[Re] Don’t Judge an Object by Its Context:
Learning to Overcome Contextual Bias

Sunnie S. Y. Kim Sharon Zhang Nicole Meister Olga Russakovsky
Princeton University
{sunniesuhyoung, sharonz, nmeister, olgarus}@princeton.edu

Reproducibility Summary

Scope of Reproducibility

Singh et al. [9] point out the dangers of contextual bias in visual recognition datasets. They propose two methods,
CAM-based and feature-split, that better recognize an object or attribute in the absence of its typical context while
maintaining competitive within-context accuracy. To verify their performance, we attempted to reproduce all 12 tables
in the original paper, including those in the appendix. We also conducted additional experiments to better understand the
proposed methods, including increasing the regularization in CAM-based and removing the weighted loss in feature-split.

Methodology

As the original code was not made available, we implemented the entire pipeline from scratch in PyTorch 1.7.0. Our
implementation is based on the paper and email exchanges with the authors. [T] We spent approximately four months
reproducing the paper, with the first two months focused on implementing all 10 methods studied in the paper and the
next two months focused on reproducing the experiments in the paper and refining our implementation. Total training
times for each method ranged from 35-43 hours on COCO-Stuff [[1], 22-29 hours on DeepFashion [7]], and 7-8 hours
on Animals with Attributes [10] on a single RTX 3090 GPU.

Results

We found that both proposed methods in the original paper help mitigate contextual bias, although for some methods, we
could not completely replicate the quantitative results in the paper even after completing an extensive hyperparameter
search. For example, on COCO-Stuff, DeepFashion, and UnRel, our feature-split model achieved an increase in accuracy
on out-of-context images over the standard baseline, whereas on AwA, we saw a drop in performance. For the proposed
CAM-based method, we were able to reproduce the original paper’s results to within 0.5% mAP.

What was easy

Overall, it was easy to follow the explanation and reasoning of the experiments. The implementation of most (7 of 10)
methods was straightforward, especially after we received additional details from the original authors.

What was difficult

Since there was no existing code, we spent considerable time and effort re-implementing the entire pipeline from scratch
and making sure that most, if not all, training/evaluation details are true to the experiments in the paper. For several
methods, we went through many iterations of experiments until we were confident that our implementation was accurate.

Communication with original authors

We reached out to the authors several times via email to ask for clarifications and additional implementation details. The
authors were very responsive to our questions, and we are extremely grateful for their detailed and timely responses.

1Our implementation can be found at https://github.com/princetonvisualai/ContextualBias|

ML Reproducibility Challenge 2020

https://github.com/princetonvisualai/ContextualBias

1 Introduction

Most prominent vision datasets are afflicted by contextual bias. For example, "microwave" typically is found in
kitchens, which also contain objects like "refrigerator” and "oven." Such co-occurrence patterns may inadvertently
induce contextual bias in datasets, which could consequently seep into models trained on them. When models overly
rely on context, they may not generalize to settings where typical co-occurrence patterns are absent. The original paper
by Singh et al. [9]] proposes two methods for mitigating such contextual biases and improving the robustness of the
learnt feature representations. The paper demonstrates their methods on multi-label object and attribute classification
tasks, using the COCO-Stuff [[1]], DeepFashion [7]], Animals with Attributes (AwA) [[10], and UnRel [8] datasets. Our
exploration centers on four main directions:

First, we trained the baseline classifier presented in the paper (Section [2.1] for implementation; Sections [2.3{2.4] for
results). Due to likely implementation discrepancies, our results differed from the original paper by 0.6-3.1% mAP
on COCO-Stuff, by 0.7-1.4% top-3 recall on DeepFashion, and by 0.1-3.2% mAP on AwA (Table). We ran a
hyperparameter search (Appendix [C), which yielded a significant (1.4-3.6%) improvement on DeepFashion.

Next, we identified the biased categories in each dataset, i.e., visual categories that suffer from contextual bias. We
followed the proposed method of using the baseline classifier to identify these categories, and discovered that the
classifier implementation has a non-trivial effect. For COCO-Stuff, 18 of the top-20 categories we identified matched
the original paper’s top-20 categories (10 on DeepFashion, 18 on AwA; Section[2.2). Nevertheless, the categories we
identified appear reasonable (e.g., "fork" co-occurs with "dining table"; Appendix [B). As training and evaluation of
most methods depend on the biased categories, we used the paper’s biased categories for subsequent experiments.

Third, we checked the main claim of the paper, that the proposed CAM-based and feature-split methods help improve
recognition of biased categories in the absence of their context (Section E[) On COCO-Stuff, DeepFashion, and UnRel,
we were able to reproduce the improvements gained from the proposed feature-split method towards reducing contextual
bias, whereas on AwA, we saw a drop in performance. The proposed CAM-based method, which was only applied
to COCO-Stuff, also helped reduce contextual bias, though not as significantly as the feature-split method. For this
method, we reproduced the original paper’s results to within 0.5% mAP (Section[3.5). We also successfully reproduced
the paper’s weight similarity analysis, as well as the qualitative analyses on class activation maps (CAMs) [12].

Lastly, we ran additional experiments and ablation studies (Section[3.6). These revealed that the regularization term in
the CAM-based method and the weighted loss in the feature-split method are central to the methods’ performance. We
also observed that varying the feature subspace size influences the feature-split method accuracy.

2 Reproducing the standard baseline and the biased category pairs

The first step in reproducing the original paper is doing "stage 1" training. This stage involves training a standard
multi-label classifier with the binary cross entropy loss on the COCO-Stuff, DeepFashion, and AwA datasets. We
describe how we obtained and processed the datasets in Appendix [A] The standard model is used to identify the biased
categories and serves as a starting point for all "stage 2" methods, i.e., the proposed CAM-based and feature-split
methods and 7 other strong baselines introduced in Section 3]

2.1 Implementation and training details

According to the original paper, all models use ResNet-50 [4] pre-trained on ImageNet [3] as a backbone and are
optimized with stochastic gradient descent (SGD) and a batch size of 200. Each standard model is optimized with an
initial learning rate of 0.1, later dropped to 0.01 following a standard step decay process. The input images are randomly
resize-cropped to 224x224 and randomly flipped horizontally during training. We also received additional details from
the authors that SGD is used with a momentum of 0.9 and no weight decay. The COCO-Stuff standard model is trained
for 100 epochs with the learning rate reduced from 0.1 to 0.01 after epoch 60. The DeepFashion standard model is
trained for 50 epochs with the learning rate reduced after epoch 30. The AwWA standard model is trained for 20 epochs
with the learning rate reduced after epoch 10.

After training with the paper’s hyperparameters, we found that our reproduced standard models for COCO-Stuff and
AwA were consistently underperforming against the results in the paper. Thus, we also tried varying the learning rate,
weight decay, and the epoch at which the learning rate is dropped to achieve the best possible results. Further details
can be found in Appendix[C} On both COCO-Stuff and AwA, our hyperparameter search ended up reconfirming the
original paper’s hyperparameters as the optimal ones; for DeepFashion, we were able to find an improvement. The
original, reproduced and tuned results are shown in Table[I] following explanations of biased categories identification
(Section and evaluation details (Section[2.3).

2.2 Biased categories identification

The paper identifies the top-20 (b, ¢) pairs of biased categories for each dataset, where b is the category suffering
from contextual bias and c is the associated context category. This identification is crucial as it concretely defines the
contextual bias the paper aims to tackle, and influences the training of the "stage 2" models and evaluation of all models.

The paper defines bias between two categories b and z as the ratio between average prediction probabilities of b when it
occurs with and without z. Note that this definition of bias requires a trained model, unlike the more common definition
of bias that only requires co-occurrence counts in a dataset [11]. Following the paper description, we used a standard
model trained on an 80-20 split for COCO-Stuff and one trained on the full training set for DeepFashion and AwA. For
each category b in a given dataset, we calculated the bias between b and its frequently co-occuring categories, and
defined category c as the context category that most biases b, i.e. has the highest bias value. Bias is calculated on the
20 split for COCO-Stuff, the validation set for DeepFashion, and the test set for AWAE] After the bias calculation, we
identified 20 (b, ¢) pairs with the highest bias values. The paper emphasizes that this definition of bias is directional; it
only captures the bias ¢ incurs on b and not the other way around.

We compare our pairs to the paper’s in Tables[AT] (COCO-Stuff), [A2] (DeepFashion), and [A3](AwA) in the Appendix.
Out of 20 biased categories, 2 of ours differed from the paper’s for COCO-Stuff, 10 differed for DeepFashion, and
2 differed for AwA. The variability is expected, as bias is defined as a ratio of a trained model’s average prediction
probabilities which will vary across different models. Nonetheless, we found our pairs to also be reasonable, as our
biased categories occur frequently with their context categories and rarely without them. See Appendix [B|for details.

