
FlexControl: Computation-Aware Conditional Control with Differentiable
Router for Text-to-Image Generation

Zheng Fang * 1 Lichuan Xiang * 1 2 Xu Cai 2 Kaicheng Zhou 2 Hongkai Wen 1

Figure 1. Dynamically inject conditional controls for image generation based on timestep and task-specific sample. (a) The
architecture of conventional controllable generative model — ControlNet. (b) The architecture of the proposed FlexControl. (c) Statistics
on the number of activated control blocks of the FlexControl at each denoising step. Here, “∼50% spasity” indicates that the number of
floating-point operations (FLOPs) of activated blocks is limited to 50% of the trainable branch.

Abstract

Spatial conditioning control offers a powerful
way to guide diffusion-based generative mod-
els. Yet, most implementations (e.g., Control-
Net) rely on ad-hoc heuristics to choose which
network blocks to control — an approach that
varies unpredictably with different tasks. To ad-
dress this gap, we propose FlexControl, a novel
framework that equips all diffusion blocks with
control signals during training and employs a
trainable gating mechanism to dynamically select
which control signal to activate at each denois-
ing step. By introducing a computation-aware
loss, we can encourage the control signal to ac-
tivate only when it benefits the generation qual-
ity. By eliminating manual control unit selec-
tion, FlexControl enhances adaptability across
diverse tasks and streamlines the design pipeline

*Equal contribution 1Department of Computer Science, Univer-
sity of Warwick, Coventry, UK 2Collov Labs. Correspondence to:
Hongkai Wen <hongkai.wen@warwick.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

with computation-aware training loss in an end-
to-end training manner. Through comprehensive
experiments on both UNet and DiT architectures
on different control methods, we show that our
method can upgrade existing controllable gener-
ative models in certain key aspects of interest.
As evidenced by both quantitative and qualitative
evaluations, FlexControl preserves or enhances
image fidelity while also reducing computational
overhead by selectively activating the most rele-
vant blocks to control. These results underscore
the potential of a flexible, data-driven approach
for controlled diffusion and open new avenues for
efficient generative model design. The code will
soon be available at https://github.com/
Daryu-Fan/FlexControl.

1. Introduction
Diffusion-based image generative models have recently
gained widespread acceptance in the art and design commu-
nity. Not only for their high-quality, photo-realistic image
generation, but also due to the transformative capabilities
of controllable unit like ControlNet (Zhang et al., 2023b),
T2I-Adapter (Mou et al., 2024), OminiControl(Tan et al.,

1

https://github.com/Daryu-Fan/FlexControl
https://github.com/Daryu-Fan/FlexControl

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

2024), etc., enable users to create images under diverse spa-
tial conditions (e.g., layout, pose, shape, and form), allow
generated images that satisfy various real-world demand.

Despite its growing popularity, controllable generative meth-
ods typically rely on multiple design hyperparameters —
such as choosing which block to control for improved fi-
delity and adherence to input conditions, without a sys-
tematic investigation of their effects. For example, the
ControlNet variant based on SD1.5 (Stability, 2022) repli-
cates encoder blocks and injects control information into
the decoder, whereas T2I-Adapter applies control in the
encoder. It remains unclear which block-level configuration
is most effective, especially since optimal designs can vary
by task. Complicating matters further, the controllable diffu-
sion model is often trained on significantly smaller datasets
than those used for the diffusion model’s pre-training, imply-
ing that adding too much control could disrupt the pretrained
representations and degrade image quality, while insuffi-
cient control may fail to deliver the desired guidance. As
evidence, a recent study (Ju et al., 2024) highlights that the
number and placement of control blocks might significantly
affect image quality in tasks such as inpainting. Moreover,
the diffusion pipeline relies on a heuristic strategy to decide
which timesteps should receive control signals at inference,
yet evidence is scarce regarding which approach consistently
yields the best results. Collectively, these gaps emphasise
the need for a more principled, comprehensive analysis of
network design and inference strategy.

To dynamically adjust blocks being controlled based on
timestep and conditional information while maintaining
(or even improving) generation quality, we propose Flex-
Control, a data-driven dynamic control method. Similar
to existing controllable generative methods, as shown in
Figure 1(a), we adopted mostly the same control method set-
ting as the original control while our FlexControl equipped
with a router unit within the control signal in each block
(see Figure 1(b)) to plan forward routes, activating control
signal only when necessary based on the current latent vari-
able. In contrast to other controllable generative models,
FlexControl customizes the inference path for each input,
minimizing potential redundant computations. In summary,
our main contributions are as follows:

• Data-driven dynamic control configuration: We in-
troduce an automated router unit that dynamically se-
lects blocks to control at each timestep, eliminating the
need for exhaustive architecture searches and retrain-
ing. Our approach enables: (1) task-adaptive control
configurations through end-to-end training, (2) tem-
porally adaptive inference via per-timestep activation
decisions, and (3) faster configuration design compared
to manual search baselines by removing the need for
configuration search and repeated training.

• Computation-aware controllable generation: Our
approach significantly enhances controllability and im-
age quality while maintaining a similar computational
cost to the original controllable generative model by
introducing a novel computation-aware training loss.
Furthermore, this strategic allocation of computation
to control units outperforms brute-force doubling, es-
tablishing new Pareto frontiers in the control-quality
v.s. compute trade-off.

• Universal plug-and-play integration: Our method
seamlessly integrates with any dual-stream and LoRA-
based control-model, introducing minimal additional
parameters and zero architectural modifications to host
models. It enables flexible switching between full con-
trol and efficiency-optimized modes, depending on
computational requirements.

2. Related Work
Text-to-image diffusion models. The diffusion proba-
bilistic model was originally introduced by Sohl-Dickstein
et al. (Sohl-Dickstein et al., 2015), which has been success-
fully applied in the field of image synthesis and achieved
impressive results (Dhariwal & Nichol, 2021; Kingma et al.,
2021; Huang et al., 2023a;b; Jiang et al., 2023; Ren et al.,
2022). The Latent Diffusion Models (LDMs) (Rombach
et al., 2022), reduce computational demands by transfer-
ring the diffusion process from the pixel space to the la-
tent feature space. Such diffusion models (Stability, 2022;
Nichol et al., 2022; Podell et al., 2023; Rombach et al.,
2022; Saharia et al., 2022) typically encode text prompts
as potential vectors through pre-trained language models
(Radford et al., 2021; Raffel et al., 2020), combined with
UNet (Ronneberger et al., 2015) to predict noise to remove
at each timestep. Recent studies explore Transformer-based
architectures, which have yielded state-of-the-art results
for large-scale text-to-image generation tasks (Bao et al.,
2023a;b; Peebles & Xie, 2023; Tu et al., 2022; Esser et al.,
2024b), These frameworks leverage Transformers’ capacity
for modeling long-range dependencies and scaling to mas-
sive multimodal datasets, enabling breakthroughs in compo-
sitional reasoning, dynamic resolution adaptation, and high-
fidelity synthesis. However, their reliance on purely textual
input—despite advances in cross-modal alignment—still
poses challenges for precise spatial or stylistic control.

Controllable diffusion models. While state-of-the-art
text-to-image models achieve remarkable photorealism,
their reliance on inherently low-bandwidth, abstract textual
input limits their ability to meet the nuanced and complex
demands of real-world artistic and design applications. This
underscores the growing need for frameworks like Con-
trolNet (Zhang et al., 2023b) and T2I-Adapter (Mou et al.,
2024), which augment text prompts with spatial or structural

2

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

constraints (e.g., sketches, depth maps, or poses), enabling
finer-grained control over generation to bridge the gap be-
tween creative intent and algorithmic output. Recent ad-
vancements in controllable text-to-image generation have di-
versified across methodological approaches. Instance-based
methods, such as those by (Wang et al., 2024; Zhou et al.,
2024) enable zero-shot generation of stylized images from
a single reference input, prioritizing speed and flexibility.
Meanwhile, an improvement in cross-attention constraint,
proposed by (Chen et al., 2024a), guides generation along
desired trajectories by refining latent space interactions.
Prompt engineering has also emerged as a lightweight strat-
egy for enhancing controllability, with works like (Ju et al.,
2023; Zhang et al., 2023c; Yang et al., 2023; Li et al., 2023)
optimizing textual or hybrid prompts for fine-grained guid-
ance. Additionally, multi-condition frameworks (Hu et al.,
2023; Qin et al., 2023; Zhao et al., 2024a; Li et al., 2025)
integrate auxiliary inputs—such as segmentation maps or
depth cues—to complement text prompts, improving align-
ment with complex user intent. However, while these meth-
ods expand generative versatility, many overlook the compu-
tational overhead introduced by auxiliary networks, limiting
their scalability for real-time applications.

