

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SCOPE-MIA: SCALE-CONSISTENT PARTIAL DIFFERENTIAL EQUATION-OPTIMIZED ENCODING IN 3D MEDICAL IMAGING ANALYSIS

Anonymous authors

Paper under double-blind review

ABSTRACT

Medical scans such as Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) are inherently 3D, capturing rich volumetric information about patient anatomy and pathology. Analyzing this data requires models sensitive to both large-scale anatomical structures and fine-grained textural details. While traditional handcrafted radiomics features often miss subtle multi-scale relationships, standard 3D Convolutional Neural Networks (CNNs) learn data-driven filters without explicit mechanisms to disentangle structural and textural information. This entanglement can limit model interpretability and robustness. We propose SCOPE-MIA, a 3D framework driven by Partial Differential Equations (PDEs) that explicitly decomposes learned features into distinct anatomical and textural components. By embedding tailored PDE constraints - such as structure-enhancing diffusion for anatomy and detail-preserving flows for texture - into a modern 3D CNN architecture, we promote the learning of robust, scale-explicit, and disentangled representations. Our system processes volumetric data in tractable subvolumes for efficient training, while a sliding window approach during inference recovers the full 3D context. We present a unified mathematical treatment connecting PDE theory to our dual-pathway architectural design and discuss the advantages of this decomposition for clinical applications. Extensive experimental validations demonstrate that our method significantly outperforms the clinical gold-standard radiomics pipeline in challenging cancer imaging tasks, showing its potential to advance tumor characterization and biomarker discovery.

1 INTRODUCTION

Medical scans such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), or Positron Emission Tomography (PET) are intrinsically 3D, capturing volumetric data of anatomical structures. In parallel, clinical annotations (e.g., tumor segmentations, disease states) are also specified in three dimensions. *Radiomics* seeks to convert such 3D images into quantitative descriptors that can be used for prognosis, diagnosis, or treatment planning Lamkin et al. (2012); Van Griethuysen et al. (2017a). Traditional handcrafted radiomics features, while interpretable, often struggle to capture the complex interplay between large-scale morphology and subtle textural patterns present in medical images. For instance, comprehensively characterizing diverse tumor types and their surrounding anatomy using full 3D structural-textural information is crucial, potentially linking imaging features to molecular-level properties like tumor genotype or immune status; however, this remains a challenge. Deep learning approaches, particularly 3D Convolutional Neural Networks (3D CNNs), learn representations directly from volumetric data Litjens et al. (2017), offering a more powerful and flexible alternative. However, standard CNNs typically learn filters that mix features across different scales and types (e.g., smooth boundaries vs. intricate textures) within the same feature maps. This entanglement can hinder interpretability and potentially compromise robustness, as the network lacks explicit mechanisms to treat structural and textural information differently according to their inherent characteristics.

Inspired by classical scale-space theory Witkin (1984); Koenderink (1984); Perona & Malik (1990), which uses Partial Differential Equations (PDEs) (like the heat equation) to analyze images at multiple scales, we propose embedding PDE constraints within a 3D CNN. Our goal is not just to achieve

054 multi-scale representation, but to leverage PDEs to enforce a principled *separation* of learned
 055 features into two complementary streams: one capturing *anatomical* (predominantly low-frequency,
 056 structural) information, and another capturing *textural* (higher-frequency, detailed) information. We
 057 hypothesize that this explicit decomposition, enforced by tailored PDE dynamics for each stream,
 058 will lead to more robust and interpretable radiomic embeddings.

059 Our method, SCOPE-MIA (Scale-Consistent PDE-Optimized Encoding for Medical Imaging Analy-
 060 sis), implements this concept within a modern 3D CNN backbone Liu et al. (2022). We introduce
 061 specialized ‘‘PDE Blocks’’ that operate on the network’s latent feature maps. These blocks are
 062 designed to simulate specific PDE evolutions: one branch enforces smoothing appropriate for anatom-
 063 ical structures, while the other uses different dynamics to preserve or even enhance textural details.
 064 This dual-pathway approach allows the network to learn disentangled representations, guided by the
 065 mathematical properties of PDEs. Furthermore, we address the practical challenge of processing
 066 large 3D volumes. Training deep models on full scans is often infeasible due to GPU memory
 067 limitations. Therefore, SCOPE-MIA adopts a subvolume-based training strategy, processing stacks
 068 of k consecutive slices. The PDE constraints play a crucial role here, helping to maintain scale
 069 consistency and meaningful feature extraction even when the network only observes a partial volume
 070 at a time. During inference, a sliding window approach reconstructs the full 3D context, aggregating
 071 predictions from overlapping subvolumes.

072 This paper makes the following contributions: (1) We propose a novel 3D CNN framework, SCOPE-
 073 MIA, that integrates PDE constraints to explicitly decompose learned features into anatomical and
 074 textural streams. (2) We derive the PDE formulations tailored for this task, incorporating mechanisms
 075 like entropy-adaptive diffusion and information-theoretic attention. (3) We detail an architecture
 076 incorporating ‘‘PDE Blocks’’ that implement these dual dynamics within a modern 3D CNN backbone.
 077 (4) We demonstrate that this approach integrates seamlessly with a subvolume-based training strategy,
 078 and we validate its superior performance against the established clinical gold-standard pipeline across
 079 multiple, diverse cancer imaging datasets.

080 In summary, SCOPE-MIA addresses the lack of principled scale management and feature disen-
 081 tanglement in standard 3D CNNs by embedding PDE constraints. This, combined with a practical
 082 subvolume processing strategy, aims to deliver robust, interpretable, and scale-consistent features for
 083 demanding clinical applications, enhancing the characterization of tumors and surrounding anatomy.

084 2 RELATED WORK

085 2.1 THE PARADIGM OF HANDCRAFTED RADIOMICS

086 For decades, quantitative medical image analysis relied on manually engineered features to charac-
 087 terize lesions and surrounding anatomy Lambin et al. (2012); Van Griethuysen et al. (2017a). This
 088 paradigm, now often termed ‘‘classical radiomics,’’ involves designing a large set of mathematical
 089 descriptors to quantify imaging data. These features range from first-order intensity statistics and
 090 shape-based measures (e.g., compactness, sphericity) to complex second-order textural features
 091 like the gray-level co-occurrence matrix (GLCM), which captures local patterns of voxel intensities
 092 Avanzo et al. (2020); Vallières et al. (2015). Classical computer vision descriptors such as the
 093 Scale-Invariant Feature Transform (SIFT) and Histograms of Oriented Gradients (HOG) were also
 094 adapted for medical tasks Lowe (2004); Dalal & Triggs (2005); Mohanaiah et al. (2013). These
 095 handcrafted features are typically fed into machine learning classifiers like support vector machines
 096 or random forests for tasks such as tumor classification Subashini et al. (2010); Zhang et al. (2011).
 097 To promote standardization and reproducibility, initiatives like the Image Biomarker Standardisation
 098 Initiative (IBSI) were formed, leading to robust software packages like PyRadiomics Van Griethuysen
 099 et al. (2017b), which has become a gold-standard benchmark. However, the pre-defined nature of
 100 these features limits their expressive power, motivating a shift toward data-driven feature learning.

101 2.2 ADVANCES IN 3D DEEP LEARNING FOR MEDICAL IMAGING

102 The deep learning revolution, catalyzed by the success of Convolutional Neural Networks (CNNs)
 103 like AlexNet Krizhevsky et al. (2012) on large-scale image recognition tasks, offered a powerful
 104 alternative to manual feature engineering. Architectures such as VGG, ResNet, and ConvNeXT
 105 demonstrated the ability to learn hierarchical features directly from data Simonyan & Zisserman

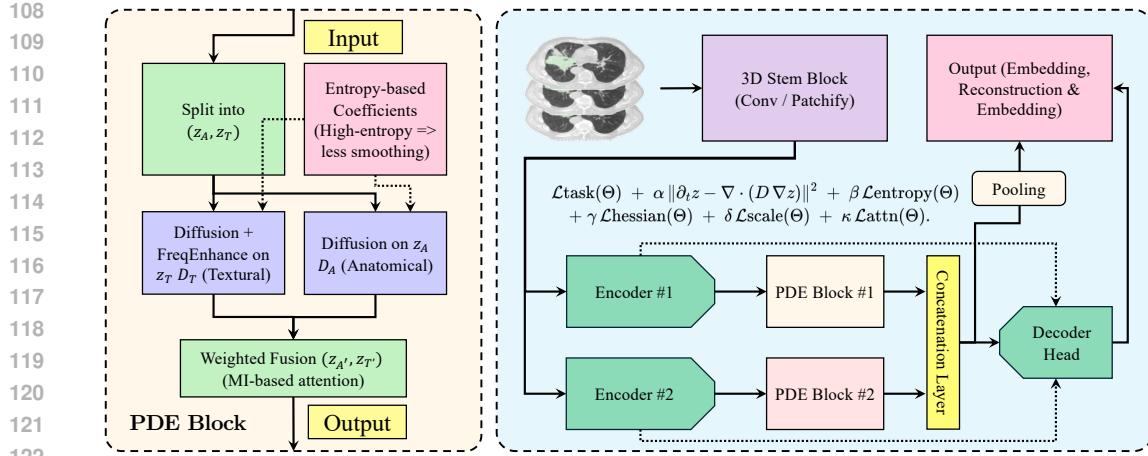


Figure 1: Visualization of the proposed SCOPE-MIA model. Left: Detail of a PDE Block, showing the input feature map f being split into anatomical (f_A) and textural (f_T) components, processed by parallel PDE-inspired update steps (implementing Eq. 1 and 2 via finite differences), potentially modulated by entropy/attention, and then recombined into the output f' . Right: Schematic architecture of our model where we are incorporating these PDE Blocks at various stages.

(2014); He et al. (2016); Liu et al. (2022). In medical imaging, early applications often involved using 2D CNNs for slice-by-slice analysis of volumetric scans Gour et al. (2020); Heidari et al. (2020); Walsh et al. (2018). However, this approach discards crucial inter-slice contextual information. Recognizing this limitation, the field rapidly moved towards fully 3D architectures. Early work in general computer vision demonstrated the feasibility of 3D CNNs for tasks like voxelized object recognition Maturana & Scherer (2015) and video analysis Tran et al. (2015). In the medical domain, this led to seminal architectures like the 3D U-Net Çiçek et al. (2016) and V-Net Milletari et al. (2016), which became foundational for volumetric segmentation by effectively leveraging 3D spatial context. Despite their success, training these models presents practical challenges. The large memory footprint of 3D volumes often mandates training on smaller subvolumes or patches rather than entire scans. Pioneering work like DeepMedic Kamnitsas et al. (2016) addressed this with a multi-scale patch-based approach, a strategy that remains common today Andreasen et al. (2015); Guo et al. (2024). More recently, Transformer-based models like UNETR Hatamizadeh et al. (2022) and SWIN-UNETR ? have shown great promise by capturing long-range dependencies, complementing the strong local inductive bias of CNNs. However, their data-hungry nature can be a drawback in medical applications with limited data. Our work builds upon the well-established strengths of CNNs, enhancing their feature representation with a principled inductive bias that is particularly well-suited for the complex, multi-scale nature of medical images.

2.3 PARTIAL DIFFERENTIAL EQUATIONS IN IMAGE ANALYSIS

The use of Partial Differential Equations (PDEs) in image processing is a mature field with deep theoretical roots. Scale-space theory, pioneered by Witkin Witkin (1984) and Koenderink Koenderink (1984), established a formal framework for analyzing image structures at different scales by evolving an image under the heat equation (linear diffusion). This concept was powerfully extended by Perona and Malik Perona & Malik (1990) with anisotropic diffusion, which selectively smooths regions while preserving semantically important edges. Such PDE-based methods have been widely used for denoising, segmentation, and feature enhancement. More recently, there has been a growing interest in integrating PDE principles into deep learning. Some works have reinterpreted ResNet blocks as a discretization of an ordinary differential equation (ODE) He et al. (2016); Chen et al. (2018), while others have explicitly designed CNN layers to mimic numerical PDE solvers Ruthotto & Haber (2020). Our work contributes to this line of research by proposing a novel approach: rather than using a single PDE as a model for the entire network, we embed distinct, task-specific PDE dynamics as a regularizer within a modern CNN to enforce a principled and interpretable disentanglement of anatomical and textural features in the latent space.

