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ABSTRACT

Medical scans such as Computed Tomography (CT) or Magnetic Resonance Imag-
ing (MRI) are inherently 3D, capturing rich volumetric information about patient
anatomy and pathology. Analyzing this data requires models sensitive to both
large-scale anatomical structures and fine-grained textural details. While traditional
handcrafted radiomics features often miss subtle multi-scale relationships, stan-
dard 3D Convolutional Neural Networks (CNNs) learn data-driven filters without
explicit mechanisms to disentangle structural and textural information. This entan-
glement can limit model interpretability and robustness. We propose SCOPE-MIA,
a 3D framework driven by Partial Differential Equations (PDEs) that explicitly
decomposes learned features into distinct anatomical and textural components.
By embedding tailored PDE constraints - such as structure-enhancing diffusion
for anatomy and detail-preserving flows for texture - into a modern 3D CNN
architecture, we promote the learning of robust, scale-explicit, and disentangled
representations. Our system processes volumetric data in tractable subvolumes
for efficient training, while a sliding window approach during inference recovers
the full 3D context. We present a unified mathematical treatment connecting PDE
theory to our dual-pathway architectural design and discuss the advantages of
this decomposition for clinical applications. Extensive experimental validations
demonstrate that our method significantly outperforms the clinical gold-standard
radiomics pipeline in challenging cancer imaging tasks, showing its potential to
advance tumor characterization and biomarker discovery.

1 INTRODUCTION

Medical scans such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), or Positron
Emission Tomography (PET) are intrinsically 3D, capturing volumetric data of anatomical structures.
In parallel, clinical annotations (e.g., tumor segmentations, disease states) are also specified in
three dimensions. Radiomics seeks to convert such 3D images into quantitative descriptors that
can be used for prognosis, diagnosis, or treatment planning Lambin et al. (2012); Van Griethuysen
et al. (2017a). Traditional handcrafted radiomics features, while interpretable, often struggle to
capture the complex interplay between large-scale morphology and subtle textural patterns present
in medical images. For instance, comprehensively characterizing diverse tumor types and their
surrounding anatomy using full 3D structural-textural information is crucial, potentially linking
imaging features to molecular-level properties like tumor genotype or immune status; however, this
remains a challenge. Deep learning approaches, particularly 3D Convolutional Neural Networks (3D
CNNs), learn representations directly from volumetric data Litjens et al. (2017), offering a more
powerful and flexible alternative. However, standard CNNs typically learn filters that mix features
across different scales and types (e.g., smooth boundaries vs. intricate textures) within the same
feature maps. This entanglement can hinder interpretability and potentially compromise robustness,
as the network lacks explicit mechanisms to treat structural and textural information differently
according to their inherent characteristics.

Inspired by classical scale-space theory Witkin (1984); Koenderink (1984); Perona & Malik (1990),
which uses Partial Differential Equations (PDEs) (like the heat equation) to analyze images at multiple
scales, we propose embedding PDE constraints within a 3D CNN. Our goal is not just to achieve
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multi-scale representation, but to leverage PDEs to enforce a principled *separation* of learned
features into two complementary streams: one capturing anatomical (predominantly low-frequency,
structural) information, and another capturing textural (higher-frequency, detailed) information. We
hypothesize that this explicit decomposition, enforced by tailored PDE dynamics for each stream,
will lead to more robust and interpretable radiomic embeddings.

Our method, SCOPE-MIA (Scale-Consistent PDE-Optimized Encoding for Medical Imaging Analy-
sis), implements this concept within a modern 3D CNN backbone Liu et al. (2022). We introduce
specialized “PDE Blocks” that operate on the network’s latent feature maps. These blocks are
designed to simulate specific PDE evolutions: one branch enforces smoothing appropriate for anatom-
ical structures, while the other uses different dynamics to preserve or even enhance textural details.
This dual-pathway approach allows the network to learn disentangled representations, guided by the
mathematical properties of PDEs. Furthermore, we address the practical challenge of processing
large 3D volumes. Training deep models on full scans is often infeasible due to GPU memory
limitations. Therefore, SCOPE-MIA adopts a subvolume-based training strategy, processing stacks
of k consecutive slices. The PDE constraints play a crucial role here, helping to maintain scale
consistency and meaningful feature extraction even when the network only observes a partial volume
at a time. During inference, a sliding window approach reconstructs the full 3D context, aggregating
predictions from overlapping subvolumes.