Improving diffusion efficiency. Efforts to improve dif-
fusion model’s efficiency have focused on architectural re-
design, training optimization, and inference acceleration.
ControlNeXt (Peng et al., 2024) replaces ControlNet’s bulky
auxiliary branches with a streamlined architecture and sub-
stitutes zero convolutions with Cross Normalization, slash-
ing learnable parameters by 90% while maintaining stable
training convergence. Beyond this, multi-expert diffusion
frameworks (Lee et al., 2024; Zhang et al., 2023a) tailor
denoising operations to specific timesteps, though their com-
putational demands hinder practicality. To reduce inference
costs, pruning techniques (Fang et al., 2023; Kim et al.,
2023; Ganjdanesh et al., 2024) trim redundant parameters
from pre-trained denoising models, while distillation meth-
ods (Hsiao et al., 2024) train lightweight guide models to
minimize denoising steps. Inspired by RepVGG (Ding et al.,
2021), RepControlNet (Deng et al., 2024) introduces a novel
reparameterization strategy: modal-specific adapters mod-
ulate features during training, and their weights are later
merged with the backbone, eliminating auxiliary compu-
tations at inference. Unlike prior methods that rely on
fixed heuristics, post-hoc pruning, or static architectural
modifications, our FlexControl introduces a dynamic, end-
to-end trainable framework where block activation is both
task-aware and computation-aware. By integrating a gat-
ing mechanism with a computational efficiency object, our
approach uniquely balances precision and resource usage,
enabling adaptive control across diverse architectures with-
out manual intervention — a paradigm shift from rigid,
task-specific designs to flexible, generalizable control.

Dynamic Neural Network. Unlike static models, dy-
namic neural networks can adjust the inference trajectory
of the neural network based on inputs, thus achieving a
superior trade-off between performance and efficiency by
sacrificing cheap storage. (Bolukbasi et al., 2017; Han et al.,
2022; Fan et al., 2024a; Elhoushi et al., 2024) adopt the
method of early exit, allowing samples to exit the infer-
ence process in the middle layers of the neural architecture
based on the feature information they contain through dis-
criminators or other judgment conditions to achieve depth
adaptation. However, the effective layers are not necessarily
continuous and the ineffective layers located at the front
of the network cannot be omitted. (Herrmann et al., 2020;
Yang et al., 2020; Li et al., 2021; Han et al., 2024) real-
ize dynamic neural networks through adjustable network
widths, but such methods are not applicable to the current
mainstream Transformer architectures. To compensate for
the above deficiencies, (Rao et al., 2023; Zeng et al., 2023;
Elhoushi et al., 2024; Yang et al., 2025) alleviate the running
latency caused by network redundancy through adaptively
activating part of the network components based on samples.
Recently, dynamic neural network technology has also been
introduced into the diffusion model (Pu et al., 2024; Fan
et al., 2024b; Zhao et al., 2024b) to accelerate the diffusion
iteration process. However, in the field of controllable con-
ditioning generation, the potential of dynamic architecture
remains unexplored.

3. Methodology
3.1. Preliminaries

Denoising diffusion probabilistic model (DDPM) (Ho et al.,
2020) aims to approximate the real data distribution q (x0)
with the learned model distribution p (x0) (Ho et al., 2020).
It contains a forward diffusion process that progressively
adds noise to the image and a reverse generation process that
synthesizes the image by progressively eliminating noise.
Formulaly, the forward process is a T -step Markov chain:

q (x1:T |x0) :=

T∏
t=1

q (xt|xt−1) ,

q (xt|xt−1) := N
(
xt;
√
1− βtxt−1, βtI

)
,

(1)

where {βt}Tt=0 are the noise schedule, and {xt}Tt=0 are
latent variables. Let αt = 1 − βt, the distribution of xt

for a given x0 can be expressed as:

q (xt|x0) := N
(
xt;

√
ᾱtxt−1, (1− ᾱt) I

)
. (2)

Here, ᾱt =
∏t

i=0 αi is a differentiable function of timestep
t, which is determined by the denoising sampler. Therefore,

3

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

Figure 2. Overview of dynamic routing guided by the router unit. (a) In the training stage, Gumbel noise is added to the discrete mask
to make it continuous to assist the gradient backpropagation. (b) In the inference stage, the router unit controls whether to activate the
control block and whether to inject conditional control into the frozen block of the backbone according to the input latent variable. Once
output the instruction of inactive, the corresponding control block and zero module will be skipped, and the current latent feature will
automatically input to the next router unit.

the diffusion training loss can be formulated as:

Lθ = Ex0,t∼U(t),ϵ∼N (0,I)

[
w (λt) ∥ϵ̂θ (xt, t)− ϵ∥22

]
,

(3)
where ϵ denotes a noise vector drawn from a Gaussian dis-
tribution, and ϵ̂θ refers to the predicted noise at timestep
t by denoising model with parameters θ. w (λt) is a pre-
defined weighted function that takes into the signal-to-noise
ratio λt. The reverse process first sample a Gaussian noise
p (xT) = N (xT ;0, I), and then proceeding with the tran-
sition probability density step by step:

pθ (xt−1|xt) ≈ q (xt−1|xt,x0)

= N
(
xt−1;µθ (xt,x0) , σ

2
t I
)
,

(4)

where µθ (xt,x0) = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ (xt, t)

)
and

σ2
t = 1−ᾱt−1

1−ᾱt
βt are the mean and variance of posterior

Gaussian distribution pθ (x0).

In order to improve the efficiency of diffusion model, flow-
based optimization strategy (Lipman et al., 2023; Liu et al.,
2022; 2023) is introduced, which defines the forward pro-
cess as a straight path between the real data distribution and
the standard normal distribution:

xt = atx0 + btϵ. (5)

With Equation (5), a vector field ut is constructed to gen-
erate a path pt between the noise distribution and the data
distribution. Meanwhile, the velocity v is parameterized
by the parameter θ of a neural network to approximate ut.
After variable recombination, the flow matching object can
also be formulated as Equation (3) (Esser et al., 2024a). In
the reverse stage, the ODE solver is used for fast sampling:

x (t) = x (0) +

∫ t

0

vθ (x (τ) , τ) dτ. (6)

3.2. Structure

Taking ControlNet as an example for explanation. Follow-
ing its core design philosophy, we first freeze the powerful
diffusion model backbone, fine-tune a trainable copy with
zero modules to learn spatial conditioning controls, and
then inject the acquired latent control feature into the frozen
backbone:

y = F (x; Θ) + Z (F (x+ Z (c; Θz1) ;Θc) ;Θz2) , (7)

where Θ and Θc are the weight parameters of the original
model and the trainable copy respectively, Z represents
zero modules and c is the control element. Instead of just
cloning the encoder and adding conditional controls only in
the decoder blocks (Zhang et al., 2023b), as shown in Fig-
ure 1(a), we copy all blocks of the original diffusion model
to generate conditional controls and inject them into the
corresponding blocks of the backbone in turn, as shown in
Figure 1(b), which is similar to the strategy used in BrushNet
(Ju et al., 2024), and we call this structure ControlNet-Large.
Although more control signals may improve the genera-
tion quality and controllability, it leads to huge redundant
computation and multiplies the inference delay.

To reduce computational redundancy and enhance image
generation quality, we propose FlexControl, which intro-
duces a lightweight router unit before each control block.
The router generates a binary mask M ∈ {0, 1}N from the
latent feature input to it, determining whether the underlin-
ing control block needs to be activated. Specifically, “0”
indicates inactive, “1” indicates activate, and N represents
the number of control blocks. Note that the router unit can
be trained along with the control block.

The mask generation process of the router is data-driven,
enabling independent path planning and adaptive decision-

4

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

making based on the input latent representation. As shown
in Figure 2, during inference, if the router outputs a mask
with value of “0”, then the conditional mapping skips the
next control block, and the injection of the control signal
is stopped accordingly. Taking the l-th control block as an
example, the computation process can be formulated as:

hl =

{
Fl

(
hl−1, c, t; Θ

l
c

)
if Ml = 1

skipl (hl−1) if Ml = 0,
(8)

where Fl (·) indicates the l-th control block with parameter
Θl

c, hl is the output at timestep t, and skipl (·) is used to
bypass the current block. Following the design of (Zhang
et al., 2023b), we utilize the zero module to transform the
latent feature hl into conditional control:

yl
c =

{
Zl

(
hl; Θ

l
z

)
if Ml = 1

N/A if Ml = 0.
(9)

Here, yl
c denotes the conditional control which is incorpo-

rated into the feature space of the diffusion backbone.

Remark: The above designed router is in fact lightweight,
accounting for less than 1% of the parameters of the overall
model. Since the skipped parameters are excluded from
tensor computation during inference, FlexControl barely
introduces computational burden by adaptively adjusting the
number of active control blocks. See the detailed inference
process in Algorithm 1.