2.3 Evaluation details

The paper does not specify image preprocessing or model selection. Following common practice, we resize an image so
that its smaller edge is 256 and then apply one of two 224x224 cropping methods: a center-crop or a ten-crop. Both are
deterministic procedures. We observed that results with center-crop are consistently better and closer to the paper’s
results, hence for all experiments, we report results using center-crop. In our email communications, the authors also
specified that they use the model at the end of training as the final model. We confirmed that this is a reasonable model
selection method after trying three other selection methods, described in Appendix

We emphasize that model evaluation is dependent on the identified biased category pairs. For each (b, ¢) pair, the test
set can be divided into three sets: co-occurring images that contain both b and c, exclusive images that contain b but
not ¢, and other images that do not contain b. Then for each (b, ¢) pair, the paper constructs two test distributions:
1) the "exclusive" distribution containing exclusive and other images and 2) the "co-occur” distribution containing
co-occurring and other images. We suspect that other images are included in both distributions because otherwise, both
distributions would have small sizes and only consist of positive images where b occurs, disabling the mAP calculation.

The test distribution sizes can be calculated from the co-occurring and exclusive image counts in Tables[AT] [AZ] [A3]in
the Appendix. As an example, for the (ski, person) pair in COCO-Stuff, there are 984 co-occuring, 9 exclusive, and
39,511 other images in the test set. Hence, there are 9 + 39,511 = 39, 520 images in the "exclusive" distribution and
984 + 39,511 = 40,495 images in the "co-occur" distribution. For COCO-Stuff, we also report results on the entire test
set (40,504 images) for 60 non-biased object categories and for all 171 categories, following the paper.

2We received additional information from the original authors that they restricted their COCO-Stuff biased categories to the 80
object categories and performed manual cleaning of the DeepFashion (b, ¢) pairs.

. Exclusive Co-occur Non-biased
Dataset (Metric) Model Paper BC Our BC | Paper BC Our BC | Paper BC Our BC All
Paper 24.5 - 66.2 - 75.4 - 57.2
COCO-Swff (mAP) | 1 (paper params®) | 23.9 206 65.0 63.7 723 729 | 557
Paper 4.9 - 17.8 - - - -
DeepFashion (top-3 recall) | Ours (paper params) 5.6 5.0 19.2 15.0 - - -
Ours (tuned params) 7.0 6.3 22.8 18.4 - - -
Paper 19.4 - 72.2 - - - -
AwA (mAP) Ours (paper params®) | 19.5 217 69.0 69.9 - - -

Table 1: Reproduced standard baseline results on three datasets. We evaluate the models on different subsets of
categories/images ("exclusive" and "co-occur" distributions for the 20 biased categories and the entire test set for
non-biased and all categories; Section [2.3), both using the paper’s and our identified biased category (BC) pairs. *On
COCO-Stuff and AwA, hyperparameter tuning did not improve on the original paper’s hyperparameters.

For COCO-Stuff and AwA, we calculate the average precision (AP) for each biased category b, and report the mean AP
(mAP) for each test distribution. For DeepFashion, we calculate the per-category top-3 recall and report the mean value
for each test distribution. Higher values indicate a better classifier for both metrics.

2.4 Results

In Table[T} we report the original, reproduced, and tuned results with the paper’s and our 20 most biased category pairs.
Evaluated on the paper’s pairs, our best COCO-Stuff model underperforms the paper’s by 1-3%, our best DeepFashion
model outperforms by 2-5%, and our best AwA underperforms on the "co-occur" distribution by 3.2% and matches
the "exclusive" distribution within 0.1%. When we evaluate the same models on our biased category pairs, we get
similar results for the AwA model, slightly worse results for the DeepFashion model, and significantly worse results
for the COCO-Stuftf model. Due to this big drop in performance for COCO-Stuff, which we suspect is caused by the
discrepancy in the identified biased category pairs, we choose to use the paper’s pairs for training and evaluation in the
subsequent sections. Overall, we conclude that the paper’s standard baseline results are reproducible as we were able to
train models within a reasonable margin of error.

3 Reproducing the '"stage 2'' methods: CAM-based, feature-split, and strong baselines

In this section, we describe our efforts in reproducing methods that aim to mitigate contextual bias: namely, the
CAM-based and feature-split methods proposed by the original authors (Figure[T) and 7 other strong baselines. These
are referred to as "stage 2" methods because they are trained on top of the "stage 1" standard model (except for one
strong baseline). Apart from the feature-split method, which we discussed with the authors, all other implementations
were based entirely on our interpretation of their descriptions in the original paper.

standard CAM-based feature-split

L 1T 1

CAM(I, b) CAM(I, ¢) Exclusive image (b occurs without c) Non-exclusive image

CAM,o(I,B) CAM,pe(l,€)

Wo Wo
(% [% |
Ws Ws
b: skateboard c: person b: skateboard c: person Suppress X;/W; and only leverage x,/W, Leverage all x and W as usual

Figure 1: Overview of the proposed methods. The CAM-based methods enforces a minimal overlap between the (b, ¢)
CAMs, while preventing them from drifting too far from CAM. (CAMs of the standard model). The feature-split
method suppresses context for exclusive images by disabling backpropagation through Wy and setting X, to a constant
value; for non-exclusive images, it uses everything as usual.

3.1 The first proposed CAM-based method

The CAM-based method operates on the following premise: as b almost always co-occurs with ¢, the network may
learn to inadvertently rely on pixels corresponding to ¢ to predict b. The paper hypothesizes that one way to overcome
this issue is to explicitly force the network to rely less on ¢’s pixel regions. This method uses class activation maps
(CAMs) [12] as a proxy for object localization information. For an image I and category r, CAM(/, r) indicates the
discriminative image regions used by a deep network to identify r. For each biased category pair (b, c¢), a minimal
overlap of their CAMs is enforced via the loss term:

Lo = Y e, CAM(I,b) © CAM(I, c), (1)

where © denotes element-wise multiplication and I, N I is a set of images where both b and c appear. To prevent a
trivial solution where the CAMs of b and c drift apart from the actual pixel regions, the paper uses a regularization term
to keep the category’s CAMs close to CAMy., produced using a separate network trained offline:

LR = ZIE]I],('W]I(. |CAMpre(Ia b) - CAM(I7 b)l + |CAMpre(1a C) - CAM(I’ C)| (2)

In our implementation, we separate a batch into two small batches during training, one with and one without co-
occurrences. A sample is put into the co-occurrence batch if any of the 20 biased categories co-occurs with its context.
For the co-occurrence batch, we compute CAM with the current model being trained and CAM,,e with the trained

standard model, using the official CAM implementation: https://github.com/zhoubolei/CAM. We update the
model parameters with the following loss, where Lpcg is the binary cross entropy loss:

Lcam = A1Lo + A2 LR + LpcE. 3

For the other batch without any co-occurrences, we update the model parameters with Lgcg. With the hyperparameters
reported in the paper, 1; = 0.1 and A, = 0.01, we got underwhelming results and degenerate CAMs that drifted far from
the actual pixel regions. Hence, we tried increasing the regularization weight 1, (0.01, 0.05, 0.1, 0.5, 1.0, 5.0) and
achieved the best results with 4, = 0.1, which are reported in Table @

3.2 The second proposed feature-split method

By discouraging mutual spatial overlap, the CAM-based approach may not be able to leverage useful information from
the pixel regions surrounding the context. Thus, the paper proposes a second method that splits the feature space into two
subspaces to separately represent category and context, while posing no constraints on their spatial extents. Specifically,
they propose using a dedicated feature subspace to learn examples of biased categories appearing without their context.

Given a deep neural network, let x denote the D-dimensional output of the final pooling layer just before the fully-
connected (fc) layer. Let the weight matrix associated with fc layer be W € RP*M where M denotes the number
of categories given a multi-label dataset. The predicted scores inferred by a classifier (ignoring the bias term) are
$ = WT'x. To separate the feature representations of a biased category from its context, the paper does a random
row-wise split of W into two disjoint subsets: W, and W (dimension % XM) Consequently, x is split into X, and Xg,
and § = WX'x, + W' x;. When a biased category occurs without its context, the paper disables backpropagation through
W, forcing the network to learn only through W, and set X, to X (the average of x; over the last 10 mini-batches).

We implemented the feature-split method based on additional discussions with the original authors, to ensure that we
replicated their method as closely as possible. For a single training batch, we first forwarded the entire batch through the
model to obtain one set of scores Jnon-exclusive = WOT Xo + WST Xs and the corresponding features from the avgpool layer,
which directly precedes the fc layer. We made a separate copy of these features and replaced xg with X, then calculated
a new set of output scores Vexclusive = WZ Xo + WXT X,. Separate loss tensors for each of these outputs were computed, and
elements corresponding to the exclusive and non-exclusive examples in the unmodified and modified loss tensors were
zeroed out, respectively. The final loss tensor was obtained by adding these two together, and standard backpropagation
was done using this final loss tensor. The gradients were calculated with respect to a weighed binary cross entropy loss:

Lwgce = —a[tlog(o(9)) + (1 - 1) log(1 — o°($))]. “4)

where 7 is the ground-truth label, o is the sigmoid function, and « is the ratio between the number of training images in
which a biased category occurs in the presence of its context and the number of images in which it occurs in the absence
of its context. A higher value of @ indicates more data skewness[7]

3.3 Strong baselines
In addition to the standard model, the paper compares the proposed methods with several competitive strong baselines.