This paper makes the following contributions: (1) We propose a novel 3D CNN framework, SCOPE-
MIA, that integrates PDE constraints to explicitly decompose learned features into anatomical and
textural streams. (2) We derive the PDE formulations tailored for this task, incorporating mechanisms
like entropy-adaptive diffusion and information-theoretic attention. (3) We detail an architecture
incorporating "PDE Blocks" that implement these dual dynamics within a modern 3D CNN backbone.
(4) We demonstrate that this approach integrates seamlessly with a subvolume-based training strategy,
and we validate its superior performance against the established clinical gold-standard pipeline across
multiple, diverse cancer imaging datasets.

In summary, SCOPE-MIA addresses the lack of principled scale management and feature disen-
tanglement in standard 3D CNNs by embedding PDE constraints. This, combined with a practical
subvolume processing strategy, aims to deliver robust, interpretable, and scale-consistent features for
demanding clinical applications, enhancing the characterization of tumors and surrounding anatomy.

2 RELATED WORK

2.1 THE PARADIGM OF HANDCRAFTED RADIOMICS

For decades, quantitative medical image analysis relied on manually engineered features to charac-
terize lesions and surrounding anatomy Lambin et al. (2012); Van Griethuysen et al. (2017a). This
paradigm, now often termed "classical radiomics," involves designing a large set of mathematical
descriptors to quantify imaging data. These features range from first-order intensity statistics and
shape-based measures (e.g., compactness, sphericity) to complex second-order textural features
like the gray-level co-occurrence matrix (GLCM), which captures local patterns of voxel intensities
Avanzo et al. (2020); Vallières et al. (2015). Classical computer vision descriptors such as the
Scale-Invariant Feature Transform (SIFT) and Histograms of Oriented Gradients (HOG) were also
adapted for medical tasks Lowe (2004); Dalal & Triggs (2005); Mohanaiah et al. (2013). These
handcrafted features are typically fed into machine learning classifiers like support vector machines
or random forests for tasks such as tumor classification Subashini et al. (2010); Zhang et al. (2011).
To promote standardization and reproducibility, initiatives like the Image Biomarker Standardisation
Initiative (IBSI) were formed, leading to robust software packages like PyRadiomics Van Griethuysen
et al. (2017b), which has become a gold-standard benchmark. However, the pre-defined nature of
these features limits their expressive power, motivating a shift toward data-driven feature learning.

2.2 ADVANCES IN 3D DEEP LEARNING FOR MEDICAL IMAGING

The deep learning revolution, catalyzed by the success of Convolutional Neural Networks (CNNs)
like AlexNet Krizhevsky et al. (2012) on large-scale image recognition tasks, offered a powerful
alternative to manual feature engineering. Architectures such as VGG, ResNet, and ConvNeXT
demonstrated the ability to learn hierarchical features directly from data Simonyan & Zisserman

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Split into 
("! , "")

Diffusion + 
FreqEnhance on 
"" 	&"  (Textural)

Diffusion on "! 
&! (Anatomical)

Entropy-based 
Coefficients

(High-entropy => 
less smoothing) 

Weighted Fusion ("!! , ""’)	
(MI-based attention)

PDE Block 

Input

Output

3D Stem Block
(Conv / Patchify)

Encoder #1 PDE Block #1

PDE Block #2

C
oncatenation LayerEncoder #2

Decoder 
Head

Output (Embedding, 
Reconstruction & 

Embedding)

Pooling

Figure 1: Visualization of the proposed SCOPE-MIA model. Left: Detail of a PDE Block, showing
the input feature map f being split into anatomical (fA) and textural (fT ) components, processed
by parallel PDE-inspired update steps (implementing Eq. 1 and 2 via finite differences), potentially
modulated by entropy/attention, and then recombined into the output f ′. Right: Schematic architecture
of our model where we are incorporating these PDE Blocks at various stages.