3.3. Router unit design

As illustrated earlier, the router unit is lightweight and plug-
and-play to any diffusion architecture. However, given the
differences between UNet and DiT, we will discuss the
implementation of the router on these two commonly used
architectures separately.

Router for UNet-based architecture. The output of
UNet block is a multi-channel spatial feature. Given input
h ∈ RC×H×W , the router unit first transforms the spatial
feature into linear feature h

′ ∈ RC through the downsam-
pling layer, we use global average pooling (GAP) in imple-
mentation, and then the MLP layer with weight W ∈ RC×1

maps the linear feature into a scalar K:

K = MLP (GAP (h)) . (10)

Henceforth, we compute a new scalar K′
by restricting

the value of K to the interval (0, 1) through the Sigmoid
function. In order to convert K′

into a binary coding, we
introduce a threshold discriminator to control the generation
of the mask M by a preset threshold T (0.5 by default):

M =

{
1 if K′

> T
0 if K′ ≤ T .

(11)

We multiply the mask M and the output latent feature to
zero out the corresponding control block and zero module.
It can be seen from the above description that the mask
M is learned from the latent variable h. Since timestep
embedding is introduced into the blocks of the diffusion
model during the generation of h, the output of the router is
also affected by the sampled timesteps.

Router for DiT-based architecture. For the router ap-
plied in DiT, we conduct feature analysis from multiple
perspectives. Specifically, we perform both global and local
feature encoding on the latent variable h ∈ RN×C output
by the Transformer block (Rao et al., 2021; 2023). The
detailed encoding process is as follows:

hglobal = MLPglobal (AVGdim=1 (h)) , (12)

hlocal = MLPlocal (AVGdim=2 (h)) . (13)

From Equations (12) and (13), the encoding process for
global and local features primarily consists of two steps.
First, feature fusion is performed across all tokens and hid-
den channels using the function AVG(·), which is imple-
mented via average pooling along different dimensions of
latent variable. This yields the global feature zglobal ∈ RC

and local feature zlocal ∈ RN . Second, the embedding di-
mensions of zglobal and zlocal are aligned through an MLP
layer and reduced to O, which is set to C/64 by default.
Intuitively, the local feature captures token-specific informa-
tion, while the global feature encodes potential relationships
between tokens. We then merge these global and local fea-
tures to form a new feature representation:

hmix = α1 · hglobal + α2 · hlocal. (14)

In the above equation, α1 and α2 are weight factors that
balance the influence of global and local features, both set
to 0.5 by default. The fused feature variable hmix

l−1 ∈ RO

is then passed through an MLP layer to produce K. At
the end, K is processed through a Sigmoid layer followed
by the threshold discriminator described in Equation (11),
resulting in the router mask M.

3.4. End-to-end training

Differentiable learning of router. To enable end-to-end
training via gradient descent, we address the discrete, non-
differentiable nature of the mask by incorporating Gumbel
noise into the Sigmoid activation function. This allows the
discrete mask M to be approximated by the differentiable
Gumbel-Sigmoid version M̃ during training:

M̃l = Sigmoid

(Rl

(
hl−1; Θ

l
R
)
+G1 −G2

T P

)
, (15)

where G1, G2 ∼ Gumbel(0, 1), T P denotes the temper-
ature hyperparameter (5 by default), R (·) denotes tensor
computations in the router unit parametered by ΘR.

5

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

To this end, we employ different mask schemes during the
forward and backward passes:

hl =

{
Fl · Ml + skipl (hl−1) · (1−Ml) if Forward
Fl · M̃l + skipl (hl−1) ·

(
1− M̃l

)
if Backward.

(16)
Meanwhile, the computation process of the zero module is
adjusted accordingly:

yl
c =

{
Zl

(
hl; Θ

l
z

)
· Ml if Forward

Zl

(
hl; Θ

l
z

)
· M̃l if Backward.

(17)

Remark: As can be seen in Equations (16) and (17) during
training, the blockwise routing differs from the inference
process displayed in Equations (8) and (9): during train-
ing, we retain all blocks to ensure proper back-propagation,
rather than skipping blocks as done during inference.

Computation-aware training loss. Following standard
controllable generation methods, our training dataset D con-
tains triples of the original image x, spatial conditioning
control cs, and text prompt ct. The diffusion loss of Flex-
Control is formulated as:

LSD = Ex0,ct,cs,t,ϵ∼N (0,I)

[
∥ϵ̂θ (xt, ct, cs, t)− ϵ∥22

]
.

(18)
FlexControl aims to activate the optimal control blocks and
inject conditional mapping into the backbone network for ef-
ficient image generation. In addition to the regular diffusion
loss LSD, we introduce a cost loss LC to regulate resource
consumption to the desired sparsity γ, which measures the
proportion of floating-point operations (FLOPs):

LC =
1

|Dbs|
∑

d∈Dbs

(
FFlex
td

(d)

FBase
td

(d)
− γ

)2

, (19)

where Dbs means the current batch samples, td ∈ [0, T] is
the uniformly sampled timestep for sample d. Ft (d) denotes
FLOPs of the trainable branch at sampled timestep, and
superscripts Flex and Base respectively denote FlexControl
and baseline model (e.g., ControlNet-Large). We combine
LSD and LC to bring out the final optimization goal,

Lθ = LSD + λC · LC, (20)

where λC is the hyperparameter that controls the force in-
tensity of loss LC. See the detailed training process in
Algorithm 2.

4. Experiment
We evaluate FlexControl against state-of-the-art methods
across different conditions: depth map (MultiGen-20M,
(Zhao et al., 2024a)), canny edge (LLAVA-558K, (Liu et al.,

2024)), segmentation mask (ADE20K, (Zhou et al., 2017)),
and etc. Unless otherwise stated, ControlNet-Large is used
as the base model by default.

4.1. Quantitative comparison

Comparison of image quality. To evaluate the impact of
dynamic controllable generation on image quality, we com-
pare the FID metrics of different methods across multiple
conditional generation tasks (Table 1). We set γ to 0.5 to
align FlexControl’s FLOPs with ControlNet’s. Our model
achieves superior FID results across all conditions, outper-
forming existing methods. We also examine ControlNet-
Large, which replicates the entire SD model as an addi-
tional control network. Although its larger parameter count
enhances conditional feature extraction and control abil-
ity, its performance remains inferior to FlexControlγ=0.5.
This confirms that adaptive control — selectively applying
conditions instead of enforcing them across all blocks and
timesteps — maximizes controllability. Beyond spatial con-
ditions, we assess the influence of the text prompt using the
CLIP score metrics. As shown in Table 1, FlexControlγ=0.5

outperforms other methods, demonstrating that precise con-
trol enhances spatially guided generation without compro-
mising text-guided synthesis. Furthermore, we evaluate the
performance of ControlNet and T2I-Adapter deployed on
SDXL (Podell et al., 2023), revealing that a larger backbone
does not necessarily improve the quality of the generated
images.

Comparison of controllability. We exam generation con-
trollability in detail by comparing the results across dif-
ferent spatial conditions. ControlNet and its variants gen-
erally achieve stronger controllability than other existing
methods. Within a similar computational budget, our Flex-
Control further improves controllability across various con-
trol conditions. Numerically, FlexControl reduces RMSE
by 6.30% and 4.74% compared to ControlNet and Con-
trolNet++ on the depth map task. For the canny edge
and the segmentation mask task, FlexControl shows im-
provements of 4.15%/1.76% in SSIM and 9.87%/3.16% in
mIoU, respectively. Moreover, our method outperforms
ControlNet-Large on both the depth map and segmenta-
tion mask datasets, and achieves similar performance on
the canny edge task. Similarly, we show the results of the
SDXL-based ControlNet and T2I-Adapter, which show only
marginal improvements for specific tasks.

4.2. Qualitative comparison

In Figure 3, we compare different methods across depth map,
canny edge, and segmentation mask tasks. Except for Con-
trolNet (SDXL), the others use SD1.5 as the backbone. Flex-
Control consistently outperforms others in visual quality and
spatial / text alignment. For depth map, FlexControl pro-

6

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

Figure 3. Qualitative comparison of controllable generation methods. FlexControl achieves higher fidelity and structure preservation
across Depth Map, Canny Edge, and Segmentation Mask conditions, reducing distortions (boxes) seen in other methods. It better aligns
with input conditions while maintaining visual quality. Captions: A luxurious villa with a swimming pool and furniture at dusk. Christmas
greeting with wreath and red bauble, scandinavian christmas text. Two beds with blue bedding and wooden frames in a bedroom.

