
Revisiting Feature Normalization and Augmentation
in Few-shot Learning: a Simple Comparison of Baselines

Anonymous Author(s)
Affiliation
Address
email

Abstract

The growing complexity of network designs makes Few-Shot Learning (FSL)1

algorithms difficult to compare in a fair manner. Typical FSL methods consist of2

two parts: a feature extractor trained on base classes, and a predictor tested on a3

given support set task. Most existing research aim to improve the feature extractor4

for better generalization, whereas a small number of papers note the predictor5

design is also important. In this paper, we investigate the predictor module which6

relies on three components: feature normalization (and transformation), feature7

augmentation, and a classifier. In comparative ablation experiments we show that8

(i) with appropriate feature normalization, logistic regression and SVM perform the9

best in most cases rather than the cosine or nearest neighbour classifier; (ii) feature10

normalization is very important and the feature augmentation is very helpful in11

one-shot learning; and (iii) our modified baseline methods (a good selection of12

existing components) achieve competitive performance when compared with the13

state of the art on mini-ImageNet, tiered-ImageNet, and the CUB datasets.14

1 Introduction15

Although deep learning has driven the rapid development of artificial intelligence, with impressive16

achievements in a wide range of research areas such as vision, text, and speech [9], it is well-known17

that the success of deep learning relies on a large number of labeled samples. Due to a number of18

factors such as privacy, security, or high labeling cost of data, many real-world applications (e.g.,19

medical, security, and financial) do not have an access to sufficient labeled training samples. Thus, it20

is very important to enable deep learning to efficiently learn and generalize from a small number of21

samples.22

Existing Few-Shot Learning (FSL) methods propose different solutions to deal with the low numbers23

of samples. FSL algorithms can be broadly divided into three categories: metric learning, meta24

learning, and transfer learning. The goal of a metric-based learning approach is to learn a mapping25

from images to an embedding space in which images of the same class are pulled closer to each other,26

whereas images of different classes are pushed apart. We expect metric learnt during the training step27

to hold for classes that have not been seen before (testing stage). The meta-learning approaches build28

on adapting to specific tasks from the general set of parameters, and then updating the general set of29

parameters w.r.t. these tasks. Transfer learning, includes pre-training a feature extractor in the first30

stage, and then, in the second stage, adapting to reuse this knowledge to obtain a classifier on new31

samples.32

Due to the growing complexity of network designs, FSL algorithms are difficult to compare fairly.33

Many of the recent advances in FSL use the meta-learning framework, and perform adaptation in the34

test stage. However, in a recent study [2], it was shown that learning a cosine distance classifier on35

features extracted from deeper networks also performs quite well on few-shot tasks. Thus sometimes,36

Submitted to the 5th Workshop on Meta-Learning at NeurIPS 2021, Sydney, Australia. Do not distribute.



it is difficult to appreciate what components (and what their combination) make FSL work well. In37

this paper, we focus on a simple perspective on FSL approaches, which includes two steps: training a38

feature extractor on base classes, and adapting predictor to novel classes. Most existing papers focus39

on designing a better feature extractor, while only a few papers note that getting a better predictor is40

equally important. Simple-shot [21] uses a feature normalization before feeding the features into the41

nearest neighbor classifier, which helps a feature extractor obtain the state-of-the-art performance.42

Augmentation by adding a noise from the Normal distribution without knowing the prior covariance43

has also been shown to work well in FSL [3]. Free-lunch FSL,[22] employs a prior computed from44

the features of base classes. However, there is no systematic discussion or evaluations of possible45

other strategies of forming the prior.46

Thus, in this paper, we break the prediction stage down into its constituent parts, namely, feature47

normalization, feature augmentation, and classification, as shown in Figure 1. We note that most48

existing techniques roughly follow such a design. Based on the steps in Figure 1, we conduct a49

comparative analysis by ablation studies, and we show that:50

i. with an appropriate feature normalization, linear classifiers (logistic regression and SVM) perform51

the best in most cases;52

ii. the feature normalization is very important, and the feature augmentation is very helpful for53

one-shot learning; and54

iii. our modified baselines achieve a competitive performance when compared with the state of the55

art on mini-ImageNet, tiered-ImageNet, and the CUB datasets.56

2 Related Work57

Feature Augmentation and Normalization. Pixel-level data augmentation techniques have been58

widely adopted in visual recognition models [7]. They are generic pipelines for augmenting training59

data with an image-level information. However, feature-wise augmentation (not to be confused60

with the feature generation [6]) has received the lesser level of attention. A few of pioneering61

works propose generative feature augmentation strategy for domain adaptation [20], imbalanced62

classification [25], and FSL [3, 22]. Multi-level semantic feature augmentation [3] employs a63

feature-level augmentation for one-shot learning by adding noises drawn from a Normal distribution.64

