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Figure 1. Our HDEdit supports training-free instruction-guided editing for both videos and 3D scenes through Hierarchical task
Decomposition. Left: HDEdit achieves high-quality editing satisfying both original content preservation and editing instruction ful-
fillment in video editing. Right: HDEdit supports challenging 3D scene editing tasks involving significant geometric changes, which
baselines [4, 11] fail to achieve. More results are provided in our Project Page and Supplementary Video.

Abstract

We introduce HDEdit, a training-free framework for
instruction-guided video and 3D scene editing that resolves
the fundamental tension between instruction fulfillment and
original content preservation through Hierarchical task
Decomposition. Our key insight is to progressively de-
compose complex edits into simpler subtasks. This hier-
archical strategy aligns with dual objectives: an LLM-
guided planner structures high-level subgoals for reliable
instruction fulfillment, while embedding-space interpola-
tion further refines each subgoal to preserve unedited con-
tent. Two tailored control mechanisms — word-level at-
tention map propagation and parallel denoising synchro-
nization — ensure temporally consistent, hyperparameter
tuning-free execution. Beyond video, we extend HDEdit to
3D editing via a simple yet effective render-edit-reconstruct
process that maintains strong geometric consistency. Ex-
tensive experiments demonstrate our state-of-the-art re-
sults across diverse and challenging edits, including long-
duration videos, fast camera motion, and significant 3D ge-
ometric changes.

1. Introduction

Video diffusion models have recently emerged as a pow-
erful class of generative models capable of synthesizing
high-resolution, high-fidelity videos from text prompts [1,
2, 15, 26, 41], extending the transformative success of
image diffusion models [35] into the temporal domain.
Alongside generation, a particularly promising direction is
instruction-guided video editing, which involves modifying
existing videos through natural language descriptions. This
paradigm enables the creation of new videos through mini-
mal edits, offering greater efficiency and control than gen-
eration from scratch.

Despite their potential, instruction-guided video editing
remains significantly underdeveloped. A key reason is the
lack of large-scale paired datasets for supervised learning,
which makes training-based methods difficult to scale. Con-
sequently, training-free approaches have gained traction,
leveraging pre-trained diffusion models to perform editing
without additional optimization [10, 16, 27, 36]. Yet, these
methods struggle with three fundamental challenges: main-
taining temporal coherence, handling dynamic content with
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fast camera motion or object movement, and, critically, bal-
ancing the fulfillment of editing instructions with the preser-
vation of original content. Moreover, they typically require
careful tuning of hyperparameters to strike this balance,
limiting usability and robustness.

We observe that this balance is especially difficult to
achieve in complex edits as illustrated in Fig. 1, which
demand both precise control over multiple modifications
and reliable retention of unedited regions. Our key insight
is to treat such tasks as inherently multi-stage problems.
Specifically, we decompose the global objective — editing
with preservation — into two entangled but asymmetrical
subgoals: (1) editing fulfillment, ensuring the desired mod-
ification is fully expressed; and (2) original content preser-
vation, ensuring unrelated regions remain unchanged.

To achieve both goals, we propose HDEdit, a novel
training-free framework that introduces a Hierarchical task
Decomposition strategy, explicitly aligning the dual-stage
decomposition with the twofold objectives of instruction-
guided editing: fulfilling intended edits and preserving orig-
inal content.

At the high level, we address the challenge of editing
fulfillment by leveraging large language models (LLMs)
for semantic task planning. Given a complex instruction,
the LLM analyzes its intent and visual implications, and
then schedules a sequence of simpler, semantically mean-
ingful sub-instructions. Each sub-instruction targets a dis-
tinct editing goal that is easier to achieve in isolation — for
example, modifying a specific object, attribute, or region
— thus enabling progressive, interpretable fulfillment of the
original instruction. This decomposition not only structures
the editing process but also mitigates the risk of over-editing
or semantic drift that often arises from attempting to satisfy
complex prompts in a single step.