1. Remove co-occur labels: For each b, remove the ¢ label for images in which b and ¢ co-occur.

2. Remove co-occur images: Remove training instances where any b and ¢ co-occur. For COCO-Stuff, this process
removes 29,332 images and leaves 53,451 images in the training set.

3. Split-biased: Split each b into two classes: 1) b\ ¢ and 2) b N c. Unlike other "stage 2" models, this model is trained
from scratch rather than on top of the standard baseline because it has 20 additional classes. We later confirmed with
the authors that they did the same.

4. Weighted loss: For each b, apply 10 times higher weight to the loss for class » when b occurs exclusively.

5. Negative penalty: For each (b, c¢), apply a large negative penalty to the loss for class ¢ when b occurs exclusively.
In our email communication, the authors said that the negative penalty means a 10 times higher weight to the loss.

3In an email, the authors noted that a random split is not critical; they obtained similar results with a random split and a middle
split. We observed that a middle split of W yields better results for COCO-Stuff and DeepFashion, but the opposite for AwA. As the
gains from using a middle split for COCO-Stuff and DeepFashion were larger than the losses for AwA, we chose to use a middle split.

4In practice, the paper ensures « is at least iy, which they set to 3 for COCO-Stuff and AwA and 5 for DeepFashion. However,
we found that most of the paper’s biased category pairs have @ smaller than apj,. Out of 20 pairs, 13 pairs for COCO-Stuff, 20
pairs for DeepFashion, and 19 pairs for AWA had « smaller than o,;,. We also tried using higher values of o, but didn’t gain
meaningful improvements, so we report results with the original authors’ ;.

https://github.com/zhoubolei/CAM

Table 2: Performance of different methods on COCO-Stuff, DeepFashion, AwA, and UnRel on "exclusive" and
"co-occur" distributions with best results in bold. We compare our results to the paper’s results, specifically its Table 2,
3,4,5,8,9. Per-category results can be found in Appendix [H]

COCO-Stuft (mAP) DeepFashion (top-3 recall) AwA (mAP) UnRel (mAP)
Method Exclusive Co-occur Exclusive Co-occur Exclusive Co-occur 3 categories
Paper Ours | Paper Ours | Paper Ours | Paper Ours | Paper Ours | Paper Ours | Paper Ours
standard?] 245 239 | 66.2 650 | 49 7.0 17.8 228 | 194 195 | 722 69.0 | 42.0 43.0
remove labels 252 245 | 659 64.6 6.0 7.5 204 244 | 19.1 189 | 629 632 - 42.7
remove images | 28.4 29.0 | 287 59.6 | 4.2 5.6 54 13.0 | 227 21.7 | 583 652 - 48.6
split-biased 19.1 254 | 643 647 35 49 143 11.1 | 19.7 182 | 66.8 64.2 - 29.2
weighted 304 285 | 60.8 60.0 - 29.5 - 43.6 - 20.0 - 67.7 - 444
negative penalty | 23.8 239 | 66.1 64.7 5.5 7.8 189 238 | 192 196 | 684 69.0 - 42.5
class-balancing | 25.0 24.6 | 66.1 64.7 52 8.0 194 248 | 204 199 | 684 682 - 423
attribute decorr. - - - - - - - - 184 206 | 70.2 69.8 - -
CAM-based 264 269 | 649 642 - - - - - - - - 453 46.8
Seature-split 28.8 281 | 66.0 64.8 9.2 122 | 20.1 27.1 | 208 192 | 72.8 68.6 | 52.1 499

Figure 2: A visual comparison of the results on COCO-Stuff from Table[2] The blue and red lines mark the paper’s and
our standard mAPs. Similar plots for DeepFashion and AwA can be found in Appendix [F
COCO-Stuff Exclusive COCO-Stuff Co-occur

—
standard ** 'Y * * Paper
remove labels * % * * e Ours
remove images *-® * 3
split-blased|-* ' *@
weighted o * *-——%
negative penalty » - *
class-balancing ok L 3 *
CAM-based *e o X
feature-split . * [*
P 2 Py %) EEERE 0 61 02 B [5 6

6. Class-balancing loss [2]]: For each b, put the images in three groups: exclusive, co-occurring, and other. The weight
for each group is (1 — 8)/(1 — 8"*) where n is the number of images for each group and S is a hyperparameter. The
authors said they set 8 = 0.99 in our email communication.

7. Attribute decorrelation [5]: Use the proposed method, but replace the hand-crafted features used in [3] with deep
network features (i.e., conv5 features of a trained “stage 1" ResNet-50).

3.4 Training details and computational requirements

We trained all "stage 2" models on top of the standard model for 20 epochs using a learning rate of 0.01, a batch size of
200, and SGD with 0.9 momentum. The exceptions are split-biased which is not trained on top of the standard model
and is thus trained for an additional 20 epochs to ensure a fair comparison; and CAM-based which uses a batch size of
100 due to memory limits. All models were trained on a single RTX 3090 GPU and evaluated on the last epoch. On
COCO-Stuft, the single-epoch training time was around 12.9 minutes for standard, remove labels, split-biased, weighted,
negative penalty, and class-balancing. It took 8.4 minutes to train remove images, and 17.3 minutes and 13.3 minutes
to train CAM-based and feature-split, respectively. Thus, we reach a different conclusion from the paper’s claim that
the "overall training time of both proposed methods is very close to that of a standard classifier." We suspect that this
difference is due to the difference in implementation. Overall, the total training time for each method range from 35-43
hours on COCO-Stuff, 22-29 hours on DeepFashion, and 7-8 hours on AwA. For inference, the paper reports that a
single forward pass of an image takes 0.2ms on a single Titan X GPU for the standard, CAM-based, and feature-split
methods. We confirmed that it takes the same amount of time for the three methods. See Appendix [E] for detailed
training and inference times.

3.5 Results

In Table 2| we compare the performance of the ten methods, evaluated with the paper’s biased category pairs for
consistency. Additiional figures and per-category results can be found in Appendix [Fland [H]

5To ensure a fair comparison with the "stage 2" models, we tried training the standard model for an additional 20 epochs but did
not see improvements; hence, we report the standard results from Table E}

COCO-Stuff: Since our standard model underperforms the paper’s by 0.6-3.1% (Section[2)), we focus on the relative
ordering between the different methods visualized in Figure[2} In the paper, all but split-biased and negative penalty
improve upon the standard baseline’s "exclusive" mAP; whereas in our experiments, only negative penalty fails to
improve on standard’s "exclusive" mAP. Different from the paper, remove images has the highest "exclusive” mAP in our
experiments, followed by weighted and the paper’s proposed methods, feature-split and CAM-based. For feature-split,
we observed a similar tradeoff between "exclusive" and "co-occur” mAPs compared to the paper. All methods have
similar performance of 55.0-55.7 mAP when evaluated on the full test set for all 171 categories.

DeepFashion: Consistent with the paper, all methods except remove images and split-biased improve upon standard’s
"exclusive" top-3 recall. We found the weighted method performs the best out of all the methods with +22.5% for
"exclusive" and +20.8% for "co-occur." However, it has a relatively low top-3 recall when evaluated on the full test set
for all 250 categories: 23.3 compared to other methods’ top-3 recall in the range of 23.8-24.3.

Animals with Attributes: Unlike the result reported in the paper, our reproduced feature-split model had a -0.3% drop
in "exclusive" mAP and a -0.4% drop in "co-occur" mAP compared to the standard model. In Section[3.6] when we
experimented with different subspace sizes, we observed that the feature-split model trained with x, of size 1,792
improves upon the standard model on both test distributions. Among all the methods, remove images improves the
"exclusive" mAP the most; however, this method also suffers from a noticeable decrease in "co-occur" performance.
When evaluated on the full test set for all 85 categories, most methods have similar mAP in the range of 72.5-73.0,
except for remove labels that has 70.6 mAP and remove images that has 69.7 mAP.

UnRel: The paper includes a cross-dataset experiment where the models trained on COCO-Stuff are applied without
any fine-tuning on UnRel, a dataset that contains images of objects outside of their typical context. The paper evaluates
the models only on the 3 categories of UnRel that overlap with the 20 most biased categories of COCO-Stuff, which we
determined to be skateboard, car, and bus. While the paper does not report results from the remove images baseline, for
us it had the highest mAP of the 3 categories, followed by the feature-split and CAM-based methods.

3.6 Additional analyses

Cosine similarity between W, and W;: The paper computes the cosine similarity between W,, and W to investigate if
they capture distinct sets of information. It reports that the proposed methods yield a lower similarity score compared to
the standard model, and concludes that the biased class b is less dependent on ¢ for prediction in their methods. To
reproduce their results, for feature-split, we calculated the cosine similarity between W, [:, b] and W[, b] (dimensions
%) for each b of the 20 (b, c) pairs and reported their average. On the other hand, W, and W are not specified for
standard and CAM-based. Hence, we randomly split W in half and defined one as W,, and the other as Wi.

