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Abstract

While persona prompting can boost Large Language Model
(LLM) performance, prior work shows that finding the op-
timal persona is notoriously difficult, with its effects often
being unpredictable and even detrimental. Current research
has attempted to mitigate this volatility with prompt-level in-
terventions, such as using costly inference-time ensembles to
select the best output from a sensitive model. We argue for a
paradigm shift: instead of searching for the best prompt for
a volatile model, we should build an inherently robust model
that is insensitive to persona variations. We hypothesize that
persona sensitivity is not a random phenomenon but a system-
atic outcome of a model’s alignment process. Our research
reveals that models aligned with Reinforcement Learning with
Verifiable Rewards (RLVR) are highly robust, unlike their
sensitive, preference-optimized counterparts. Based on this
insight, we propose leveraging knowledge distillation as a
model-centric technique to transplant this robustness from an
RLVR teacher to a student model. Experiments on mathemati-
cal and general reasoning benchmarks show that the distilled
model inherits the teacher’s robustness, drastically reducing
performance gaps across personas. Specifically, for the Qwen3
family, the average persona stability score increased by +0.23
on MATH500, +0.32 on AIME2024, and +0.18 on MMLU-
Pro, while for the Llama-8B models, the improvement reached
+0.24, +0.72, and +0.05, respectively.

Introduction
Persona prompting, which involves assigning a role such as
“You are a mathematical expert”, is a widely adopted tech-
nique for interacting with Large Language Models (LLMs)
(Pataranutaporn et al. 2021; Bai et al. 2022; Liu et al. 2023;
Shanahan, McDonell, and Reynolds 2023; Kong et al. 2023;
Luo et al. 2024; Luz de Araujo and Roth 2025; Sandwar et al.
2025). Recent studies have converged on a key insight: while
an optimal persona for a given task can significantly boost
performance, this ideal persona is notoriously difficult to
identify. Zheng et al. (2024) demonstrate that automatically
finding the best persona is challenging, with selection strate-
gies often performing no better than random. Similarly, Kim,
Yang, and Jung (2024) and Luz de Araujo and Roth (2025)
frame the persona as a double-edged sword; the potential for
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Figure 1: RLVR-Distilled Qwen3 models shows robust perfor-
mance across 4 various personas than Base models. We aver-
age the PSS value from MATH500 and AIME2024 datasets.

performance gain is high, but so is the risk of degradation
from a poorly chosen prompt.

Faced with this challenge, current research has focused
on prompt-level interventions. While Zheng et al. (2024)
primarily diagnose the problem’s difficulty without proposing
a concrete solution, Kim, Yang, and Jung (2024) offer an
ensemble method that generates outputs from both persona-
based and neutral prompts, then uses an LLM evaluator to
select the better one. However, this approach is fundamentally
a reactive, inference-time solution that remains focused on
finding the best output from a volatile model, which incurs
significant computational overhead from multiple LLM calls.

We argue for a paradigm shift. Instead of asking how to
find the optimal persona for a sensitive model, we ask: why
not build an inherently robust model that is insensitive to
persona variations in the first place? This model-centric ap-
proach is far more attractive from a user’s perspective, as it
promises reliable performance without the need for meticu-
lous prompt engineering or the uncertainty of trial-and-error.
We challenge the notion that persona sensitivity is a random
or unavoidable phenomenon. We hypothesize and provide
empirical evidence that a model’s robustness is highly related
to its post-alignment process.

Our investigation reveals a clear behavioral divergence:
models aligned with Reinforcement Learning with Verifiable



Category Persona Name Prompt Text
Domain Expert math expert You are a mathematical expert with deep knowledge of vari-

ous mathematical concepts. Solve problems with precision
and clarity. Think step by step.

Out-of-Domain Expert carpenter You are a master carpenter with deep knowledge of various
woodworking concepts. Solve problems with precision and
clarity. Think step by step.

Baseline (No Persona) zero-shot (Z/S) CoT Solve problems with precision and clarity. Think step by step.
Role-Play Stress Test kindergartener You are a kindergartener who just learned their numbers.

Solve problems with precision and clarity. Think step by step.
Instruction Ablation kind. w/o Z/S CoT You are a kindergartener who just learned their numbers.

Solve problems.

Table 1: Experimental prompts and conceptual categorization for math tasks.

Rewards (RLVR) (Lample and Charton 2019; Cobbe et al.
2021; Le et al. 2022; Lewkowycz et al. 2022; Lightman et al.
2023), such as the Qwen3 (Yang et al. 2025) and Deepseek
R1 (Guo et al. 2025) series, exhibit remarkable robustness
to persona variations. In stark contrast, models aligned with
Preference Optimization (PO) methods (Lample and Charton
2019; Ouyang et al. 2022; Rafailov et al. 2023; Zhao et al.
2023), like the Llama3 (Grattafiori et al. 2024) and Gemma3
(Team et al. 2025) series, show extreme sensitivity. Based on
this insight, we move beyond prompt-level fixes and propose
a model-centric solution that leverages knowledge distillation
to transplant the intrinsic robustness of an RLVR teacher into
a student model, allowing widely used small models to inherit
RLVR-style stability without the prohibitive computational
cost and training instability of applying RLVR to each model
directly. We term this Robustness Distillation, and it aims to
solve the root cause of the problem by creating a model that
is stable by design. As shown in Figure 1, distilled model
from RLVR teacher show robust performance across various
personas.

To validate our hypothesis, we systematically compare
three model archetypes on complex mathematical reason-
ing benchmarks: (1) RLVR-native models, (2) non-RLVR
models, and (3) RLVR-teacher-student distilled models. Our
contributions are threefold:

• We systematically analyze the impact of persona prompt-
ing across different model scales, families, and task dif-
ficulties. Our findings reveal novel insights distinct from
previous studies (Kim, Yang, and Jung 2024; Zheng et al.
2024; Luz de Araujo and Roth 2025).

• We provide empirical and theoretical evidence that the
post-alignment method (RLVR vs. PO) is a primary deter-
minant of a model’s sensitivity to persona prompts.

• We validate our discovery that simple teacher-student
distillation is sufficient to transplant an RLVR teacher’s
robustness to a student model, offering a practical and
principled solution to the challenge of prompt sensitivity.

The Conditional Effectiveness of
Persona Prompting

In this section, we detail our experimental design for analyz-
ing the interplay between model scale and persona prompts

with task difficulty, followed by a presentation of our key
findings.

Experimental Setup

Datasets and Models. To comprehensively evaluate the
mathematical and logical reasoning capabilities of the models,
we utilized two representative benchmark datasets: testsets
of MATH500 (Hendrycks et al. 2021) and AIME2024 (Math-
ematical Association of America. 2024). To isolate the effect
of scale while controlling for architectural differences, our
experiments were conducted on three primary model fami-
lies: Qwen3 (0.6B, 1.7B, 4B, 8B, 32B) (Yang et al. 2025),
Llama3.1&3.2 (1B, 8B, 70B) (Grattafiori et al. 2024), and
Gemma3 (1B, 4B, 12B, 27B) (Team et al. 2025). Here, we
choose all LLMs which have undergone their post-training
procedure. Especially, Qwen3-32B is post-trained including
RLVR and other Qwen3 models are distilled from Qwen3-
32B/235B-A22B without any post-training as revealed in
Yang et al. (2025). We perform five independent runs across
all datasets and models to compute each metric, and report
the averaged results.