However, even when each subgoal is semantically clear
and localized, executing it through a single diffusion step
can still compromise content outside the target region. To
mitigate this, we introduce a low-level decomposition mech-
anism focused on the preservation aspect. Specifically, we
apply embedding-space interpolation to further decompose
each high-level subgoal into a series of intermediate repre-
sentations. These steps form a smooth transition path that
gradually transforms the video content, reducing semantic
discontinuities and minimizing visual artifacts. In effect,
this fine-grained decomposition eases preservation control
within each subtask.

We further propose two synergistic strategies to achieve
preservation control across the hierarchically decomposed
subtasks. First, a word-level attention map management
selectively retains visual features from prior subgoals by
storing and reusing the attention maps from previous sub-
tasks, enabling spatially-aware content inheritance across
steps. Second, a parallel denoising control scheme coor-

dinates the diffusion process over time, ensuring temporal
coherence and consistent appearance preservation. These
components form a unified editing system that is both hy-
perparameter tuning-free and highly reliable in preserving
content integrity while achieving faithful edits.

Beyond its core application to video editing, HDEdit nat-
urally extends to 3D scene editing. We introduce a sim-
ple yet effective render-edit-reconstruct (RER) process that
renders a video from a 3D scene, edits the video using our
framework, and reconstructs the scene from the edited re-
sult. This process preserves 3D consistency by leveraging
the temporal coherence of the rendered video and benefits
from the same hierarchical decomposition used in 2D. No-
tably, HDEdit can robustly edit scenes with significant ge-
ometric changes and large-scale camera motion — scenarios
that existing methods [7, 10, 19, 29, 36] fail to handle.

As demonstrated in Fig. 1, HDEdit achieves state-of-
the-art editing quality across a wide range of challeng-
ing scenarios, including long-duration videos, rapid camera
movement, and fine-grained scene edits. In 3D, it supports
geometry-altering edits such as object insertion, providing
superior geometric consistency and flexibility while outper-
forming prior approaches [4, 11, 38] that rely on costly
view-specific optimization.

Our contributions are threefold:

* We propose HDEdit, a training-free framework for
instruction-guided video editing through hierarchical task
decomposition, and further extend it to 3D scene editing
via a simple yet effective render-edit-reconstruct process.

* We introduce a hierarchical subtask decomposition
aligned with editing goals: high-level LLM-based
scheduling for instruction fulfillment and low-level
interpolation-based refinement for content preservation.

* We design two robust preservation control strategies —
word-level attention map propagation and parallel denois-
ing synchronization — enabling consistent, hyperparame-
ter tuning-free editing.

2. Related Work

Video Diffusion Models. The success of diffusion mod-
els in image generation has been extended to video gener-
ation [14]. Early approaches [2, 13, 14, 37, 46] design the
video diffusion model based on the UNets of image diffu-
sion models, to support the 3D-shaped inputs for videos.
To save memory and compute, instead of directly lifting the
convolutional layers and attention layers from 2D to 3D,
they keep the existing 2D layers to be applied individually
to each frame, while inserting temporal convolutional and
attention layers. This decomposes the computation of spa-
tial and temporal components of videos, and also makes it
possible to extend pre-trained image diffusion models by
only tuning the temporal generation capability through fine-



tuning [2, 13, 37]. Later, Stable Video Diffusion (SVD) [1]
scales up video diffusion models for high-resolution, high-
quality video generation through careful data selection and
multi-stage training, and also extends to the generation of
3D [41] and 4D [45] contents. The release of SORA [26]
has lit a new way to scale up video diffusion models with
diffusion transformers (DiTs). Instead of applying down-
sampling and decomposed attention layers in UNets, DiTs
directly turn the whole video (or video latents) into a se-
quence of patches, and apply a full 3D attention within
all the patches. Inspired by this, CogVideoX [47] is pro-
posed upon its previous effort CogVideo [15], using DiT-
based video diffusion models and significantly improving
the video length, resolution, and generation quality. Hun-
yuan [20] further scales up the model capacity, producing
even more superior results.

