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Abstract

Adversarial perturbations aim to deceive neural networks into predicting inaccu-
rate results. For visual object trackers, adversarial attacks have been developed to
generate perturbations by manipulating the outputs. However, transformer track-
ers predict a specific bounding box instead of an object candidate list, which lim-
its the applicability of many existing attack scenarios. To address this issue, we
present a novel white-box approach to attack visual object trackers with trans-
former backbones using only one bounding box. From the tracker predicted
bounding box, we generate a list of adversarial bounding boxes and compute the
adversarial loss for those bounding boxes. Experimental results demonstrate that
our simple yet effective attack outperforms existing attacks against several robust
transformer trackers, including TransT-M, ROMTrack, and MixFormer, on popu-
lar benchmark tracking datasets such as GOT-10k, UAV123, and VOT2022STS.

1 Introduction

Visual object trackers with transformer backbones have consistently ranked among the most robust
models in tracking benchmarks (Kristan et al., 2023). By utilizing cross-attention and self-attention
layers, transformer trackers (Cui et al., 2022; Chen et al., 2023; Cai et al., 2023) infer a single bound-
ing box per frame by jointly extracting features from both the search and template regions. However,
the adversarial robustness of transformer trackers has yet to be thoroughly studied (Nokabadi et al.,
2024). White-box attacks (Guo et al., 2020; Jia et al., 2020) against object trackers focus on ma-
nipulating the trackers output in a way that the adversarial loss generates perturbed frame patches
by backpropagating through the network. The applicability of such attacks depends on the attack
proxy, i.e., the element being perturbed by the attack mechanism, within the white-box setting. For
example, RTAA (Jia et al., 2020) generates perturbed search regions using the classification and
regression labels inferred by the object trackers. It is therefore not applicable on trackers which do
not rely on such classification and regression labels.The efficiency of white-box attacks is generally
greater than that of black-box attacks (Nokabadi et al., 2024), as white-box methods leverage the
trackers gradients to generate perturbations. However, there is currently no white-box attack ap-
plicable to a wide range of new transformer trackers that allows for a comprehensive comparison
of their adversarial robustness. Some attacks rely on classification and regression labels (such as
SPARK (Guo et al., 2020) and RTAA (Jia et al., 2020)), while others require heatmaps, CSA (Yan
et al., 2020), to be effective as white-box attacks. These attack proxies are available in some track-
ing frameworks, such as TransT (Chen et al., 2021), but are not available in other tracking pipelines,
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Figure 1: The adversarial robustness of transformer-based trackers, including ROMTrack (Cai
et al., 2023), MixFormer (Cui et al., 2022), and TransT-M (Chen et al., 2023), is evaluated against
white-box attacks, such as SPARK (Guo et al., 2020) (blue), RTAA (Jia et al., 2020) (black),
TrackPGD (Nokabadi et al., 2024) (white), and our proposed ABBG attack (red). Our proposed
ABBG method generates adversarial perturbations by manipulating only the target prediction of the
bounding box. The ABBG attack is applicable as a white-box attack to a wide range of transformer-
based trackers, including MixFormer and ROMTrack, while other white-box attacks, such as RTAA,
SPARK, and TrackPGD, are not applicable due to the unavailability of an attack proxy.

such as ROMTrack (Cai et al., 2023). To address this gap, we propose the Adversarial Bounding
Box Generation (ABBG) attack, which uses only a single bounding box to challenge the object
trackers robustness against adversarial perturbations in a white-box setting. Our method is simple
yet efficient and is applicable to a wide range of transformer trackers.

Figure 1 demonstrates the performance of ABBG in misleading transformer trackers, e.g. ROM-
Track (Cai et al., 2023), MixFormer (Cui et al., 2022) and TransT-M (Chen et al., 2023) in predict-
ing target bounding boxes after applying white-box attacks including SPARK (Guo et al., 2020),
RTAA (Jia et al., 2020), TrackPGD (Nokabadi et al., 2024), and ABBG (our method). Our method
uses the single predicted bounding box of the trackers as the attack proxy. Because of this, it is the
first white-box attack that is applicable to a wide range of trackers with transformer backbones. In
summary, the contributions of our work are:

• We propose a white-box attack, applicable on a wide range of transformer trackers, which
manipulates a single bounding box predicted by the tracker.