Method T2I Depth Map Canny Edge Seg. Mask #Average
Model FID ↓ CLIP score ↑ FID ↓ CLIP score ↑ FID ↓ CLIP score ↑ FID ↓ CLIP score ↑

ControlNet (Zhang et al., 2023b) SDXL 19.90 0.3224 22.07 0.2657 26.95 0.2495 22.97 0.2792
T2I-Adapter (Mou et al., 2024) SDXL 19.74 0.3197 22.91 0.2614 27.54 0.2501 23.40 0.2771

GLIGEN (Li et al., 2023) SD1.4 18.36 0.3175 19.01 0.2520 23.79 0.2490 20.39 0.2728
T2I-Adapter (Mou et al., 2024) SD1.5 22.52 0.3146 16.74 0.2598 24.65 0.2494 21.30 0.2728

ControlNet (Zhang et al., 2023b) SD1.5 17.76 0.3245 15.23 0.2613 21.33 0.2531 18.11 0.2796
ControlNet++ (Li et al., 2025) SD1.5 16.66 0.3209 17.23 0.2598 19.89 0.2640 17.93 0.2816

ControlNet-Large SD1.5 12.45 0.3492 12.92 0.2789 16.78 0.2796 14.05 0.3026

FlexControlγ=0.5 SD1.5 11.65 0.3498 11.37 0.2778 14.80 0.2842 12.61 0.3039

Table 1. Quantitative comparison of FlexControl with state-of-the-art methods. We report FID (↓) and CLIP score (↑) on different
conditioning types: Depth Map, Canny Edge, and Segmentation Mask. Lower FID indicates better image quality, while higher CLIP score
reflects better alignment with textual prompts. The best results are highlighted in red, while the second-best results are shown in blue.
FlexControl achieves the best overall performance, demonstrating superior fidelity and semantic alignment.

7

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

Method T2I Depth Map Canny Edge Seg. Mask
Model (RMSE ↓) (SSIM ↑) (mIoU ↑)

ControlNet SDXL 0.4001 0.4178 0.2058
T2I-Adapter SDXL 0.3976 0.3969 0.1912

GLIGEN SD1.4 0.3882 0.4226 0.2076
T2I-Adapter SD1.5 0.4840 0.4622 0.1839
ControlNet SD1.5 0.2988 0.5197 0.2764

ControlNet++ SD1.5 0.2832 0.5436 0.3435
ControlNet-Large SD1.5 0.2372 0.5642 0.3668

FlexControlγ=0.5 SD1.5 0.2358 0.5612 0.3751

Table 2. Controllability comparison across different condition-
ing types. We report RMSE (↓) for Depth Map and SSIM (↑) for
Canny Edge and mIoU (↑) for Seg. Mask. The best and second-
best results are highlighted in red and blue. FlexControl achieve
similar but slightly better controllability than ControlNet-Large
with only half activation blocks.

duces smoother transitions and more natural textures. Under
canny edge, it better preserves edge fidelity and fine details.
For segmentation mask, it enhances mask reconstruction and
visual consistency. These results demonstrate FlexControl’s
ability to selectively inject control information into rele-
vant diffusion backbone blocks based on timestep and input
characteristics, improving image fidelity. Finally, we com-
pare against ControlNet and ControlNet-Large. Although
ControlNet-Large benefits from a larger control network for
improved generation and condition alignment, FlexControl
surpasses it in both accuracy and visual fidelity, showcasing
the strength of our approach.

4.3. Ablation study

In this section, we analyze how the proportion of activated
control blocks impacts FlexControl. To better understand
model complexity, we present the number of parameters,
FLOPs, and diffusion speed — the diffusion iterations per
second (i.e., it/s). To measure the diffusion speed, we ran-
domly select batch samples and compute the average single-
step iteration time for each sample.

Results on UNet-based model. Recall the cost loss de-
fined in Equation (19), we train FlexControl with different
sparsity levels by adjusting the value of γ. For the SD1.5-
based backbone, experiments are conducted on the ADE20K
dataset. At γ = 0.3 (30% sparsity), FlexControl surpasses
ControlNet and ControlNet++ in controllability and genera-
tion quality but falls short of ControlNet-Large. Increasing
γ to 0.5 activates more control blocks, leading to perfor-
mance that surpasses ControlNet-Large. Further increasing
γ to 0.7 does not yield significant performance gains (sug-
gesting the dataset has already been saturated by the model
capacity). For visual comparisons in Figure 4, FlexControl
with γ = 0.5 and γ = 0.7 demonstrate superior structure
preservation and mask information reconstruction. Mean-
while, the more lightweight configuration with γ = 0.3

Method FID ↓ CLIP score ↑ mIoU ↑ Param. ↓ FLOPs ↓ Speed ↑
ControlNet 21.33 0.2531 0.2764 0.36 G 233 G 5.23±0.07 it/s

ControlNet++ 19.89 0.2640 0.3435 0.36 G 233 G 5.23±0.07 it/s
ControlNet-Large 16.78 0.2796 0.3668 0.72 G 561 G 4.02±0.05 it/s

FlexControlγ=0.2 21.52 0.2584 0.2995 0.73 G 112 G 5.98±0.09 it/s
FlexControlγ=0.3 17.21 0.2713 0.3572 0.73 G 168 G 5.64±0.12 it/s
FlexControlγ=0.5 14.80 0.2842 0.3751 0.73 G 280 G 5.21±0.12 it/s
FlexControlγ=0.7 14.71 0.2840 0.3775 0.73 G 393 G 4.94±0.07 it/s
FlexControlγ=0.8 15.59 0.2804 0.3695 0.73 G 448 G 4.82±0.06 it/s

Table 3. Quantitative comparison with existing methods on
SD1.5. We compare image quality, controllability and efficiency.
The speed is measured on single Nvidia RTX 2080 Ti GPU. The
best and second-best values are highlighted in red and blue. Flex-
Control outperform original ControlNet with less computation,
while increasing the blocks budgets observed performance increas-
ing. Noticeable, ControlNet-Large activate all blocks yet not out-
perform our methods, highlight effective of our dynamic strategy.

Method FID ↓ CLIP score ↑ SSIM ↑ Param. ↓ FLOPs ↓ Speed ↑
ControlNet 27.21 0.2512 0.3749 1.06 G 3.25 T (20.68±0.56)e-3 it/s

ControlNet-Large 21.64 0.2690 0.4828 2.02 G 6.22 T (16.82±0.51)e-3 it/s

FlexControlγ=0.2 28.11 0.2524 0.3577 2.03 G 1.25 T (26.17±0.93)e-3 it/s
FlexControlγ=0.3 24.39 0.2581 0.4286 2.03 G 1.86 T (24.49±0.82)e-3 it/s
FlexControlγ=0.5 22.47 0.2714 0.4598 2.03 G 3.11 T (21.86±0.86)e-3 it/s
FlexControlγ=0.7 20.54 0.2714 0.4775 2.03 G 4.35 T (19.18±0.78)e-3 it/s
FlexControlγ=0.8 20.72 0.2719 0.4816 2.03 G 4.97 T (18.50±0.74)e-3 it/s

Table 4. Quantitative comparison with existing methods on
SD3.0. We compare image quality, controllability and efficiency.
The speed is measured on single Nvidia RTX 2080 Ti GPU. The
best and second-best values are highlighted in red and blue. Flex-
Control outperform original ControlNet with less computation,
while increasing the blocks budgets observed performance increas-
ing even more significant improvement than observed in SD1.5.

achieves a generation quality comparable to ControlNet++
and ControlNet-Large.

Results on DiT-based model. For the SD3.0-based back-
bone, experiments are conducted on the LLAVA-558K
dataset. As detailed in Table 4, FlexControlγ=0.3 and
FlexControlγ=0.5 outperform ControlNet with fewer FLOPs.
Notably, while ControlNet has half as many blocks as the
backbone, each control block’s output is shared by two adja-
cent backbone blocks, providing more conditional controls
than FlexControl at all sparsity levels. FlexControlγ=0.7

achieves superior image quality and comparable control-
lability to ControlNet-Large while being more efficient.
Visualization results in Figure 5 further demonstrate the
advantage of FlexControl in edge reproduction and image
fidelity over ControlNet.

Expand to lightweight architecture. ControlNeXt (Peng
et al., 2024) is an improved architecture proposed to en-
hance the efficacy and efficiency of controllable generation
based on ControlNet, which extracts control signals from
conditional images through a lightweight neural network.
We uniformly inject conditional controls into the blocks of
diffusion backbone, and align spatial and channel dimen-
sional by adaptive average pooling and 1×1 convolution.

8

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

Figure 4. Comparison of FlexControl and existing methods on
SD1.5 for semantic consistency. FlexControl achieves better se-
mantic alignment and structure preservation with varying sparsity
levels, while ControlNet-based methods show inconsistencies in
segmentation accuracy (highlighted in yellow boxes). Captions:
A stone building surrounded by a stone wall and a grassy lawn.