Because of no prior modeling on that noise, each feature dimension is augmented by drawing from a65

univariate Normal distribution. In contrast, approaches [3, 22] use the mean and the variance of the66

distribution evaluated from features of similar classes. The `2 normalization has been widely used67

in FSL [2, 21]. Turkey transformation is used in [22] to make the feature distribution closer to the68

Normal distribution.69

Classifiers in Few-Shot Learning. Given limited samples, we restrict the hypothesis space to only70

simple models (such as linear classifiers). Dynamic few-shot learning [5] learns a weight generator71

to predict the novel class classifier using an attention-based mechanism (cosine similarity), and72

Low-shot learning with imprinted weights approach [13] uses novel class features to imprint weights73

into the classifier. Approach [2] adds an `2 norm constraint on weights, and uses a softmax over the74

cosine measure. However, many methods accept taking the nearest neighbor classifier as a solution75

because it is free of parameters, and thus is able to prevent overfitting, especially in one-shot learning.76

FSL based on Transfer Learning. Although approaches [2, 21] pay attention to the classifiers77

and feature normalization, they mainly advocate that the meta-learning is unnecessary in FSL, and78

they highlight the importance of the feature extractor. In contrast, we focus on comparative ablations79

to improve the performance of FSL no matter the backbone or its training regime (meta-learning,80

similarity learning, etc.)81

3 Methodology82

Below, we define FSL and detail techniques which we use in our comparisons.83

3.1 Few-shot Learning84

We follow a typical FSL setting. Given a dataset with data-label pairsD = {(xi, yi)}, where xi ∈ Rd85

is the feature vector of a sample, and yi ∈ C, where C denotes the set of classes divided into base86
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Figure 1: FSL predictor uses the feature normalization, feature augmentation and the classifier.

classes Cb and novel classes Cn, where Cb ∩ Cn = ∅ and Cb ∪ Cn = C. The goal is to train a feature87

extractor fθ on the data from the base classes so that the model can generalize well to the tasks88

sampled from the novel classes. In order to evaluate the fast adaptation ability or the generalization89

ability of the model, there are only few labeled samples available for each task T . The most common90

way to build tasks is the so-called N-way-K-shot protocol [19], where N classes are sampled from91

the novel set and only K (e.g., 1 or 5) labeled samples are provided for each class. The few available92

labeled samples form the so-called support set S = {(xi, yi)}N×Ki=1 , whereas the model is evaluated93

on the query set Q = {(xi, yi)}N×K+N×q
i=N×K+1 , with q queries in total. Thus, the performance of a model94

is evaluated as the average accuracy on the query set containing multiple tasks sampled from the95

novel classes.96

3.2 Feature Normalization97

The `1 and `2 normalizations. The `p normalization performs a reprojection of the feature vector98

on the feasible space induced by the norm (e.g., the simplex or unit ball for the `1 and `2 norms,99

respectively). This is achieved by dividing feature vectors by their `p norm:100

gp(x) =
x

‖x‖p
, where ‖x‖p = (|x1|p + |x2|p + ...+ |xn|p)1/p, (1)

where xi is the i-th element of the vector x. In [21], authors proposed a centered `2 normalization,101

by subtracting the mean of features from base classes and applying the `2 normalization.102

Power Normalization. Power Normalizations (PN) are very useful nonlinear operators as they103

tackle problems such as feature imbalance [8]. SoSN model [24] uses PN over a co-occurrence104

matrix (their feature for the deep learner). In this paper, the element-wise square root is considered105

as a candidate operator, similarly to approach [22]. We also consider a related RootSIFT [1], called106

Root `1, which uses the `1 normalization followed by the square root on each individual feature (i.e.,107 √
g1(x)). Due to interactions of the `1 norm with the square root, Root `1 in fact projects the root108

normalized features on the unit ball rather than the simplex, and it works on non-negative features.109