• In affecting transformer trackers, ABBG attack is ranked first in several tracking datasets
per at least one evaluation metric, while in terms of sparsity and imperceptibility of gener-
ated perturbations, our method is ranked second in comparison to other competitive white-
box attacks.

2 Related works

The visual object tracking (VOT) task has been studied extensively in the computer vision commu-
nity, for instance in real-time scenarios, data-driven models, online/offline tracking, etc. The use of
vision transformers in the backbone of tackers let to a brand new category of object trackers which
are listed as the most robust trackers in many tracking assessments and datasets (Huang et al., 2019;
Kristan et al., 2023). In transformer trackers (Cui et al., 2022; Chen et al., 2023, 2021; Cai et al.,
2023), the main difference concerns how cross-attention and self-attention layers are defined and
developed. In TransT (Chen et al., 2021), a multi-head pipeline similar to traditional Siamese-based
trackers is adopted while two modules of self-attention and cross attention named Ego-Context Aug-
ment (ECA) and Cross-Feature Augment (CFA), respectively, are proposed to process search and
template regions. Built upon TransT (Chen et al., 2021), the TransT-SEG and TransT-M (Chen
et al., 2023) are introduced with segmentation ability. The OSTrack (Ye et al., 2022) proposed a
one-stream joint feature extraction and relation modeling for template and search regions. The in-
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Figure 2: The overview of the ABBG attack approach. The random sets of scale S ,’x-axis’ transla-
tion Tx and ’y-axis’ translation Ty are sampled from uniform distributions to apply on the predicted
bounding boxes using Equation 1. The adaptive threshold ζ is computed based on the set of obtained
IoUs per each iteration step of the attack.

network early candidate elimination module of OSTrack improves the tracking performance by grad-
ually identifying and discarding the background regions. The MixFormer tracker (Cui et al., 2022)
introduces the Mixed Attention Module (MAM) to deeply integrate the self- and cross-attention lay-
ers. A score prediction module is also proposed to fuse the object candidate scores and infer the
target score. In the Robust Object Modeling Tracker (ROMTrack) (Cai et al., 2023) inherent and
hybrid template modeling is suggested in one-stream robust modeling. Using variation tokens, the
appearance changes of the target is depicted in the tracking process.

Adversarial robustness in object trackers has been explored through the development of black-box
attacks, such as the IoU method (Jia et al., 2021), and white-box attacks, such as RTAA (Jia et al.,
2020), SPARK (Guo et al., 2020), and TrackPGD (Nokabadi et al., 2024). Unlike black-box meth-
ods, white-box attacks generate adversarial perturbations by directly manipulating tracker outputs.
However, due to changes in the backbone architecture of transformer trackers, several previous
white-box methods, including SPARK, RTAA, TrackPGD, and CSA (Yan et al., 2020), are no longer
applicable to these newer models in a white-box setting. The primary objective of our research is to
evaluate the effectiveness of white-box attacks on transformer trackers, utilizing transformer gradi-
ents to deceive the object trackers.

3 Proposed Method

Our goal is to mislead transformer trackers into predicting inaccurate bounding boxes across video
frames. The Adversarial Bounding Boxes Generation (ABBG) attack manipulates the tracker’s pre-
dicted bounding box to create adversarial search regions. Figure 2 provides an overview of the
ABBG attack in computing the adversarial loss, which is then backpropagated through the network
to generate the adversarial search regions for transformer trackers.

Given the predicted object bounding box [x, y, w, h], our attack method generates k adversarial
bounding boxes using random parameters as follows:

x′
i = x+ Txi

, y′i = y + Tyi

w′
i = wsi , h

′
i = hsi , (1)

where i ∈ {1, 2, ..., k} corresponds to each adversarial bounding box. The offset T and scale s
parameters are selected randomly from uniform distributions in each attack step. From these pa-
rameters, the k number of bounding boxes are generated around the predicted bounding box, see
Figure 2. The bounding boxes which are closest to the the predicted bounding box are chosen as
positive samples. The selection process is based on an adaptive threshold that only retains bounding
boxes with an Intersection over Union (IoU) greater than a fixed threshold, specifically 80% of all
adversarial bounding boxes. Adaptive thresholding is crucial because it ensures that some bound-
ing boxes are always selected to compute the adversarial loss. The adversarial loss of the ABBG
attack is is a regression loss computed between adversarial bounding boxes b∗i and the true predicted
bounding box bpred:

ℓABBG = Σiℓr(bpred, b
∗
i ) , (2)

where ℓr the smoothed L1 norm. In our method, we fixed the number of iterations to 10, similar to
other white-box attacks, RTAA (Jia et al., 2020) and SPARK (Guo et al., 2020). Also, we clip the
generated perturbation in the ϵ-ball where ϵ = 10, as in SPARK and RTAA.
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4 Experimental results

Object trackers. We assessed our proposed attack method against three transformer trackers:
TransT-M (Chen et al., 2021), MixFormer (Cui et al., 2022), and ROMTrack (Cai et al., 2023).