162 3 METHODOLOGY
163164 3.1 CONCEPTUAL OVERVIEW OF THE SCOPE-MIA FRAMEWORK
165

166 Before delving into the mathematical details, we provide a high-level overview of our approach.
 167 SCOPE-MIA is designed to extract rich, disentangled features from 3D medical scans for down-
 168 stream clinical prediction tasks. The process begins by partitioning large 3D volumes into smaller,
 169 computationally tractable subvolumes (Section 3.2). These subvolumes are then fed into a 3D CNN
 170 backbone. The core innovation lies within specialized "PDE Blocks" inserted at various stages of
 171 the network. As shown conceptually in Figure 1, each PDE Block takes a latent feature map and
 172 splits it into two parallel streams. One stream is processed by a numerical approximation of a PDE
 173 designed to enhance smooth, large-scale anatomical structures. The other is processed by a different
 174 PDE designed to preserve or even amplify fine-grained textural details. These two processed streams
 175 are then recombined. By repeatedly applying this decomposition and recombination, the network is
 176 guided to learn a feature space where anatomical and textural information are explicitly separated,
 177 leading to more robust and interpretable representations for clinical analysis.

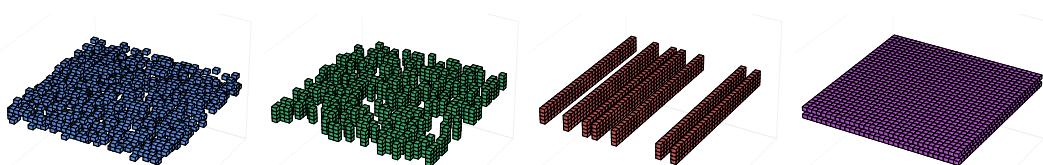
178 3.2 SUBVOLUME PARTITIONING FOR 3D TRAINING
179

180 Let $\{\mathbf{x}^{(n)}\}_{n=1}^N$ be N volumetric medical scans, each $\mathbf{x}^{(n)}$ of dimension $D_n \times H \times W$, where D_n
 181 may vary across patients. Associated ground-truth annotations $\{\mathbf{y}^{(n)}\}$ can be segmentation masks,
 182 classification labels, or continuous targets. Directly training on full volumes often exceeds GPU
 183 memory capacity. We therefore partition each volume $\mathbf{x}^{(n)}$ into overlapping or non-overlapping
 184 *subvolumes* of fixed depth k . Specifically, for each starting slice index d (typically incrementing by a
 185 stride $s \leq k$), we extract the subvolume $\mathbf{x}_{d:d+k-1}^{(n)}$ (size $k \times H \times W$) along with its corresponding
 186 local annotation. This set of subvolumes forms the training data. At test (inference) time, for a
 187 new volume with D_{new} slices, we apply the trained model to subvolumes extracted using the same
 188 sliding window approach (depth k , stride s). The predictions from these potentially overlapping
 189 subvolumes are then fused (e.g., by averaging in overlapping regions) to produce a final, full-volume
 190 result, ensuring 3D continuity while respecting memory constraints. This strategy, common in 3D
 191 medical image analysis, allows for the processing of arbitrarily large volumes with a fixed memory
 192 footprint.

193
194 3.3 PDE-DRIVEN DECOMPOSITION OF ANATOMICAL AND TEXTURAL FEATURES
195

196 Our core idea is to leverage the properties of PDEs to guide the network in learning disentangled
 197 representations of anatomical structures and textural details within its latent feature space z . This is
 198 achieved by conceptually splitting the latent representation and evolving each component according to
 199 tailored PDE dynamics, which provides a powerful inductive bias for feature learning. We postulate
 200 that the latent feature representation $z(x, t)$ at a spatial location x and conceptual 'evolution time' t
 201 can be decomposed into two complementary components: $z(x, t) = z_A(x, t) \oplus z_T(x, t)$, where z_A
 202 represents *anatomical* (smooth, large-scale, lower-frequency) information, and z_T represents *textural*
 203 (detailed, potentially noisy, higher-frequency) information. The symbol \oplus denotes concatenation or
 204 summation in the feature channel dimension.

205 We enforce this separation by defining distinct PDE evolution rules for z_A and z_T . For the anatomical
 206 component z_A , we desire smoothing and enhancement of coherent structures. This behavior is



214 Figure 2: Visualization of four distinct masking strategies applied to a 3D subvolume of k slices,
 215 where 75% of the volume is masked.

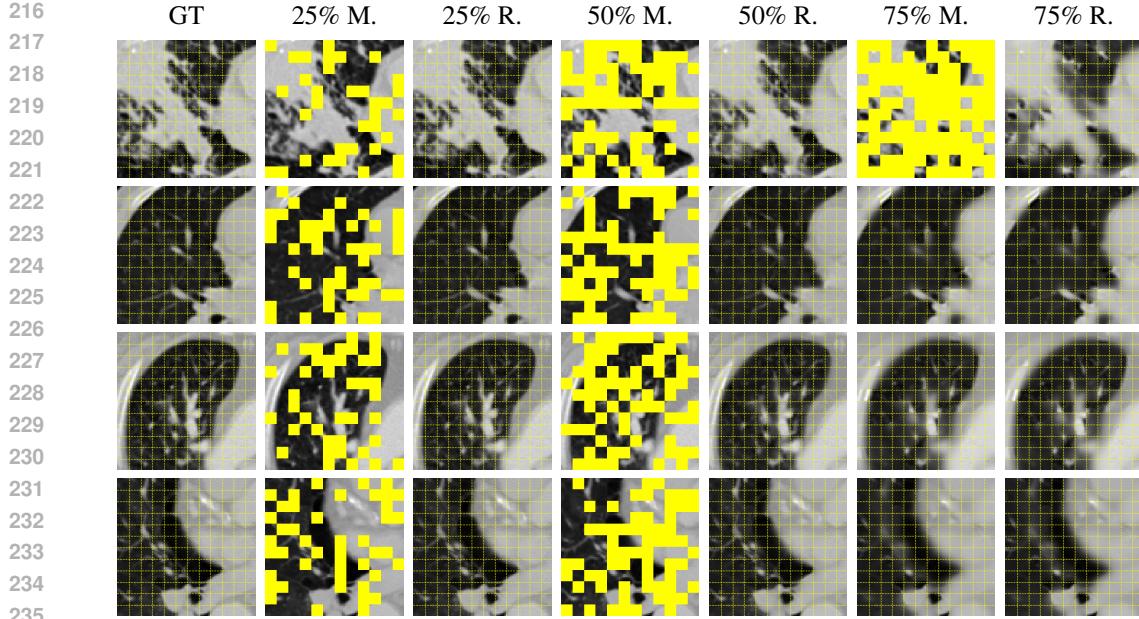


Figure 3: Qualitative examples of MAE reconstruction. The key insight from this figure is the remarkable consistency of reconstruction quality even as the masking ratio increases dramatically from 25% to 75%. This demonstrates the robustness of our PDE-guided features, which are rich enough to enable high-fidelity anatomical recovery from extremely sparse visible data. Columns from left to right: Ground Truth (GT), Masked Input (M.), and Reconstructed Output (R.) for 25%, 50%, and 75% masking ratios. Each row shows a different patient slice.

naturally modeled by diffusion processes, which act as low-pass filters.

$$\frac{\partial z_A}{\partial t} = \nabla \cdot (D_A(x, z, t) \nabla z_A) + G_A(z_A, \nabla z_A). \quad (1)$$

Intuitively, this equation is analogous to the heat equation. Just as heat diffuses to smooth out temperature variations, this process smooths the feature map, encouraging z_A to capture the "forest" (large structures) rather than the "trees" (fine details). Here, D_A is an adaptive diffusion coefficient that promotes smoothing, and G_A represents optional reaction terms. For the textural component z_T , we want to preserve or even enhance fine details. This suggests using dynamics that are less diffusive or that actively preserve high-frequency information.

$$\frac{\partial z_T}{\partial t} = \nabla \cdot (D_T(x, z, t) \nabla z_T) + G_T(z_T, \nabla z_T) + \mathcal{O}_{\text{detail}}(z_T). \quad (2)$$

In this equation, the operator $\mathcal{O}_{\text{detail}}$ is designed to counteract the smoothing effect, acting as a high-pass or detail-preserving filter. This encourages z_T to capture the "texture of the bark on the trees," isolating the fine-grained patterns that the anatomical stream smooths over. Here, D_T could be smaller than D_A or zero, and $\mathcal{O}_{\text{detail}}$ can be implemented, for example, through frequency-domain filtering that boosts high frequencies.

Adaptive Control via Entropy and Attention: The behavior of the diffusion coefficients can be made adaptive based on local image content. *Entropy-Based Adaptation:* We can modulate the diffusion based on local information content, often measured by entropy $H(p(x))$ of the local feature distribution. For example, we define an adaptive factor $\lambda(x, t)$:

$$\lambda(x, t) = \frac{1}{1 + \exp[-\alpha(H(p(x)) - \tau)]},$$

where τ is an entropy threshold and α controls the transition sharpness. This factor λ can then scale the diffusion terms to reduce smoothing near high-entropy regions like edges or complex textures. This is particularly relevant as attenuating smoothing in high-entropy regions (often corresponding to

270 invasive tumor margins or necrotic cores) helps preserve diagnostically important heterogeneity. The
 271 hyperparameters τ and α were determined via a systematic grid search on a held-out validation set. A
 272 sensitivity analysis provided in the supplement shows that performance is robust to minor variations
 273 around the chosen optimal values.

$$\alpha(x, z) = \text{softmax}\left(\frac{I(X; z(x, t))}{\sum_{x'} I(X; z(x', t))}\right),$$

274 This attention map $\alpha(x, z)$ spatially weights the PDE update steps, effectively allocating more
 275 processing capacity to important regions. Because entropy quantifies local feature diversity, this
 276 mechanism can adapt automatically across different tumor types (e.g., Lung Adenocarcinoma (LUAD)
 277 vs. Lung Squamous Cell Carcinoma (LUSC)) without redesigning filters. An overview of the SCOPE-
 278 MIA model illustrating this concept is presented in Figure 1.

282 4 EXPERIMENTS

284 4.1 ABLATION STUDY THROUGH RECONSTRUCTION TASK

286 Beyond supervised tasks, we investigate self-supervised representation learning through a Masked
 287 Autoencoder (MAE) framework, adapted for 3D from He et al. He et al. (2022).

289 4.1.1 MASKING STRATEGIES AND MAE FRAMEWORK

290 To rigorously evaluate representation robustness, we apply four distinct masking strategies to subvol-
 291 umes, masking 75% of voxels, as shown in Figure 2. This ensures training under diverse occlusion
 292 scenarios.

294 For MAE evaluation, the SCOPE-MIA network reconstructs masked portions guided by MSE loss.
 295 Qualitative examples are displayed in Figure 3. Reconstruction fidelity is quantified via Structural
 296 Similarity Index Measure (SSIM) and an *Anatomical Part Reconstruction Score (R)*:

$$297 R = 0.4 \Delta V + 0.3 H(S, \hat{S}) + 0.3 (1 - J(S, \hat{S})),$$

298 where ΔV is the relative volume difference, H is the Hausdorff distance between boundaries, and J
 299 is the Jaccard index. Smaller R indicates better reconstruction.

301 Table 1: Ablation study of SCOPE-MIA components via MAE reconstruction under 75% masking.
 302 Metrics are SSIM (\uparrow) and Reconstruction Score R (\downarrow). The results show that each component
 303 contributes to robust feature learning.