Prompt Design. To test our core hypotheses, we designed
five distinct prompts, conceptually categorized as shown in
Table 1. Our design aims to systematically disentangle the
effect of the persona frame from the core procedural direc-
tive,“Think step by step”, a technique we refer to as zero-shot
Chain-of-Thought (Z/S CoT) (Kojima et al. 2022). Each
prompt is built upon the base instruction,“Solve problems
with precision and clarity,” to ensure a consistent task defini-
tion. The specific role of each prompt category is as follows:
math expert represents the conventional and most intuitive
use of persona prompting, where the assigned role is directly
aligned with the task domain.
carpenter tests a model’s ability to generalize abstract prin-
ciples. The role is thematically unrelated to mathematics,
but still implies a methodical and precise problem-solving
process.
zero-shot (Z/S) CoT prompt contains only the procedural
instructions. It serves as our primary control group to mea-
sure the performance of a persona-less, instruction-driven
approach.
kindergartener introduces a persona intentionally mis-
matched with task complexity. This measures the model’s



Figure 2: PSS comparison across model families, model scale, and task difficulty.

MATH500 Dataset AIME2024 Dataset
Model math expert kindergartener carpenter PSS ↑ math expert kindergartener carpenter PSS ↑

Qwen-0.6B 47.32 ± 1.66 45.48 ± 0.87 46.20 ± 1.61 0.9611 1.98 ± 1.81 1.98 ± 1.81 3.96 ± 2.76 0.5000
Qwen-1.7B 69.76 ± 1.04 68.08 ± 1.20 69.08 ± 2.27 0.9759 12.62 ± 4.34 11.30 ± 2.99 8.64 ± 1.86 0.6846
Qwen-4B 79.28 ± 0.66 78.16 ± 1.08 78.52 ± 0.72 0.9859 21.33 ± 3.80 18.66 ± 5.58 19.33 ± 4.94 0.8748
Qwen-8B 80.28 ± 1.27 78.24 ± 0.55 80.66 ± 1.05 0.9700 28.00 ± 6.91 21.33 ± 2.98 27.33 ± 3.65 0.7618
Qwen-32B 82.08 ± 1.38 83.84 ± 1.65 81.64 ± 0.99 0.9738 23.99 ± 8.94 27.30 ± 2.81 24.66 ± 2.98 0.8788

PSS Avg. - - - 0.9733 - - - 0.7400

Llama-3.2-1B-Ins 14.80 ± 2.63 9.16 ± 1.28 13.40 ± 2.09 0.6189 0.66 ± 1.49 1.33 ± 1.82 0.66 ± 1.49 0.4962
Llama-3.1-8B-Ins 43.88 ± 1.00 32.16 ± 1.99 42.96 ± 1.85 0.7329 6.66 ± 2.79 1.99 ± 2.98 3.33 ± 3.33 0.2988
Llama-3.3-70B-Ins 71.76 ± 1.15 70.76 ± 0.91 72.60 ± 0.68 0.9747 24.66 ± 3.80 22.00 ± 1.82 23.33 ± 6.23 0.8921

PSS Avg. - - - 0.7755 - - - 0.5624

Gemma-3-1B-IT 26.42 ± 1.67 25.00 ± 1.15 31.64 ± 0.55 0.7901 2.00 ± 2.98 0.67 ± 1.49 1.33 ± 1.82 0.3350
Gemma-3-4B-IT 70.40 ± 0.93 49.56 ± 1.32 68.08 ± 0.92 0.7040 7.33 ± 4.94 8.00 ± 5.06 12.00 ± 3.80 0.6108
Gemma-3-12B-IT 80.92 ± 0.40 70.20 ± 0.68 78.80 ± 1.08 0.8675 25.33 ± 5.05 16.66 ± 3.34 22.00 ± 6.91 0.6577
Gemma-3-27B-IT 86.00 ± 0.84 78.88 ± 1.00 84.16 ± 0.79 0.9172 26.66 ± 5.27 26.00 ± 7.60 32.66 ± 4.95 0.7961

PSS Avg. - - - 0.8197 - - - 0.5999

Table 2: Performance comparison for personas across models (Qwen3, Llama3, Gemma3) and datasets (MATH500, AIME2024).
Bold indicates the highest performance within each model-dataset group, while underlined values indicate the lowest. For
Llama-3 models, ‘Ins’ stands for ‘Instruct’.

ability to prioritize the procedural “Think step by step” direc-
tive over a distracting or non-sensical role.
kind. w/o Z/S CoT is identical to the stress test
(kindergartener) but crucially removes the “Think step
by step” directive. This ablation allows us to directly measure
the performance impact of this core cognitive scaffolding,
isolating its effect from that of the persona.

Metric. We introduce Persona Stability Score (PSS) which
measures how the performance varies according to the per-
sona prompt. We define PSS as follows:

PSS(m, d) =

min
p∈P

am,p,d

max
p∈P

am,p,d
∈ [0, 1] (1)

where m denotes a model, d a dataset, P the set of personas
under comparison, and am,p,d ∈ [0, 1] the performance (e.g.,
accuracy) of model m with persona p on dataset d. By con-

struction, larger values (closer to 1) indicate persona-stable
behavior—performance is similar across personas—whereas
smaller values (closer to 0) indicate persona-sensitive behav-
ior with large disparities between the best and worst personas.

Comparing Personas Across Models and Datasets
Our analysis of the results presented in Table 2 and Figure 2
reveals a distinct trend: (1) As model size increases, the
performance gap between different personas narrows. (2)
As task difficulty gets harder, the performance gap between
different personas become wider. (3) Model family matters
for persona gaps.

Model scale. From Figure 2, we observe a consistent trend
that the PSS value increases as the model size grows. For
instance, within the Llama3 family on the MATH500 dataset,
the PSS rises from 0.6189 at 1B to 0.9747 at 70B, while
on AIME2024 it increases from 0.4962 to 0.8921. A similar



Figure 3: Performance evolution per persona according to the model size on MATH500.

upward pattern is seen in the Gemma3 family, where the PSS
improves from 0.7901 at 1B to 0.9172 at 27B on MATH500,
and from 0.3350 to 0.7961 on AIME2024. Nevertheless, even
for Qwen3, while MATH500 shows little variation due to al-
ready high stability, AIME2024 still demonstrates an upward
trend in PSS as the model size increases. Excluding this case,
all other model families across both datasets clearly demon-
strate that increasing model scale reduces the performance
disparity across personas.

Task difficulty. When comparing the average PSS val-
ues across datasets, we find that the more challenging
AIME2024 dataset consistently yields lower PSS values
than MATH500. Specifically, the average PSS on MATH500
is 0.9733 for Qwen3, 0.7755 for Llama3, and 0.8197 for
Gemma3, whereas on AIME2024 these values drop to 0.7400,
0.5624, and 0.5999, respectively. Taking the overall average
across model families further confirms this gap: 0.8562 on
MATH500 vs. 0.6341 on AIME2024. This cross-dataset com-
parison highlights a clear pattern: as the task becomes more
difficult, the PSS decreases, meaning that performance be-
comes more sensitive to the choice of persona. In other words,
harder reasoning tasks amplify the performance disparity
across personas, indicating that model robustness to stylistic
variations is less stable under increased task complexity.