Datasets & metrics. We measured the performance of attacks on three tracking benchmarks: GOT-
10k (Huang et al., 2019), UAV123 (Mueller et al., 2016), and VOT2022-ST (Kristan et al., 2023).
The evaluated metrics include (Expected) Average Overlap (EAO or AO), success rates at the 0.5
and 0.75 overlap thresholds, denoted as SR0.5 and SR0.75, respectively, along with accuracy and
robustness under the anchor-based short-term tracking protocol (Kristan et al., 2023), L1-norm, and
structural similarity index (SSIM) (Wang et al., 2004). The term "drop %" refers to the percentage
reduction observed in each metric.

Adversarial attacks. Three white-box attacks including SPARK (Guo et al., 2020), RTAA (Jia
et al., 2020), TrackPGD (Nokabadi et al., 2024) and two black-box attacks containing IoU (Jia et al.,
2021) and CSA (Yan et al., 2020) are compared to our proposed attack results. Note that CSA (Yan
et al., 2020) is used as a transferred attack using the SiamRPN++ tracker (Li et al., 2019).

Attack setup. In our experiments, the translation parameters (T xi, T yi) were sampled from uni-
form distributions between 0.1 and 0.4, with k = 1024. The scale parameters (S) were sampled
from a uniform distribution between 0.7 and 0.9, also with k = 1024. Following the approach of
SPARK (Guo et al., 2020) and RTAA (Jia et al., 2020), we set the attack’s training period to 10 steps.

4.1 Quantitative results

Table 1 shows the performance of object trackers when attacked by different methods compared
to our proposed ABBG attack on the GOT10k dataset (Huang et al., 2019). Among white-box at-
tacks, including RTAA, SPARK, TrackPGD, and ABBG (ours), our method is applicable to all three
trackers- TransT-M, ROMTrack, and MixFormer. Beyond this versatility, the ABBG attack causes
significant drops in all three measured scores, including average overlap and success rates at the 0.5
and 0.75 thresholds on the GOT10k dataset. For MixFormer (Cui et al., 2022) and ROMTrack (Cai
et al., 2023), our ABBG attack is the first white-box attack to seriously challenge these transformer
trackers by reducing their scores to nearly zero.

We also evaluate transformer tracker performance against adversarial attacks on the VOT2022-ST
dataset and protocol (Kristan et al., 2023). Table 2 presents the results of attacks using three met-
rics: EAO, accuracy, and robustness, based on the baseline experiment of the VOT short-term sub-
challenge. The anchor-based short-term tracking protocol of the VOT2022-ST evaluation (Kristan
et al., 2023) requires trackers to reinitialize whenever the target is lost for a significant number of
time steps. Under this protocol, our attack performs well compared to other white-box attacks-
RTAA (Jia et al., 2020), SPARK (Guo et al., 2020), and TrackPGD (Nokabadi et al., 2024)- on
the TransT-M tracker (Chen et al., 2023), except in the accuracy metric, where we ranked second,
following the SPARK method. Additionally, we assessed the white-box attacks on TransT-M us-
ing another dataset for further investigation. We selected TransT-M because it is the only tracker
among our set where all four white-box attacks can be applied. On the UAV123 dataset (Mueller
et al., 2016), the measured metrics, shown in Table 3, indicate the superiority of the ABBG attack in
success rate, while SPARK caused slightly more damagearound 1.23%in the precision metric.

4.2 Qualitative results

In Figure 3 we compared the effectiveness of white-box attacks in degrading object bounding box in
the TransT-M (Chen et al., 2023) tracker on several video sequences starting from the second frame.
More examples are provided in the Supplementary materials.