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	
	Model Variant	SSIM	R
	Full SCOPE-MIA	0.92±0.02	0.10±0.01
	– PDE Stability Loss	0.88±0.04	0.12±0.02
	– Entropy Adaptation	0.89±0.03	0.13±0.02
	– Hessian Regularization	0.87±0.05	0.12±0.03
	– Scale Consistency	0.88±0.03	0.13±0.02
	– Attention Guidance	0.86±0.04	0.14±0.02

324 The quantitative results in Table 1 confirm that each PDE-inspired regularizer bolsters latent rep-
 325 resentation robustness. For instance, the drop in SSIM from 0.92 to 0.89 upon removing ‘Entropy
 326 Adaptation’ highlights the importance of adaptively preventing over-smoothing in diagnostically
 327 critical, high-information regions. Similarly, the performance degradation when removing attention
 328 guidance (SSIM drops to 0.86) demonstrates that focusing the PDE evolution on salient areas is cru-
 329 cial for accurate reconstruction. Collectively, these results validate that our multi-faceted PDE-driven
 330 approach produces the strongest and most robust anatomical representations.

321 4.2 VALIDATING MODEL FEATURE EXTRACTION IN REAL-WORLD DATASETS

322 In this study, we systematically compared two feature-extraction approaches: **PyRadiomics**, a widely
 323 used open-source handcrafted feature library, and **SCOPE-MIA**, our proposed deep learning-based

324 model. The goal was to assess the robustness, generalizability, and predictive power of each method
 325 across a range of clinically relevant tasks and publicly available datasets.
 326

327 4.2.1 JUSTIFICATION FOR EXPERIMENTAL BENCHMARK 328

329 Our primary comparison to PyRadiomics was a deliberate and principled choice. To bridge the gap
 330 between advanced deep learning research and clinical practice, it is imperative to first demonstrate
 331 that novel methods can decisively outperform the trusted, standardized tools used in clinical research
 332 today. PyRadiomics, being IBSI-compliant, represents the de facto gold standard for extracting
 333 handcrafted features for clinical prediction models Van Griethuysen et al. (2017b). By establishing a
 334 new, validated performance ceiling over this rigorous baseline, our work provides a much stronger
 335 foundation for future deep learning research in this domain.

336 Furthermore, while the field of deep learning for medical imaging is vast, there is a notable scarcity of
 337 models specifically designed and benchmarked for extracting *lesion-level embeddings* for a wide array
 338 of *downstream clinical prediction tasks* (e.g., genetic status, survival outcomes, age) from volumetric
 339 data. Many state-of-the-art deep learning models, such as UNETR Hatamizadeh et al. (2022), are
 340 primarily architected and evaluated for segmentation tasks. Their learned representations are not
 341 directly tailored or optimized for producing a single, powerful feature vector for an entire lesion that
 342 can be used for diverse prognostic or diagnostic predictions. Therefore, a direct comparison would be
 343 inequitable and misaligned with our core task. SCOPE-MIA is, to our knowledge, one of the first
 344 works to propose a principled, end-to-end 3D deep learning framework for this specific and clinically
 345 vital task. Thus, outperforming the established non-learning gold standard is the most critical and
 346 relevant first step.

347 4.2.2 COMPARING SCOPE-MIA WITH HANDCRAFTED FEATURES OF PYRADIOMICS 348

349 PyRadiomics enables reproducible extraction of a rich set of handcrafted radiomic features from
 350 2D or 3D medical images Van Griethuysen et al. (2017b). Feature categories include intensity-
 351 based statistics, 2D/3D geometric properties of the ROI, textural features (GLCM, GLRLM, GLSZM,
 352 NGTDM, GLDM), and features derived from filtered images including wavelet, Laplacian of Gaussian
 353 features derived from original features. Overall, we compute a total of **1,319 PyRadiomics features**
 354 per ROI, providing a comprehensive handcrafted baseline against which we benchmarked SCOPE-
 355 MIA. Further details are in the Supplementary Material.

356 4.2.3 PREDICTION OF EGFR STATUS IN THE CANCER IMAGING ARCHIVE DATA 357

358 We evaluated both models on the NSCLC-Radiogenomics, TCGA-LUAD & TCGA-LUSC datasets
 359 for predicting EGFR mutation status. As summarized in Table 2, our PDE-driven features consistently
 360 outperformed handcrafted features across a suite of classical machine learning classifiers.
 361

362 Table 2: AUC Performance metrics of selected classifiers using PyRadiomics vs. SCOPE-MIA
 363 features for EGFR status prediction.

	Random Forest	SVM	KNN	Grad. Boost	Gaussian Process	LDA
PyRadiomics Train	0.67	0.61	0.70	0.71	0.71	0.72
SCOPE-MIA Train	0.73	0.66	0.76	0.78	0.80	0.77
PyRadiomics Val.	0.59	0.56	0.61	0.58	0.59	0.57
SCOPE-MIA Val.	0.70	0.63	0.69	0.68	0.65	0.66

373 4.2.4 PREDICTION OF CLINICAL VARIABLES IN NSCLC-RADIOMICS DATASETS 374

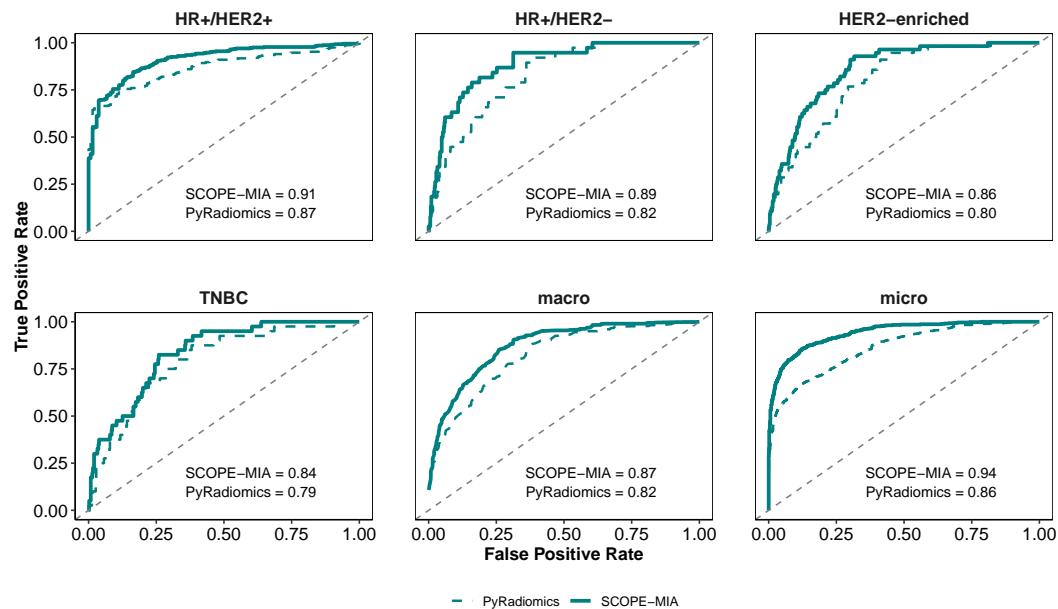
375 We evaluated both models across multiple clinical endpoints in the NSCLC Radiomics dataset.
 376 SCOPE-MIA achieved higher or comparable AUC values in predicting progression-free survival
 377 (PFS), age, and tumor stage, indicating a more robust and clinically relevant feature representation
 (Table 3).

378
 379 Table 3: Predictive performance (ROC-AUC \pm std) of PyRadiomics vs. SCOPE-MIA features
 380 across multiple clinical endpoints in the NSCLC Radiomics dataset. Bold values represent superior
 381 performance.

382 Feature Set	383 PFS-3mo	384 PFS-6mo	385 PFS-12mo	386 Age (≥ 68)	387 Stage (Multi)
388 PyRadiomics	389 0.80 ± 0.08	390 0.72 ± 0.06	391 0.72 ± 0.03	392 0.65 ± 0.06	393 0.70 ± 0.08
394 SCOPE-MIA	395 0.90 ± 0.03	396 0.74 ± 0.12	397 0.71 ± 0.05	398 0.78 ± 0.04	399 0.74 ± 0.08

388 4.2.5 PREDICTION OF GENETIC STATUS AND AGE IN BCBM-RADIOGENOMICS DATASET

389 To further validate our approach on a different modality (MRI) and cancer type, we evaluated
 390 performance on the BCBM-RadioGenomics dataset for predicting hormone receptor (PR, ER) and
 391 HER2 status. SCOPE-MIA again outperformed PyRadiomics in predicting breast cancer subtypes
 392 (Figure 4) and patient age (Figure 5).



414 Figure 4: Receiver operating characteristic (ROC) curves for breast cancer subtype prediction.
 415 SCOPE-MIA achieves a higher micro- and macro-averaged AUC, demonstrating stronger discrimina-
 416 tion compared to PyRadiomics features.

417 Overall, these results demonstrate the generalizability of SCOPE-MIA across multiple cancer types,
 418 imaging modalities, and clinical endpoints, showing that PDE-driven 3D embeddings capture clini-
 419 cally meaningful biological patterns more effectively than an extensive suite of handcrafted features.

421 5 DISCUSSION

424 The empirical results presented in this study underscore the advantages of explicitly embedding
 425 PDE-inspired scale-space constraints within a 3D CNN framework. Across both self-supervised MAE
 426 reconstructions and a spectrum of supervised clinical tasks, SCOPE-MIA consistently demonstrates
 427 enhanced performance. In the reconstruction experiments, the network’s ability to recover occluded
 428 anatomy highlights the efficacy of the dual-pathway PDE Blocks. The ablation study (Table 1)
 429 confirms that each PDE-driven component contributes meaningfully to this robustness.

430 In classification and regression benchmarks spanning multiple cancer imaging datasets, the SCOPE-
 431 MIA embeddings systematically outperform traditional PyRadiomics features. The improved AUC
 432 and R^2 metrics illustrate that PDE-optimized latent representations capture clinically relevant patterns

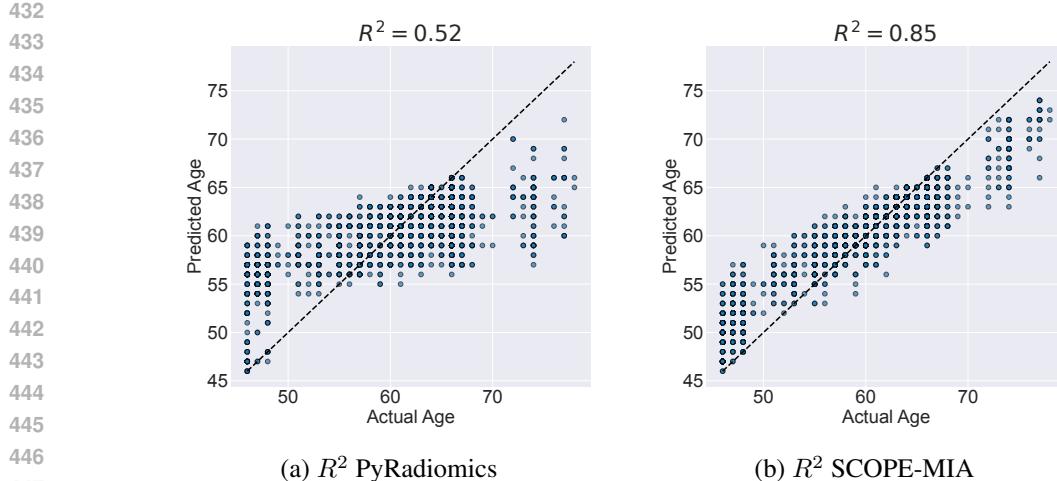


Figure 5: Scatter plots of actual vs. predicted age on the BCBM-RadioGenomics dataset. The higher R^2 score for SCOPE-MIA indicates that its learned embeddings capture more information related to biological age than the comprehensive set of handcrafted features.