3.3 Feature Vector Augmentation110

Below, we introduce three different feature vector augmentation methods, two of which have been111

proposed in [3] and [22]. The third technique is proposed by us to combine the advantage of the other112

two.113

Diagonal Augmentation (DA) [3]. In this method, the instance features are offset by adding the114

noise term drawn from the Normal distribution centered at xi, Thus, we sample the k-th semantic115

vector vki as:116

vki ∼ N (xi, σI) , (2)

where σ ∈ R is the global variance and I is the identity matrix, whereas σ controls the standard117

deviation of the Normal distribution.118
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Distribution Calibration (DC) [22]. DC extends nearest vectors to k-nearest base classes w.r.t.119

the feature vector xj , where the k-th semantic vector vki is drawn from xi as:120

vki ∼ N
(
µ′,Σ′

)
, where µ′ =

∑
i′∈SN µi′ + xi

k + 1
and Σ′ =

∑
i′∈SN Σi′

k
+ α, (3)

where SN stores the k-nearest base classes with respect to the feature vector xi.121

Prior-based Augmentation (PA). Empirically, we found DC cannot work well with the `2 normal-122

ized features while DA does not leverage the information from base classes. Thus, we propose a123

simple trade-off augmentation step. We use the mean of the diagonal of covariance matrices from124

base classes instead of using the isotropic covariance matrix or combining covariance matrices from125

the k-nearest neighbors of base classes. Specifically, we design a so-called covariance shrinkage [10].126

To this end, we sample the k-th semantic vector vki from the Normal distribution cantered at xi as:127

vki ∼ N (xi,Σ) ,where Σ =

∑
i∈Sb diag ((1− ε)Σi + εI)

|Cb|
, (4)

where SN stores all base classes, 0 ≤ ε ≤ 1 controls the shrinkage of covariance towards I (Ledoit128

and Wolf [10]) to deal with a poor estimate of covariance due to the low-sample regime, diag(·)129

returns the diagonal of matrix, and |Cb| is the number of base classes.130

3.4 Classifier131

In this section, we review four simple classifiers used in our comparisons.132

Nearest Neighbour Classifier (NNC). Prototypical Networks compute a prototype representation133

x̄c ∈ Rd of each class. Each prototype is the mean vector of the support feature vectors belonging to134

its class c:135

x̄c =
1

|Sc|
∑

(x,y)∈Sc

x. (5)

Given a distance function δ : Rd × Rd → R+, prototypical networks produce a distribution over136

classes for a query point x based on a softmax over distances to the prototypes:137

p(y = c | x) =
exp

(
−δ2 (x, x̄c)

)∑
c′ exp (−δ2 (x, x̄c′))

. (6)

For the distance function δ we use the `2 norm. The NNC is a parameter-free version of cosine138

distance classifier (CDC) [21].139

Support Vector Machine (SVM). Unlike the NN classifier in Eq 6, a linear SVM requires learning140

parameters wc for each class c to make predictions on unknown samples. The decision function is141

given as:142

argmaxc x>wc + bc, (7)
where bc is the bias for the c-th class prediction.143

Multinomial logistic regression (Softmax). Multinomial logistic regression also learns parameters144

from the training set, and uses the softmax function in the place of the max operator:145

p(y = c | x) =
exp

(
x>wc + bc

)∑
c′ exp (x>wc′ + bc′)

. (8)

Cosine Distance Classifier (CDC). CDC is the softmax classifier where feature vectors and weight146

vectors are `2-norm normalized, and the bias terms are removed:147

p(y = c | x) =
exp

(
x>wc/ (‖x‖2 · ‖wc‖2)

)∑
c′ exp (x>wc′/ (‖x‖2 · ‖wc′‖2))

. (9)

4 Experiments148

In this section, we answer the following questions: (i) how do different feature normalizations (and149

transformations) contribute to few-shot classification on different benchmarks; (ii) does feature150

augmentation help few-shot learning; (iii) which classifier is the best choice for FSL; and (iv) can151

these techniques yield the state-of-the-arts performance?152
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Table 1: Comparison of test accuracy against state-of-the art methods for 1-shot and 5-shot classifi-
cation using mini-ImageNet and tiered-ImageNet.

mini-ImageNet tiered-ImageNet

Methods Network 1-shot 5-shot 1-shot 5-shot

LEO [17] WRN 61.76±0.08 77.59±0.12 66.33±0.05 81.44±0.09
ProtoNet [18] WRN 62.60±0.20 79.97±0.14 – –