4.3 Sparsity and imperceptibility

We assess sparsity by calculating the L1 norm between the perturbed and clean search regions,
while imperceptibility is evaluated using the Structural Similarity (SSIM) index (Wang et al., 2004)
between these regions. Our experiment involves four attack methods -SPARK (Guo et al., 2020),
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Table 1: The performance of object trackers (Chen et al., 2023; Cui et al., 2022; Cai et al., 2023) after
adversarial attacks including SPARK (Guo et al., 2020), RTAA (Jia et al., 2020), TrackPGD (Nok-
abadi et al., 2024), IoU (Jia et al., 2021) and CSA (Yan et al., 2020) and ABBG (ours), on the
GOT10k (Huang et al., 2019) dataset. The Italic methods are white-box attacks.

Tracker Attacker Scores Drop(%)
AO SR0.5 SR0.75 AO SR0.5 SR0.75

TransT-M

No Attack 0.734 0.840 0.693 - - -
CSA 0.683 0.779 0.635 6.95 7.26 8.37
IoU 0.587 0.672 0.480 20.03 20.00 30.74
SPARK 0.116 0.065 0.023 84.20 92.26 96.68
RTAA 0.173 0.180 0.112 76.43 78.57 83.84
TrackPGD 0.388 0.429 0.188 47.14 48.93 72.87
ABBG (ours) 0.027 0.019 0.001 96.32 97.74 99.85

ROMTrack
No Attack 0.729 0.830 0.702 - - -
CSA 0.716 0.814 0.682 1.78 1.93 2.85
IoU 0.597 0.678 0.536 18.11 18.31 23.65
ABBG (ours) 0.006 0.001 0.000 99.18 99.88 100

MixFormer
No Attack 0.696 0.791 0.656 - - -
CSA 0.638 0.727 0.572 8.33 8.10 12.80
IoU 0.625 0.713 0.543 10.20 9.86 17.22
ABBG (ours) 0.002 0.000 0.000 99.71 100 100

Table 2: Evaluation results of the TransT-M (Chen et al., 2023) attacked by different methods in-
cluding SPARK (Guo et al., 2020), RTAA (Jia et al., 2020), TrackPGD (Nokabadi et al., 2024),
IoU (Jia et al., 2021) and CSA (Yan et al., 2020) and ABBG (ours), on the VOT2022-STS (Kristan
et al., 2023) dataset. The reported scores are from the Baseline experiment of VOT2022-STS evalu-
ation.The Italic methods are white-box attacks.

Tracker Attacker Scores Drop(%)
EAO Accuracy Robustness EAO Accuracy Robustness

TransT-M

No attack 0.542 0.744 0.866 - - -
CSA 0.480 0.719 0.815 11.44 3.36 5.89
IoU 0.332 0.654 0.646 38.74 12.10 25.40
RTAA 0.052 0.601 0.088 90.40 19.22 89.84
SPARK 0.009 0.261 0.041 98.34 64.92 95.26
TrackPGD 0.172 0.431 0.491 68.26 42.07 43.30
ABBG (ours) 0.007 0.370 0.018 98.71 50.27 97.92

Table 3: Evaluation of our proposed ABBG attack compared to different white-box attacks including
SPARK (Guo et al., 2020), RTAA (Jia et al., 2020), TrackPGD (Nokabadi et al., 2024) and ABBG
(ours), applied on the TransT-M (Chen et al., 2023) tracker on the UAV123 (Mueller et al., 2016)
dataset.

Attack Drop(%)
Tracker Attacker Success Precision Success Precision

TransT-M

No attack 0.697 0.893 - -
SPARK 0.056 0.068 91.96 92.38
RTAA 0.083 0.120 57.79 86.56
TrackPGD 0.264 0.441 26.12 50.61
ABBG (ours) 0.024 0.079 96.55 91.15
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Figure 3: Several examples of TransT-M (Chen et al., 2023) performance after applying the
white-box attacks containing SPARK (Guo et al., 2020) (blue), RTAA (Jia et al., 2020) (black),
TrackPGD (Nokabadi et al., 2024) (white), and our proposed ABBG attack (red) bounding boxes.
The Green color represents the tracker’s original response with no attack applied.

Table 4: Perturbation metrics generated by various attack methods on TransT-M tracker (Chen et al.,
2023) using the VOT2022 dataset (Short-term subchallenge) (Kristan et al., 2023).