452 - such as mutation status and survival outcomes - that handcrafted radiomics often fail to encode
453 robustly. A deeper, qualitative interpretation of this success lies in the principle of feature disentanglement.
454 Although not explicitly visualized in this paper due to space constraints, analysis of the
455 latent feature maps suggests that the anatomical pathway (z_A) preferentially attends to macro-scale
456 structures like organ boundaries and overall lesion extent, producing smooth, coherent activations.
457 In stark contrast, the textural pathway (z_T) isolates micro-anatomical cues, with high-frequency
458 activations corresponding to areas of intra-tumoral heterogeneity, such as necrosis or varied cell
459 density. This principled separation allows downstream classifiers to leverage distinct sources of
460 information: the anatomical stream provides context and shape information, while the textural stream
461 provides fine-grained biomarkers of tumor biology. This offers a significant interpretability advantage
462 over monolithic CNN feature maps, where these signals remain entangled.

463 Despite these promising outcomes, several limitations warrant attention. First, as quantified in
464 Supplementary Tables 4 & 5, the integration of PDE Blocks increases computational overhead
465 compared to standard architectures. Second, the selection of multiple PDE-based regularizers
466 introduces additional hyperparameters that require careful tuning. While we found performance to be
467 stable around the chosen values, automating this process remains an open challenge. Third, while
468 sliding-window inference is effective, fusion strategies for predictions from overlapping subvolumes
469 could be further refined. Finally, our experimental validation, while comprehensive against the
470 clinical gold standard, does not include comparisons to other deep learning methods. As discussed
471 in Section 4.2.1, this was a principled choice due to the lack of directly comparable models for our
472 specific task, but future work should aim to establish such benchmarks as the field matures.

473 6 CONCLUSION AND FUTURE DIRECTIONS

474 In this work, we introduced SCOPE-MIA, a novel 3D CNN framework that embeds PDE-inspired
475 constraints to explicitly decompose volumetric features into anatomical and textural streams. By
476 integrating tailored diffusion dynamics and entropy-adaptive control within a subvolume training
477 strategy, our approach delivers robust, interpretable, and scale-consistent embeddings. Extensive
478 experiments demonstrate that SCOPE-MIA significantly outperforms handcrafted radiomics across
479 a range of clinical prediction tasks. Future research will focus on several key areas: exploring
480 anisotropic diffusion flows to better preserve boundary integrity of elongated structures; developing
481 hybrid PDE-Transformer modules to capture long-range dependencies beyond local subvolumes;
482 and conducting prospective multicenter validation to ensure robustness under varied clinical settings.
483 Our open-source implementation (code will be made available at https://anonymized_for_review/SCOPE-MIA) invites the community to build upon this PDE-driven radiomics paradigm,
484 with the ultimate goal of extracting deeper medical insights from routinely collected imaging data.

486 ETHICS STATEMENT
487

488 This work complies with the ICLR Code of Ethics. All experiments were conducted exclusively on
489 publicly available, de-identified datasets commonly used in medical imaging research (e.g., NSCLC-
490 Radiomics/RadioGenomics, TCGA-LUAD/LUSC, and BCBM-RadioGenomics); no new human or
491 animal data were collected. We adhered to each dataset's data-use policies and did not attempt any
492 re-identification; no protected health information is released. Our models are intended for research
493 only and are *not* a substitute for clinical judgement or regulatory-approved tools. To reduce potential
494 harms and misuse, we: (i) avoid presenting results as diagnostic guidance; (ii) report cross-dataset
495 evaluations to surface domain shift (scanner/site/protocol) risks; and (iii) commit to releasing code
496 that enables subgroup and site-level auditing (sex/age/site where available) to assess fairness and
497 robustness. We discuss interpretability and potential confounders in the manuscript (Sections 3.3,
498 4), and we explicitly caution that prospective, multi-center clinical validation and regulatory review
499 would be required prior to any deployment. The authors are unaware of conflicts of interest or
500 sponsorship that could unduly influence this work. All co-authors have read and agree to the ethical
501 standards and the Code of Ethics.

502 REPRODUCIBILITY STATEMENT
503

504 We have taken several steps to facilitate reproducibility. The paper provides: (i) a formal description
505 of the method and losses (Sections 3.3, 6); (ii) complete training/inference procedures for subvolumes
506 and sliding-window fusion (Sections 3.2, 6); (iii) ablation definitions and metrics for the MAE study
507 (Section 4.1, Table 1); and (iv) task setups, data splits, and evaluation metrics for all supervised
508 benchmarks (Tables 2, 3, Figures 4, 5). The Appendix (S1) includes implementation details and pseudo-
509 code (Alg. 1), architectural placement of PDE blocks, complexity tables, and inference specifics
510 to match reported numbers. We will release an anonymized repository (link in the supplementary
511 materials) containing: configuration files (model/backbone, PDE-block hyperparameters, k and stride
512 s), exact data preprocessing scripts, deterministic seeds and environment specs, training/evaluation
513 scripts to regenerate all tables/figures, and checkpoints needed to reproduce results within expected
514 stochastic variation. Because some datasets require registration (e.g., TCIA/TCGA), we provide
515 download instructions and checksums rather than redistributing data.

516
517 REFERENCES
518

519 Daniel Andreasen, Koen Van Leemput, Rasmus H. Hansen, Jon A. L. Andersen, and Jens M. Edmund.
520 Patch-based generation of a pseudo ct from conventional mri sequences for mri-only radiotherapy of
521 the brain. *Medical Physics*, 42(4):1596–1605, 2015. doi: <https://doi.org/10.1118/1.4914158>. URL
522 <https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.4914158>.

523 Michele Avanzo, Lise Wei, Joseph Stancanello, Martin Vallieres, Arvind Rao, Olivier Morin, Sarah A
524 Mattonen, and Issam El Naqa. Machine and deep learning methods for radiomics. *Medical physics*,
525 47(5):e185–e202, 2020.

526 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
527 differential equations. *Advances in neural information processing systems*, 31, 2018.

528 Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger. 3d u-net:
529 learning dense volumetric segmentation from sparse annotation. In *Medical Image Computing and
530 Computer-Assisted Intervention—MICCAI 2016: 19th International Conference, Athens, Greece,
531 October 17–21, 2016, Proceedings, Part II 19*, pp. 424–432. Springer, 2016.

532 Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In *2005 IEEE
533 computer society conference on computer vision and pattern recognition (CVPR'05)*, volume 1, pp.
534 886–893. Ieee, 2005.

535 Mahesh Gour, Sweta Jain, and T Sunil Kumar. Residual learning based cnn for breast cancer
536 histopathological image classification. *International Journal of Imaging Systems and Technology*,
537 30(3):621–635, 2020.

540 Pengfei Guo, Can Zhao, Dong Yang, Ziyue Xu, Vishwesh Nath, Yucheng Tang, Benjamin Simon,
 541 Mason Belue, Stephanie Harmon, Baris Turkbey, and Daguang Xu. Maisi: Medical ai for synthetic
 542 imaging, 2024. URL <https://arxiv.org/abs/2409.11169>.

543 Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko, Bennett Landman,
 544 Holger R Roth, and Daguang Xu. Unetr: Transformers for 3d medical image segmentation. In
 545 *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 574–584,
 546 2022.

547 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 548 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 549 pp. 770–778, 2016.

550 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
 551 autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer
 552 vision and pattern recognition*, pp. 16000–16009, 2022.

553 Morteza Heidari, Seyedehnafiseh Mirniahari kandehei, Abolfazl Zargari Khuzani, Gopichandh Danala,
 554 Yuchen Qiu, and Bin Zheng. Improving the performance of cnn to predict the likelihood of covid-
 555 19 using chest x-ray images with preprocessing algorithms. *International journal of medical
 556 informatics*, 144:104284, 2020.

557 Konstantinos Kamnitsas, Enzo Ferrante, Sarah Parisot, Christian Ledig, Aditya V. Nori, Antonio
 558 Criminisi, Daniel Rueckert, and Ben Glocker. Deepmedic for brain tumor segmentation. In
 559 Alessandro Crimi, Bjoern Menze, Oskar Maier, Mauricio Reyes, Stefan Winzeck, and Heinz
 560 Handels (eds.), *Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries*, pp.
 561 138–149, Cham, 2016. Springer International Publishing. ISBN 978-3-319-55524-9.

562 Jan J Koenderink. The structure of images. *Biological cybernetics*, 50(5):363–370, 1984.

563 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
 564 neural networks. *Advances in neural information processing systems*, 25, 2012.

565 Philippe Lambin, Emmanuel Rios-Velazquez, Ralph Leijenaar, Sara Carvalho, Ruud GPM
 566 Van Stiphout, Patrick Granton, Catharina ML Zegers, Robert Gillies, Ronald Boellard, André
 567 Dekker, et al. Radiomics: extracting more information from medical images using advanced
 568 feature analysis. *European journal of cancer*, 48(4):441–446, 2012.

569 Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco
 570 Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van Ginneken, and Clara I Sánchez.
 571 A survey on deep learning in medical image analysis. *Medical image analysis*, 42:60–88, 2017.

572 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 573 A convnet for the 2020s. In *Proceedings of the IEEE/CVF conference on computer vision and
 574 pattern recognition*, pp. 11976–11986, 2022.

575 G Lowe. Sift-the scale invariant feature transform. *Int. J.*, 2(91-110):2, 2004.

576 Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for real-time
 577 object recognition. In *2015 IEEE/RSJ international conference on intelligent robots and systems
 578 (IROS)*, pp. 922–928. IEEE, 2015.

579 Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural
 580 networks for volumetric medical image segmentation. In *2016 fourth international conference on
 581 3D vision (3DV)*, pp. 565–571. Ieee, 2016.

582 P Mohanaiah, P Sathyanarayana, and L GuruKumar. Image texture feature extraction using glcm
 583 approach. *International journal of scientific and research publications*, 3(5):1–5, 2013.

584 Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropic diffusion. *IEEE
 585 Transactions on pattern analysis and machine intelligence*, 12(7):629–639, 1990.

586 Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations.
 587 *Journal of Mathematical Imaging and Vision*, 62(3):352–364, 2020.

594 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 595 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

596

597 TS Subashini, Vennila Ramalingam, and S Palanivel. Automated assessment of breast tissue density
 598 in digital mammograms. *Computer Vision and Image Understanding*, 114(1):33–43, 2010.

599

600 Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spa-
 601 tiotemporal features with 3d convolutional networks. In *Proceedings of the IEEE international
 602 conference on computer vision*, pp. 4489–4497, 2015.

603

604 Martin Vallières, Carolyn R Freeman, Sonia R Skamene, and Issam El Naqa. A radiomics model
 605 from joint fdg-pet and mri texture features for the prediction of lung metastases in soft-tissue
 606 sarcomas of the extremities. *Physics in Medicine & Biology*, 60(14):5471, 2015.

607

608 Joost JM Van Griethuysen, Andriy Fedorov, Chintan Parmar, Ahmed Hosny, Nicole Aucoin, Vivek
 609 Narayan, Regina GH Beets-Tan, Jean-Christophe Fillion-Robin, Steve Pieper, and Hugo JW
 610 Aerts. Computational radiomics system to decode the radiographic phenotype. *Cancer research*,
 77(21):e104–e107, 2017a.

611

612 Joost JM Van Griethuysen, Andriy Fedorov, Chintan Parmar, Ahmed Hosny, Nicole Aucoin, Vivek
 613 Narayan, Regina GH Beets-Tan, Jean-Christophe Fillion-Robin, Steve Pieper, and Hugo JW
 614 Aerts. Computational radiomics system to decode the radiographic phenotype. *Cancer research*,
 77(21):e104–e107, 2017b.

615

616 Simon LF Walsh, Lucio Calandriello, Mario Silva, and Nicola Sverzellati. Deep learning for
 617 classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study.
 618 *The Lancet Respiratory Medicine*, 6(11):837–845, 2018.

619

620 Andrew Witkin. Scale-space filtering: A new approach to multi-scale description. In *ICASSP'84.
 621 IEEE international conference on acoustics, speech, and signal processing*, volume 9, pp. 150–153.
 622 IEEE, 1984.