Model family. Across model families, we observe clear
differences in PSS. Qwen3 consistently achieves the highest
PSS values by a large margin, while Llama3 and Gemma3
show substantially lower and relatively comparable scores.
This discrepancy can be directly attributed to the alignment
method: unlike Llama3 and Gemma3, Qwen3 is aligned with
RLVR (or distilled from RLVR teacher), which inherently

encourages robustness to stylistic variations such as persona
prompts. Between the two non-RLVR families, Gemma3
exhibits slightly higher PSS than Llama3, which we hypothe-
size is due to its post-training design. Specifically, Gemma3
incorporates a weighted reward signal that mixes correctness-
based feedback into the alignment process (Ramé et al. 2024),
whereas Llama3 relies solely on Direct Preference Optimiza-
tion (Rafailov et al. 2023). This additional signal likely pro-
vides Gemma3 with greater stability against persona varia-
tion, explaining its modest advantage in PSS over Llama3.

Impact of Inappropriate Personas and the Essential
Role of CoT
This section analyzes the results of our instruction ablation
study, revealing two key insights: first, that an inappropri-
ate persona actively degrades reasoning performance, and
second, that the Z/S CoT instruction serves as an essential
mechanism for performance preservation, even under adverse
conditions.

The Limited Efficacy of Expert Personas. As shown in
the Table 2 and Figure 3, while the expert persona math
expert performs better than out-of-domain personas like
kindergartener or carpenter, it was surprisingly found
that its performance is often similar to, or even worse than,
the Z/S CoT baseline, which is not assigned any persona. This
result is consistent with the findings in Zheng et al. (2024);
Kim, Yang, and Jung (2024), but it differs from the outcomes
discussed in Luz de Araujo and Roth (2025).

CoT as an Essential Performance Safety Net. The crit-
ical importance of the CoT instruction is most starkly re-
vealed when it is removed from the already handicapped



kindergartener persona. Seeing the Figure 3, the compar-
ison between kindergartener (persona + CoT) and kind.
w/o Z/S-CoT (persona only, CoT removed) shows a catas-
trophic collapse in performance. Without Qwen3 models, in
six out of seven models, removing the “with precision and
clarity. Think step by step.” directive resulted in significantly
lower scores. The effect was particularly drastic for the Llama
models; for instance, Llama-3.1-8B-Instruct dropped from
32.16% to 23.80%, and Llama-3.3-70B-Instruct fell from
70.76% to 63.60%. This finding demonstrates that CoT is
not merely a performance enhancement tool but also a cru-
cial performance preservation mechanism. When a model
is given a confusing or inappropriate persona, the CoT in-
struction acts as a “safety net” that constrains the model’s
reasoning process and prevents a complete failure.

Distilling Robustness:
RLVR-trained Model as a Teacher

A central claim of our work is that the alignment method
largely dictates a model’s sensitivity to stylistic (persona)
prompts. In particular, we argue that models trained with
Reinforcement Learning with Verifiable Rewards (RLVR)
naturally develop a reasoning policy that is robust to pertur-
bations in persona prompts. In this section, we first formalize
RLVR as a policy optimization scheme with an objective ver-
ifier, and then provide a simple mechanistic explanation of
why this training procedure encourages persona robustness.

Policy Optimization with an Objective Verifier
RLVR is a variant of reinforcement learning tailored for
domains (e.g., mathematics) where the quality of a response
can be automatically verified. Unlike traditional RLHF, which
uses a learned reward model trained on subjective human
preferences, RLVR utilizes a deterministic, rule-based verifier
to provide the reward signal.

Let D be a dataset of problem instances x (and, when ap-
plicable, persona prompts p), and let πθ denote the language
model policy that generates a response y = (y1:T ). The key
component is the verifier function V (y), defined as:

V (y) =

+1 if the final answer extracted from y
is correct,

0 otherwise.
(2)

This verifier provides a sparse, objective reward based solely
on correctness. The goal of RLVR is to optimize the policy
πθ to maximize the expected reward from this verifier, while
regularizing the policy so that it does not deviate too far
from a trusted reference policy πref. This is achieved using a
Kullback–Leibler (KL) divergence penalty by maximizing:

E x,p∼D
y∼πθ(·|x,p)

[
V (y)− β ·DKL

(
πθ(y | x, p)

∥∥πref(y | x, p)
) ]

,

(3)

where β > 0 controls the strength of KL regularization.
We hypothesize that the specific structure of (3), together
with the verifier’s indifference to style, is responsible for the
prompt robustness observed in RLVR-trained models. After

the RLVR teacher learns such a style-invariant reasoning
policy, we then transfer this robustness into smaller student
models via distillation.

Why RLVR Induces Persona Robustness
We provide a brief sketch of why RLVR tends to produce
policies that are insensitive to persona prompts, with full
derivations deferred to Appendix C.

We decompose a model response into reasoning tokens z
and stylistic tokens s (e.g., tone, persona-specific phrases),
and assume a factorized policy

y = (z, s), πθ(y | x, p) = πθ(z | x, p)πθ(s | z, x, p),
(4)

where x is the problem and p is the persona prompt. Intu-
itively, z encodes the problem-solving trajectory and final
answer, while s only controls how this content is wrapped
in a particular style. The verifier reward is style-invariant: it
depends only on whether the reasoning is correct,

V (y) = V (z) =

{
+1 if z is correct,
0 otherwise,

(5)

and is indifferent to the persona tokens s and prompt p. Under
this decomposition, the RLVR objective in (3) can be written
as:

J(θ) = Ex,p,z,s

[
V (z)− β log

πθ(z | x, p)
πref(z | x, p)

− β log
πθ(s | z, x, p)
πref(s | z, x, p)

]
. (6)

Crucially, V (z) does not depend on s, so the style policy
πθ(s | z, x, p) is optimized only through the KL penalty. As
we show in Appendix X, the KL term is minimized when the
style matches the reference, π⋆

θ(s | z, x, p) = πref(s | z, x, p),
which removes any incentive to move the style away from the
reference persona. Plugging this optimal style policy back
into (7) yields an effective objective that depends only on the
reasoning policy:

max
πθ

Ex,p,z

[
V (z)− β log

πθ(z | x, p)
πref(z | x, p)

]
, (7)

so RLVR pushes the model to change what it thinks (the
reasoning trajectory z) while keeping how it speaks (the
style s) anchored to the reference. This explains why RLVR-
trained models tend to be robust to persona variations in our
experiments.

Distillation Objective: Transferring Robust Policies
After the teacher models are trained with RLVR such as
GRPO to obtain robust reasoning policies, smaller student
models inherit these behaviors through knowledge distillation.
Depending on the family of models, the distillation process
follows two distinct yet complementary paradigms: (1) off-
policy policy distillation (supervised fine-tuning), and (2)
on-policy distillation (distribution matching).