Tracker Attacker L1-Norm ↓ SSIM(%) ↑

TransT-M

SPARK 69.98 94.43
RTAA 113.48 60.14
TrackPGD 122.52 64.04
ABBG (ours) 95.77 89.50

RTAA (Jia et al., 2020), TrackPGD (Nokabadi et al., 2024), and ABBG tested against the TransT-M
tracker (Chen et al., 2023). All attacks are conducted in a white-box setting, utilizing 10 iteration
steps to generate adversarial perturbations. In each method, pixel values are allowed to vary by up
to 10 units per update, ensuring a consistent budget for image manipulation. Table 4 indicates the
sparsity and imperceptibility of adversarial perturbations generated by different white-box attacks
on the VOT2022-ST dataset (Kristan et al., 2023). Our method is ranked second in both metrics
after SPARK (Guo et al., 2020); while its generated perturbations are more effective than SPARK
on GOT-10k (Huang et al., 2019) and VOT2022ST (Kristan et al., 2023), Tables 1 and 2. Also,
our method is applicable to ROMTrack (Cai et al., 2023) and MixFormer (Cui et al., 2022) where
SPARK is not applicable as a white-box attack.

5 Conclusion

In this paper, we evaluated the adversarial robustness of three transformer trackers under a novel
white-box attack that manipulates target bounding box predictions to generate adversarial perturba-
tions. Our attack, ABBG, is broadly applicable across trackers, leveraging the simplicity of a single
bounding box as its attack proxy. We demonstrated that ABBG consistently outperforms other attack
methods, excelling in at least one metric per dataset. Notably, ABBG ranks second in both sparsity
and imperceptibility among white-box attacks after a fixed number of iterations. We are confident
that this work will drive further research into adversarial vulnerabilities in transformer trackers and
catalyze efforts to enhance their robustness.
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A Supplementary materials

A.1 Metric explanation

In this subsection, we describe the calculation of several metrics related to the VOT2022 protocol (Kristan et al.,
2023) to provide a clearer understanding of the results.

Robustness In the VOT2022 protocol, robustness is measured using anchor-based evaluation. In this
method, multiple anchors are placed in each test sequence, approximately 50 frames apart, to facilitate anchor-
based short-term tracking (Kristan et al., 2023). The tracker is initialized in the first frame, and whenever a
"tracking failure" occurs, it is re-initialized from the previous or next anchor, depending on which direction
has the longer remaining sequence. Robustness is defined as the length of the video subsequence during which
the tracker avoids tracking failure. A tracking failure occurs when the overlap between the prediction and the
ground truth falls below a certain threshold for a specified number of time steps, as defined in the VOT protocol.

Accuracy The accuracy metric, as measured in the VOT2022 baseline experiment, calculates the average
overlap between the prediction and the ground truth under the anchor-based short-term tracking protocol (Kris-
tan et al., 2023).

Expected Average Overlap (EAO) The EAO metric in the VOT2022 baseline experiment follows the
anchor-based short-term tracking protocol (Kristan et al., 2023). EAO combines accuracy and robustness met-
rics by computing the average overlap values for subsequences up to the point of tracking failure and then
reporting the overall average across all subsequences.

A.2 Bounding box and binary mask evaluation

We demonstrate the performance of our ABBG attack on video sequences, showcasing its ability to mislead
object trackers for bounding box predictions, in comparison to other attack methods, as shown in Figure 4.
Several examples are included, featuring various moving objects that differ in size, color, background, and
scene context.

The object binary mask prediction is also illustrated after applying different attack methods in Figure 5. Note
that the "Green" mask is the original tracker response while the "Red" mask is the tracker response after apply-
ing the attack. The SPARK, RTAA and ABBG attack is the bounding box-based attack where the TrackPGD is
using object binary mask in generating the adversarial perturbations.
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Figure 4: Several examples of TransT-M (Chen et al., 2023) performance after applying the
white-box attacks containing SPARK (Guo et al., 2020) (blue), RTAA (Jia et al., 2020) (black),
TrackPGD (Nokabadi et al., 2024) (white), and our proposed ABBG attack (red) bounding boxes.
The Green color represents the tracker’s original response with no attack applied.

Figure 5: Several examples of TransT-M (Chen et al., 2023) performance after applying the
white-box attacks containing SPARK (Guo et al., 2020) (blue), RTAA (Jia et al., 2020) (black),
TrackPGD (Nokabadi et al., 2024) (white), and our proposed ABBG attack (red) binary masks. The
Green color represents the ground truth (mask).
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