Video Editing. Due to the lack of paired training data for
video editing, i.e., triples of “editing instruction, original
video, and edited video,” most existing methods operate in
a training-free manner. Traditional video editing methods
[7, 17, 23, 29, 33] are image-based methods, which rely
on an underlying model with image editing capability and
introduce other add-ons to control the consistency. For ex-
ample, FateZero [33], Tune-A-Video [43], and Instruct 4D-
to-4D [29] adapt 2D diffusion models for video editing by
extending the spatial attention layers in UNets into spatio-
temporal attention layers in a zero-shot manner, incorporat-
ing both the first and previous frames during generation.

Following the emergence of video diffusion models,
several methods have explored video editing by utilizing
their generative power and temporal smoothness capabili-
ties. BIVDiff [36] uses a pre-trained video diffusion model
to refine temporally inconsistent, per-frame edited images
into a smooth, temporally consistent video. VideoShop
[10], AnyV2V [22], and StableV2V [25] take the edited
first frame as input, along with the original video, and prop-
agates the edits through subsequent frames. CogVideoX-
V2V [47] applies SDEdit [27] to edit videos by using
the generative capability. However, unlike our HDEdit,
these methods struggle with complex scenarios, such as
fast-moving cameras, dynamic backgrounds and contents,
and significant changes in geometry or motion. Notably,
many training-free methods also require task-specific hy-
perparameter tuning to balance instruction fulfillment and
original content preservation, whereas our hyperparameter
tuning-free HDEdit achieves a consistent preservation strat-
egy across diverse editing tasks.

Diffusion-Based 3D Scene Editing. In instruction-guided
3D scene editing, a common approach is to apply 2D dif-
fusion models to individual views and distill the resulting
edits into the 3D scene using score distillation sampling
(SDS) [32]. Instruct-NeRF2NeRF [11] pioneers this di-
rection by employing an SDS-equivalent iterative update

mechanism to refine a dataset of edited views to train the
NeRF [28] representation towards the edited scene. Sub-
sequent work has aimed to improve various aspects of this
paradigm, such as editing efficiency [38], distillation quality
[19, 21], 3D consistency [4, 5, 18, 42], and even extensions
to 4D scenes [29]. On the other side, video diffusion mod-
els offer a natural alternative by directly editing a rendered
video of the scene, replacing image-based diffusion with
temporally-aware generation. Since temporal consistency
in the edited video is essential for maintaining 3D consis-
tency in the underlying scene, this approach has the poten-
tial to significantly reduce the challenge of maintaining ge-
ometric coherence. However, achieving this in practice is
difficult: the rendered video must span diverse viewpoints
and scene content, requiring substantial variation in both vi-
sual appearance and camera trajectory to sufficiently cover
the full scene. These factors make the video editing task it-
self particularly challenging. To the best of our knowledge,
no existing work has successfully leveraged video diffusion
models for editing 3D or 4D scenes.

Task Decomposition in Visual Content Editing. While
the idea of decomposing complex editing tasks into sim-
pler, more manageable subtasks shows initial promise, it
remains under-explored, particularly in the context of chal-
lenging video editing scenarios. ProEdit [4] introduces task
decomposition and progression for 3D scene editing, which
applies interpolation-based decomposition with a difficulty
estimation based on perceptual metrics. In contrast, our hi-
erarchical decomposition is guided by LLMs, which assess
task difficulty based on their reasoning capabilities, leading
to a more grounded and reliable subgoal generation. Such
LLM-based approach not only simplifies the original edit-
ing instruction into high-level, interpretable subtasks, but
also facilitates interpolation in more structured subspaces.
Furthermore, the hierarchical structure enables more effec-
tive and principled content preservation control strategies.
Empirically, our HDEdit outperforms ProEdit with stronger
editing capability from hierarchical decomposition, extend-
ing the success of task progression to video editing.