Model Size Model Version math expert kindergartener carpenter Perf. Gap (∆) ↓ PSS ↑

MATH500

Qwen3-0.6B Base 34.84 ± 4.75 28.44 ± 3.43 33.88 ± 3.06 6.40 0.8163
Distilled 47.32 ± 1.66 45.48 ± 0.87 46.20 ± 1.61 1.84 0.9611

Qwen3-1.7B Base 29.56 ± 11.83 18.08 ± 14.23 23.12 ± 5.81 11.48 0.6116
Distilled 69.76 ± 1.04 68.08 ± 1.20 69.08 ± 2.27 1.68 0.9759

Qwen3-4B Base 59.08 ± 7.62 41.84 ± 13.06 63.92 ± 7.40 22.08 0.6546
Distilled 79.28 ± 0.66 78.16 ± 1.08 78.52 ± 0.72 1.12 0.9859

Qwen3-8B Base 67.40 ± 5.43 60.88 ± 2.84 65.92 ± 6.36 6.52 0.9033
Distilled 80.28 ± 1.27 78.24 ± 0.55 80.66 ± 1.05 2.42 0.9700

Llama-3.1-8B Instruct 43.88 ± 1.00 32.16 ± 1.99 42.96 ± 1.85 11.72 0.733
Deepseek-R1-Distlled 62.48 ± 2.15 61.32 ± 1.35 61.04 ± 2.25 1.44 0.977

AIME2024

Qwen3-0.6B Base 0.66 ± 1.49 0.00 ± 0.00 0.66 ± 1.49 0.66 0.0000
Distilled 1.98 ± 1.81 1.98 ± 1.81 3.96 ± 2.76 1.98 0.5000

Qwen3-1.7B Base 2.00 ± 2.98 2.00 ± 2.98 0.67 ± 1.49 1.33 0.3333
Distilled 12.62 ± 4.34 11.30 ± 2.91 8.64 ± 1.86 3.98 0.6846

Qwen3-4B Base 14.00 ± 7.23 7.33 ± 5.96 12.00 ± 5.58 6.67 0.5236
Distilled 21.33 ± 3.80 18.66 ± 5.58 19.33 ± 4.94 2.67 0.8748

Qwen3-8B Base 12.67 ± 7.23 8.66 ± 5.05 8.66 ± 3.80 4.00 0.6839
Distilled 28.00 ± 6.91 21.33 ± 2.98 27.33 ± 3.65 6.67 0.7618

Llama-3.1-8B Instruct 3.996 ± 2.79 1.998 ± 2.98 3.330 ± 3.33 2.00 0.500
Deepseek-R1-Distilled 14.664 ± 6.63 11.998 ± 7.44 11.332 ± 9.81 3.33 0.773

Table 3: Performance comparison (accuracy % ± std. dev.) of personas on base vs. distilled Qwen3 and Llama3 models for
MATH500 (top) and AIME2024 (bottom).

(1) Off-policy distillation: Supervised fine-tuning. In
the DeepSeek-R1 framework (Guo et al. 2025), the reason-
ing capability acquired by the large GRPO-trained teacher
is transferred to smaller dense models (e.g., Deepseek-R1-
Distill-Llama-8B) purely via supervised fine-tuning. Let
DT = {(x, yT )} denote the dataset of reasoning trajecto-
ries generated and verified by the teacher policy πT . The
student πS minimizes the cross-entropy between its output
and the teacher’s verified trajectory (Agarwal et al. 2024):

LOffPD = −E(x,yT )∼DT

|yT |∑
t=1

log πS(yT,t | x, yT,<t)

 .

(8)
This objective treats the teacher’s reasoning traces as ground-
truth labels, allowing the student to imitate the RLVR-trained
reasoning distribution without any reinforcement updates.

(2) On-policy distillation: Distribution matching. Qwen3
(Yang et al. 2025) employs a two-stage pipeline: first per-
forming supervised fine-tuning from teacher generated data,
followed by on-policy distillation where the student generates
response given prompts (prefix), and the teacher generates
tokens given the prefix from students. Then the students is
fine-tuned by aligning its token distribution to the teacher’s
one. Formally, the objective minimizes the KL divergence
between teacher and student output distributions (Agarwal
et al. 2024):

LOnPD = E x∼D
y<t∼πS

[
DKL

(
πT (·|x, y<t) ∥ πS(·|x, y<t)

)]
.

(9)

This formulation enables the student to align with the
teacher’s robust policy under on-policy supervision, yielding
strong-to-weak transfer where small Qwen3 models (e.g.,
0.6B–14B) inherit the reasoning stability of large RL-trained
teachers (e.g., Qwen3-32B). We compare off-policy distilled
model (Deepseek-R1-Distill-Llama-8B) and off-policy dis-
tilled model with on-policy distillation (Qwen3-distilled fam-
ily).

Results of RLVR Distilled vs Non-distilled Models
We report the PSS metric performance between RLVR dis-
tilled and non-distilled model utilizing Qwen and Llama
model families. We find RLVR-distilled models robust to
persona prompts, while non-distilled baselines drift with
persona; Appendix B also documents key features of the
Qwen3/Llama3 families.

Qwen3 Results. The results of our comparative analysis
between the Base and Distilled Qwen3 models, as presented
in Table 3, reveal a significant finding. The Robustness Distil-
lation process reduces the model’s sensitivity to persona vari-
ations. The Base models exhibit high sensitivity; the Qwen-
4B-Base model, for example in MATH500, shows a massive



Figure 4: PSS value comparison on base vs. distilled Qwen3
and Llama3 models for MMLU-Pro. Similarly to math bench-
marks, we utilized three different personas.

22.08 % point performance gap and 0.6546 PSS value be-
tween its best carpenter and worst kindergartener per-
forming personas. In stark contrast, the Qwen-4B-Distilled
model is highly robust, with the same gap shrinking to a
mere 1.12 % points and improved PSS value to 0.9859. This
pattern—a large sensitivity gap in the Base and Distilled
models—is consistent across all scales and datasets, demon-
strating that the Robustness Distillation from RLVR process
is a simple yet key driver of prompt robustness.

Llama3 Result. The distillation process drastically re-
duces the model’s sensitivity to persona variations. The stan-
dard Llama-3.1-8B-Instruct model is highly sensitive, ex-
hibiting a massive 11.72 percentage point performance gap
and 0.733 PSS value between its best-performing persona
(math expert at 43.88%) and its worst (kindergartener
at 32.16%). However, the distilled model demonstrates re-
markable robustness, with the performance gap shrinking to
a mere 1.44 percentage points and improved PSS value to
0.977. And same tendency is also observed in AIME2024
dataset. This represents a significant reduction in sensitivity,
confirming that the teacher’s robust policy was successfully
transplanted.

Generalization Beyond Math Tasks

RLVR training is primarily applied to the math tasks which
can allow verified rewards. This raises the question of
whether the robustness to persona prompt can be general-
ized beyond the math tasks. To address this question, we
conduct additional experiments on MMLU-Pro with two cat-
egories: Business and Engineering. For each category, we
randomly sample 100 problems and run each model 5 times
with three personas (“expert”, “off-domain professional”,
“child-like”). Across four Qwen scales (0.6B, 1.7B, 4B, 8B),
Robustness Distillation consistently increases mean accuracy
over personas on both Business and Engineering, and raises
PSS from roughly for Base models to for Distilled models as
shown in Figure 4. Llama models show the same trend. We
fully disclose entire results and used prompts for MMLU-Pro
Business and Engineering categories in Appendix A (Table 5
and Table 4).