In Table|3] we compare our reproduced results with the paper’s results. Consistent with the paper’s conclusion, we find
that the proposed methods have weights with similar or lower cosine similarity. On the interpretation of the results, we
agree that feature-split’s low cosine similarity suggests that the corresponding feature subspaces x,, and x; capture
different information, as intended by the method. However, we don’t understand why the cosine similarity of CAM-based
would be lower than standard, as there is nothing in CAM-based that encourages the feature subspaces to be distinct.

Method COCO-Stuft | DeepFashion AwWA
Paper Ours | Paper Ours | Paper Ours
standard 0.21 0.08 - 0.12 - 0.02
CAM-based | 0.19 0.07 - - - -
feature-split | 0.17 0.04 - 0.05 - 0.02

Table 3: Cosine similarity between W,, and W for the 20 most biased categories. We compare our reproduced results
to those in the paper’s Table 7. The paper does not report results for the DeepFashion and AwA datasets.

Qualitative analysis: Following Section 5.1.2 of the original paper, we used CAMs to visually analyze the proposed
methods. In general, our observations are in line with those of the original paper. For example, in Figure[3] we see that
CAM-based tends to only focus on the right pixel regions (e.g., skateboard, microwave) compared to standard, while
feature-split also makes use of context (e.g., person, oven). More analyses are available in Appendix [G]

4 Our additional experiments

To better understand the proposed CAM-based and feature-split methods, we conducted several ablation studies (Table[d).

Figure 3: Biased category CAMs for (skateboard, person) and (microwave, oven) pairs.

skateboard microwave

standard CAM-based feature-split standard CAM-based feature-split

What is the effect of the regularization term in the CAM-based method? As mentioned in Section we tried
varying the weight for the regularization term Lg (A;) in the CAM-based method that prevents the CAMs of the biased
category pairs from drifting apart from the pixel regions of CAM,.. We observed that weak regularization allows for
highly localized, degenerate CAMs that don’t resemble CAMe, while overly strong regularization makes the method
less effective. We were able to strike an ideal balance with A, = 0.1, higher than the paper’s 1, = 0.01.

What is the effect of the weighted loss in the feature-split method? To understand the effect of the weighted loss in
the feature-split method, we tried training a feature-split model without it and a baseline model with the feature-split
weighted loss. Both variations have lower "exclusive" mAPs, suggesting that both the feature-splitting framework and
the weighted loss are important components of the method. We highlight that the feature-split model trained without the
weighted loss is worse than the standard model, suggesting that the weighted loss is central for the feature-split method
to achieve good performance. However, we also observed that the feature-split method’s weighted loss by itself is not
sufficient for improving the performance of the standard model on the "exclusive" distribution.

Does the size of the feature-split subspace matter? In the feature-split method, the original paper allocates half of
the 2,048 feature dimensions in the fc layer for learning exclusive image examples. We explored whether a smaller or
larger x,, subspace may strike a better balance and improve both "exclusive" and "co-occur" performance, as the number
of exclusive images is only a small fraction of the entire training data. For COCO-Stuff, the performance peaks on
"exclusive" and dips on "co-occur" at the 1,024 dimension split. For DeepFashion, performance on both distributions
peak at the 1,024 dimension split. For AwA, however, the performance on both distributions improves as the subspace
size increases. Lastly for UnRel, the model trained on COCO-stuff with a x,, of size 768 performs best. Overall, we did
not find a clear trend between feature-split performance and subspace size.

Table 4: (Top) Ablation studies of CAM-based and feature-split on COCO-Stuff. (Bottom) Additional feature-split
results with varying x,, subspace sizes. Best results are in bold.

Method Exclusive | Co-occur | All | Non-biased
standard 23.9 65.0 55.7 72.3
CAM-based with A, = 0 (no regularization) 24.4 64.6 55.5 72.0
CAM-based with 15 = 0.01 (paper params) 24.6 64.6 55.5 72.0
CAM-based with A5 = 0.1 (tuned params) 26.9 64.2 55.5 72.2
Sfeature-split 28.1 64.8 55.6 72.1
feature-split without weighted loss 23.6 65.4 55.6 72.1
baseline with feature-split weighted loss 24.0 64.8 55.5 72.1
. COCO-Stuff (mAP) | DeepFashion (top-3 recall) AwA (mAP) UnRel (mAP)
X, Size - - - -
Exclusive | Co-occur | Exclusive Co-occur Exclusive | Co-occur | 3 categories
256 23.8 65.9 32 12.5 18.5 69.7 47.8
512 26.7 65.9 3.4 12.9 18.7 69.0 50.1
768 27.2 65.8 4.6 14.3 19.1 69.2 50.4
1,024 28.1 64.8 12.2 27.1 19.2 68.6 49.9
1,280 24.8 66.0 4.0 13.7 19.3 69.9 45.8
1,536 23.0 66.1 2.7 13.9 19.5 70.3 442
1,792 21.7 66.2 2.3 14.1 19.7 70.8 40.6

5 Discussion

We found that the proposed CAM-based and feature-split methods help mitigate contextual bias, although we could not
completely replicate the quantitative results in the original paper even after completing an extensive hyperparameter
search. As an effort to check our conclusions, we tried several different approaches in how we choose our best models,
train the baselines, and performed evaluation. We also conducted additional analyses of the proposed methods to check
our implementations and train them to achieve their best possible performance. In all cases, decreasing contextual bias
frequently came with the cost of decreasing performance on non-biased categories. Ultimately, we believe deciding
what method is best depends on the trade-offs a user is willing to make in a given scenario, and the original paper’s
proposed methods seem to strike a good balance for the tested datasets.

Recommendations for reproducibility: Overall, the paper was clearly written and it was easy to follow the explanation
and reasoning of the experiments. Still, we ran into several obstacles while re-implementing the entire pipeline from
scratch. Our biggest concern was making sure that most, if not all, training/evaluation details were true to the experiments
in the paper. We are extremely grateful to the original authors who gave swift responses to our questions. Nevertheless,
it would have been easier to reproduce the results with code or a README file listing design decisions. Given the
limited information, it took us over a month to lock in various details on data processing, hyperparameter optimization,
and training the standard model, before we could move onto reproducing the "stage 2" methods. Moreover, each method
had its intricacies and we inevitably ran into ambiguities along the way. For example, the attribute decorrelation method
took considerable time to reproduce because no hyperparameters or code were given in the paper or the original work
[S]. We hope our report and published code help future use of the paper.

Recommendations for reproducing papers: In closing, we would like to share a few things that we found helpful as
suggestions for future reproducibility efforts. First, writing the mandatory reproducibility plan (provided in Section [I[jof
the appendix) at the beginning of the challenge was helpful, as it forced us to define concrete steps for reproducing
the experiments. We suggest putting together a similar plan because the order in which materials are presented in the
paper can be different from the order in which experiments should be run. Additionally, we recommend communicating
early with the original authors to determine undisclosed parameters and pin down the experimental setup. Lastly, for
reproducing training processes in particular, we suggest checking how training is progressing in as many different
ways as possible. In our process, this involved looking at the progression of CAMs and examining training curves for
individual loss function terms, both of which helped us pinpoint our issues.

Acknowledgements

This work is supported by the National Science Foundation under Grant No. 1763642 and the Princeton First Year
Fellowship to SK. We thank the authors of the original paper, especially the lead author Krishna Kumar Singh, who
gave detailed and swift responses to our questions. We also thank Angelina Wang, Felix Yu, Vikram Ramaswamy,
Vivien Nguyen, Zeyu Wang, and Zhiwei Deng for helpful comments and suggestions.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. COCO-Stuft: Thing and stuff classes in context. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on effective number of samples.
In Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical image database. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

Dinesh Jayaraman, Fei Sha, and Kristen Grauman. Decorrelating semantic visual attributes by resisting the urge to share. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, and Larry Zitnick.
Microsoft COCO: Common objects in context. In European Conference on Computer Vision (ECCV), 2014.

Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. DeepFashion: Powering robust clothes recognition and
retrieval with rich annotations. In Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Julia Peyre, Ivan Laptev, Cordelia Schmid, and Josef Sivic. Weakly-supervised learning of visual relations. In International
Conference on Computer Vision (ICCV), 2017.

Krishna Kumar Singh, Dhruv Mahajan, Kristen Grauman, Yong Jae Lee, Matt Feiszli, and Deepti Ghadiyaram. Don’t judge
an object by its context: Learning to overcome contextual bias. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

Yonggqin Xian, Christoph H. Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot learning—A comprehensive evaluation of
the good, the bad and the ugly. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Men also like shopping: Reducing gender bias
amplification using corpus-level constraints. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
2017.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features for discriminative
localization. Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

10

Appendix

We dedicate the appendix to providing more details on certain parts of the main paper.

In Section[A] we describe how we obtained and processed the four datasets.