CC+rot [4] WRN 62.93±0.45 79.87±0.33 70.53±0.51 84.98±0.36
MatchingNet [19] WRN 64.03±0.20 76.32±0.16 – –

S2M2 [11] WRN 64.93±0.18 83.18±0.11 – –
FEAT [23] WRN 65.10±0.20 81.11±0.14 70.41±0.23 84.38±0.16

SimpleShot [21] WRN 65.87±0.20 82.09±0.14 70.90±0.22 85.76±0.15
DC [22] WRN 68.57±0.55 82.88±0.42 70.42±0.22 87.24±0.14
`2+SVM WRN 66.54±0.20 83.51±0.13 69.43±0.22 85.27±0.15

`2+SVM+PA WRN 68.02±0.20 82.01±0.11 69.92±0.20 87.02±0.15

Datasets. We experiment on three popular benchmarks. The mini-ImageNet dataset [19] is a153

subset of ImageNet [16] that is commonly used to study few-shot learning. The dataset contains 100154

classes and has a total of 600 examples per class. Following [14] and subsequent works, we split it155

into 64 base, 16 validation, and 20 novel classes. Following [19] and subsequent studies, we resize156

images to 84 × 84 pixels and center crop. We also perform experiments on the tiered-ImageNet157

dataset [15], which is also constructed from ImageNet but contains 608 classes. The dataset is split158

into 351, 97, and 160 classes for base, validation, and novel classes, respectively. The class split is159

performed using WordNet [12] to ensure that all the base classes are semantically unrelated to the160

novel classes, and images are resized to 84× 84 pixels.161

Metrics. We use the top-1 accuracy as the evaluation metric to measure the performance of our162

method. We report the accuracy on 5-way 1-shot and 5-way 5-shot protocols for mini-ImageNet,163

tiered-ImageNet and CUB. The reported results are the averaged classification accuracy over 10,000164

tasks, unless specified otherwise.165

Implementation. Unless specified otherwise, the feature extractor we use is the WideResNet-28-10166

(WRN) following the previous work [11]. For each dataset, the feature extractor is trained with167

base classes and the performance tested on novel classes. Note that the feature representations are168

extracted from the penultimate layer (with a ReLU activation function) to meet requirements of169

DC [22] and the Root `1 normalization.170

4.1 Impact of Feature Normalization171

Table 2 is the comparison among four different feature normalization methods. In six different settings172

for three classifiers, the `2 normalization yields 3 best results, the Root `1 normalization yields 2 best173

results and the Centering `2 normalization yields 1 best result. It is worth noting that although the174

Root`1 normalization uses Power Normalization (element-wise square root) and it outperforms the175

baseline of `1 normalization, it is hard to conclude if the square root plays an important role because176

the Root `1 normalization is not significantly better than the `2 normalization in most cases, and both177

methods normalize the features to the unit sphere. In what follows, the normalization we use is set to178

the `2 normalization, unless specified otherwise.179

4.2 Impact of Feature Augmentation180

Below, we compare three different feature augmentation strategies, DA, DC and PA, in 1-shot setting.181

Empirically, we observe that feature augmentations give better results after feature normalization, so182

we apply the `2 normalization. Note that the DC [22] cannot work well with normalized features thus183

we use the default setting from [22]. Table 3 shows that the feature augmentation plays an important184

role on mini-ImageNet and tiered-ImageNet but all feature augmentations fail on CUB. This indicates185

that unlike the feature normalization, the simplistic feature augmentation does not always play a186

positive role. Therefore, one should be careful in using feature augmentations in practice, if there is a187

larger number of training samples available.188

5



Table 2: Average accuracy (in %; measured over 10,000 rounds) of 1-shot and 5-shot classifiers for
5-way classification on mini-ImageNet, CUB, tiered-ImageNet; higher % is better. The best result of
each combination of each column is in bold font.