Related works
Prompt Engineering for Complex Reasoning
The advent of large-scale pre-trained language models has
established prompting as the primary paradigm for interact-
ing with these models (Qiu et al. 2020; Mann et al. 2020;
Gao, Fisch, and Chen 2020; Lester, Al-Rfou, and Constant
2021). While early work focused on simple template design
for few-shot learning, the need for more complex reason-
ing led to a seminal breakthrough with Chain-of-Thought
(CoT) prompting. CoT demonstrated that guiding a model
to generate explicit, step-by-step explanations significantly
improves its reasoning abilities (Wei et al. 2022; Kojima et al.
2022). This core principle was further refined by subsequent
work (Kojima et al. 2022; Wei et al. 2022; Zhou et al. 2022;
Yao et al. 2023; Wang et al. 2023; Besta et al. 2024), such
as using simple, task-agnostic instructions like “Let’s think
step by step” or enhancing robustness by sampling multiple
reasoning paths (Wang et al. 2022). These studies collectively
establish that the instructional directives guiding a model’s
process are a key determinant of performance. However, this
body of literature primarily focuses on the efficacy of specific
instructional phrases in isolation. It does not systematically
investigate how these instructions interact with other com-
mon components of a prompt, most notably the assignment
of a persona.

Persona Prompting
Parallel to the development of reasoning-focused techniques,
persona prompting has become a widely disseminated “best
practice” in the practitioner community. This strategy in-
volves assigning the LLM a specific role or identity, such
as an expert, a character, or even an object, with the goal of
steering its knowledge, tone, and response style (Gu et al.
2023; Shao et al. 2023; Bubeck et al. 2023). The technique
is frequently recommended in guides for controlling model
behavior and is implicitly used in various applications, from
building specialized chatbots to enhancing the safety and
alignment of models by instructing them to be helpful and
harmless (Bai et al. 2022). The underlying intuition is that
a persona helps to contextualize the task, thereby activat-
ing a more relevant and effective subspace of the model’s
vast parametric knowledge. Despite its widespread adoption,
persona prompting remains a under-studied phenomenon in
a rigorous academic context (Battle and Gollapudi 2024;
Shanahan, McDonell, and Reynolds 2023). Most empirical
studies that employ personas often do so in conjunction with
other detailed instructions.

Conclusion
By transferring verifier-aligned reasoning from a robust
teacher into smaller student models, we show that persona-
induced performance variance can be substantially reduced
without harming overall task accuracy. Our results indicate
that robustness to stylistic variation can be learned in a model-
centric way—offering a scalable alternative to prompt engi-
neering and pointing toward more stable, human-aligned
generation.



Acknowledgments
This work was supported by Center for Applied Research
in Artificial Intelligence (CARAI) grant funded by Defense
Acquisition Program Administration (DAPA) and Agency for
Defense Development (ADD) (UD230017TD). This work
was supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by
the Korea government(MSIT) (RS-2019-II190075, Artificial
Intelligence Graduate School Support Program(KAIST)).

References
Agarwal, R.; Vieillard, N.; Zhou, Y.; Stanczyk, P.; Garea,
S. R.; Geist, M.; and Bachem, O. 2024. On-policy distillation
of language models: Learning from self-generated mistakes.
In The twelfth international conference on learning represen-
tations.
Bai, Y.; Jones, A.; Ndousse, K.; Askell, A.; Chen, A.; Das-
Sarma, N.; Drain, D.; Fort, S.; Ganguli, D.; Henighan, T.;
et al. 2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint
arXiv:2204.05862.
Battle, R.; and Gollapudi, T. 2024. The unreasonable ef-
fectiveness of eccentric automatic prompts. arXiv preprint
arXiv:2402.10949.
Besta, M.; Blach, N.; Kubicek, A.; Gerstenberger, R.;
Podstawski, M.; Gianinazzi, L.; Gajda, J.; Lehmann, T.;
Niewiadomski, H.; Nyczyk, P.; et al. 2024. Graph of thoughts:
Solving elaborate problems with large language models. In
Proceedings of the AAAI conference on artificial intelligence,
volume 38, 17682–17690.
Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.;
Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y. T.; Li, Y.; Lundberg,
S.; et al. 2023. Sparks of artificial general intelligence: Early
experiments with gpt-4. arXiv preprint arXiv:2303.12712.
Cobbe, K.; Kosaraju, V.; Bavarian, M.; Chen, M.; Jun, H.;
Kaiser, L.; Plappert, M.; Tworek, J.; Hilton, J.; Nakano, R.;
et al. 2021. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168.
Gao, T.; Fisch, A.; and Chen, D. 2020. Making pre-trained
language models better few-shot learners. arXiv preprint
arXiv:2012.15723.
Grattafiori, A.; Dubey, A.; Jauhri, A.; Pandey, A.; Kadian, A.;
Al-Dahle, A.; Letman, A.; Mathur, A.; Schelten, A.; Vaughan,
A.; et al. 2024. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783.
Gu, J.; Han, Z.; Chen, S.; Beirami, A.; He, B.; Zhang, G.;
Liao, R.; Qin, Y.; Tresp, V.; and Torr, P. 2023. A systematic
survey of prompt engineering on vision-language foundation
models. arXiv preprint arXiv:2307.12980.
Guo, D.; Yang, D.; Zhang, H.; Song, J.; Zhang, R.; Xu, R.;
Zhu, Q.; Ma, S.; Wang, P.; Bi, X.; et al. 2025. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948.
Hendrycks, D.; Burns, C.; Kadavath, S.; Arora, A.; Basart,
S.; Tang, E.; Song, D.; and Steinhardt, J. 2021. Measuring
mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874.