In Section [B] we provide additional details on biased categories identification.

In Section[C| we describe our hyperparameter search.

In Section [D] we discuss different model selection methods we tried while reproducing the standard baseline.

In Section [E] we provide more details on computational requirements.

In Section [F| we provide visualizations of DeepFashion and AWA results.

In Section |G| we provide additional qualitative analyses with CAMs.

In Section [H} we provide per-category results for COCO-Stuff, DeepFashion, Animals with Attributes, and UnRel.
In Section I} we provide the reproducibility plan we wrote at the start of the project.

A Datasets

In this section, we describe how we obtained and processed the four datasets used in the paper. COCO-Stuff [1] and
UnRel [8] are used for the object classification task, and DeepFashion [7] and Animals with Attributes [[10] are used for
the attribute classification task. COCO-Stuff is the main dataset used for discussion of quantitative and qualitative results.
UnRel is used for cross-dataset experiments, i.e. testing models trained on COCO-Stuff on UnRel without fine-tuning.

Al COCO-Stuft

We downloaded COCO-Stuff [1]] from the official homepage: https://github.com/nightrome/cocostuff. COCO-
Stuff includes all 164K images from COCO-2017 (train 118K, val 5K, test-dev 20K, test-challenge 20K), but only the
training and validation set annotations are publicly available. It covers 172 classes: 80 thing classes, 91 stuff classes and
1 class designated ‘unlabeled.’

COCO-Stuff (COCO-2017 with "stuff" annotations added) contains the same images as COCO-2014 [6] but has different
train-val-test splits. The original paper follows the data split of COCO-2014 and uses 82,783 images for training and
40,504 images for evaluation. The image numbers are consistent between COCO-2014 and COCO-2017, so we were
able to map the "stuff" annotations from COCO-Stuff to the COCO-2014 images with "thing" annotations. Excluding
the ‘unlabeled’ category, we have in total 171 categories.

In Table[AT] we report the co-occurrence, exclusive, and other counts for the paper’s 20 biased category pairs. The
co-occurrence count is the number of images where b and ¢ co-occur; the exclusive count is the number of images
where b occurs without c; the other count is the number of remaining images where b doesn’t occur.

During our data processing, we found a small typo in the original paper. Section 3 of the paper says "COCO-Stuff has
2,209 images where ‘ski’ co-occurs with ‘person,” but only has 29 images where ‘ski’ occurs without ‘person.’" On the
other hand, we found 2,180 co-occurring and 29 exclusive images in the training set. We verified with the authors that
our data processing was correct. Merging COCO-2014 and COCO-Stuff annotations is a nontrivial step in the pipeline.
We hope our published code and the Table [AT]help future use.

A.2 DeepFashion

We downloaded DeepFashion [7] by following in the instructions on the official homepage: http://mmlab.ie.cuhk!
edu.hk/projects/DeepFashion.html. The dataset consists of 5 benchmarks, out of which we use the Category
and Attribute Prediction Benchmark. This benchmark consists of 209,222 training images, 40,000 validation images,
and 40,000 test images with 1,000 attribute classes in total. Per the procedure specified by the authors, we only use the
250 most commonly appearing attributes. In Table[A2] we report the co-occur, exclusive and other counts for the paper’s
20 biased category pairs. It should be noted that the DeepFashion dataset was updated with additional "fine-grained
attribute annotations" in May 2020.

A.3 Animals with Attributes

Animals with Attributes (AwA) [10] is suspended and the images are no longer available because of copyright restrictions,
according to the official homepage: https://cvml.ist.ac.at/AwA/. Hence we downloaded Animals with Attributes
2 (AwA?2), which is described as a "drop-in replacement” to AwA as it has the same class structure and almost the
same characteristics, from the AwA?2 official homepage: https://cvml.ist.ac.at/AwA2/. We confirmed with

11

https://github.com/nightrome/cocostuff
http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
https://cvml.ist.ac.at/AwA/
https://cvml.ist.ac.at/AwA2/

the authors that they used AwA?2 as well. AwA2 consists of 30,337 training images with 40 animal classes and 6,985
test images with 10 other animal classes, with pre-extracted feature representations for each image. The classes are
aligned with Osherson’s classical class/attribute matrix, thereby providing 85 numeric attribute values for each class.
The images were collected from public sources, such as Flickr, in 2016.

In Table[A3] we report the co-occurrence, exclusive, and other counts for the paper’s 20 biased category pairs. Following
the description in the paper, we trained all models on the training set (40 classes) and evaluate on the test set (10
classes). For biased categories identification, following the paper description, we used the test set to determine the
biased categories as these two sets contain different attribute distributions.

A.4 UnRel

We downloaded UnRel [8]] from the official homepage: https://github.com/jpeyre/unrel. This dataset contains
1,071 images of objects out of their typical context and serves as a stress test for the models trained on COCO-Stuff.
According to the paper, there are only three categories in UnRel that are shared with the 20 biased categories found in
COCO-Stuff. We determined these categories to be "skateboard," "car" and "bus." Only these three categories were
used in the evaluation.

B Biased categories identification

In this section, we provide additional details on the biased categories identification process discussed in Section [2.2] of
the main paper.

For each dataset, the paper identifies the top-20 (b, c¢) pairs of biased categories, where b is the category suffering from
contextual bias and c is the associated context category. For a given category z, let [, N I, and I, \ I, denote sets of
images where b occurs with and without z respectively. Let (I, b) denote the prediction probability of an image 7 for a
category b obtained from a trained multi-class classifier. The bias between two categories b and z is defined as follows:

|]Ibr1w]IZ| Yrennr P, D)
m Zrep\. P, D)

bias(b, z) = &)

which is the ratio of average prediction probabilities of b when it occurs with and without z. The category ¢ that most
biases b is determined as ¢ = arg max, bias(b, z), with a condition that they co-occur frequently. Specifically, the paper
defines that b must co-occur at least 20% of the time with ¢ for COCO-Stuff and AwA, and 10% for DeepFashion. In

6We found this vague as there are two ceiling categories in COCO-Stuff: ceiling-other and ceiling-tile. We interpreted it as
ceiling-other as ceiling-tile doesn’t frequently co-occur with toaster.

Biased category pairs Bias Training (82,783) Test (40,504) Biased category pairs (Ours)
Biased (b) Context (c) | Paper Ours | Co-occur Exclusive | Co-occur Exclusive Biased (b) Context (c) Bias
cup dining table 1.76 1.85 3,186 3,140 1,449 1,514 car road 1.73
wine glass person 1.80 1.59 1,151 583 548 304 potted plant furniture-other 1.75
handbag person 1.81 2.25 4,380 411 2,035 209 spoon bowl 1.75
apple fruit 191 2.12 477 627 208 244 fork dining table 1.78
car road 1.94 1.73 5,794 2,806 2,842 1,331 bus road 1.79
bus road 1.94 1.79 2,283 507 1,090 259 cup dining table 1.85
potted plant vase 1.99 1.73 930 2,152 482 1,058 mouse keyboard 1.87
spoon bowl 2.04 1.75 1,314 954 638 449 remote person 1.89
microwave oven 2.08 1.59 632 450 291 217 wine glass dining table 1.94
keyboard mouse 2.25 2.11 860 601 467 278 clock building-other 1.97
skis person 2.28 2.21 2,180 29 984 9 keyboard mouse 2.11
clock building 2.39 1.97 1,410 1,691 835 840 apple fruit 2.12
sports ball person 2.45 3.61 2,607 105 1,269 55 skis SNow 2.22
remote person 2.45 1.89 1,469 666 656 357 handbag person 2.25
snowboard person 2.86 2.40 1,146 22 522 11 snowboard person 2.40
toaster ceiling®] 3.70 1.98 60 91 30 44 skateboard person 3.41
hair drier towel 4.00 3.49 54 74 28 41 sports ball person 3.61
tennis racket person 4.15 1.26 2,336 24 1,180 10 hair drier sink 6.11
skateboard person 7.36 3.41 2,473 38 1,068 24 toaster oven 8.56
baseball glove person 339.15 31.32 1,834 19 820 9 baseball glove person 31.32

Table Al: (Left) The paper’s 20 most biased category pairs for COCO-Stuff and their bias values, both what’s reported
in the paper and what we’ve calculated with our trained model. (Middle) The number of co-occuring and exclusive
images for each pair. (Right) The 20 most biased categories we’ve identified with our trained model.

12

https://github.com/jpeyre/unrel

short, a given category b is most biased by c if (1) b co-occurs frequently with ¢ and (2) the prediction probability of b
drop significantly in the absence of c.

While this method can be applied to any number of biased category pairs, the paper says using K = 20 sufficiently
captures biased categories in all datasets used the paper. We report the 20 most biased category pairs we’ve identified
and compare them to those identified by the paper in Tables [AT] (COCO-Stuff), [AZ] (DeepFashion), [A3] (AwA). We
discuss the results for each dataset in more detail below.