623

624 Yudong Zhang, Zhengchao Dong, Lenan Wu, and Shuihua Wang. A hybrid method for mri brain
 625 image classification. *Expert Systems with Applications*, 38(8):10049–10053, 2011.

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
649

Appendices

650
651

S1: IMPLEMENTATION DETAILS

652
653

S1.1: UNIFIED VIEW OF SUBVOLUME-BASED PDE-DRIVEN TRAINING

654
655
656
657
658
659
660

Algorithm 1 summarizes the training process. The algorithm iteratively processes subvolumes sampled from the full 3D scans. For each subvolume, it computes the standard task loss and the suite of PDE-based regularization losses derived from the internal states of the PDE Blocks. The total loss guides the optimizer to learn network parameters Θ that not only perform well on the primary task but also generate latent representations consistent with the desired anatomical/textural decomposition and scale-space properties enforced by the PDE constraints.

661

Algorithm 1 Subvolume-Based PDE-Driven Training (Pseudocode)662
663
664

Require: $\{\mathbf{x}^{(n)}, \mathbf{y}^{(n)}\}_{n=1}^N$: 3D training volumes and annotations. PDE3DModel(Θ): A 3D CNN with PDE blocks (parameters Θ). k : Subvolume depth, s : Stride, PDE loss weights $(\alpha, \beta, \gamma, \delta, \kappa)$, MaxEpochs.

665

Ensure: Trained model parameters Θ .

666

1: Initialize Θ (e.g., Kaiming or Xavier init).

667

2: $optimizer \leftarrow AdamW(\Theta)$.

668

3: **for** epoch = 1 → MaxEpochs **do**

669

4: Shuffle the order of volumes $n = 1..N$.

670

5: **for** each volume n **do**

671

6: $starts \leftarrow \{d \mid d + k - 1 \leq D_n, d \text{ increments by } s\}$

672

7: **for** each $d \in starts$ **do**

673

8: $\mathbf{x}_{sub} \leftarrow \mathbf{x}_{d:d+k-1}^{(n)}$ ▷ Extract (k, H, W) subvolume

674

9: $\mathbf{y}_{sub} \leftarrow \mathbf{y}_{d:d+k-1}^{(n)}$ ▷ Corresponding annotation

675

10: $(\hat{\mathbf{z}}, pdeStates) \leftarrow \text{PDE3DModel.forward}(\mathbf{x}_{sub}; \Theta)$ ▷ Forward pass; $\hat{\mathbf{z}}$ is task output, $pdeStates$ contains intermediate features for PDE losses

676

11: $\mathcal{L}_{task} \leftarrow \text{ComputeTaskLoss}(\hat{\mathbf{z}}, \mathbf{y}_{sub})$

677

12: $\mathcal{L}_{PDE_stab} \leftarrow \text{ComputePDESTabilityLoss}(pdeStates)$ ▷

678

13: Check consistency with Eqs. 1, 2

679

14: $\mathcal{L}_{entropy} \leftarrow \text{ComputeEntropySensitivityLoss}(pdeStates)$ ▷

680

15: Encourage adaptive diffusion

681

16: $\mathcal{L}_{hessian} \leftarrow \text{ComputeHessianLoss}(pdeStates)$ ▷ Promote smoothness

682

17: $\mathcal{L}_{scale_inv.} \leftarrow \text{ComputeScaleInvLoss}(pdeStates)$ ▷ Ensure scale consistency (if used)

683

684

18: $\mathcal{L}_{attn} \leftarrow \text{ComputeAttnLoss}(pdeStates, \mathbf{y}_{sub})$ ▷ Guide attention (if used)

685

19: $\mathcal{L}_{total} \leftarrow \mathcal{L}_{task} + \alpha \mathcal{L}_{PDE_stab} + \beta \mathcal{L}_{entropy} + \gamma \mathcal{L}_{hessian} + \delta \mathcal{L}_{scale_inv.} + \kappa \mathcal{L}_{attn}$

686

20: $optimizer.zero_grad()$

687

21: $\mathcal{L}_{total}.backward()$

688

22: $optimizer.step()$

689

23: **end for**

690

24: **end for**

691

25: **return** Θ

692

693

694

S1.2: ARCHITECTURAL IMPLEMENTATION: PDE BLOCKS IN A 3D CNN

695

696
697
698
699

We now describe how the PDE-driven decomposition concepts from Section 3.3 are implemented architecturally within a 3D CNN. Our core component is the "PDE Block," designed to simulate the distinct dynamics for anatomical (z_A) and textural (z_T) features.

700
701

We employ a 3D CNN architecture as the backbone, such as a 3D adaptation of ConvNeXt-Large Liu et al. (2022). ConvNeXt provides a strong foundation with its ResNet-like staging, depthwise convolutions, and inverted bottlenecks, adapted here for 3D inputs.

702
703

S1.3: OVERALL FLOW:

704
705
706
707
708
709

A 3D subvolume ($k \times H \times W$) is processed by an initial stem block (convolution or patchification). The output then passes through several stages of the 3D ConvNeXt backbone. Crucially, *PDE Blocks* are inserted between or within these stages. These blocks take an intermediate feature tensor \mathbf{f} and output a refined tensor \mathbf{f}' where anatomical and textural components have been processed according to the PDE constraints. The final output depends on the task (e.g., classification logits, segmentation map, embedding vector).

710
711

S1.4: PDE BLOCK DESIGN

712
713
714

Let $\mathbf{f} \in \mathbb{R}^{C \times D' \times H' \times W'}$ be the input feature tensor to the PDE block. The block performs the following conceptual steps:

715
716
717

1. **Split:** Divide the input features \mathbf{f} along the channel dimension into two parts: \mathbf{f}_A (intended for anatomical features) and \mathbf{f}_T (for textural features). This split can be predefined (e.g., first half vs. second half of channels) or learnable.

718
719
720

2. **Compute Control Signals (Optional):** Calculate local entropy $H(p(x))$ and/or attention weights $\alpha(x, z)$ based on \mathbf{f} or its components.

721
722
723
724
725

3. **PDE Update (Parallel Paths):**

- Apply a numerical scheme (e.g., finite differences) to update \mathbf{f}_A according to the anatomical PDE (Eq. 1). This step uses the diffusion term D_A (potentially adaptive based on entropy/attention) and aims for smoothing. The update approximates one or more time steps Δt .
- Simultaneously, apply a numerical scheme to update \mathbf{f}_T according to the textural PDE (Eq. 2). This uses D_T and potentially the detail-preserving operator $\mathcal{O}_{\text{detail}}$ to maintain or enhance high frequencies.

726
727
728
729
730

The parameters governing these updates (D_A, D_T , coefficients in G_A, G_T , parameters in $\mathcal{O}_{\text{detail}}$) can be partially or fully learnable.

731
732

4. **Fuse:** Recombine the updated \mathbf{f}'_A and \mathbf{f}'_T into the output tensor \mathbf{f}' (e.g., by concatenation). Optionally, a gating mechanism informed by attention or MI can modulate the fusion.

733
734
735

The PDE stability loss ($\mathcal{L}_{\text{PDE_stability}}$) is computed based on the changes $\mathbf{f}'_A - \mathbf{f}_A$ and $\mathbf{f}'_T - \mathbf{f}_T$ relative to the RHS of the PDEs, encouraging the block to learn updates consistent with the desired dynamics.

736
737

S1.5: ENCODER-DECODER ARCHITECTURES FOR VOXEL-LEVEL TASKS

738
739
740
741
742
743
744
745
746

For tasks requiring dense voxel-level predictions like segmentation or reconstruction, we embed the PDE Blocks within a 3D encoder-decoder architecture (e.g., 3D U-Net or a ConvNeXt-based equivalent). The encoder progressively downsamples spatial resolution while increasing feature channels, capturing context. PDE Blocks can be placed within the encoder stages to enforce the anatomical/textural decomposition at multiple scales. The decoder then upsamples the features, potentially using skip connections from the encoder, to reconstruct the full spatial resolution output. PDE blocks might also be used in the decoder or bottleneck to further refine the features while maintaining the learned disentanglement. This ensures that the final voxel predictions benefit from the structured representation learned under PDE constraints.

747
748

S1.6: OPTIMIZATION FRAMEWORK

749
750
751
752
753
754
755

Training involves optimizing the total loss function using standard gradient-based methods. We used AdamW for our training tasks. To ensure numerical stability when simulating PDE steps within the blocks, we typically unroll the finite difference updates for only a small number of steps (e.g., 1-3) per block. We use stable numerical schemes (e.g., implicit or semi-implicit methods if needed, though explicit methods often suffice for few steps). Gradient clipping can be applied, especially early in training, if the PDE stability loss or gradients become excessively large. Training is performed using the subvolumes generated as described in Sec. 3.2. Mini-batches are composed of these k -slice subvolumes. Due to the memory demands of 3D operations, multi-GPU training (e.g.,

756 using Distributed Data Parallel) is often necessary to achieve adequate batch sizes for stable learning.
 757 The stride s for subvolume extraction can be chosen based on the trade-off between computational
 758 cost (smaller s means more subvolumes) and data augmentation (smaller s provides more varied
 759 local views).
 760

761 S1.7: INFERENCE WITH OVERLAPPING k -SLICES

763 During inference on a new test volume \mathbf{x}_{test} of size $D_{\text{test}} \times H \times W$, we apply the trained
 764 PDE3DModel(Θ) using a sliding window approach. We extract subvolumes \mathbf{x}_{sub} of depth k with
 765 a stride s (often $s < k$ for overlap, e.g., $s = k/2$), covering the entire volume from slice 1 to
 766 $D_{\text{test}} - k + 1$. The model processes each subvolume independently to produce a local prediction
 767 $\hat{\mathbf{y}}_{\text{sub}}$. To obtain the final full-volume prediction $\hat{\mathbf{Y}}_{\text{test}}$, these local predictions are aggregated. In
 768 regions where subvolumes overlap, the predictions are typically fused, for example, by averaging the
 769 predicted probabilities (for classification/segmentation) or values (for regression) across all subvol-
 770 umes covering that voxel. This sliding window inference ensures that the full 3D context is leveraged
 771 for the final prediction while adhering to the same memory constraints (k -slice processing) used
 772 during training.
 773

774 S1.8: MODEL ARCHITECTURE AND COMPUTATIONAL COMPLEXITY

775 Our proposed PDE Blocks are designed as a modular enhancement that can be integrated into a
 776 wide range of 3D CNN backbones by replacing standard convolutional blocks at various network
 777 stages. For the primary experiments presented in this paper, we utilize a 3D ConvNeXT backbone Liu
 778 et al. (2022), which provides a modern foundation. A crucial consideration for any new architectural
 779 component is its computational overhead. To provide a transparent and comprehensive analysis of
 780 this trade-off, we evaluated the impact of our PDE Blocks across a diverse suite of well-established
 781 3D architectures.

782 Table 4 first establishes a baseline, detailing the estimated computational profiles for standard 3D
 783 versions of the ResNet, VGG, DenseNet, and ConvNeXT families. Subsequently, Table 5 presents
 784 the same analysis for the corresponding SCOPE-MIA-enhanced versions of these architectures.
 785

786 Table 4: Estimated computational complexity of various standard 3D CNN backbones. All metrics
 787 are calculated for a single forward pass of a subvolume input of size $16 \times 256 \times 256$ on a single
 788 NVIDIA H100 GPU.