3. Methodology

HDEdit is a training-free framework that leverages pre-
trained video diffusion models for controllable, high-
fidelity video editing. As illustrated in Fig. 2, our core
design is a hierarchical subtask decomposition that reflects
the dual objectives of instruction-guided editing: high-level
scheduling simplifies instruction fulfillment, and low-level
refinement controls content preservation of the original
scene. Specifically, an LLM-guided semantic-aware plan-
ner first decomposes the original editing instruction into a
sequence of high-level subtasks (Fig. 2-(a)), each annotated
with an estimated difficulty score. Each high-level sub-
task is then further split, via interpolation-based decompo-
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as video prompts, with difficulty estimation; and then (b) an interpolation-based low-level decomposition to adaptively further break down
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sition (Fig. 2-(b)), into a smooth series of low-level mod-
ifications. To preserve relevant content from the source
video throughout this progressive process, we introduce a
training-free preservation-control strategy (Fig. 3) tailored
to the hierarchy: (1) word-level attention map propagation
between adjacent high-level states; and (2) a parallel de-
noising mechanism that enforces consistency during low-
level execution. Together, these components deliver inter-
pretable, high-quality edits for complex tasks without any
manual hyperparameter tuning.

3.1. Hierarchical Subtask Decomposition

To decompose the editing task into subtasks with simpler
structures and comparable difficulty, we propose a hierar-
chical subtask decomposition framework with (1) LLM-
guided semantic-aware scheduling for high-level subtask
planning, and (2) interpolation-based difficulty-informed
refinement for low-level subtask generation.

Definition of States and Subtasks. Unlike the “editing in-
struction” or “editing prompt” which define the overall edit-
ing goal, the video diffusion model accepts only descriptive
prompts as input. Therefore, we define a state in the video
editing process as a descriptive prompt such that the cor-
responding video either matches or can be generated from
it. The initial state sy describes the original video, and the
final state s,, describes the desired edited video. Intermedi-

ate states {s;} may exist between them. We then define a
subtask as the transformation from one state (prompt) s;_1
to the next state s;. For simplicity, we refer to the subtask
associated with state s; as the transformation from s;_; to
s, and denote the resulting video of this subtask as v;.
LLM-Guided Semantic-Aware Subtask Scheduling
(Fig. 2-(a)). We observe that LLMs like [30] possess
strong visual reasoning capability: given a few frames
from the original video, an LLM can generate a descriptive
prompt sg; similarly, with sy and an editing instruction,
it can infer the final prompt s,,. We thus leverage this
ability for high-level subtask scheduling by prompting
the LLM to generate a sequence of intermediate states
S1,82, -+ ,Sn—1, ensuring that each state s; is visually
similar to its adjacent states s;_; and s;;;. Additionally,
we ask the LLM to estimate subtask difficulty based on
the visual change between s;_; and s;. This approach
enables interpretable, semantically meaningful scheduling
while providing grounded and robust difficulty estimates —
more reliable than those in [4] — which facilitate low-level
decomposition. A concrete example is in Suppl. Sec. C.6.
Interpolation-Based Difficulty-Informed Subtask De-
composition (Fig. 2-(b)). The high-level scheduling pro-
vides word-level subtask granularity. However, some sub-
tasks may still exhibit disproportionately high difficulty.
For example, transitioning from sy = “a person” to s; =



“a person with a beard” is relatively easy, but s; to so =
“a person with a beard and a parrot standing on the shoul-
der” is significantly harder due to the complex geometry
of the parrot. In such cases, decomposition at a finer level
becomes necessary; however, inserting semantically mean-
ingful intermediate prompts or states between s; and so is
non-trivial, especially for the LLM, since a parrot represents
a semantically “atomic” concept. To this end, we introduce
interpolation-based subtask decomposition inspired by [4],
inserting intermediate states in the form as; + (1 — a)so by
interpolating their embeddings. This enables sub-word level
granularity. We leverage LLM-derived difficulty estimates
to determine the number of interpolation points, ensuring
subtask-complexity-informed decomposition.