COCO-Stuff: Overall, the bias values of the paper’s biased category pairs calculated with our model are similar to
the paper’s values. Furthermore, most of our biased category pairs match with the paper’s pairs. 18 of the 20 biased
categories overlap, although their context categories sometimes differ.

DeepFashion: After manual cleaning per suggestion of the authors, 10 of our biased category pairs match with the
paper’s. Still, the bias values of the paper’s pairs calculated with our trained model are overall similar to the paper’s
values. It is worth noting that there are fewer co-occurring and exclusive images for each of the biased category pairs,
compared to COCO-Stuff.

Animals with Attributes: Almost all of our biased categories match with those in the paper. We did observe in the
process of determining the biased categories that for each b, there were multiple categories ¢ which had an equally
biased effect on b. That is, the bias value bias(b, ¢) was equal over each of these ¢’s. We suspect that this is because
the images in AwWA are labeled by animal class rather than per image, so many images share the same exact labels.
Moreover, we observed that for many image examples, the baseline model’s highest prediction scores differ by less than
0.001 or even 0.0001. The combination of these two events may result in extremely similar bias scores. Since there
were multiple ¢’s for each b, we listed the category which matched the paper’s findings whenever possible. In total, 18
of our biased categories overlapped with those in the paper.

C Hyperparameter search

In this section, we describe how we conducted our hyperparameter search. The paper does not describe the hyperparameter
search process, so we followed standard practice and tuned the hyperparameters on the validation set. While DeepFashion
has training, validation and test sets, COCO-Stuff and AwA don’t have validation sets, so we created a random 80-20
split of the original training set and used the 80 split as the training set and the 20 split as the validation set. We later
confirmed with the authors that this is how they did their hyperparameter search.

Biased category pairs Bias Training (209,222) Test (40,000) Biased category pairs (Ours)
Biased (b) Context (¢) | Paper Ours | Co-occur Exclusive | Co-occur Exclusive || Biased (b) Context(c) Bias
bell lace 3.15 274 167 549 32 92 boyfriend distressed 3.35
cut bodycon 3.30 3.46 313 2612 58 488 gauze embroidered 3.35
animal print 331 2.29 592 234 106 52 la muscle 3.35
flare fit 331 2.56 2,960 527 561 103 diamond print 3.40
embroidery crochet 344 3.04 237 1,021 42 221 york city 3.43
suede fringe 348 2.5 104 478 23 92 retro chiffon 343
jacquard flare 3.68 4.02 71 538 11 107 cut bodycon 3.46
trapeze striped 370 2.85 51 531 14 127 fitted sleeve 3.58
neckline sweetheart | 3.98 3.16 161 818 25 156 light wash 3.59
retro chiffon 4.08 3.43 119 1,135 26 224 sequin mini 3.63
sweet crochet 432 6.55 180 1,122 29 190 cuffed denim 3.70
batwing loose 436 3.89 181 518 40 100 lady chiffon 3.71
tassel chiffon 448 3.15 71 651 8 131 jacquard fit 4.02
boyfriend distressed | 4.50 3.35 276 1,172 63 215 bell sleeve 4.23
light skinny 453 331 216 1,621 47 298 ankle skinny 4.42
ankle skinny 456 442 340 462 68 96 tiered crochet 4.45
french terry 5.09 7.64 975 646 178 121 studded denim 4.98
dark wash 5.13 5.66 343 1,011 69 191 dark wash 5.66
medium wash 745 6.78 227 653 35 153 sweet crochet 6.55
studded denim 7.80 4.98 139 466 25 95 medium wash 6.78

Table A2: (Left) The paper’s 20 most biased category pairs for DeepFashion and their bias values, both what’s reported
in the paper and what we’ve calculated with our trained model. (Middle) The number of co-occuring and exclusive
images for each pair. (Right) The 20 most biased categories we’ve identified with our trained model.

13

Table A3: (Left) The paper’s 20 most biased category pairs for AWA and their bias values, both what’s reported in the
paper and what we’ve calculated with our trained model. (Middle) The number of co-occuring and exclusive images for
each pair. (Right) The 20 most biased categories we’ve identified with our trained model.

Biased category pairs Bias Training (30,337) Test (6,985) Biased category pairs (Ours)
Biased (b) Context (¢) | Paper Ours Co-occur Exclusive | Co-occur Exclusive || Biased (b)) Context (c¢) Bias
white ground 3.67 4.08 12,952 1,237 3,156 988 forager nestspot 4.04
longleg domestic 3.71 6.55 3,727 7,667 728 720 white ground 4.08
forager nestspot 4.02 4.04 7,740 7,214 3,144 713 hairless swims 4.29
lean stalker 4.46 391 5,312 11,592 720 1,038 muscle black 4.63
fish timid 5.14 6.30 2,786 2,675 4,002 1,232 insects gray 4.97
hunter big 5.34 8.99 6,557 3,207 1,708 310 fish timid 6.30
plains stalker 5.40 1.81 3,793 12,865 720 310 longleg domestic 6.55
nocturnal white 5.84 6.97 3,118 2,464 822 720 nocturnal white 6.97
nestspot meatteeth 5.92 8.14 4,788 5,180 2,270 874 nestspot meatteeth 8.14
jungle muscle 6.26 9.15 4,480 696 2,132 874 hunter big 8.99
muscle black 6.39 4.63 10,656 8,960 2,157 684 jungle muscle 9.15
meat fish 7.12 10.17 3,175 7,819 1,979 310 meat fish 10.17
mountains paws 9.24 14.74 3,090 4,897 1,232 728 domestic inactive 11.02
tree tail 10.98 11.48 2,121 1,255 1,960 874 tree tail 11.48
domestic inactive 11.77 11.02 5,853 5,953 3,322 728 spots longleg 12.50
spots longleg 20.15 12.50 3,095 2,433 720 3,087 mountains paws 14.74
bush meat 29.47 31.26 1,896 5,922 6,265 1,602 bush meat 31.26
buckteeth smelly 34.01 51.25 3,701 3,339 310 874 buckteeth smelly 51.25
slow strong 76.59 125.19 8,710 1,708 3,968 747 slow strong 125.19
blue coastal 319.98 1,393.25 946 174 709 747 blue coastal 1,393.25

Search for the standard model: For COCO-Stuff, we tried varying the learning rate (0.1, 0.05, 0.01), weight decay
(0, le-5, le-4, 1e-3), and the epoch after which learning rate is dropped (20, 40, 60). We found that the paper’s
hyperparameters (0.1 learning rate dropped to 0.01 after epoch 60 with no weight decay) produced the best results. For
DeepFashion, we varied the learning rate (0.1, 0.05, 0.01, 0.005, 0.001, 0.0001), weight decay (0, le-6, le-5, le-4), and
the epoch after which the learning rate dropped (20, 30). We obtained the best results using a constant learning rate of
0.1 and weight decay of le-6. For AwA, we tried learning rates of 0.1 and 0.01, with various training schedules such as
dropping from 0.1 to 0.001, dropping from 0.01 to 0.001, and keeping a constant learning rate of 0.01 throughout. We
also tried varying weight decay (0, le-2, le-3, le-4, 1e-5), but the paper’s hyperparameters (0.1 learning rate dropped to
0.01 after epoch 10 with no weight decay) led to the best results. We also tried training the models longer but didn’t
find much improvement, so we trained for the same number of epochs as in the paper (100 for COCO-Stuff, 50 for
DeepFashion, 20 for AwA).

Search for the "'stage 2'' models: For "stage 2" models, we tried varying the learning rate (0.005, 0.01, 0.05, 0.1, 0.5)
and found that the paper’s learning rate of 0.01 produces the best results. We didn’t find benefits from training the
models longer, so following the original authors, we train all "stage 2" models (except split-biased) for 20 epochs on
top of the standard model and use the model at the end of training as the final model. For the CAM-based model, we
conducted an additional hyperparameter search because we got underwhelming results and degenerate CAMs with the
paper’s hyperparameters (1; = 0.1, 1, = 0.01). We tried varying the regularization weight 1, (0.01, 0.05, 0.1, 0.5, 1.0,
5.0) and achieved the best results with 1, = 0.1.

D Selecting the best model epoch

While reproducing the standard model in Section 2] we tried selecting the best model epoch with four different selection
methods: 1) lowest loss, 2) highest exclusive mAP, 3) highest combined exclusive and co-occur mAPs, and 4) last
epoch (paper’s method). Note that method 4 does not require a validation set, while methods 1-3 do as they require
examinations of the loss and the mAPs at every epoch. Hence for datasets like COCO-Stuff and AwA that don’t have a
validation set, we can apply the first three methods only when we create a validation set by doing a random split of the
original training set (e.g. 80-20 split).

In Table[A4] we show COCO-Stuff standard results with different epoch selection methods. For methods 1-3, the best
epoch is selected based on the loss or the mAPs on the validation set. For method 4, we simply select the last epoch.
Note that all numbers in the table are results on the unseen test set.

