900 .037

B ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

B.1 QUALITY ANALYSIS OF PSEUDO-LABELS

To quantitatively validate the effectiveness of our ”Hint-Guided” paradigm, we evaluated the quality
of the pseudo-labels generated at different stages of our framework. Table 5 presents the perfor-
mance metrics on the COD10K dataset for the Source model, the Pre-adapted Teacher (after Stage
1), the Final Student, and the Final Teacher (after Stage 2).

B.2 COMPUTATIONAL COMPLEXITY AND EFFICIENCY

Table 6: Comparison of model configurations and complexity.

Method Input Size Backbone Parameters (M)
Fixed (Backbone) Learnable

TokenCut 480× 480 DINOv1-S ≈ 21 -
SelfMask 224× 224 DINOv1-S ≈ 21 -
FOUND 224× 224 DINOv1-S ≈ 21 -
UCOD-DA 512× 512 DINOv1-B ≈ 85 -

FOUND* 518× 518 DINOv2-L ≈ 300 -
UCOD-DPL 518× 518 DINOv2-L ≈ 300 -
EASE 476× 476 DINOv2-L ≈ 300 -

Ours 518× 518 DINOv2-L ≈ 300 16

To assess the practical efficiency of HGT-UCOD, we summarize the architectural configurations and
computational costs in Table 6. Backbone and Model Size. Following the trend of recent state-of-
the-art methods, our framework adopts the powerful DINOv2-L as the backbone to ensure robust
feature extraction. While the backbone introduces a substantial parameter count (≈300M), it is
important to note that these parameters are pre-trained and largely shared. The specific learnable
parameters introduced by our method amount to only 16M. Notably, our method achieves efficient
training completion within merely 1 hour while maintaining a real-time inference speed of 9.8 FPS.
This indicates that our architectural innovations yield significant performance gains with minimal
additional parameter overhead.

B.3 SIZE-AWARE PERFORMANCE ANALYSIS

Table 7: Performance Across Different Sizes
COD10K(2026) SMALL(1379) MEDIUM(609) LARGE(38)

Sm 839 .828 .863 .829
Fw
β 766 .728 .843 .889

Fm
β 785 .734 .891 .929

Eϕ 913 .902 .936 .895
M 034 .030 .042 .065
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To investigate the robustness of our model across different object scales, we partitioned the COD10K
test set into three groups based on the object area ratio: Small (< 10%), Medium (10%− 40%), and
Large (> 40%).

As shown in Tab. 7, our method performs robustly across objects of different scales. In particular,
it achieves outstanding results on large camouflaged objects, which often exhibit internal texture in-
consistency and ambiguous boundaries that challenge conventional segmentation approaches. The
proposed DCM module, especially its large-kernel branch, effectively models long-range contex-
tual dependencies, thereby preserving structural coherence and improving segmentation quality for
large-scale targets.

B.4 VISUALIZATION AND INTERPRETABILITY

We provide additional qualitative results to intuitively explain the working mechanism of HGT-
UCOD.

Dynamic Perception of DCM.

Image 3*3 kernel 5*5 kernel 7*7 kernel Output

Figure 4: Visualization of DCM modules with different kernel sizes

To understand how the DCM module handles complex camouflage, we visualize the attention
weights and output features of its three internal branches in Fig.4 .

• The Small Kernel branch (3×3) focuses on high-frequency details, effectively capturing
object boundaries and intricate textures.

• The Large Kernel branch (7×7) exhibits a smoother attention distribution, capturing long-
range context and the semantic body of the camouflaged object.

• The Medium Kernel branch (5*5)acts as a bridge, capturing local object parts.

The complementary nature of these branches allows the model to dynamically perceive both fine-
grained details and global shapes.

Evolution from Hints to Whole. Fig.5 provides a visual explanation of why our ”Hint-Guided”

GT Source Teacher StudentMasked input

Figure 5: Visualization of the Hint-Guided Pre-adaptation mechanism under occlusion.

strategy works. During the pre-adaptation stage, we intentionally corrupt the input image with
random masking and noise (shown as ”Masked input”), simulating a scenario where key visual
cues are missing or abnormal. Crucially, the Source Model’s prediction on this input is highly
fragmented and noisy. However, the Teacher Model, having been forced to infer the whole from the
parts, successfully reconstructs the complete shape of the leaf-tailed gecko despite the occlusion.
This ”reconstruction-from-hints” capability is then distilled into the final Student Model, resulting
in detection as shown in the last column.
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Multi-object Hint Distribution.

GT Source Teacher Student

Figure 6: Qualitative evaluation in a complex multi-object scenario.

To address concerns regarding the model’s ability to handle scenes with multiple camouflaged in-
stances, we present a visual example in Fig.6. The Source Model fails to separate the targets from
the background, generating excessive noise. In contrast, our Student Model, guided by the spatially
distributed hints, successfully suppresses the background distractors and segments the individual
object. This demonstrates that our hint generation strategy effectively prevents the model from col-
lapsing onto a single salient point.
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