Benchmark Method `1 `2 Root `1 Centering `2

mini-ImageNet 1-shot
LR 65.24±0.20 66.64±0.20 66.07±0.19 64.21±0.20
SVM 65.65±0.20 66.54±0.20 66.02±0.19 64.41±0.20
NNC 65.55±0.20 65.36±0.20 63.11±0.20 63.79±0.20
CDC - 64.93±0.18 63.24±0.20 -

mini-ImageNet 5-shot
LR 81.55±0.14 83.50±0.12 83.51±0.13 81.63±0.14
SVM 81.60±0.14 83.51±0.13 84.01±0.13 82.29±0.14
NNC 78.16±0.16 79.15±0.16 76.27±0.17 77.89±0.16
CDC - 83.18±0.11 83.36±0.14 -

CUB 1-shot
LR 79.72±0.20 80.91±0.20 79.37±0.20 80.62±0.20
SVM 80.01±0.20 80.91±0.20 79.55±0.20 80.73±0.20
NNC 79.63±0.20 81.06±0.20 79.05±0.20 81.00±0.20
CDC - 80.68±0.20 79.16±0.16 -

CUB 5-shot
LR 90.19±0.11 91.26±0.10 91.31±0.10 91.23±0.10
SVM 90.25±0.11 91.26±0.10 91.50±0.10 91.18±0.10
NNC 88.64±0.13 90.44±0.11 90.10±0.12 90.07±0.12
CDC - 90.85±0.11 91.24±0.11 -

tiered-ImageNet 1-shot
LR 66.72±0.22 69.40±0.22 69.11±0.21 69.02±0.20
SVM 67.44±0.22 69.43±0.22 69.13±0.20 68.88±0.20
NNC 64.70±0.22 68.81±0.22 66.45±0.22 68.85±0.21
CDC - 68.51±0.22 66.57±0.20 -

tiered-ImageNet 5-shot
LR 82.62±0.16 85.10±0.15 85.34±0.15 85.88±0.14
SVM 82.76±0.16 85.27±0.15 85.73±0.15 86.09±0.14
NNC 77.43±0.20 82.27±0.19 80.01±0.18 82.01±0.15
CDC - 85.53±0.15 66.57±0.20 -

Table 3: Ablation study on 5-way 1-shot protocol on three different datasets showing accuracy (%)
with 95% confidence intervals.

mini-ImageNet CUB tiered-ImageNet
S2M2 [11] 65.87±0.20 81.08±0.20 69.12±0.22
DA 67.10±0.20 80.04±0.20 69.43±0.22
DC 68.57±0.20 79.56±0.87 70.42±0.21
PA 68.02±0.17 81.06±0.20 69.92±0.20

4.3 Choice of Classifier189

We compare the NNC with the logistic regression, SVM, and CDC. Table 2 shows the comparison190

among four different classifiers with six different settings and four feature normalization methods.191

As it turns out, NNC and CDC do not perform better than SVM e.g., NNC yields the best result on192

the 1-shot tasks on CUB with the `2 normalization. In fact, given different feature normalization193

methods, NNC appears as the worst classifier (up to 5% drop) in the comparison, likely because it194

cannot be tuned on test support samples.195

4.4 Comparisons on Different Backbones and Learners196

To support our findings in a more broad setting, we compare the results of two learners, Sim-197

pleShot [21] and S2M2 [11], given the same backbone (WideResNet-28-10), as shown in Table 4. We198

further compare the performance of ResNet-10,18,34,50, MobileNet and WRN on mini-ImageNet199

and tiered-ImageNet given 5-way 1-shot setting, as shown in Table 5 and 6. We observe that, com-200

pared with baselines [21] (`2 normalization + nearest neighbour classifier), SVM and the feature201

augmentation do improve the performance. We do not evaluate ResNet-50 on tiered-Imagenet because202

the ResNet-50 is much worse than ResNet-10, 18 and 34 (likely due to overfitting, the same can be203

noted on the mini-ImageNet datase).204
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Table 4: Comparison of test accuracy among different learners for 1-shot and 5-shot classification on
mini-ImageNet and tiered-ImageNet.

mini-ImageNet tiered-ImageNet

Method Predictor 1-shot 5-shot 1-shot 5-shot

SimpleShot SimpleShot 61.22±0.21 81.00±0.14 66.86±0.21 85.50±0.14
SimpleShot [21] `2+SVM 62.53±0.21 80.41±0.15 70.12±0.21 85.54±0.14
SimpleShot `2+SVM+PA 64.77±0.21 79.68±0.15 71.26±0.21 87.34±0.14

S2M2 S2M2 64.93±0.18 83.18±0.11 66.33±0.05 81.44±0.09
S2M2 [11] `2+SVM 66.54±0.20 83.51±0.13 69.43±0.22 85.27±0.15
S2M2 `2+SVM+PA 68.02±0.20 82.01±0.11 69.92±0.20 87.02±0.15

Table 5: 5-way 1-shot classification accuracy (%) on mini-ImageNet with different backbones.