Metric	ResNet Family				VGG Family				DenseNet Family				ConvNeXT Family		
	R-18	R-34	R-50	R-152	VGG11	VGG13	VGG16	VGG19	D-121	D-161	D-169	D-201	Small	Base	Large
Params (M)	14.9	25.2	28.3	66.8	131.5	132.1	142.3	148.2	10.5	33.1	18.2	25.6	48.4	85.1	191.3
FLOPs (G)	33.5	61.3	80.2	219.7	151.2	159.8	189.5	198.8	44.8	105.7	64.1	87.9	95.3	165.4	340.5
Memory (GB)	3.5	5.0	6.1	11.2	14.1	15.3	16.5	17.8	6.5	13.9	9.8	12.2	7.2	9.9	15.1
Time (ms)	25	45	60	160	115	125	140	155	40	90	62	85	68	118	240

796 Table 5: Estimated computational complexity of **SCOPE-MIA** models using various 3D CNN
 797 backbones. The integration of our PDE Blocks introduces a consistent overhead compared to the
 798 standard architectures shown in Table 4. Input size and hardware remain the same.
 799

Metric	SCOPE-MIA (ResNet)				SCOPE-MIA (VGG)				SCOPE-MIA (DenseNet)				SCOPE-MIA (ConvNeXT)		
	R-18	R-34	R-50	R-152	VGG11	VGG13	VGG16	VGG19	D-121	D-161	D-169	D-201	Small	Base	Large
Params (M)	15.8	26.7	30.0	70.8	139.4	140.0	150.8	157.1	11.1	35.1	19.3	27.1	51.3	90.2	202.8
FLOPs (G)	37.9	69.3	90.6	248.3	170.9	180.6	214.1	224.6	50.6	119.4	72.4	99.3	107.7	186.9	384.8
Memory (GB)	4.0	5.8	7.0	12.9	16.2	17.6	19.0	20.5	7.5	16.0	11.3	14.0	8.3	11.4	17.4
Time (ms)	30	54	72	192	138	150	168	186	48	108	74	102	82	142	288

800 A direct comparison between Table 4 and Table 5 reveals a clear and consistent pattern. The
 801 integration of our PDE Blocks, implemented via efficient finite difference schemes, introduces a
 802 modest and predictable increase in computational cost, regardless of the underlying backbone's size or
 803 family. On average, this amounts to an overhead of approximately 6% in parameters, 13% in FLOPs,
 804

15% in memory consumption, and 20% in inference time. We argue that this controlled overhead is a justifiable trade-off for the significant performance gains and enhanced feature interpretability demonstrated in our experiments. This extensive analysis confirms that SCOPE-MIA is a practical and scalable framework, not a computationally prohibitive one, making it suitable for both research and potential clinical applications.

S1.10: DECODER-BASED RECONSTRUCTION OF ISOPHOTE CURVATURE MAPS

In addition to reconstructing the original input subvolumes or predicting task-specific outputs like segmentation masks, the decoder architecture within SCOPE-MIA can be leveraged to generate transformed representations of the input data that emphasize specific geometric properties. One such powerful transformation is the computation of an image representing the Mean Curvature of Isophotes (MCI). Tasking the decoder with reconstructing an MCI image from the learned latent embeddings z (or its components z_A, z_T) can force the network to explicitly learn and encode fine-grained geometric details about the anatomical structures present in the medical scans. In an N -dimensional image I (for this paper, $N=3$ corresponding to 3D medical scans), an "isophote" is an $(N-1)$ -dimensional manifold where all points on the manifold share the same image intensity value. For a 3D image, isophotes are 2D surfaces of constant intensity. The "curvature" of these surfaces provides information about the local geometry of the structures depicted in the image. Mean curvature, in particular, measures how much an isophote deviates from being flat at a given point. The MCI is a geometric measure that captures aspects of image geometry fundamental to image analysis. Its advantage lies in its invariance to a range of image transformations because it is computed from image derivatives rather than absolute pixel values. This invariance can make MCI a robust feature. The mean curvature k of isophotes in an image I can be computed as the divergence of the normalized gradient of the image:

$$k = \nabla \cdot \left(\frac{\nabla I}{\|\nabla I\|} \right) \quad (3)$$

where $\nabla \cdot (\cdot)$ denotes the divergence operator, $\nabla(\cdot)$ denotes the gradient operator, and $\|\cdot\|$ denotes the L2 norm (magnitude).

Alternatively, the mean curvature of isophotes can be expressed explicitly in terms of the second partial derivatives of the image $I(x, y, z)$:

$$k = \frac{I_x^2(I_{yy} + I_{zz}) - 2I_yI_zI_{yz} + I_y^2(I_{xx} + I_{zz}) - 2I_xI_zI_{xz} + I_z^2(I_{xx} + I_{yy}) - 2I_xI_yI_{xy}}{(I_x^2 + I_y^2 + I_z^2)^{\frac{3}{2}}} \quad (4)$$

where I_x, I_y, I_z are the first partial derivatives (e.g., $I_x = \frac{\partial I}{\partial x}$), and $I_{xx}, I_{yy}, I_{zz}, I_{xy}, I_{xz}, I_{yz}$ are the second partial derivatives (e.g., $I_{xx} = \frac{\partial^2 I}{\partial x^2}$, $I_{xy} = \frac{\partial^2 I}{\partial x \partial y}$).

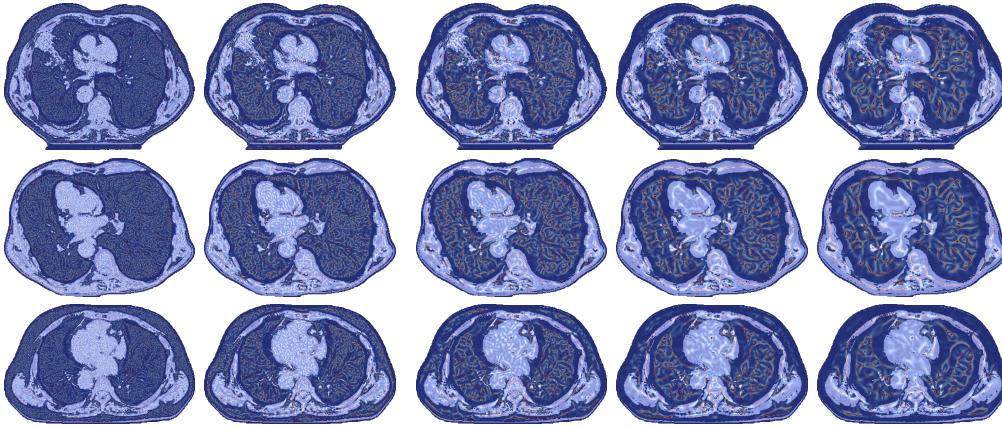
Reconstructing MCI Maps with the Decoder: To guide the reconstruction of the MCI map by the decoder, we use a specialized loss function. A simple pixel-wise comparison, like Mean Squared Error, often doesn't adequately capture the important structural details of an MCI map, particularly the distinct ridges and areas of high curvature. Therefore, we employ a combined loss, which we refer to as $\mathcal{L}_{\text{MCI_recon}}$, to better address these characteristics. This $\mathcal{L}_{\text{MCI_recon}}$ is calculated by adding together three different terms. First, to ensure that significant high-curvature regions (the "ridges") in the MCI map are accurately reconstructed, we use a weighted L1 difference. The errors in these ridge regions are given more importance by applying a weight map, W_{ridge} . This weight map can be defined based on the ground-truth MCI map, \mathbf{k}_{gt} , for example, by giving higher weights to pixels where the absolute curvature value exceeds a certain threshold τ_{ridge} : $W_{\text{ridge}}(x) = 1 + \alpha \cdot \text{sigmoid}(\beta(|\mathbf{k}_{\text{gt}}(x)| - \tau_{\text{ridge}}))$. This first loss component is then $\|W_{\text{ridge}} \odot (\hat{\mathbf{k}} - \mathbf{k}_{\text{gt}})\|_1$, where $\hat{\mathbf{k}}$ is the MCI map predicted by the decoder and \odot is element-wise multiplication. The L1 norm is used here as it is generally robust. Second, to ensure that the sharpness and orientation of features within the MCI map are correctly reproduced, the loss includes a term that compares the spatial gradients of the predicted map $\hat{\mathbf{k}}$ and the ground-truth map \mathbf{k}_{gt} . This gradient difference term is formulated as $\|\nabla \hat{\mathbf{k}} - \nabla \mathbf{k}_{\text{gt}}\|_1$. This helps maintain clear edges and structural details in the reconstructed MCI map. Third, to preserve the overall structural similarity between the predicted and ground-truth MCI maps across different scales, we incorporate a term based on the Multi-Scale Structural Similarity (MS-SSIM) index:

864
865
866
867
868
869
1 – MS-SSIM($\hat{\mathbf{k}}, \mathbf{k}_{gt}$). These three terms are then combined, typically as a weighted sum, to form
the total MCI reconstruction loss \mathcal{L}_{MCI_recon} :

$$\mathcal{L}_{MCI_recon} = \lambda_1 \left\| W_{ridge} \odot (\hat{\mathbf{k}} - \mathbf{k}_{gt}) \right\|_1 + \lambda_2 \left\| \nabla \hat{\mathbf{k}} - \nabla \mathbf{k}_{gt} \right\|_1 + \lambda_3 (1 - \text{MS-SSIM}(\hat{\mathbf{k}}, \mathbf{k}_{gt}))$$

870
871
872
873
874
The weights $\lambda_1, \lambda_2, \lambda_3$ balance the contribution of each component. This \mathcal{L}_{MCI_recon} is used as an
auxiliary loss during the training of the SCOPE-MIA model. By training the decoder to reconstruct
these MCI maps, the main encoder is encouraged to learn richer and more descriptive latent features
that capture underlying geometric information from the medical images. This same approach could
potentially be applied to other derived geometric maps, such as those representing Gaussian curvature.

875
876
877 **S2: WHAT DOES THE MODEL SEE?**



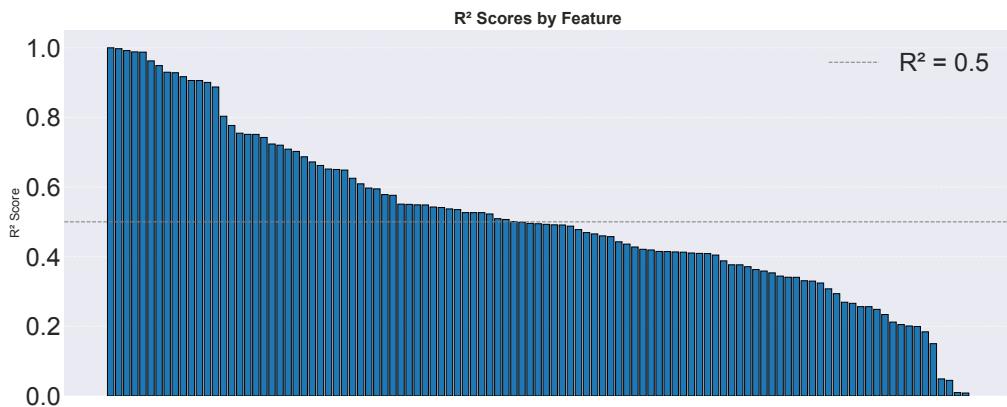
894
895
896
897
Supplementary Figure S1: Activation maps from SCOPE-MIA illustrating learned multi-scale
features, overlaid on representative CT slices. Each row shows a different input example. Columns
represent different stages of PDE-guided for different scales, showing the model's focus shifting from
broader anatomical structures to finer textural details.

898
899
900 To investigate and visually interpret the multi-scale representations learned by SCOPE-MIA, we
901 utilize an activation visualization technique inspired by Gradient-weighted Class Activation Mapping
902 (Grad-CAM). This approach highlights which parts of the input CT volumes contribute significantly to
903 the anatomical and textural branches of the model, providing insights into how the network processes
904 information at different scales. To generate visualizations illustrating these distinct scales. Each 3D
905 subvolume passes through SCOPE-MIA. Intermediate feature maps from anatomical and textural
906 PDE-blocks at various PDE time steps are extracted. Gradients of the final prediction relative to the
907 intermediate PDE-block feature maps are computed via backpropagation, indicating the sensitivity of
908 predictions to features at specific scales. Gradients are spatially averaged across channels to produce
909 weighting factors. These weights multiply corresponding activation maps, generating a scale-specific
910 aggregated activation map. The activation maps are normalized, resized, and overlaid onto the original
911 CT slices to visualize key regions influencing model predictions at anatomical and textural scales.
912 Supplementary Figure S1 presents these activation maps for representative CT scans, demonstrating
913 distinct visual patterns associated with anatomical (larger, smoother structures) versus textural scales
914 (finer details). The anatomical scale activation maps emphasize large-scale structures such as organ
915 boundaries, overall tumor shapes, and major anatomical landmarks, validating the effectiveness of
916 PDE-driven diffusion. Conversely, textural scale maps highlight detailed internal textures, small
917 lesions, and vascular patterns, confirming that the PDE-based design captures clinically relevant
918 high-frequency features. This multi-scale visualization underscores SCOPE-MIA's ability to provide
919 interpretable, scale-consistent representations beneficial for clinical decision-making and robust
920 medical image analysis.