Kim, J.; Yang, N.; and Jung, K. 2024. Persona is a
double-edged sword: Mitigating the negative impact of role-
playing prompts in zero-shot reasoning tasks. arXiv preprint
arXiv:2408.08631.
Kojima, T.; Gu, S. S.; Reid, M.; Matsuo, Y.; and Iwasawa, Y.
2022. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35: 22199–
22213.
Kong, A.; Zhao, S.; Chen, H.; Li, Q.; Qin, Y.; Sun, R.; Zhou,
X.; Wang, E.; and Dong, X. 2023. Better zero-shot reasoning
with role-play prompting. arXiv preprint arXiv:2308.07702.
Lample, G.; and Charton, F. 2019. Deep learning for sym-
bolic mathematics. arXiv preprint arXiv:1912.01412.
Le, H.; Wang, Y.; Gotmare, A. D.; Savarese, S.; and Hoi, S.
C. H. 2022. Coderl: Mastering code generation through pre-
trained models and deep reinforcement learning. Advances in
Neural Information Processing Systems, 35: 21314–21328.
Lester, B.; Al-Rfou, R.; and Constant, N. 2021. The power of
scale for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691.
Lewkowycz, A.; Andreassen, A.; Dohan, D.; Dyer, E.;
Michalewski, H.; Ramasesh, V.; Slone, A.; Anil, C.; Schlag,
I.; Gutman-Solo, T.; et al. 2022. Solving quantitative rea-
soning problems with language models. Advances in neural
information processing systems, 35: 3843–3857.
Lightman, H.; Kosaraju, V.; Burda, Y.; Edwards, H.; Baker,
B.; Lee, T.; Leike, J.; Schulman, J.; Sutskever, I.; and Cobbe,
K. 2023. Let’s verify step by step. In The Twelfth Interna-
tional Conference on Learning Representations.
Liu, P.; Yuan, W.; Fu, J.; Jiang, Z.; Hayashi, H.; and Neubig,
G. 2023. Pre-train, prompt, and predict: A systematic survey
of prompting methods in natural language processing. ACM
computing surveys, 55(9): 1–35.
Luo, J.; Luo, R.; Chen, L.; Zhu, L.; Ao, C.; Li, J.; Chen,
Y.; Cheng, X.; Yang, W.; Su, J.; et al. 2024. PersonaMath:
Enhancing Math Reasoning through Persona-Driven Data
Augmentation. CoRR.
Luz de Araujo, P. H.; and Roth, B. 2025. Helpful assis-
tant or fruitful facilitator? Investigating how personas affect
language model behavior. PloS one, 20(6): e0325664.
Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.;
Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; Agarwal,
S.; et al. 2020. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 1(3): 3.
Mathematical Association of America. 2024. AIME 2024
Problems.
Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.;
Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.; et al.
2022. Training language models to follow instructions with
human feedback. Advances in neural information processing
systems, 35: 27730–27744.
Pataranutaporn, P.; Danry, V.; Leong, J.; Punpongsanon, P.;
Novy, D.; Maes, P.; and Sra, M. 2021. AI-generated char-
acters for supporting personalized learning and well-being.
Nature Machine Intelligence, 3(12): 1013–1022.



Qiu, X.; Sun, T.; Xu, Y.; Shao, Y.; Dai, N.; and Huang, X.
2020. Pre-trained models for natural language processing:
A survey. Science China technological sciences, 63(10):
1872–1897.
Rafailov, R.; Sharma, A.; Mitchell, E.; Manning, C. D.; Er-
mon, S.; and Finn, C. 2023. Direct preference optimization:
Your language model is secretly a reward model. Advances
in neural information processing systems, 36: 53728–53741.
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A: Ablation studies
We show further evidence that RLVR models are more ro-
bust to the various persona prompts. Comparative analysis
of persona stability on MATH500, where Qwen3 demon-
strates strong robustness while Llama3 and Gemma3 exhibit
notable sensitivity across personas as shown in Figure 5. In
addition, we report the full experiments results of Qwen and
Llama models on MMLU-Pro (Business and Engineering) in
Table 5 together with prompt designs in Table 4. Also, we
add qualitative outcome examples showing how the output
tokens differ between the RLVR-distilled and non-distilled
(preference-optimized) Llama3-8B models in Tables 8 and 7,
given a math problem from the MATH500 dataset, as shown
in Table 6.

B: Qwen and Llama models’ post training
We briefly describe how the models used in this paper, were
post-trained by each company.

Qwen3 Family
To compare between distilled one and non-distilled one, we
utilize the open-sourced Qwen3 models.

Qwen3-Base. The Qwen3-Base models represent the foun-
dational models after the completion of a three-stage pre-
training process on 36 trillion tokens, which includes general,
reasoning, and long context stages. Crucially, these models
have not undergone any of the subsequent post-training align-
ment procedures, such as the multi-stage reinforcement learn-
ing pipeline detailed in the Qwen3 technical report (Yang
et al. 2025). Therefore, the Base models have not been ex-
posed to the “Reasoning RL” (RLVR) or “General RL” stages.
In the context of our study, these models serve as a criti-
cal baseline to evaluate the inherent persona sensitivity of
the pre-trained architecture before the introduction of the
robustness-inducing policy learned during the RLVR-centric
alignment.

Qwen3-Distilled. The publicly released lightweight
Qwen3 models (from 0.6B to 8B) are the result of a special-
ized alignment process called Strong-to-Weak Distillation.
As illustrated in the Qwen3 technical report, these smaller
models are not trained directly with the complex four-stage
RL pipeline. Instead, they are distilled from the flagship
teacher models (e.g., Qwen3-32B), which have undergone
the RLVR stages. Yang et al. (2025) states this approach
is significantly more efficient and effective for smaller
models than direct reinforcement learning. Consequently,
these Qwen3-Distilled models are the ideal subjects for our
analysis, as they represent student models whose final policy
has been shaped by the knowledge and robust characteristics
of an RLVR-trained teacher.

Llama Family
Llama-3.1-8B-Instruct. The Llama-3.1-8B-Instruct model
serves as a representative example of a state-of-the-art model
aligned primarily with Preference Optimization (PO) meth-
ods. According to its technical report (Grattafiori et al. 2024),

the post-training process for the Llama3 family involves sev-
eral rounds of Supervised Finetuning (SFT) and Direct Pref-
erence Optimization (DPO) (Grattafiori et al. 2024). The
authors explicitly state that they adopted this relatively sim-
ple procedure over more complex reinforcement learning
algorithms to maximize training stability and scalability. This
PO-aligned model, therefore, provides a clear baseline for
evaluating the behavior of a model whose policy has been
shaped by directly learning from human preference pairs,
making it an ideal subject to test for persona sensitivity.

Llama-3.1-8B-Distilled. To test our central hypothesis,
we tested a distilled version of the Llama-3.1-8B model
(Guo et al. 2025). This model starts from a Llama-3.1-8B
pre-trained checkpoint but undergoes a different alignment
process. Instead of the native PO-based instruction fine-
tuning like Llama-3.1-8B-Instruct, this model is fine-tuned
via knowledge distillation from a powerful, RLVR-trained
teacher model Deepseek-R1 (Guo et al. 2025). This student
model is trained on the reasoning traces and outputs of the
teacher, a process designed to transfer not just the teacher’s
knowledge but also its robust, objective-driven reasoning pol-
icy. This model allows us to create a controlled comparison,
isolating the effect of the alignment signal (RLVR-distilled
vs. native PO) on the same underlying base architecture.

C: Theoretical Analysis
We now provide a simple theoretical argument for why RLVR
tends to produce policies that are insensitive to persona per-
turbations.

Setup: decomposing reasoning and style. Let x be a prob-
lem instance, p a persona prompt, and y = (y1:T ) a response
sampled from the policy πθ(y | x, p). We decompose the
response into reasoning tokens z and stylistic tokens s (e.g.,
tone, persona-specific phrases), so that

y = (z, s), πθ(y | x, p) = πθ(z | x, p)πθ(s | z, x, p).
(10)

Intuitively, z contains the problem-solving trajectory and
final answer, while s encodes how this content is wrapped in
a particular persona’s style.

Assumption 1 (Weak separability of policy). We assume
that RLVR trains the policy towards a state of weak separa-
bility, where the core reasoning policy is largely disentangled
from stylistic variation:

∂V (z)

∂s
≈ 0, (11)

i.e., the verifier reward V (z) depends only on the correctness
of the reasoning (e.g., the final answer), and is completely
indifferent to the style s or the persona prompt p:

V (y) = V (z) =

{
+1 if z is correct,
0 otherwise.