3.2. Original Content Preservation Control

After decomposing the editing task into subtasks, we ex-
ecute each subtask s; progressively, aiming to preserve as
much information as possible from the previous state s;_1.
Building on our hierarchical decomposition, we design tai-
lored preservation control strategies (Fig. 3). When execut-
ing subtask s;, given the previous state s;—; and the two
adjacent high-level states s; and s,, where | < ¢ < 7, we
perform: (1) attention map management to preserve high-
level information from s;, and (2) parallel denoising control
to retain low-level details from s; 1.

Attention Map Management (Fig. 3-(b)). Controlling
attention maps is a common strategy for content preser-
vation in editing. A representative method is Prompt-to-
Prompt (P2P) [12], which reuses cross-attention maps of
shared words to maintain consistency. However, as shown
in Fig. 3-(a), directly applying P2P to sg and s,, may be in-
effective for complex editing due to minimal prompt over-
lap. Our high-level decomposition provides intermediate
states where adjacent prompts are more semantically simi-
lar and share more common words (Fig. 3-(b)). Leveraging
this, we manage attention maps to exploit all available over-
laps. Specifically, we store the attention maps from each
word in the previous high-level state s;, and directly re-
place the attention maps of the corresponding words dur-
ing the diffusion generation of s; (upper part of Fig. 3-
(c)). This mechanism supports cross-subtask propagation,
even for ¢ = r, enabling attention maps to persist across
multiple subtasks when words recur (Fig. 3-(b)). As a re-
sult, we achieve long-term content preservation: even if sg
and s,, share no direct overlap, information is progressively
transferred through adjacent subtask pairs, ensuring robust
preservation control. More details are in Suppl. Secs. C.3-C.4.
Parallel Denoising Synchronization -(Fig. 3-(c)) . While
attention map management effectively preserves informa-
tion from s;, which remains unchanged from s; to s;, we
still need to retain additional information from s;_;. How-
ever, since the prompts for s; and s, often differ signifi-

cantly due to word substitutions, additions, or rephrasings,
cross-attention map replacement becomes unreliable. To
address this, we shift from preserving content based on /iz-
eral prompt overlap to preserving it based on visual appear-
ance, using parallel denoising processes. Specifically, we
run two denoising procedures in parallel: (1) a fully con-
trolled denoising generation process D;_1 that reconstructs
Si—1’s video v;_1; and (2) a guided generation process D;
for s;’s video v;, which receives and preserves information
from D;_1, i.e., from v;_;. To implement this, we adopt
initial noise control from [27] and per-step noise control in-
spired by [16], within the denoising timestep range [, /5]
(lower part of Fig. 3-(c)). Such a strategy not only ensures
faithful reconstruction of v;_; in D;_1, but also transfers
sufficient information from D;_; to D;, enabling robust
content preservation across adjacent subtasks. More details
are in Suppl. Sec. C.2.

3.3. Render-Edit-Reconstruct (RER) for 3D Scene
Editing

Beyond its native video editing capabilities, HDEdit seam-
lessly extends to 3D scene editing via a straightforward
render-edit-reconstruct (RER) process: render a video of
the original scene along a fixed camera trajectory, edit the
video using HDEdit, and then reconstruct and re-render the
scene from the edited video.

To ensure 3D consistency, we modify the progressive
editing framework such that, after obtaining the edited
video v; for each subtask s;, we reconstruct it into 3D and
re-render it back to 3D-consistent video v3P; all preserva-
tion control mechanisms then operate on the 3D-consistent
v3P, and v}P instead of v;_; and v;. This modifica-
tion leverages both the temporal smoothness of rendered
videos and the 3D consistency from reconstruction, ensur-
ing strong 3D consistency in edited videos. Unlike previous
3D editing methods [4, 9, 11, 19, 38] that require iterative
dataset updates and additional training, our approach is sta-
ble and efficient, achieving high-quality edits with minimal
diffusion generations. Furthermore, the temporal consis-
tency of our edited videos allows for significant geometric
changes, such as object insertion, which were previously
challenging due to inconsistent per-view editing results.