918 **S3: REGRESSION PLOTS FOR PREDICTED PYRADIOMICS FEATURES USING**
 919 **SCOPE-MIA EMBEDDINGS TO PREDICT PYRADIOMICS FEATURES**
 920

921 We assessed the predictability of 107 extracted features by evaluating the coefficient of determination
 922 (R^2) from regression models trained to approximate each feature individually. The R^2 score provides
 923 a measure of how well the variability of a given feature is captured by the model. A score of 1
 924 indicates perfect prediction, while values near zero suggest that the model fails to capture underlying
 925 structure.

926 To characterize predictability, we visualized R^2 scores sorted in descending order (Figure S2). A
 927 horizontal reference line is included at $R^2 = 0.5$ to demarcate features with high model alignment.
 928 The individual regression plots for all 107 features are provided in Supplementary Figures S3-S6.
 929 The numeric IDs used in these plots correspond to the feature names listed in Supplementary Table 1.



946
 947 Supplementary Figure S2: R^2 scores of all 107 features, sorted in descending order. A horizontal
 948 dashed line at $R^2 = 0.5$ highlights the threshold for strong predictability.

949
 950 Of the 107 features analyzed:

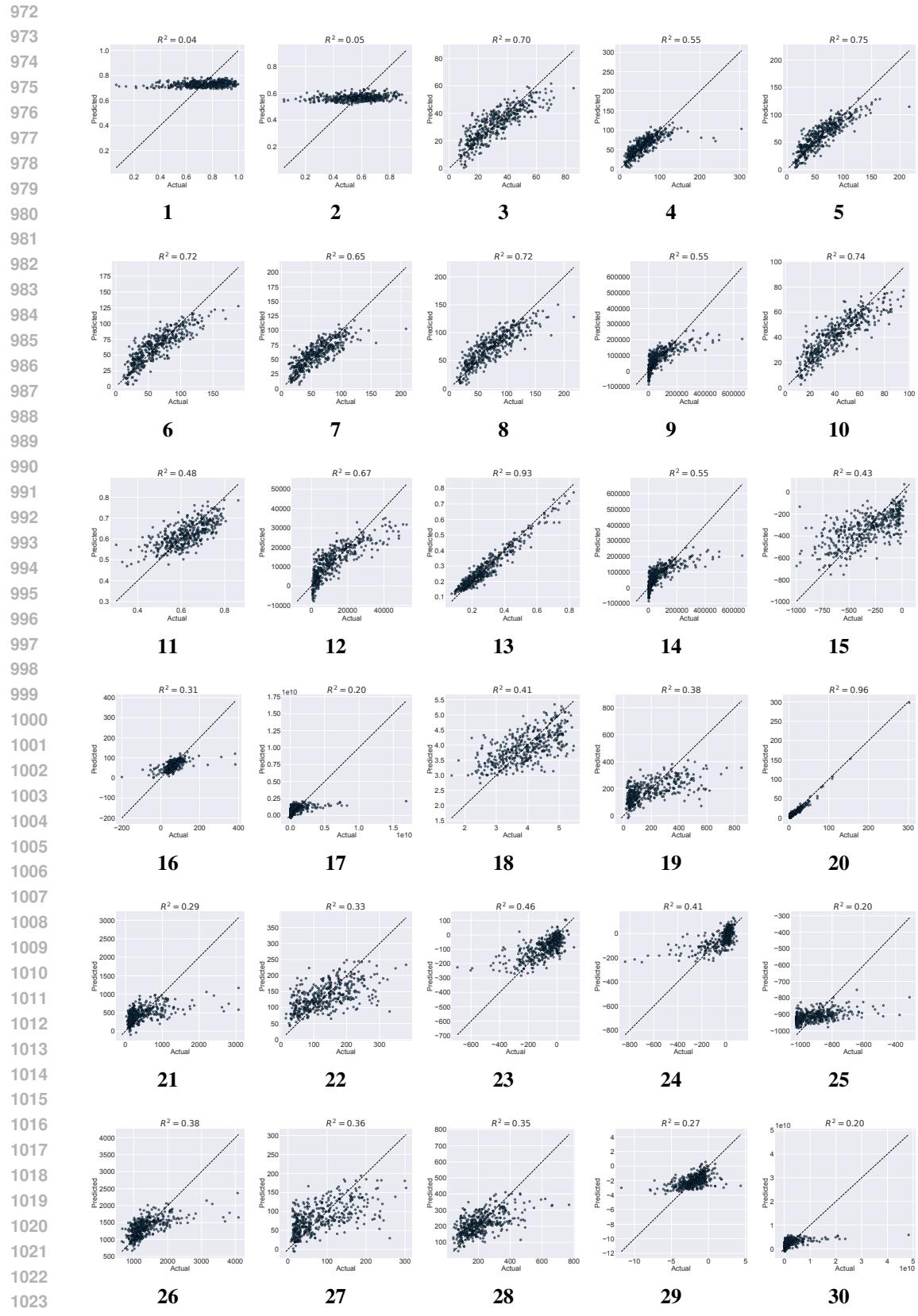
951

- 952 • 51 features exhibited R^2 scores above 0.5, indicating strong agreement between the model
 953 and the underlying structure of those features.
- 954 • 90 features achieved scores above 0.3, suggesting that the majority of features possess
 955 moderate to strong predictability.
- 956 • Only 7 features had R^2 scores below 0.2, reflecting limited model alignment.

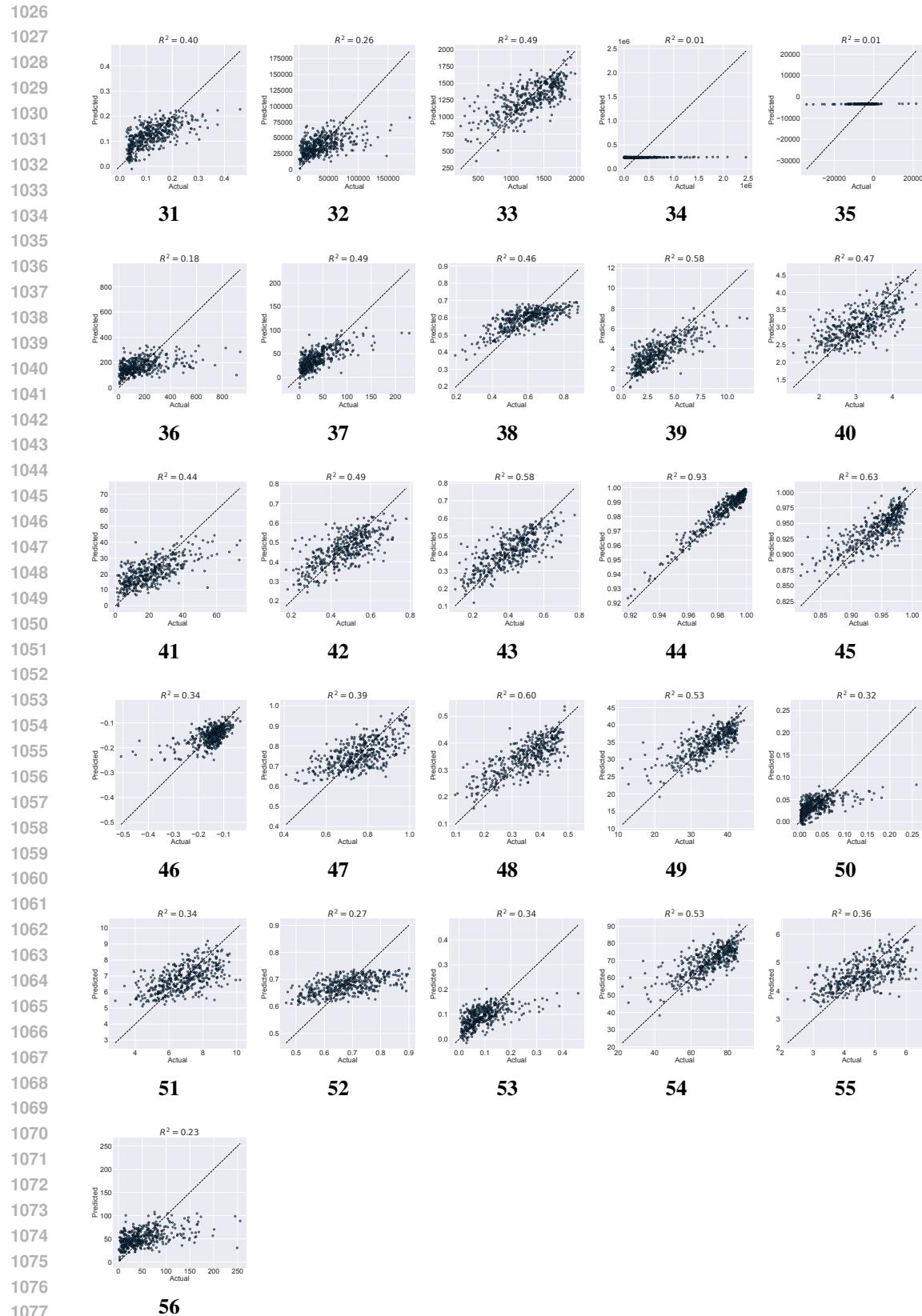
957 Closer inspection reveals that the most predictable features are largely geometric descriptors, such
 958 as axis lengths, shape elongation, and diameter measures. These features often encode physical or
 959 anatomical structures that are consistent across samples, leading to stronger signal-to-noise ratios and
 960 improved model performance. Their high R^2 scores support their reliability as derived representations
 961 in the context of downstream learning tasks.

963 In contrast, the small subset of poorly predicted features likely reflects either high intrinsic noise or
 964 more complex, nonlinear dependencies that are not well captured by the current modeling approach.
 965 These features were retained for completeness but excluded from interpretability-driven analyses due
 966 to their low explanatory value.