(12)

Full RLVR objective with reasoning–style decomposition.
Under the decomposition y = (z, s), the RLVR objective in



Figure 5: Comparative analysis of persona performance and stability on the Math500 dataset. The plots show mean accuracies
and 95% confidence intervals (t-distribution, n=5 trials) across the Qwen, Llama, and Gemma families. The figure highlights a
stark difference in sensitivity: the Qwen family (left) exhibits high robustness with largely overlapping intervals, while the Llama
(middle) and Gemma (right) families show significant performance gaps between personas.

(3) can be written as:

J(θ) = Ex,p,z,s

[
V (z)− β log

πθ(z | x, p)
πref(z | x, p)

− β log
πθ(s | z, x, p)
πref(s | z, x, p)

]
. (13)

Here, V (z) interacts only with the reasoning component
z, while the two KL terms regularize the reasoning policy
πθ(z | x, p) and the style policy πθ(s | z, x, p) toward their
respective reference policies.

Optimal style policy is anchored to the reference. Criti-
cally, V (z) does not depend on s, i.e., ∂V (z)/∂s ≈ 0. There-
fore, when optimizing J(θ) with respect to the style policy
πθ(s | z, x, p), the only relevant term is the KL penalty:

max
πθ(s|z,x,p)

Ex,p,z,s

[
− β log

πθ(s | z, x, p)
πref(s | z, x, p)

]
. (14)

This term is maximized when the KL divergence is mini-
mized (DKL ≥ 0), whose minimum value 0 is achieved if
and only if the style policy matches the reference:

π⋆
θ(s | z, x, p) = πref(s | z, x, p). (15)

In other words, RLVR has no incentive to move the style away
from the reference model; it only encourages the policy to
adopt the reference’s stylistic behavior, regardless of persona
variations.

Reduced effective objective for reasoning. Substituting
the optimal style policy π⋆

θ(s | z, x, p) back into (6), the
style-dependent KL term vanishes. The resulting effective
objective depends only on the reasoning policy:

max
πθ

Ex,p,z

[
V (z)− β log

πθ(z | x, p)
πref(z | x, p)

]
. (16)

Thus, under weak separability, RLVR training is driven en-
tirely by the verifiable reward over z (correctness of reason-
ing) and a KL regularizer that keeps the reasoning distribution
close to the reference.

Consequence: robustness to persona prompts. Persona
prompts p primarily influence the style component s and, to a
lesser extent, the reasoning trajectory z. However, because: (i)
the reward V (z) is insensitive to s and p, and (ii) the optimal
style policy is anchored to the reference model, RLVR allo-
cates its learning capacity to adjusting πθ(z | x, p) in a way
that improves correctness uniformly across personas, while
keeping stylistic behavior close to πref. As a result, the rea-
soning policy becomes largely persona-invariant: changing



MMLU-Pro Category Persona Category Persona Name Prompt Text

Business
Domain Expert business expert

You are a business expert with deep knowledge of various business
concepts. Solve problems with precision and clarity. Think step by
step.

Out-of-Domain Expert master chef

You are a master chef with deep knowledge of various culinary
concepts. Solve problems with precision and clarity. Think step by
step.

Role-Play Stress Test preschooler
You are a preschooler who just learned what money is. Solve
problems with precision and clarity. Think step by step.

Engineering
Domain Expert engineering expert

You are an engineering expert with deep knowledge of various
engineering concepts. Solve problems with precision and clarity.
Think step by step.

Out-of-Domain Expert master musician

You are a master musician with deep knowledge of various musical
concepts. Solve problems with precision and clarity. Think step by
step.

Role-Play Stress Test kindergartener
You are a kindergartener who just learned about shapes. Solve
problems with precision and clarity. Think step by step.

Table 4: Experimental prompts and conceptual categorization for business and engineering tasks.

p may slightly alter stylistic tokens s, but has limited effect
on the core reasoning trajectory and final answer z. This
mechanistic view explains why RLVR-trained models empir-
ically exhibit strong robustness to persona prompt variations,
making them ideal teachers for our robustness distillation
framework.

D: About Computational Experiments
Model size and budget
We utilized two A6000 GPUs or four A5000 GPUs to serve 3
kinds of models (Llama3, Qwen3, Gemma3) up to 70B size
of models. We report the exact size of models used for our
paper in Section .

Experimental Setup and Hyperparameters
We discussed about the experimental setup in Section . And
we didn’t conduct the hyperparameters search because hyper-
parameters are not in our interest, in which we just find the
tendency across the various personas.

E: Scientific Artifact Usage
License for Artifacts
All models and datasets used in this work are publicly avail-
able under their respective open licenses. Specifically, we
used publicly released language models (e.g., Llama-3.1-
8B-Instruct, Qwen3, Gemma3, etc.) and benchmark datasets
(e.g., MATH500, AIME2024), each distributed under their
original terms of use. We did not create or distribute any new
proprietary datasets or models.

Artifact Use Consistent with Intended Use
All models and datasets used in this work were em-
ployed strictly within their intended research and evalua-
tion purposes. We adhered to the usage terms of each ar-
tifact — including publicly released LLMs (e.g., Llama3,
Qwen3, Gemma3) and open-source datasets (e.g., MATH500,
AIME24). No artifacts were used in ways inconsistent with
their original access conditions, and all data derivatives were
created and analyzed solely for research purposes.

F: Parameters for Packages
We used the Hugging Face Transformers library for model
loading and inference. All models were accessed via their of-
ficial repositories (e.g., Qwen/Qwen3-8B, meta-llama/Llama-
3.1-8B-Instruct) without additional fine-tuning.

G: AI Usage
We leveraged AI tools (OpenAI’s ChatGPT and Google’s
Gemini) to assist with code generation and elaborating the
text. However, all core concepts, methodological designs, and
the vast majority of the manuscript’s writing were developed
and authored directly by the authors.

H: Limitations
Our approach currently assumes access to at least one RLVR-
trained “teacher” model, which may not always be available
in every domain or deployment setting. Training such verifier-
aligned teachers can itself be computationally demanding,
even though once obtained they can be reused to distill ro-
bustness into many smaller students. In addition, our empir-
ical study focuses on open-source models (e.g., Qwen and
LLaMA) and publicly available reasoning benchmarks; while
this choice improves reproducibility, it leaves open how well
robustness distillation transfers to proprietary frontier models
and broader application domains. We view these constraints
as limitations of the current evaluation scope rather than of
the framework itself, and leave exploring alternative teacher
sources and closed-weight models to future work.