Method FID ↓ CLIP score ↑ mIoU ↑ FLOPs ↓ Speed ↑
ControlNeXt (Peng et al., 2024) 24.16 0.2659 0.2825 51.72 G 5.34±0.02 it/s

FlexControlNeXtγ=0.3 25.22 0.2531 0.2644 / /
FlexControlNeXtγ=0.5 23.74 0.2664 0.2819 / /
FlexControlNeXtγ=0.7 23.71 0.2674 0.2841 / /
FlexControlNeXtγ=0.8 23.84 0.2662 0.2841 / /

Table 5. Extension on ControlNeXt architecture. All models
build on SD1.5. We compare image quality, controllability and
efficiency. The diffusion speed is measured on single Nvidia RTX
2080 Ti GPU. The best and second-best values are highlighted in
red and blue. After the optimization of the dynamic strategy, the
performance of ControlNeXt has been further improved.

As shown in Table 5, combined with the router unit, Con-
trolNeXt has been further improved both in image quality
and controllability. The results indicate that, not limited to
the ControlNet architecture, our dynamic condition injec-
tion strategy is a universal solution to improve controllable
generative models. Since ControlNeXt reuses condition fea-
tures, we just adapt the condition injection position rather
than skipping the control blocks, so we are basically consis-
tent with the baseline in the number of parameters, FLOPs,
and diffusion latency. The visual comparison is presented
in Figure 11.

Expand to LoRA-based architecture. OminiControl
(Tan et al., 2024) is a representative LoRA-based DiT archi-
tecture for efficient controllable image generation. Unlike
common used dual-steam structure, OminiControl concate-
nates noise latent variable and condition latent variable,
extracts spatial condition features with the assistance of the
LoRA component, and finally injects spatial condition into
the latent feature space through the cross-attention mech-
anism. Our adaptive conditional control framework still
works seamlessly with OminiControl to inject control sig-
nals into latent space as needed. We add the router unit to
all Double Stream Blocks (DSB) and Single Stream Blocks
(SSB) of the FLUX.1 model (Labs, 2024), and use the noise
variable as input of the router unit to generate the spatial
conditional activation mask. Meanwhile, during the train-

Figure 5. Comparison of FlexControl and existing methods on
SD3.0 for edge preservation. FlexControl maintains better spatial
consistency and object integrity across different sparsity levels,
while ControlNet-based methods introduce distortions and incon-
sistencies (highlighted in red boxes). Captions: A room with large
windows, a gray sofa, a table, and a TV stand.

Method FID ↓ CLIP score ↑ SSIM ↑ FLOPs ↓ Speed ↑
OminiControl (Tan et al., 2024) 22.84 0.2830 0.4125 16.89 T 2.36±0.00 it/s

FlexOminiControlγ=0.2 36.62 0.2712 0.3122 10.76 T 3.42±0.09 it/s
FlexOminiControlγ=0.3 26.65 0.2791 0.3668 11.45 T 3.28±0.07 it/s
FlexOminiControlγ=0.5 22.61 0.2886 0.4123 13.08 T 3.08±0.10 it/s
FlexOminiControlγ=0.7 22.39 0.2855 0.4146 14.57 T 2.80±0.09 it/s
FlexOminiControlγ=0.8 22.27 0.2861 0.4153 15.40 T 2.69±0.07 it/s

Table 6. Extension on OminiControl. All models built on
FLUX.1 and share similar number of parameters. We compare
image quality, controllability and efficiency. The diffusion speed
is measured on single Nvidia A100 (40G) GPU. The best and
second-best values are highlighted in red and blue. OminiControl
can also be optimized by our dynamic strategy.

ing process, we promptly add the attention mask to the
attention map to shield the influence of spatial condition fea-
tures when they are not needed. The quantitative results are
shown in Table 6, our method can also effectively improve
the efficacy and efficiency of OminiControl. The visual
comparison can be found in Figure 13.

5. Conclusion
We presented FlexControl, a dynamic framework that
reimagines controllable image generation by replacing
heuristic block selection with a trainable, computation-
aware, and plug-and-play gating mechanism. By adaptively
injecting control signals into the latent space of each diffu-
sion block during the denoising process, FlexControl elim-
inates manual architectural tuning, reduces computational
overhead, and maintains or improves image generation fi-
delity across diverse tasks and architectures (e.g., UNet,
DiT). Our experimental results demonstrate that flexibility
and efficiency need not be mutually exclusive in controllable
image generation — intelligent, data-driven block activation
strategies can outperform rigid, hand-crafted designs. This
work paves the way for future research into lightweight and
generalizable control mechanisms for increasingly complex
controlled generative pipelines. We also conduct a further
investigation on the dynamic activation routes of the control
blocks, which has been listed in Appendix C.

9

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

Impact Statement
This paper presents work whose goal is to advance the field
of controllable image generation. There are many potential
societal consequences of our work, none of which we feel
must be specifically highlighted here.

References
Bao, F., Nie, S., Xue, K., Cao, Y., Li, C., Su, H., and Zhu, J.

All are worth words: A vit backbone for diffusion models.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 22669–22679, 2023a.

Bao, F., Nie, S., Xue, K., Li, C., Pu, S., Wang, Y., Yue,
G., Cao, Y., Su, H., and Zhu, J. One transformer fits
all distributions in multi-modal diffusion at scale. In
International Conference on Machine Learning, pp. 1692–
1717. PMLR, 2023b.

Bolukbasi, T., Wang, J., Dekel, O., and Saligrama, V. Adap-
tive neural networks for efficient inference. In Interna-
tional Conference on Machine Learning, pp. 527–536.
PMLR, 2017.

Canny, J. A computational approach to edge detection.
IEEE Transactions on pattern analysis and machine in-
telligence, pp. 679–698, 1986.

Chen, M., Laina, I., and Vedaldi, A. Training-free layout
control with cross-attention guidance. In Proceedings
of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 5343–5353, 2024a.

Chen, Z., Wu, J., Wang, W., Su, W., Chen, G., Xing, S.,
Zhong, M., Zhang, Q., Zhu, X., Lu, L., et al. Internvl:
Scaling up vision foundation models and aligning for
generic visual-linguistic tasks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 24185–24198, 2024b.

Deng, Z., Zhou, K., Wang, F., and Mi, Z. Repcon-
trolnet: Controlnet reparameterization. arXiv preprint
arXiv:2408.09240, 2024.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in neural information
processing systems, 34:8780–8794, 2021.

Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., and Sun,
J. Repvgg: Making vgg-style convnets great again. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 13733–13742, 2021.

Elhoushi, M., Shrivastava, A., Liskovich, D., Hosmer, B.,
Wasti, B., Lai, L., Mahmoud, A., Acun, B., Agarwal,
S., Roman, A., et al. Layerskip: Enabling early exit
inference and self-speculative decoding. arXiv preprint
arXiv:2404.16710, 2024.

Esser, P., Kulal, S., Blattmann, A., Entezari, R., Müller,
J., Saini, H., Levi, Y., Lorenz, D., Sauer, A., Boesel,
F., et al. Scaling rectified flow transformers for high-
resolution image synthesis, march 2024. URL http://arxiv.
org/abs/2403.03206, 2024a.

Esser, P., Kulal, S., Blattmann, A., Entezari, R., Müller, J.,
Saini, H., Levi, Y., Lorenz, D., Sauer, A., Boesel, F., et al.
Scaling rectified flow transformers for high-resolution
image synthesis. In Forty-first International Conference
on Machine Learning, 2024b.

Fan, S., Jiang, X., Li, X., Meng, X., Han, P., Shang, S.,
Sun, A., Wang, Y., and Wang, Z. Not all layers of
llms are necessary during inference. arXiv preprint
arXiv:2403.02181, 2024a.

Fan, Y., Liu, C., Yin, N., Gao, C., and Qian, X. Adadiffsr:
Adaptive region-aware dynamic acceleration diffusion
model for real-world image super-resolution. In European
Conference on Computer Vision, pp. 396–413. Springer,
2024b.

Fang, G., Ma, X., and Wang, X. Structural pruning for diffu-
sion models. Advances in Neural Information Processing
Systems, 2023.

Ganjdanesh, A., Shirkavand, R., Gao, S., and Huang, H.
Not all prompts are made equal: Prompt-based prun-
ing of text-to-image diffusion models. arXiv preprint
arXiv:2406.12042, 2024.

Han, Y., Pu, Y., Lai, Z., Wang, C., Song, S., Cao, J., Huang,
W., Deng, C., and Huang, G. Learning to weight sam-
ples for dynamic early-exiting networks. In European
conference on computer vision, pp. 362–378. Springer,
2022.