4. Experiment
4.1. Experimental Settings

HDEdit Settings. We utilize the open-source CogVideoX-
5b [47] as the underlying video diffusion model.
CogVideoX-5b is a text-to-video model based on a diffu-
sion transformer (DiT), and supports SORA-like [26] long
descriptions as input prompts. For LLM-guided planning,
we employ GPT-4o [30] to generate sy and s,, perform
high-level task decomposition, and estimate subtask diffi-



culty. Based on this, we further decompose each high-level
subtask into at most three low-level subtasks. For 3D scene
editing tasks, our HDEdit is independent of the specific
scene representation. Therefore, we adopt either Splact-
Facto or NeRFacto from NeRFStudio [39] as the scene rep-
resentation, depending on the scenario.

Video Editing Tasks. Consistent with previous work [36],
we use videos from the DAVIS dataset [31, 44] as source
videos. The editing tasks used for evaluation are suggested
by GPT-40, conditioned on the original video content.
Video Editing Baselines. We compare our HDEdit with
several video editing baselines, which can be roughly di-
vided into two categories: (1) Image-based methods that
rely on an underlying image generative model, including
Slicedit [7] and Instruct 4D-to-4D [29], primarily designed
for monocular scenes; and (2) Video-based methods that
utilize an underlying video generative model, including
CogVideoX-V2V [47], VideoShop [10], StableV2V [25],
AnyV2V [22], BIVDiff [36], and CSD [19]. These methods
typically adopt either per-frame editing followed by overall
refinement, or first-frame editing with propagation to subse-
quent frames. For baselines that require image editing, we
consistently apply Instruct-Pix2Pix [3] to generate the cor-
responding frame. Notably, ProEdit [4] focuses exclusively
on 3D scene editing and is not directly applicable to video
editing; instead, we include a variant of HDEdit that mimics
ProEdit’s strategy in our ablation study for comparison.

3D Scene Editing Tasks. Consistent with previous scene
editing methods [4, 6, 11, 40], we mainly use scenes from
the Instruct-NeRF2NeRF (IN2N) [11] dataset for compar-
ative evaluation. We also use several outdoor scenes from
NeRFStudio [39] to serve as more challenging tasks. For
camera trajectories, we use the official ones provided with
the IN2N dataset or manually design them for other scenes.
3D Scene Editing Baselines. We compare our HDEdit
with state-of-the-art image-based 3D scene editing meth-
ods, including Instruct-NeRF2NeRF (IN2N) [1 1], Efficient-
NeRF2NeRF (EN2N) [38], and ProEdit [4]. In the supple-
mentary, we also compare with another type of baseline:
applying our RER strategy (Sec. 3.3) in combination with
the video editing baselines mentioned above.

HDE(dit Variants for Ablation Study. We conduct an ab-
lation study on each core strategy: Decomposition and Pro-
gression (‘Pro’), attention-map management (‘AMM’), and
the two strategies of parallel denoising control: initial noise
control (‘INC’) and per-step noise control (‘PNC’).
Metrics. The evaluation of video editing tasks involves
multiple aspects, including overall visual quality, preser-
vation of the original video content, and fulfillment of the
editing instruction. It is challenging to assess them using
traditional metrics. Therefore, following ProEdit [4], we
use GPT-40 [30] as an evaluator, which can be regarded
as a Monte Carlo simulation of the VQAScore [24]. We

provide GPT with a detailed prompt including the evalua-
tion criteria, the editing instruction, and both the original
and edited videos (frame-by-frame), and then ask GPT to
assign a score from 1 to 100 for each aspect. To ensure con-
sistency across comparisons, we present all edited videos
from different methods (including ours and baselines) to
GPT simultaneously, and ask it to score them in a single
batch. This encourages the use of a uniform scoring stan-
dard. In addition to GPT-based evaluation, we report user
study results and CLIP-based [34] scores introduced in [11],
including CLIP Text-Image Direction Similarity (CTIDS)
and CLIP Direction Consistency (CDC).