First considering the model trained on the 80 split, we see that selecting the epoch with the lowest (BCE) loss yields the
lowest mAP (row 1). The results of the other three methods (rows 2—4) are largely similar, with less than 0.4 mAP
difference for all fields. When we plot the progression of the losses and the mAPs (Figure [AT)), we see that the mAPs

14

are mostly consistent in the latter epochs. Hence, we decided that using the last epoch is a reasonable epoch selection
method. With this method we also benefit from training on the full training set, which improves all four mAPs (row 5).

Table A4: COCO-Stuff standard baseline results with different model epoch selection methods. All numbers are results
on the test set. The best results are in bold.

Training data Selection method Selected epoch | Exclusive | Co-occur | All | Non-biased
80 split 1) Lowest loss 36 22.0 64.0 55.4 71.8
80 split 2) Highest exclusive mAP 79 229 64.1 55.2 71.6
80 split 3) Highest exclusive + co-occur mAP 68 23.0 64.2 55.3 71.8
80 split 4) Last epoch 100 229 63.8 55.0 714
Full training set 4) Last epoch 100 23.9 65.0 55.7 72.3

Figure Al: Losses and mAPs of the COCO-Stuff standard model trained on the 80 split of the original training set. The
validation loss and the four mAPs are calculated on the remaining 20 split which we use as the validation set.
Train loss Exclusive mAP Co-occur mAP 60 Non-biased mAP

Validation loss All 171 categories mAP

E Computational requirements

In Table we report the single-epoch training time for each method trained with a batch size of 200 using a single
RTX 3090 GPU, except for CAM-based which is trained on two GPUs due to memory constraints. Overall, the total
training time for each method range from 35-43 hours on COCO-Stuff, 22-29 hours on DeepFashion, and 7-8 hours on
AwA. For inference, a single image forward pass takes 9.5ms on a single RTX 3090 GPU. Doing inference on the entire
test with a batch size of 100 takes 5.6 minutes for COCO-Stuff (40,504 images), 2.7 minutes for DeepFashion (40,000
images), 1.8 minutes for AWA (6,985 images), and 18.2 seconds for UnRel (1,071 images).

Table A5: Single-epoch training time (in minutes) for different methods, trained using a batch size of 200.

Method COCO-Stuff DeepFashion AwA
standard 12.9 16.8 8.8
remove labels 12.8 16.8 8.8
remove images 8.4 16.1 0.5
split-biased 12.9 16.7 8.8
weighted 12.9 16.8 8.8
negative penalty 12.8 16.8 8.8
class-balancing 12.8 16.9 8.8
attribute decorrelation - - 12.8
CAM-based 17.3 - -

feature-split 13.3 20.9 10.0

F Additional results

In Figure[AZ] we show visual comparison of our results and the paper’s results reported in Table 2] for the AWA and
DeepFashion datasets. A similar plot for COCO-Stuff is presented in Figure 2]

G Additional qualitative analyses

In Figures 6 through 9 of the original paper, the CAMs produced by the CAM-based and feature-split methods are
compared to those of the standard model. Since the image IDs of the images used in these figures were not made
available, we attempted to find images that closely replicated those used in the paper.

15

Figure A2: Performance of different methods on DeepFashion and AwA. The blue and red lines mark the paper’s and
our standard mAPs. All results can be found in Table

DeepFashion Exclusive DeepFashion Co-occur
standard|-—#*—® & ® * Paper
e Ours
remove labels *|@ *-|-@
remove images| | ® e []
split-biasedi#*-# .-—*
weighted] o
negative penalty *- @ * °
class-balancing he---|-@ * ®
feature-split * '] * [
5 10 15 20) 0 5 10 15 20 el 30 35 40
Top-3 Recall Top-3 Recall
AwA Exclusive AwA Co-occur
standard 0 Py * * Paper
remove labels o* *» e Ours
remove images ® * * °
split-biased] *] *
weighted [] L]
negative penalty *||® * @
class-balancing [ok
attribute decorrelation * ° ok
feature-split] *] *
18 . 0 P 2 o) &0 62 B [8 70 2
mAP mAP

Figures 6 and 7 of the original paper compare the CAMs of the CAM-based method against those of the standard
and feature-split method. The paper’s comparison between the CAM-based and feature-split models shows that the
feature-split CAM regions cover both b and ¢ categories, whereas the CAM-based model’s CAM covers mostly the area
of b. In the majority of our examples, we found that this distinction to be less clear (see Figure[A4). Likewise, the
CAMs of our CAM-based method compared to the CAMs of our standard model are also only slightly different, even on
instances where the CAM-based model succeeds but the standard model fails (see Figure [A3).

Figure 8 in the original paper gives several examples images in which biased categories b appear away from their
context c. Specifically, there are examples for which the feature-split model was able to predict b correctly but the
standard model failed to do so, as well as some examples where both models failed. Our Figure[A3]shows some of our
own examples. Several of the examples from the original paper also came up in our own analysis. Out of all the test
images, we found 1 "skateboard" examples on which our feature-split model was successful but our standard model
failed, and 11 examples on which both models failed. There were 3 "microwave" examples on which only feature-split
was successful and 131 examples on which neither model was successful. For "snowboard", there were 4 examples on
which only the feature-split model was successful and 4 examples on which both failed.

Figure 9 of the original paper shows how the CAMs derived from W, and Wj, the two halves of the feature-split
model’s feature subspace, focus on the object b and the context c, respectively. In our qualitative observations shown in
Figure[A6] we noticed the same trend.

16

skateboard remote

»

standard CAM-based standard CAM-based

Figure A3: CAMs of examples on which our CAM-based model succeeds and our standard model fails. They are
visually quite similar.

skateboard skis

feature-split CAM-based feature-split CAM-based

Figure A4: CAMs of examples on which our feature-split model succeeds and our CAM-based model fails. They are
visually quite similar.

skateboard

snowboard

microwave

Figure AS: Examples on which our feature-split model succeeds and our standard model fails are outlined in green
(left box). Examples on which both models fail are outlined in red (right box). While the original paper shows three
examples of images containing skateboard on which the feature-split model succeeds but the CAM-based model fails,
we only found one.

17

CAM wrt to W, CAM wrt to Wi

handbag

snowboard

Figure A6: Interpreting the feature-split method by visualizing the CAMs with respect to W,, and Wy. Consistent with
the paper’s observations, we see that W,, focuses on the actual category (e.g., handbag, snowboard, car, spoon, remote)
while W looks at context (e.g., person, road, bowl).

18

H Per-category results

In Table[2] we reported results aggregated over multiple categories. In this section, we present per-category results for
the standard, CAM-based, and feature-split methods in Tables[A6| (COCO-Stuff),[A7] (DeepFashion), and [A8|(AwA),
and compare them to the paper’s results. We also present our results on the UnRel dataset in Table

Table A6: Per-category results on COCO-Stuff. This table together with Table [A 1| reproduce the paper’s Table 10.

Metric: mAP Exclusive Co-occur

Biased category pairs standard CAM-based | feature-split standard CAM-based | feature-split
Biased (b) Context (¢) | Paper Ours | Paper Ours | Paper Ours | Paper Ours | Paper Ours | Paper Ours
cup dining table | 33.0 295 | 354 309 | 274 232 | 68.1 61.7 | 63.0 592 | 702 63.7
wine glass person 350 348 | 363 383 | 351 363 | 579 559 | 574 540 | 573 554
handbag person 3.8 2.8 5.1 3.8 4.0 2.8 428 40.6 | 414 403 | 427 410
apple fruit 292 246 | 298 255 | 307 256 | 647 656 | 644 650 | 641 62.6
car road 36,7 364 | 382 392 | 366 365 | 797 79.1 | 785 780 | 79.2 787

bus road 40.7 410 | 416 438 | 439 433 | 8.0 851 | 853 843 | 854 843
potted plant vase 372 387 | 378 402 | 365 378 | 50.0 48.7 | 46.8 462 | 46.0 449
spoon bowl 147 138 | 163 149 | 143 133 | 427 356 | 359 333 | 426 363
microwave oven 353 410 | 36.6 434 | 39.1 418 | 609 60.2 | 60.1 595 | 59.6 593
keyboard mouse 446 443 | 429 469 | 471 452 | 85.0 844 | 833 839 | 8.1 838
skis person 2.8 54 7.0 141 | 270 268 | 91.5 906 | 91.3 90.7 | 91.2 90.5
clock building 49.6 494 | 505 505 | 455 436 | 845 847 | 847 846 | 864 86.6
sports ball person 12.1 32 14.7 6.5 22.5 9.5 75,5 709 | 753 70.7 | 742 69.7
remote person 237 222 | 269 248 | 212 204 | 705 703 | 674 681 | 727 714
snowboard person 2.1 5.0 24 11.6 6.5 12.7 | 73.0 756 | 727 757 | 726 749
toaster ceiling 7.6 6.4 7.7 6.5 6.4 6.2 5.0 6.1 5.0 5.0 44 5.1
hair drier towel 1.5 1.3 1.3 1.3 1.7 1.5 6.2 7.6 6.2 7.7 6.9 114
tennis racket person 535 551 | 597 585 | 61.7 616 | 976 974 | 975 974 | 975 973
skateboard person 148 21.1 | 226 305 | 344 420 | 913 91.7 | 91.1 91.7 | 90.8 91.1
baseball glove person 12.3 2.2 144 72 340 317 | 91.0 889 | 913 89.0 | 91.1 88.6
Mean - 245 239 | 264 269 | 288 281 | 662 650 | 649 642 | 66.0 64.8

Table A7: Per-category results on DeepFashion. This table together with Table [A2]reproduce the paper’s Table 11.