SimpleShot [21] `2+SVM `2+SVM+DA

ResNet-10 57.85±0.20 60.22±0.20 62.36±0.20
ResNet-18 60.16±0.20 61.47±0.20 63.21±0.20
ResNet-34 59.61±0.20 61.06±0.20 63.53±0.20
ResNet-50 53.20±0.20 55.76±0.20 56.73±0.20
MobileNet 59.33±0.20 60.17±0.20 61.49±0.20
WRN 61.22±0.21 62.53±0.21 64.77±0.21

Table 6: 5-way 1-shot classification accuracy (%) on tiered-ImageNet with different backbones.

SimpleShot [21] `2+SVM `2+SVM+DA

ResNet-10 64.58±0.23 66.23±0.22 66.60±0.23
ResNet-18 68.64±0.22 69.68±0.22 69.97±0.23
ResNet-34 70.52±0.22 71.10±0.22 71.18±0.20
MobileNet 68.66±0.23 68.77±0.21 69.23±0.22
WRN 66.86±0.21 70.12±0.22 70.55±0.22

4.5 Comparison with Distribution Calibration [22]205

Table 7: 5-way 1-shot and 5-way 5-shot classification accuracy (%) on mini-ImageNet, CUB, and
tiered-ImageNet.

mini-ImageNet CUB tiered-ImageNet
Predictor 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
DC 68.57±0.55 82.88±0.42 79.56±0.87 90.67±0.35 70.42±0.25 87.24±0.41
`2+SVM 66.54±0.20 83.51±0.13 80.91±0.20 92.26±0.10 69.43±0.22 85.27±0.15
`2+SVM+PA 68.02±0.20 82.01±0.11 81.06±0.20 90.68±0.12 69.92±0.22 87.02±0.15

Distribution Calibration [22] applies the feature transformation, augmentation and a linear classifier206

simultaneously to achieve the performance improvement. However, their paper does not consider the207

individual impact of each component to validate if the gain comes from the Distribution Calibration208

step. Thus, we put such a method under scrutiny and conduct ablation experiments. We observe209

that `2+SVM outperforms DC in 3 out of 6 settings. In other settings, DC does not have a clear cut210

advantage either. We conclude that different factors of FSL should be disentangled before new papers211

stake claims about the gains they achieve.212

5 Conclusions213

In this paper, we investigate the predictor part of FSL that is often overlooked and not studied in214

enough detail by many authors. We show that the predictor part containing three components, that215

is, feature normalization, feature augmentation and classifier, can yield a very good performance216

by careful combination of these components. A simple FSL variant that achieves a competitive217
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performance with recent state-of-the-art methods on mini-ImageNet, tiered-ImageNet and CUB,218

without any fine-tuning.219
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[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing291

the appropriate section of your paper or providing a brief inline description. For example:292

• Did you include the license to the code and datasets? [Yes] See Section ??.293

• Did you include the license to the code and datasets? [No] The code and the data are294

proprietary.295

• Did you include the license to the code and datasets? [N/A]296

Please do not modify the questions and only use the provided macros for your answers. Note that the297
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1. For all authors...300

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s301
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(b) Did you describe the limitations of your work? [TODO]303

(c) Did you discuss any potential negative societal impacts of your work? [TODO]304

(d) Have you read the ethics review guidelines and ensured that your paper conforms to305

them? [TODO]306

2. If you are including theoretical results...307

(a) Did you state the full set of assumptions of all theoretical results? [TODO]308
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(b) Did you include complete proofs of all theoretical results? [TODO]309

3. If you ran experiments...310
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mental results (either in the supplemental material or as a URL)? [TODO]312
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of GPUs, internal cluster, or cloud provider)? [TODO]318

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...319

(a) If your work uses existing assets, did you cite the creators? [TODO]320

(b) Did you mention the license of the assets? [TODO]321

(c) Did you include any new assets either in the supplemental material or as a URL?322

[TODO]323

(d) Did you discuss whether and how consent was obtained from people whose data you’re324

using/curating? [TODO]325

(e) Did you discuss whether the data you are using/curating contains personally identifiable326

information or offensive content? [TODO]327
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(b) Did you describe any potential participant risks, with links to Institutional Review331

Board (IRB) approvals, if applicable? [TODO]332
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