4.2. Experimental Results

Video Editing. Visualization results for video editing on
the DAVIS [31] dataset are shown in Fig. 4, with additional
examples provided in the Project Page and Suppl. Sec. D. Our
HDEdit consistently edits successfully and produces high-
fidelity results in various challenging tasks, e.g., adding a
fiery ring for the motorcyclist to drive through, or turning
a fast-moving person into Batman; while successfully pre-
serving unrelated content, e.g., the wall and layout of the
tennis court and the tennis player’s motion in the “Batman”
task, the background objects in the farm in the “pig” task,
and the river in the “swan” task. On the contrary, all base-
lines either fail to complete the editing task or significantly
alter unrelated parts from the original scene, especially the
original pose and motion. Notably, the CogVideoX-V2V
baseline is an official method that applies SDEdit [27] on
CogVideoX, which can be regarded as a variant of our ap-
proach. This baseline produces videos with good appear-
ance, but fails to preserve most original scene content. This
highlights the importance of our preservation control mech-
anisms. Our results demonstrate that it is not merely the
strength of the underlying CogVideoX model we use, but
rather our novel task decomposition and progression frame-
work and preservation control mechanisms that lead to our
high-quality editing results.

3D Scene Editing. Results for 3D scene editing are shown
in Figs. 5 and 6, with additional examples provided in the
Project Page and Suppl. Sec. D. As illustrated in Fig. 6, our
HDEdit succeeds in challenging editing tasks that contain
significant geometric change, producing realistic appear-
ance and coherent geometry, especially in the “lion cub”
example (e.g., object insertion). In contrast, all baselines
fail on most of these tasks — either unable to fulfill the edit-
ing requirement or drastically altering the appearance of the
original scene, or both. Beyond forward-facing scenes, our
HDECdit also performs well in indoor and outdoor scenes
in Fig. 5, handling diverse editing tasks while maintaining
both faithful edits and strong preservation of the original
scene content. Notably, with our flash-attention-based [8]
acceleration (Suppl. Sec. C.4), editing a 72-frame video takes
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Figure 4. Our HDEdit produces high-quality editing results in various video editing tasks, achieving superior visual appearance while
effectively preserving original content. In contrast, the baselines often introduce visual artifacts, generate unrealistic appearances, or fail to
retain regions unrelated to the editing. Notably, CogVideoX-V2V [47], the official video-to-video editing model of CogVideoX, generates
visually appealing results but lacks content preservation. This highlights that the strength of HDEdit stems not from the underlying
CogVideoX backbone, but from our novel task decomposition and progression framework and preservation control mechanisms. Please
refer to Suppl. Sec. D for more results, and Project Page for the corresponding videos.

'Make the cow an origami cow. Crystal swan swimming in the lake.

Turn the stone bear into a realistic piglet statue

EN2N ProEdit
Original Scene

Make the ivy in a vibrant red color

EN2N ProEdit
Original Scene HDE(dit (Ours), Edited Scene IN2N

.

Place flower beds along the base of the building walls

EN2N ProEdit
HDE(dit (Ours), Edited Scene

Place stylish sunglasses on the mannegquin to give it a modern look and
decorate the top edge of the stump with tiny, glowing fairy lights

EN2N ProEdit
Figure 5. Our HDEdit achieves high-quality 3D editing results across various indoor and outdoor scenes, consistently fulfilling editing
instructions while preserving original content for all the tasks. In contrast, the baselines either fail to complete the editing or alter many
unrelated regions without adequate preservation. Please refer to Suppl. Sec. D for more results, and Project Page for the rendered videos.

only 10 minutes per subtask within the progression frame- one to two hours, achieving efficiency comparable to sim-
work. Therefore, each editing task completes in roughly pler baselines [1 1, 38], while eliminating unstable iterative
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Original Scene

HDEdit (Ours)
Edited Scene  Edited Video

Give him a thick big mustache and place a
colorful parrot statue houlder,
‘making him look lie an adventurer.

HDEdit (Ours)

Give him a pair of sunglas:
‘golden lion cub on his shoulder.

his head. makis Ch he hair style to Turn him into the Tolkien Elgwl'th green
him look Tike a king. qene
on his head.