Metric: top-3 recall Exclusive Co-occur
Biased category pairs standard feature-split standard feature-split
Biased (b) Context (c) | Paper Ours | Paper Ours | Paper Ours | Paper Ours
bell lace 54 14.1 | 22.8 21.7 3.1 9.4 9.4 15.6
cut bodycon 8.6 109 | 125 152 | 293 379 | 362 448
animal print 0.0 0.0 1.9 11.5 1.9 1.9 2.8 9.4
flare fit 184 194 | 320 29.1 | 56.0 419 | 62.0 56.2
embroidery crochet 4.1 54 1.8 3.6 4.8 4.8 0.0 0.00
suede fringe 120 185 | 19.6 228 | 652 652 | 739 739
jacquard flare 0.0 0.0 0.9 6.5 0.0 9.1 9.1 18.2
trapeze striped 8.7 165 | 299 30.7 | 429 357 | 50.0 643
neckline sweetheart 0.0 0.6 0.0 1.3 0.0 0.0 0.0 0.0
retro chiffon 0.0 0.0 0.4 1.3 0.0 0.0 0.0 0.0
sweet crochet 0.0 0.0 0.5 3.7 0.0 35 0.0 3.5
batwing loose 11.0 7.0 120 140 | 275 225 | 150 200
tassel chiffon 13.0 153 | 16.8 23.7 | 25.0 625 | 250 625
boyfriend distressed 11.6 17.7 | 11.6 200 | 492 57.1 | 38.1 508
light skinny 2.0 4.0 1.3 6.4 149 17.0 | 85 12.8
ankle skinny 1.0 7.3 146 115 | 132 353 | 279 324
french terry 0.0 0.0 0.8 6.6 9.6 20.2 7.9 30.9
dark wash 2.6 0.5 2.1 3.1 8.7 2.9 13.0 159
medium wash 0.0 0.0 00 0.00 | 0.0 5.7 0.0 2.9
studded denim 0.0 2.1 3.2 105 | 40 240 | 240 280
Mean - 4.9 7.0 9.2 122 | 17.8 228 | 20.1 27.1

19

Table A8: Per-category results on AWA. This table together with Table[A3|reproduce the paper’s Table 12.

Metric: mAP Exclusive Co-occur
Biased category pairs standard feature-split standard feature-split
Biased (b) Context (c¢) | Paper Ours | Paper Ours | Paper Ours | Paper Ours
white ground 248 275 | 246 315 | 8.8 863 | 862 826
longleg domestic 185 120 | 29.1 94 | 894 798 | 893 753
forager nestspot 336 309 | 334 305 | 96.6 955 | 965 94.6
lean stalker 115 123 | 12.0 109 | 545 519 | 558 554
fish timid 60.2 54.6 | 574 544 | 983 97.8 | 983 978
hunter big 4.1 34 3.6 32 | 329 348 | 30.0 424
plains stalker 6.4 134 | 6.0 7.6 | 447 398 | 599 553
nocturnal white 133 12,0 | 131 132 | 71.2 555 | 605 487
nestspot meatteeth 134 143 | 149 150 | 628 62.1 | 676 57.1
jungle muscle 333 304 | 313 322 | 8.6 863 | 8.6 86.7
muscle black 9.3 10.1 9.3 100 | 76.6 793 | 73.6 815
meat fish 4.5 3.7 3.8 33 76.1 677 | 73.6 650
mountains paws 10.9 9.8 10.0 8.3 499 51.6 | 399 485
tree tail 36.5 427 | 550 41.1 | 932 938 | 927 914
domestic inactive 11.9 131 | 131 132 | 73.7 71.7 | 76.6 75.2
spots longleg 438 469 | 452 497 | 61.8 426 | 59.1 393
bush meat 19.8 20.1 | 221 19.7 | 70.2 43.1 | 75.1 41.7
buckteeth smelly 7.8 9.1 8.9 9.3 27.1 49.1 | 453 40.0
slow strong 155 150 | 146 15.0 | 958 964 | 933 96.6
blue coastal 8.4 8.2 8.2 76 | 942 948 | 958 97.0
Mean - 194 195 | 208 193 | 722 69.0 | 72.8 68.6

Table A9: Per-category mAP results on UnRel. The paper doesn’t report per-category results, so we only report ours.
Next to the category names are the numbers of images (out of 1,071) in which the category appears.

Method car (198) bus(11) skateboard (12) | Mean
standard 70.0 44.4 14.5 43.0
remove labels 70.6 42.2 15.2 42.7
remove images 71.6 50.0 24.3 48.6
split-biased 60.8 259 0.9 29.2
weighted 71.8 39.5 22.0 44.4
negative penalty 70.6 42.0 15.0 42.5
class-balancing 70.6 40.7 15.5 42.3
CAM-based 72.0 40.2 28.2 46.8
feature-split 70.8 422 36.7 49.9

20

I Reproducibility plan

For reference, we provide the reproducibility plan we wrote at the beginning of the project. Writing this plan allowed us
to define concrete steps for reproducing the experiments and understand non-explicit dependencies within the paper. We
suggest putting together a similar plan as the order in which materials are presented in the paper can be different from
the order in which experiments should be run.

Reproducibility plan

The original paper points out the dangers of contextual bias and aims to accurately recognize a category in the absence
of its context, without compromising on performance when it co-occurs with context. The authors propose two methods
towards this goal: (1) a method that minimizes the overlap between the class activation maps (CAM) of the co-occurring
categories and (2) a method that learns feature representations that decorrelate context from category. The authors apply
their methods on two tasks (object and attribute classification) and four datasets (COCO-Stuff, DeepFashion, Animals
with Attributes, UnRel) and report significant boosts over strong baselines for the hard cases where a category occurs
away from its typical context.

As of October 20th, 2020, the authors’ code is not publicly available, so we plan to re-implement the entire pipeline.
Specifically, we would like to reproduce the paper in the following order:

1. Data preparation: We will download the four datasets and do necessary processing.

2. Biased categories identification: The original paper finds a set of K=20 category pairs that suffer from
contextual bias. We would like to confirm that we identify the same biased categories in COCO if we follow
the process described in Section 3.1. and Section 7 in the Appendix.

3. Baseline: We will train the standard classifier (baseline) by fine-tuning a pre-trained ResNet-50 on all categories
of COCO. The authors describe this part as stage 1 training.

4. CAM-based method: We will implement the proposed method which uses CAM for weak local annotation.
Then using the standard classifier as the starting point, we will do stage 2 training with this method and check
whether it outperforms the standard classifier.

5. Feature splitting method: We will implement the proposed method which aims to decouple representations of a
category from its content. Then we will do stage 2 training with this method and check whether it outperforms
the standard classifier and the CAM-based method.

6. Qualitative analysis: Once we have trained standard, ours-CAM, and ours-feature-split classifiers, we can
re-create visualizations in Figures 6-9 using CAM as a visualization tool. We will compare our visualizations
with the figures in the paper.

Successfully finishing 1-6 will reproduce the main claim of the paper. Afterwards, we plan to reproduce the remaining
parts of the paper as time permits.

7. Strong baselines: In addition to the baseline standard classifier, the authors compare their two proposed
methods to the following strong baselines: class balancing loss, remove co-occur labels, remove co-occur
images, weighted loss, and negative penalty. With these additional baselines, we will be able to reproduce
Table 2 in full.

8. Cross dataset experiment on UnRel: The authors test the models trained on COCO on 3 categories of UnRel
that overlap with the 20 biased categories of COCO-Stuff. This experiment should be straightforward to run
once the UnRel dataset is ready.

9. Attribute classification on DeepFashion and Animals with Attributes: To reproduce attribute classification
experiments, we will compare performance of standard, class balancing loss, attribute decorrelation, and
ours-feature-split classifiers on DeepFashion and Animals with Attributes datasets.

21

	Introduction
	Reproducing the standard baseline and the biased category pairs
	Implementation and training details
	Biased categories identification
	Evaluation details
	Results

	Reproducing the "stage 2" methods: CAM-based, feature-split, and strong baselines
	The first proposed CAM-based method
	The second proposed feature-split method
	Strong baselines
	Training details and computational requirements
	Results
	Additional analyses

	Our additional experiments
	Discussion
	Datasets
	COCO-Stuff
	DeepFashion
	Animals with Attributes
	UnRel

	Biased categories identification
	Hyperparameter search
	Selecting the best model epoch
	Computational requirements
	Additional results
	Additional qualitative analyses
	Per-category results
	Reproducibility plan