Han, Y., Liu, Z., Yuan, Z., Pu, Y., Wang, C., Song, S.,
and Huang, G. Latency-aware unified dynamic networks
for efficient image recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2024.

Herrmann, C., Bowen, R. S., and Zabih, R. Channel selec-
tion using gumbel softmax. In European conference on
computer vision, pp. 241–257. Springer, 2020.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Hsiao, Y.-T., Khodadadeh, S., Duarte, K., Lin, W.-A., Qu,
H., Kwon, M., and Kalarot, R. Plug-and-play diffusion

10

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

distillation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13743–
13752, 2024.

Hu, M., Zheng, J., Liu, D., Zheng, C., Wang, C., Tao, D.,
and Cham, T.-J. Cocktail: Mixing multi-modality control
for text-conditional image generation. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023.

Huang, L., Chen, D., Liu, Y., Shen, Y., Zhao, D., and
Zhou, J. Composer: Creative and controllable image
synthesis with composable conditions. arXiv preprint
arXiv:2302.09778, 2023a.

Huang, Z., Wu, T., Jiang, Y., Chan, K. C., and Liu, Z. Re-
version: Diffusion-based relation inversion from images.
arXiv preprint arXiv:2303.13495, 2023b.

Jiang, R., Wang, C., Zhang, J., Chai, M., He, M., Chen,
D., and Liao, J. Avatarcraft: Transforming text into
neural human avatars with parameterized shape and pose
control. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 14371–14382, 2023.

Ju, X., Zeng, A., Zhao, C., Wang, J., Zhang, L., and Xu,
Q. Humansd: A native skeleton-guided diffusion model
for human image generation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 15988–15998, 2023.

Ju, X., Liu, X., Wang, X., Bian, Y., Shan, Y., and Xu,
Q. Brushnet: A plug-and-play image inpainting model
with decomposed dual-branch diffusion. arXiv preprint
arXiv:2403.06976, 2024.

Kim, B.-K., Song, H.-K., Castells, T., and Choi, S. On archi-
tectural compression of text-to-image diffusion models.
arXiv preprint arXiv:2305.15798, 2023.

Kingma, D., Salimans, T., Poole, B., and Ho, J. Varia-
tional diffusion models. Advances in neural information
processing systems, 34:21696–21707, 2021.

Labs, B. F. Flux: Official inference repository for
flux.1 models, 2024. URL https://github.com/
black-forest-labs/flux. Accessed: 2024-11-
12.

Lee, Y., Kim, J., Go, H., Jeong, M., Oh, S., and Choi,
S. Multi-architecture multi-expert diffusion models. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 13427–13436, 2024.

Li, C., Wang, G., Wang, B., Liang, X., Li, Z., and Chang,
X. Dynamic slimmable network. In Proceedings of the
IEEE/CVF Conference on computer vision and pattern
recognition, pp. 8607–8617, 2021.

Li, M., Yang, T., Kuang, H., Wu, J., Wang, Z., Xiao, X.,
and Chen, C. Controlnet++: Improving conditional
controls with efficient consistency feedback. In European
Conference on Computer Vision, pp. 129–147. Springer,
2025.

Li, Y., Liu, H., Wu, Q., Mu, F., Yang, J., Gao, J., Li, C.,
and Lee, Y. J. Gligen: Open-set grounded text-to-image
generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 22511–
22521, 2023.

Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., and Le,
M. Flow matching for generative modeling. In Interna-
tional Conference on Learning Representations, 2023.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction tun-
ing. Advances in neural information processing systems,
36, 2024.

Liu, X., Gong, C., and Liu, Q. Flow straight and fast:
Learning to generate and transfer data with rectified flow.
arXiv preprint arXiv:2209.03003, 2022.

Liu, X., Zhang, X., Ma, J., Peng, J., et al. Instaflow: One
step is enough for high-quality diffusion-based text-to-
image generation. In The Twelfth International Confer-
ence on Learning Representations, 2023.

Mou, C., Wang, X., Xie, L., Wu, Y., Zhang, J., Qi, Z., and
Shan, Y. T2i-adapter: Learning adapters to dig out more
controllable ability for text-to-image diffusion models. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 4296–4304, 2024.

Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin,
P., McGrew, B., Sutskever, I., and Chen, M. Glide: To-
wards photorealistic image generation and editing with
text-guided diffusion models. In International conference
on machine learning, 2022.

Peebles, W. and Xie, S. Scalable diffusion models with
transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 4195–4205,
2023.

Peng, B., Wang, J., Zhang, Y., Li, W., Yang, M.-C., and Jia,
J. Controlnext: Powerful and efficient control for image
and video generation. arXiv preprint arXiv:2408.06070,
2024.

Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn,
T., Müller, J., Penna, J., and Rombach, R. Sdxl: Im-
proving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Pu, Y., Xia, Z., Guo, J., Han, D., Li, Q., Li, D., Yuan, Y., Li,
J., Han, Y., Song, S., et al. Efficient diffusion transformer

11

https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

with step-wise dynamic attention mediators. In European
Conference on Computer Vision, pp. 424–441. Springer,
2024.

Qin, C., Zhang, S., Yu, N., Feng, Y., Yang, X., Zhou,
Y., Wang, H., Niebles, J. C., Xiong, C., Savarese, S.,
et al. Unicontrol: A unified diffusion model for con-
trollable visual generation in the wild. arXiv preprint
arXiv:2305.11147, 2023.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:
Memory optimizations toward training trillion parameter
models. In SC20: International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
pp. 1–16. IEEE, 2020.

Rao, Y., Zhao, W., Liu, B., Lu, J., Zhou, J., and Hsieh, C.-J.
Dynamicvit: Efficient vision transformers with dynamic
token sparsification. Advances in neural information
processing systems, 34:13937–13949, 2021.

Rao, Y., Liu, Z., Zhao, W., Zhou, J., and Lu, J. Dynamic
spatial sparsification for efficient vision transformers and
convolutional neural networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(9):10883–
10897, 2023.

Ren, M., Delbracio, M., Talebi, H., Gerig, G., and Milanfar,
P. Image deblurring with domain generalizable diffusion
models. arXiv preprint arXiv:2212.01789, 1, 2022.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmenta-
tion. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international confer-
ence, Munich, Germany, October 5-9, 2015, proceedings,
part III 18, pp. 234–241. Springer, 2015.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan,
B., Salimans, T., et al. Photorealistic text-to-image dif-
fusion models with deep language understanding. Ad-
vances in neural information processing systems, 35:
36479–36494, 2022.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C.,
Wightman, R., Cherti, M., Coombes, T., Katta, A., Mullis,
C., Wortsman, M., et al. Laion-5b: An open large-scale
dataset for training next generation image-text models.
Advances in Neural Information Processing Systems, 35:
25278–25294, 2022.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International conference on
machine learning, pp. 2256–2265. PMLR, 2015.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In International Conference on Learning
Representations, 2021.

Stability. Stable diffusion v1.5 model card.
https://huggingface.co/runwayml/stable-diffusion-
v1-5, 2022.

Tan, Z., Liu, S., Yang, X., Xue, Q., and Wang, X. Ominicon-
trol: Minimal and universal control for diffusion trans-
former. arXiv preprint arXiv:2411.15098, 2024.

Tu, Z., Talebi, H., Zhang, H., Yang, F., Milanfar, P., Bovik,
A., and Li, Y. Maxvit: Multi-axis vision transformer. In
European conference on computer vision, pp. 459–479.
Springer, 2022.

Wang, X., Darrell, T., Rambhatla, S. S., Girdhar, R., and
Misra, I. Instancediffusion: Instance-level control for
image generation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
6232–6242, 2024.

Yang, L., Han, Y., Chen, X., Song, S., Dai, J., and Huang,
G. Resolution adaptive networks for efficient inference.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 2369–2378, 2020.

Yang, X., Zeng, D., Wang, X., Wu, Y., Ye, H., Zhao, Q., and
Li, S. Adaptively bypassing vision transformer blocks
for efficient visual tracking. Pattern Recognition, 161:
111278, 2025.

Yang, Z., Wang, J., Gan, Z., Li, L., Lin, K., Wu, C., Duan,
N., Liu, Z., Liu, C., Zeng, M., et al. Reco: Region-
controlled text-to-image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14246–14255, 2023.

12

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

Zeng, D., Du, N., Wang, T., Xu, Y., Lei, T., Chen, Z., and
Cui, C. Learning to skip for language modeling. arXiv
preprint arXiv:2311.15436, 2023.

Zhang, H., Lu, Y., Alkhouri, I., Ravishankar, S., Song, D.,
and Qu, Q. Improving efficiency of diffusion models
via multi-stage framework and tailored multi-decoder
architectures. arXiv preprint arXiv:2312.09181, 2023a.