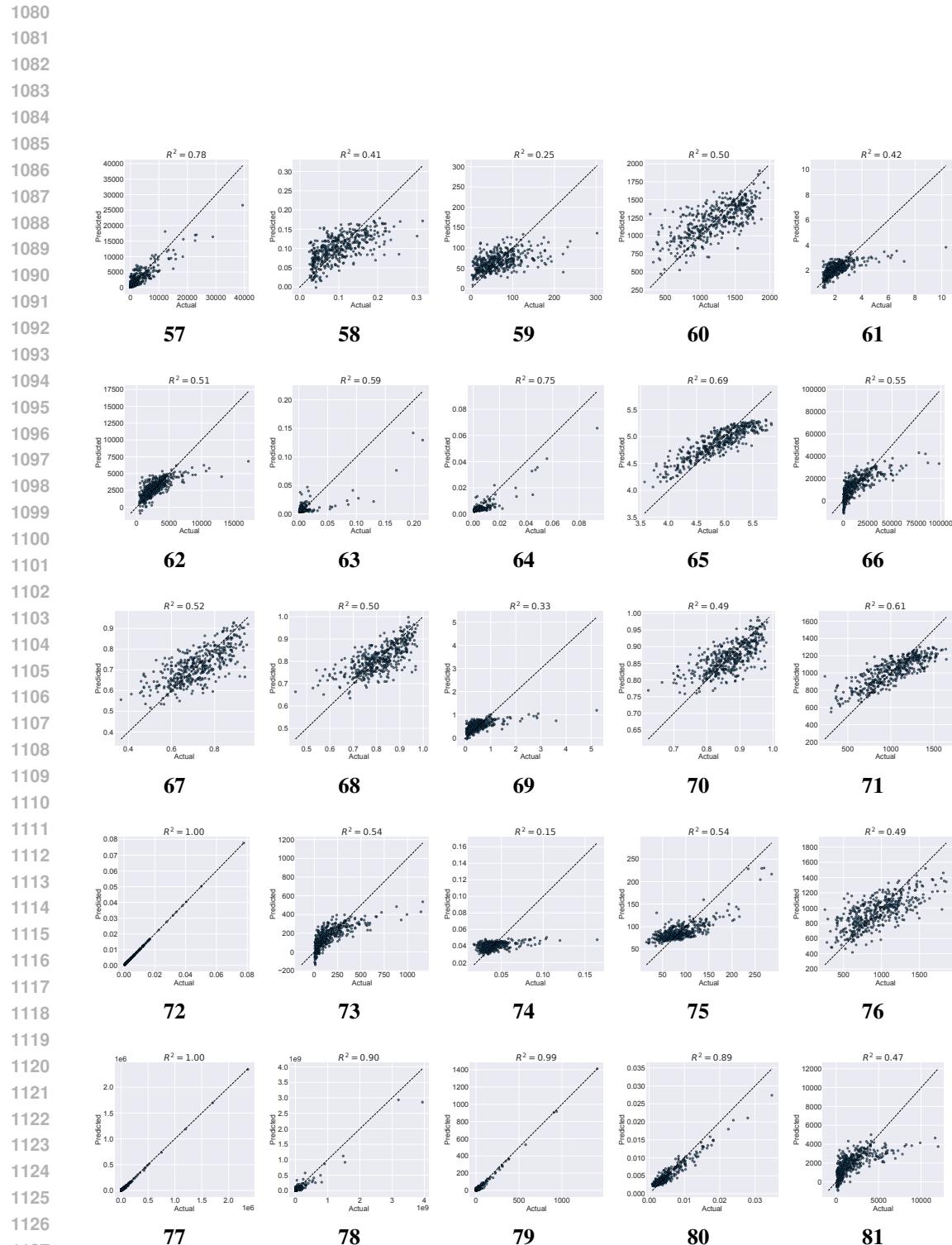
967 As a result of this analysis, we focused subsequent modeling and feature interpretation efforts on the
 968 51 highly predictable features ($R^2 > 0.5$). This filtering step allowed us to reduce dimensionality and
 969 enhance interpretability while retaining the most informative subset of the feature space. Detailed
 970 scatter plots for all 107 PyRadiomics features, illustrating the actual versus predicted values, are
 971 shown in Supplementary Figures S3-S6.



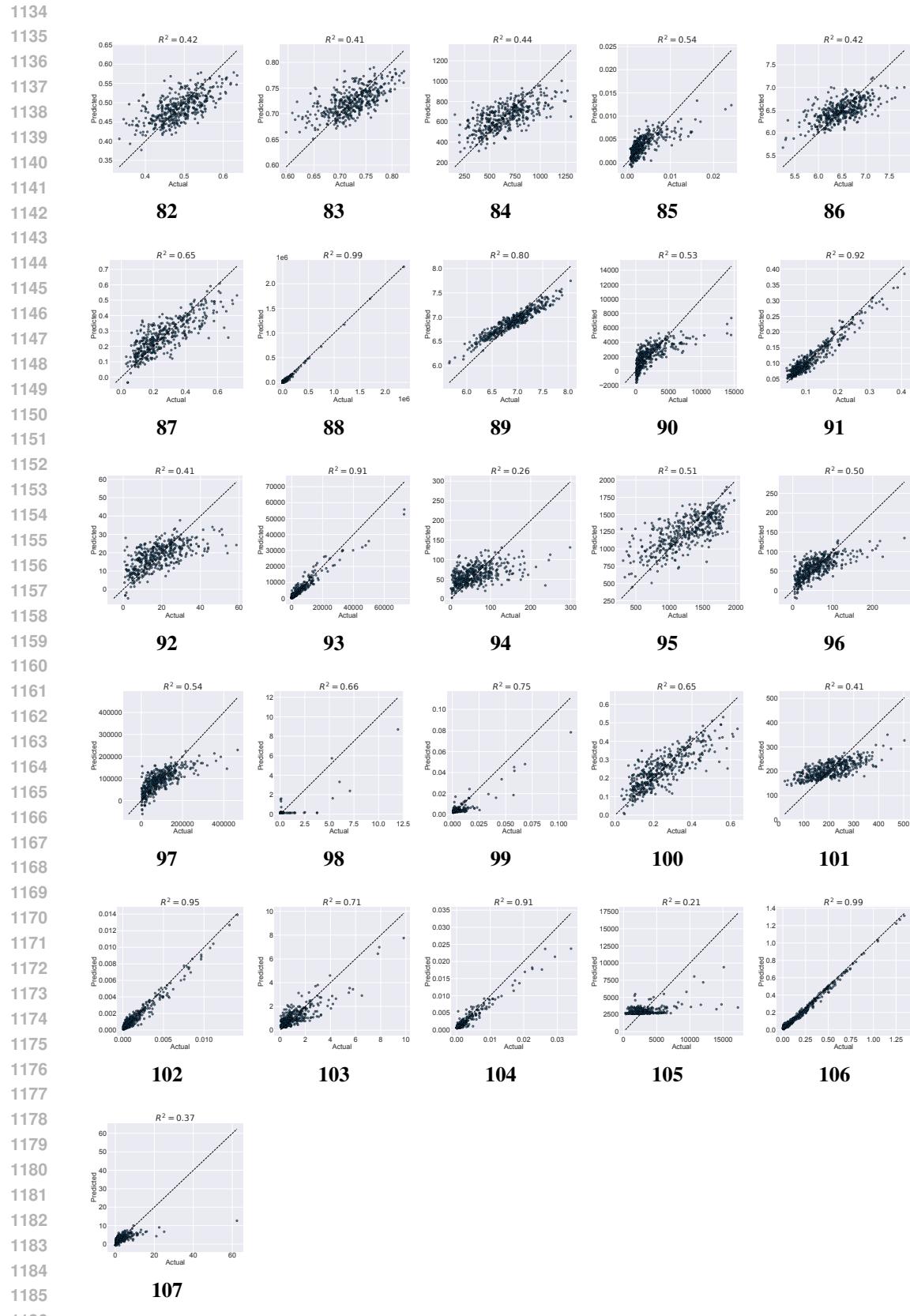
Supplementary Figure S3. Regression scatter plots for targets 1–30.



Supplementary Figure S4. Regression scatter plots for targets 31–56.



Supplementary Figure S5. Regression scatter plots for targets 57–81.



Supplementary Figure S6. Regression scatter plots for targets 82–107.

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

ID	Feature Name	ID	Feature Name
1	original_shape_Elongation	55	original_glcm_SumEntropy
2	original_shape_Flatness	56	original_glcm_SumSquares
3	original_shape_LeastAxisLength	57	original_glrlm_GrayLevelNonUniformity
4	original_shape_MajorAxisLength	58	original_glrlm_GrayLevelNonUniformityNormalized
5	original_shape_Maximum2DDiameterColumn	59	original_glrlm_GrayLevelVariance
6	original_shape_Maximum2DDiameterRow	60	original_glrlm_HighGrayLevelRunEmphasis
7	original_shape_Maximum2DDiameterSlice	61	original_glrlm_LongRunEmphasis
8	original_shape_Maximum3DDiameter	62	original_glrlm_LongRunHighGrayLevelEmphasis
9	original_shape_MeshVolume	63	original_glrlm_LongRunLowGrayLevelEmphasis
10	original_shape_MinorAxisLength	64	original_glrlm_LowGrayLevelRunEmphasis
11	original_shape_Sphericity	65	original_glrlm_RunEntropy
12	original_shape_SurfaceArea	66	original_glrlm_RunLengthNonUniformity
13	original_shape_SurfaceVolumeRatio	67	original_glrlm_RunLengthNonUniformityNormalized
14	original_shape_VoxelVolume	68	original_glrlm_RunPercentage
15	original_firstorder_10Percentile	69	original_glrlm_RunVariance
16	original_firstorder_90Percentile	70	original_glrlm_ShortRunEmphasis
17	original_firstorder_Energy	71	original_glrlm_ShortRunHighGrayLevelEmphasis
18	original_firstorder_Entropy	72	original_glrlm_ShortRunLowGrayLevelEmphasis
19	original_firstorder_InterquartileRange	73	original_glszm_GrayLevelNonUniformity
20	original_firstorder_Kurtosis	74	original_glszm_GrayLevelNonUniformityNormalized
21	original_firstorder_Maximum	75	original_glszm_GrayLevelVariance
22	original_firstorder_MeanAbsoluteDeviation	76	original_glszm_HighGrayLevelZoneEmphasis
23	original_firstorder_Mean	77	original_glszm_LargeAreaEmphasis
24	original_firstorder_Median	78	original_glszm_LargeAreaHighGrayLevelEmphasis
25	original_firstorder_Minimum	79	original_glszm_LargeAreaLowGrayLevelEmphasis
26	original_firstorder_Range	80	original_glszm_LowGrayLevelZoneEmphasis
27	original_firstorder_RobustMeanAbsoluteDeviation	81	original_glszm_SizeZoneNonUniformity
28	original_firstorder_RootMeanSquared	82	original_glszm_SizeZoneNonUniformityNormalized
29	original_firstorder_Skewness	83	original_glszm_SmallAreaEmphasis
30	original_firstorder_TotalEnergy	84	original_glszm_SmallAreaHighGrayLevelEmphasis
31	original_firstorder_Uniformity	85	original_glszm_SmallAreaLowGrayLevelEmphasis
32	original_firstorder_Variance	86	original_glszm_ZoneEntropy
33	original_glcm_Autocorrelation	87	original_glszm_ZonePercentage
34	original_glcm_ClusterProminence	88	original_glszm_ZoneVariance
35	original_glcm_ClusterShade	89	original_gldm_DependenceEntropy
36	original_glcm_ClusterTendency	90	original_gldm_DependenceNonUniformity
37	original_glcm_Contrast	91	original_gldm_DependenceNonUniformityNormalized
38	original_glcm_Correlation	92	original_gldm_DependenceVariance
39	original_glcm_DifferenceAverage	93	original_gldm_GrayLevelNonUniformity
40	original_glcm_DifferenceEntropy	94	original_gldm_GrayLevelVariance
41	original_glcm_DifferenceVariance	95	original_gldm_HighGrayLevelEmphasis
42	original_glcm_Id	96	original_gldm_LargeDependenceEmphasis
43	original_glcm_Idm	97	original_gldm_LargeDependenceHighGrayLevelEmphasis
44	original_glcm_Idmn	98	original_gldm_LargeDependenceLowGrayLevelEmphasis
45	original_glcm_Idn	99	original_gldm_LowGrayLevelEmphasis
46	original_glcm_Imc1	100	original_gldm_SmallDependenceEmphasis
47	original_glcm_Imc2	101	original_gldm_SmallDependenceHighGrayLevelEmphasis
48	original_glcm_InverseVariance	102	original_gldm_SmallDependenceLowGrayLevelEmphasis
49	original_glcm_JointAverage	103	original_ngtdm_Busyness
50	original_glcm_JointEnergy	104	original_ngtdm_Coarseness
51	original_glcm_JointEntropy	105	original_ngtdm_Complexity
52	original_glcm_MCC	106	original_ngtdm_Contrast
53	original_glcm_MaximumProbability	107	original_ngtdm_Strength
54	original_glcm_SumAverage		

Supplementary Table 1: Feature mapping: Numeric IDs correspond to the PyRadiomics feature names. The left two columns list features 1–54, and the right two columns list features 55–107 (the final cell is left blank).

1241