Model Size Model Version domain expert role-play stress test out-of-domain expert Perf. Gap (∆) ↓ PSS ↑

Business

Qwen3-0.6B Base 20.0 ± 6.44 16.6 ± 5.13 13.4 ± 2.97 6.6 0.6700
Distilled 32.8 ± 2.59 30.2 ± 2.77 29.0 ± 3.32 3.8 0.8841

Qwen3-1.7B Base 29.6 ± 14.8 25.4 ± 10.7 18.0 ± 12.7 11.6 0.6081
Distilled 51.8 ± 4.15 52.2 ± 1.79 47.4 ± 3.85 4.8 0.9080

Qwen3-4B Base 52.4 ± 9.71 52.6 ± 7.16 49.6 ± 13.0 3 0.9430
Distilled 71.6 ± 1.82 71.0 ± 2.24 64.8 ± 2.95 6.8 0.9050

Qwen3-8B Base 52.0 ± 4.06 52.2 ± 6.53 43.4 ± 6.66 8.8 0.4173
Distilled 74.2 ± 3.03 75.6 ± 1.67 72.6 ± 4.10 3 0.9603

Llama3.1-8B Instruct 46.0 ± 2.12 43.2 ± 4.21 39.4 ± 2.41 6.6 0.8565
Deepseek-R1-Distilled 42.8 ± 7.56 40.0 ± 8.09 39.0 ± 7.03 3.8 0.9112

Engineering

Qwen3-0.6B Base 13.0 ± 1.22 12.4 ± 1.14 10.0 ± 3.08 3 0.7692
Distilled 29.6 ± 2.79 29.0 ± 3.89 29.0 ± 4.47 0.6 0.9797

Qwen3-1.7B Base 18.0 ± 5.66 17.0 ± 3.74 16.0 ± 5.29 2 0.8889
Distilled 34.0 ± 3.46 38.6 ± 5.50 36.2 ± 2.95 4.6 0.8808

Qwen3-4B Base 38.4 ± 6.58 32.4 ± 11.93 31.0 ± 6.52 7.4 0.8073
Distilled 51.4 ± 1.95 48.8 ± 1.09 47.4 ± 4.77 4 0.9222

Qwen3-8B Base 38.4 ± 2.07 39.4 ± 1.52 34.2 ± 4.82 5.2 0.8680
Distilled 56.6 ± 2.70 54.4 ± 1.52 54.8 ± 3.70 2.2 0.9611

Llama3.1-8B Instruct 27.4 ± 1.14 28.8 ± 5.22 25.2 ± 6.46 3.6 0.8750
Deepseek-R1-Distilled 26.0 ± 1.87 27.6 ± 3.36 25.2 ± 2.39 2.4 0.9130

Table 5: Performance comparison (accuracy % ± std. dev.) of personas on base vs. distilled Qwen3 and Llama3 models for
Business (top) and Engineering (bottom).

Problem Text

Given Problem Define

p =

∞∑
k=1

1

k2
and q =

∞∑
k=1

1

k3
.

Find a way to write
∞∑
j=1

∞∑
k=1

1

(j + k)3

in terms of p and q.

Table 6: Example Problem.



Response Text

child-like response I don’t know what that means. My teacher told me to use numbers 1–10 to help us learn math. Let me try.
We need to find a way to write a big sum in terms of p and q. First, we need to find p and q.
To find p, we need to add 1

12
, 1
22

, 1
32

, and so on.

p =
1

12
+

1

22
+

1

32
+

1

42
+

1

52
+

1

62
+

1

72
+

1

82
+

1

92
+

1

102
+ · · ·

To find q, we need to add 1
13

, 1
23

, 1
33

, and so on.

q =
1

13
+

1

23
+

1

33
+

1

43
+

1

53
+

1

63
+

1

73
+

1

83
+

1

93
+

1

103
+ · · ·

Now, we need to find
∞∑
j=1

∞∑
k=1

1

(j + k)3
.

This is a big sum. I will try to break it down.
Let’s say j = 1. Then we need to find

∑∞
k=1

1
(1+k)3

, which is a sum like 1
23
, 1
33
, 1
43
, . . .

Let’s say j = 2. Then we need
∑∞

k=1
1

(2+k)3
, which is a sum like 1

33
, 1
43
, 1
53
, . . .

We can see a pattern. When j = 1, we have the same fractions as q but we need to add 1
23

to every fraction.
When j = 2, we have the same fractions as q but we need to add 1

33
to every fraction.

So, we can say that
∞∑
j=1

∞∑
k=1

1

(j + k)3

is like q, but we need to add 1
23
, 1
33
, 1
43
, . . . to every fraction in q.

The sum of 1
23
, 1
33
, 1
43
, . . . is equal to q − 1

13
. So the double sum is q + (q − 1

13
).

We know that q =
∑∞

k=1
1
k3 and 1

13
= 1

13
. So the double sum is 2q − 1

13
.

We know that p =
∑∞

k=1
1
k2 and 1

13
=

√
1
12

. So the double sum is 2q −√
p.

But we need to write it in terms of p and q. We can see that
√
p is like

√∑∞
k=1

1
k2 , so

√
p is like

√
p.

Therefore,
2q −√

p .

Table 7: Child-like response with Llama-3.1-8B-Instruct (non-RLVR distilled) model given kindergartener prompt.



Response Text

robust response Alright, so I have this math problem here where I need to find a way to express the double sum∑∞
j=1

∑∞
k=1

1
(j+k)3

in terms of p and q, where p is the sum of reciprocals of squares and q is the sum
of reciprocals of cubes. Hmm, okay, let’s break this down step by step.
First, let me recall what p and q are. p is

∑∞
k=1

1
k2 , which I know converges to π2

6
, but maybe I don’t need

the numerical value right now. Similarly, q is
∑∞

k=1
1
k3 , which converges to ζ(3), but again, maybe the exact

value isn’t necessary here.
The problem is asking about a double sum:

∑∞
j=1

∑∞
k=1

1
(j+k)3

. So, this is summing over all pairs of positive
integers j and k, adding 1

(j+k)3
for each pair. I need to express this in terms of p and q.

Let me think about how to approach this. Maybe I can change variables or find a way to relate this double sum
to the single sums p and q. I remember that sometimes with double sums, especially infinite ones, it’s helpful
to switch the order of summation or to use some form of series expansion.
Wait, another idea: perhaps I can express 1

(j+k)3
in terms of integrals since integrals can sometimes turn

reciprocals of powers into something more manageable. For example, I know that 1
n3 can be written as an

integral, but I’m not sure if that will help here. Maybe not directly.
Alternatively, perhaps I can consider expanding 1

(j+k)3
as a power series or use generating functions. Let me

think: 1
(j+k)3

can be expressed as an integral of exponentials or something similar.
Wait, maybe a better approach is to consider swapping the order of summation. So, currently, the double sum
is over all j and k. Maybe if I fix n = j + k, I can rewrite the double sum as a sum over n and then sum over
j and k such that j + k = n.
Let me try that. Set n = j + k. Then for each n, j can range from 1 to n− 1, and k = n− j. So, the double
sum becomes:

∞∑
j=1

∞∑
k=1

1

(j + k)3
=

∞∑
n=2

n−1∑
j=1

1

n3
.

The inner sum is just
∑n−1

j=1 1 = n− 1. Therefore,

∞∑
n=2

n− 1

n3
=

∞∑
n=2

(
1

n2
− 1

n3

)
.

Splitting the sums and adjusting indices using p =
∑∞

n=1
1
n2 and q =

∑∞
n=1

1
n3 , we get

∞∑
n=2

1

n2
−

∞∑
n=2

1

n3
= (p− 1)− (q − 1) = p− q.

So the double sum simplifies to p− q .

Final Answer. The double sum can be expressed in terms of p and q as p− q .

Table 8: Robust response from DeepSeek-R1-Distill-Llama-8B (RLVR-distilled) model given kindergartener prompt.