Zhang, L., Rao, A., and Agrawala, M. Adding conditional
control to text-to-image diffusion models. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 3836–3847, 2023b.

Zhang, T., Zhang, Y., Vineet, V., Joshi, N., and Wang, X.
Controllable text-to-image generation with gpt-4. arXiv
preprint arXiv:2305.18583, 2023c.

Zhao, S., Chen, D., Chen, Y.-C., Bao, J., Hao, S., Yuan, L.,
and Wong, K.-Y. K. Uni-controlnet: All-in-one control
to text-to-image diffusion models. Advances in Neural
Information Processing Systems, 36, 2024a.

Zhao, W., Han, Y., Tang, J., Wang, K., Song, Y., Huang, G.,
Wang, F., and You, Y. Dynamic diffusion transformer.
arXiv preprint arXiv:2410.03456, 2024b.

Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., and
Torralba, A. Scene parsing through ade20k dataset. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 633–641, 2017.

Zhou, D., Li, Y., Ma, F., Zhang, X., and Yang, Y. Migc:
Multi-instance generation controller for text-to-image
synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6818–
6828, 2024.

13

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

Supplementary Material

The supplementary material presents the following sections
to strengthen the main manuscript:

• A. Pseudo-code of Our Algorithm.

• B. Implementation Details.

• C. Dynamic Routes Exploration.

• D. More Ablation Studies.

• E. More Visualization Results.

A. Pseudo-code of Our Algorithm
In this section, we give the pseudo-code algorithm of our
FlexControl. The specific inference procedure is shown
in Algorithm 1, and the training procedure is shown in
Algorithm 2.

Algorithm 1 Inference procedure

Input: conditional image cs, text prompt ct, timestep T .
Fully-trained FlexControl, pre-trained SD model.

1: for each i ∈ [T, 1] do
2: for each l ∈ Blocks do
3: /∗ The value of Ml is adjusted with input hl−1

∗/
4: Compute Ml though router unit
5: if Ml = 1 then
6: /∗ Extract latent features from conditions ∗/
7: Compute hl though Equation (8)
8: /∗ Feature transformation by zero modules ∗/
9: Transform hl to yl

c though Equation (9)
10: /∗ Inject modal information into latent space ∗/
11: Inject yl

c to SD model though Equation (7)
12: else
13: /∗ Align the dimension of feature mapping ∗/
14: Bypass Fl and Zl though skipl (·)
15: end if
16: end for
17: /∗ DDIM or RFlow sampler is used for denoising ∗/
18: Predict denoised image with T -step sampling
19: end for
20: return x0

B. Implementation Details
We implement FlexControl based on SD1.5 (Stability, 2022)
and SD3.0 (Esser et al., 2024a). The experiments are carried
out under various conditions, mainly including depth map,
canny edge and segmentation mask. The following is a
description of the experimental details.

Algorithm 2 Training procedure

Input: Dataset D (x, cs, ct), hyperparameters (τ, γ, λC).
Initialized FlexControl model, pre-trained SD model.

1: /∗ Keep all the control blocks active ∗/
2: Turn off the router units for warm-up training
3: Turn on the router units for end-to-end training
4: while not converged do
5: Sample timestep t ∼ Uniform (0,1)
6: Sample nosie ϵ ∼ N (0, I)
7: /∗ Based on Equation (2) or Equation (5) ∗/
8: Transfer image x0 to noisy image xt

9: /∗ Based on Equations (7), (16) and (17) ∗/
10: ypred,M = ϵ̂θ (xt, ct, cs, t)
11: /∗ LSD is used to optimize generation effect ∗/
12: Compute MSE loss LSD though Equation (18)
13: /∗ LC is used to control sparsity ∗/
14: Compute cost loss LC though Equation (19)
15: /∗ Lθ is used as final optimization goal ∗/
16: Compute final loss Lθ though Equation (20)
17: /∗ Freeze the weight parameters of the backbone ∗/
18: θ = θ − lr∇θLθ (xt,ypred,M)
19: end while
20: return fully-trained FlexControl

Training dateset. The experiment involves three types of
conditional maps:

• Depth map. In this application, we use MultiGen-20M
proposed by (Zhao et al., 2024a) as training data, which
is a subset of LAION-Aesthetics (Schuhmann et al.,
2022) and contains over 2 million depth-image-caption
pairs, and 5K test samples.

• Canny edge. For the condition of the canny edge, we
use the LLAVA-558K (Liu et al., 2024) dataset to verify
the model, which contains 558K image-caption pairs.
A canny edge detector (Canny, 1986) is used to convert
RGB images to edge images, and the low and high
threshold of hysteresis procedure in this process are set
to 100 and 200, respectively.

• Segmentation mask. For the segmentation mask, we
use the ADE20K (Zhou et al., 2017) dataset for model
training. This dataset contains a total of 27K segmen-
tation image pairs, 25K for training and 2K for testing.
InternVL2-2B (Chen et al., 2024b) is used to gener-
ate captions for RGB images with instruction “Please
use a brief sentence with as few words as possible to
summarize the picture”.

Training settings. During the training procedure, we uni-
formly use the AdamW optimizer with a learning rate of
1×10−5. For SD1.5-based models, half-precision floating-
point (Float16) is used for mixed precision training, original

14

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

images and conditional images are resized to 512×512, and
batch size and gradient accumulation steps are set to 4 and
32, respectively. When turning to SD3.0, we further use
DeepSpeed (Rajbhandari et al., 2020) Zero-2 to acceler-
ate the training process, the resolution of 1024×1024 is
used, and the batch size and gradient accumulation steps
are set to 4 and 8. We set the maximum training iterations
to 50k and 25k for the models based on SD1.5 and SD3.0,
respectively. For the threshold parameter τ required by the
Gumbel-Sigmoid activation function in the router unit, we
set it to 0.5, and the hyperparameter λC in the loss func-
tion Lθ is set to 0.5, the value of γ depends on the target
sparsity. When training UNet-based ControlNet-large and
FlexControl, we remove the residual connection between
the encoder blocks and the decoder blocks of the control
network. For the problem of the weight dimension cannot
be aligned when initializing the decoder blocks of the con-
trol network using SD1.5’s pre-trained weights caused by
this operation, we solve it by reinitializing these weights.
The models based on SD1.5 and SD3.0 are trained with 2
and 8 Nvidia-A100 (40G) GPUs, respectively.

Our FlexControl follows the core design philosophy of
(Zhang et al., 2023b), the trainable blocks are initialized
with the pre-trained weight parameters of the SD model,
and zero modules are added at the same time, which leads
to the conditional mappings generated at the early training
stage do not have the ability to control generation effectively.
Therefore, we first fix mask M to 1 for warm-up training
in the early training stage, e.g., 10K steps for SD1.5-based
FlexControl and 5K steps for SD3-based FlexControl in our
implementation, and then turn on the router unit to train
together with the copy blocks. This helps the whole training
procedure move in the right direction.

When it comes to the settings for applying the dynamic
policy to ControlNeXt (Peng et al., 2024) and OminiCon-
trol (Tan et al., 2024), we use the same settings as SD1.5-
based FlexControl for FlexControlNeXt. Since the FLOPs
of FlexControlNeXt does not change with sparsity γ, we
slightly adjust the loss function when training FlexCon-
trolNeXt. specifically, we change the ratio of FlexCon-
trolNeXt’s FLOPs to base model’s FLOPs to the ratio of
the number of backbone blocks injected with conditional
controls to the total number of backbone blocks. For Flex-
OminiControl, the resolution of 512×512 is used, and the
learning rate is set to 1×10−4. Except for the above settings,
other settings are the same as those for SD3.0-based Flex-
Control. We finetune the condition-LoRA on FLUX.1-dev
(Labs, 2024), whose rank is set to 4 by default.

Benchmark and metrics. For quantitative comparison,
we present the Frechet Inception Distance (FID) (Heusel
et al., 2017) and CLIP score (Radford et al., 2021) to as-
sess the quality of the generated images. In addition, we

calculate RMSE, SSIM and mIoU on depth map, canny
edge, and segmentation mask, respectively, to evaluate the
controllability of image generation. Finally, we emphati-
cally compare computational complexity. The results of
depth map are tested on MultiGen-20M test set and the re-
sults of canny edge and segmentation mask are tested on
COCO validation set, which contains 5,000 samples and
each sample contains five text descriptions, we randomly
choose one text of each sample as input during testing. For
sampling, we employ the DDIM (Song et al., 2021) and
RFlow (Esser et al., 2024a) sampler, implementing 20 de-
noising steps to generate images without incorporating any
negative prompts. We generate five groups of images, and
the average results are reported.