Turn his face into a skull. Give him a blue suit. Give hi

Ch i Shoulder.

Figure 6. Our HDEdit achieves high-quality editing results in various challenging 3D scene editing tasks on the Face scene from the IN2N
[11] dataset, demonstrating clear texture, coherent geometry, vivid color, and strong preservation of original content. Notably, HDEdit
successfully handles editing operations involving significant geometric changes, like object insertion, with ease. In contrast, the baselines
either fail to perform the desired editing or compromise key aspects of the original scene, such as background color or subject appearance.

Please refer to Project Page for the rendered videos.

Method ‘ CTIDSt CDC?T GPT Score T User Study 1
Video Editing
BIVDiff [36] 0.0755 0.1007 73.95 3.70
Instruct 4D-to-4D [29] 0.0502  0.0269 65.09 2.81
VideoShop [10] 0.0489  0.0967 60.00 3.03
Slicedit [7] 0.2867 0.1332 74.04 2217
CSD [19] 0.1708 0.0534 48.48 222
CogVideoX-V2V [47] 02114 0.0452 75.00 3.86
StableV2V [25] 0.1506  0.0545 75.60 2.49
AnyV2V [22] 0.1891 0.0654 72.40 2.65
HDEdit (Ours) 0.3098  0.1388 84.50 4.47
3D Scene Editing
Instruct-NeRF2NeRF [11] 0.2312 0.0397 30.4 2.14
Efficient-NeRF2NeRF [38] 0.1475 0.0329 20.0 225
ProEdit [4] 0.2464  0.0600 55.8 2.31
HDEdit (Ours), Edited Scene | 0.2742  0.1474 88.6 4.51

Table 1. Quantitative evaluation shows that our HDEdit consis-
tently outperforms all the baselines under all metrics in both video
and 3D scene editing tasks.

frame edits and delivering significantly superior results.
Quantitative Evaluations. We conduct quantitative eval-
uations on several representative editing tasks, with results
presented in Tab. 1, including a user study involving 43 par-
ticipants to assess subjective quality. Our HDEdit consis-
tently outperforms all baseline methods across all metrics
in both video and 3D scene editing. In particular, HDEdit
achieves a strong balance between original content preser-
vation — as measured by the ‘CDC’ metric, which quantifies
adjacent-frame similarity between the original and edited
scenes — and editing task fulfillment, as demonstrated by
both GPT-based evaluations and user study results. These
findings establish HDEdit as a state-of-the-art framework
for both video and 3D scene editing domains.

Ablation Study. The ablation study results are in Suppl. Tab.
C, while the qualitative visualizations are on our Project Page
and in Suppl. Sec. D. We observe that all these core strate-
gies are crucial to our final results. More specifically: (1)

Decomposition and progression is crucial to the success and
clear appearance of the final results. Without progression,
some geometry editing tasks for 3D scenes may even fail.
(2) Attention-map management is crucial for the preserva-
tion of the shape and appearance of unrelated objects. (3)
Per-step noise control (PNC) is the most important control
in the parallel denoising control method. Without PNC, the
edited video will be significantly different from the original
view, which implies a failure in original content preserva-
tion. (4) Initial noise control is crucial to the preservation
of the overall color of the edited video. These show that all
our designs are crucial to our high-quality results.

5. Conclusion

We presented HDEdit, a training-free framework for
instruction-guided video and 3D scene editing through hi-
erarchical task decomposition. By combining LLM-guided
high-level planning with embedding-based low-level refine-
ment, our method effectively balances instruction fulfill-
ment and content preservation. Two complementary con-
trol strategies ensure consistent, high-quality editing with-
out the need for hyperparameter tuning. Applied to both
videos and 3D scenes via a render-edit-reconstruct process,
HDEdit achieves state-of-the-art performance across com-
plex and dynamic scenarios. We hope this unified and ex-
tensible framework will inspire future advances in genera-
tive video and scene editing.
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