C. Dynamic Routes Exploration
In order to improve the parameter utilization of ControlNet
in the application, we explore how the router unit activates
the control block to generate conditional controls.

It can be seen from Figure 1(c), both SD1.5 based on UNet
and SD3.0 based on DiT, the activation of control blocks
presents a sparse distribution in the early denoising stage
and a dense distribution in the late stage. This means that
the late denoising stage plays a more important role in con-
trollable image generation. Since the early sampling is
mainly responsible for generating the global structure and
low-frequency information of the image (e.g., the approxi-
mate shape of the object, the distribution of the components),
while the late sampling is mainly responsible for generating
high-frequency information and correcting complex details
(e.g., edge, texture). For this, more conditional control
signals are necessary. Moreover, the generation deviation
in the early stage is relatively small and can be rectified
by subsequent sampling. If the sampling error in the later
stage is large, the conditional consistency will be destroyed,
resulting in a loss of control effect.

Based on the above findings, we can conclude that using
unified control scheme in any case is an inefficient control
mode, which leads to most of the conditional controls added
in the early stage not playing the ideal role, and there will
be insufficient conditional controls added in the late stage.
Therefore, our dynamic control method can further release
the performance of the controllable generation model by
solving this problem. Next, we do a more detailed analysis
of the different settings.

First, we test the activation time and position of the control
block under different number of timestep settings with γ
set to 0.5 (i.e., approximately 50% sparsity). We set the
timesteps to 10, 20 and 50 respectively. As shown in Fig-
ure 6, it can be found that the pattern under different settings
is basically the same as above. In the early stage, only a

15

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

few blocks are activated, mainly concentrated in the head
and tail. As the number of sampling steps increases, more
blocks are activated. Until the middle stage of sampling,
most of the blocks are activated.

Next, we test the activation of control blocks under different
sparsity. We approximate 30%, 50%, and 70% sparsity by
setting γ to 0.3, 0.5, and 0.7. It can be seen from Figure 7,
when 30% sparsity is used, fewer blocks are activated at the
late stage, and even some control blocks are not activated
at all. When the sparsity increased to 70%, more middle
blocks are activated in the early sampling period, and almost
all blocks are activated in the late sampling period.

In addition, we discuss the activation of various spatial con-
ditions at each timestep. As shown in Figure 8, similar
trend is found across different types of conditional maps,
which proves the generalization of the above findings. In
addition, there are some differences in activation details,
which means that the router unit makes independent judg-
ments on different conditional samples and plans specific
activation routes for them. Due to the differences in feature
distribution and information in the samples, this fine-grained
control is particularly important for striking a balance be-
tween performance and efficiency.

Relying on the above findings, when we apply ControlNet or
similar architectures in practice, only activating the head and
tail blocks in the early stage, or even activating ControlNet
only in the late stage, can simply improve the inference
efficiency, and no retraining is involved.

D. More Ablation Studies
Comparison with random selection. To further demon-
strate that FlexControl’s performance improvement is
achieved by correctly positioning the injection location of
conditional controls, we conduct ablation study on simpler
alternatives to the random selection of control blocks. Since
the relative positions of randomly sampled activation con-
trol blocks will have a certain impact on the results, for a
more comprehensive and fair evaluation, we partition the
overall diffusion block into front, middle, and back parts,
each part contains 30% of the blocks. We apply different
sampling probabilities on each part:

• Random (front): sample the front control blocks with a
sample probability of 50%, while the middle and back
control blocks with 25%.

• Random (middle): sample the middle control blocks
with a sample probability of 50%, while the front and
back control blocks with 25%.

• Random (back): sample the back control blocks with a
sample probability of 50%, while the front and middle
control blocks with 25%.

Method FID ↓ CLIP score ↑ mIoU ↑ FLOPs ↓ Speed ↑
Random (front) 22.72 0.2516 0.2649 315 G 5.01±0.07 it/s

Random (middle) 21.34 0.2562 0.2803 312 G 5.02±0.06 it/s
Random (back) 20.64 0.2534 0.3217 314 G 5.02±0.07 it/s

Uniform 19.14 0.2600 0.3024 323 G 4.95±0.07 it/s

FlexControlγ=0.3 17.21 0.2713 0.3572 168 G 5.64±0.12 it/s
FlexControlγ=0.5 14.80 0.2842 0.3751 280 G 5.21±0.12 it/s

Table 7. Quantitative comparison with random selection and uni-
form selection of control blocks. We compare image quality, con-
trollability and efficiency. The diffusion iterations per second (i.e.,
it/s) is measured on single Nvidia RTX 2080 Ti GPU. The best and
second-best values are highlighted in red and blue. FlexControl
outperforms random selection and uniform selection under lower
inference latency.

Method FID ↓ CLIP score ↑ mIoU Speed ↑
ControlNet 21.33 0.2531 0.2764 5.23±0.07 it/s

ControlNet++ 19.89 0.2640 0.3435 5.23±0.07 it/s
FlexControl (w.o. training) 19.86 0.2732 0.3295 5.24±0.11 it/s

FlexControlγ=0.5 14.80 0.2842 0.3751 5.21±0.12 it/s

FlexControl (w.o. training) 16.56 0.2778 0.3665 4.86±0.09 it/s
FlexControlγ=0.7 14.71 0.2840 0.3775 4.94±0.07 it/s

Table 8. Quantitative comparison with training-once-for-all-
sparsity strategy. We compare image quality, controllability and
efficiency. The diffusion iterations per second (i.e., it/s) is mea-
sured on single Nvidia RTX 2080 Ti GPU. The best values are
highlighted in red. We adjust the inference latency by resetting
the threshold T of Gumbel-Sigmoid activation function of router
units.

• Uniform: start from the first control block, sequentially
retain one block, and then skip the next block.

We use the above division strategy to simulate the results
produced by randomly selecting control blocks in a more
comprehensive way. As shown in Table 7, our adaptive
selection strategy achieves significantly better results with
lower FLOPs and latency. Additionally, scaling up the con-
trol branch using our strategy by resetting γ from 0.3 to 0.5
demonstrates a clear performance improvement.

Performance without training under assigned sparsity.
Our methods usually require separate model training for
target sparsity. Therefore, we try to train a model for ar-
bitrary sparsity. To achieve this, we first set the threshold
T in the router units to a low level for model training to
ensure that most control blocks can be activated. In addi-
tion, we remove the cost loss in the optimization target and
supervise the training process only through the diffusion
loss. After completing the training, we inactivate part of the
control block by raising the threshold T to convert it into a
sparse model. As shown in Table 8, the “training-once-for-
all” scheme achieves better performance than ControlNet
at similar inference speed and can be comparable to Con-
trolNet++, but the performance does not fully match that of
the γ-aware trained version, indicating that explicit training

16

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

Figure 6. The distribution of activated control blocks under different timesteps. The hyperparameter γ is set to 0.5 to approximate the
sparsity of 50%, and timestep is set to 10, 20 and 50 (i.e., the charts of columns one to three), repectively. The charts in the first and
second rows show the results of the model based on SD1.5 and SD3.0, respectively. and denotes activated and inactivated control
blocks, respectively.

with sparsity constraints remains crucial for achieving the
optimal efficiency-performance trade-off.

E. More Visualization Results

17

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

Figure 7. The distribution of activated control blocks under different sparsity. The hyperparameter γ is set to 0.3, 0.5 and 0.7 to
approximate the sparsity of 30%, 50%, and 70% (i.e., the charts of columns one to three), respectively. The timestep of 20 is used, and the
charts in the first and second rows show the results of the model based on SD1.5 and SD3.0, respectively.

Figure 8. The distribution of activated control blocks under various conditional controls. The hyperparameter γ is set to 0.5 to
approximate the sparsity of 50%, and the timestep of 20 is used. The charts of columns one to three display the results on depth map,
canny edge, and segmentation mask datasets, respectively

18

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

Figure 9. Visualization comparison with state-of-the-art controllable generation methods on various spatial conditions. Except for
the last column — ControlNet (SDXL), which uses SDXL as the diffusion backbone, the other models use SD1.5. Captions: A white
stallion horse galloping furiously kicking up the dust behind it. Ingredients of curry, including onions, garlic, chili, and tomatoes. A group
of people are observing an aquarium filled with colorful fish.

19

FlexControl: Computation-Aware Conditional Control with Differentiable Router for Text-to-Image Generation

Figure 10. Visualization comparison of FlexControl and existing methods on SD1.5 for semantic consistency.

Figure 11. Visualization comparison of FlexControlNeXt and existing methods on SD1.5 for semantic consistency.

Figure 12. Visualization comparison of FlexControl and existing methods on SD3.0 for edge preservation.

Figure 13. Visualization comparison of FlexOminiControl and existing methods on FLUX.1 for edge preservation.

20