(2014); He et al. (2016); Liu et al. (2022). In medical imaging, early applications often involved using
2D CNNs for slice-by-slice analysis of volumetric scans Gour et al. (2020); Heidari et al. (2020);
Walsh et al. (2018). However, this approach discards crucial inter-slice contextual information.
Recognizing this limitation, the field rapidly moved towards fully 3D architectures. Early work in
general computer vision demonstrated the feasibility of 3D CNNs for tasks like voxelized object
recognition Maturana & Scherer (2015) and video analysis Tran et al. (2015). In the medical domain,
this led to seminal architectures like the 3D U-Net Çiçek et al. (2016) and V-Net Milletari et al.
(2016), which became foundational for volumetric segmentation by effectively leveraging 3D spatial
context. Despite their success, training these models presents practical challenges. The large memory
footprint of 3D volumes often mandates training on smaller subvolumes or patches rather than entire
scans. Pioneering work like DeepMedic Kamnitsas et al. (2016) addressed this with a multi-scale
patch-based approach, a strategy that remains common today Andreasen et al. (2015); Guo et al.
(2024). More recently, Transformer-based models like UNETR Hatamizadeh et al. (2022) and
SWIN-UNETR ? have shown great promise by capturing long-range dependencies, complementing
the strong local inductive bias of CNNs. However, their data-hungry nature can be a drawback in
medical applications with limited data. Our work builds upon the well-established strengths of CNNs,
enhancing their feature representation with a principled inductive bias that is particularly well-suited
for the complex, multi-scale nature of medical images.

2.3 PARTIAL DIFFERENTIAL EQUATIONS IN IMAGE ANALYSIS

The use of Partial Differential Equations (PDEs) in image processing is a mature field with deep
theoretical roots. Scale-space theory, pioneered by Witkin Witkin (1984) and Koenderink Koenderink
(1984), established a formal framework for analyzing image structures at different scales by evolving
an image under the heat equation (linear diffusion). This concept was powerfully extended by Perona
and Malik Perona & Malik (1990) with anisotropic diffusion, which selectively smooths regions
while preserving semantically important edges. Such PDE-based methods have been widely used for
denoising, segmentation, and feature enhancement. More recently, there has been a growing interest
in integrating PDE principles into deep learning. Some works have reinterpreted ResNet blocks
as a discretization of an ordinary differential equation (ODE) He et al. (2016); Chen et al. (2018),
while others have explicitly designed CNN layers to mimic numerical PDE solvers Ruthotto & Haber
(2020). Our work contributes to this line of research by proposing a novel approach: rather than
using a single PDE as a model for the entire network, we embed distinct, task-specific PDE dynamics
as a regularizer within a modern CNN to enforce a principled and interpretable disentanglement of
anatomical and textural features in the latent space.
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3 METHODOLOGY

3.1 CONCEPTUAL OVERVIEW OF THE SCOPE-MIA FRAMEWORK

Before delving into the mathematical details, we provide a high-level overview of our approach.
SCOPE-MIA is designed to extract rich, disentangled features from 3D medical scans for down-
stream clinical prediction tasks. The process begins by partitioning large 3D volumes into smaller,
computationally tractable subvolumes (Section 3.2). These subvolumes are then fed into a 3D CNN
backbone. The core innovation lies within specialized "PDE Blocks" inserted at various stages of
the network. As shown conceptually in Figure 1, each PDE Block takes a latent feature map and
splits it into two parallel streams. One stream is processed by a numerical approximation of a PDE
designed to enhance smooth, large-scale anatomical structures. The other is processed by a different
PDE designed to preserve or even amplify fine-grained textural details. These two processed streams
are then recombined. By repeatedly applying this decomposition and recombination, the network is
guided to learn a feature space where anatomical and textural information are explicitly separated,
leading to more robust and interpretable representations for clinical analysis.

3.2 SUBVOLUME PARTITIONING FOR 3D TRAINING

Let {x(n)}Nn=1 be N volumetric medical scans, each x(n) of dimension Dn ×H ×W , where Dn

may vary across patients. Associated ground-truth annotations {y(n)} can be segmentation masks,
classification labels, or continuous targets. Directly training on full volumes often exceeds GPU
memory capacity. We therefore partition each volume x(n) into overlapping or non-overlapping
subvolumes of fixed depth k. Specifically, for each starting slice index d (typically incrementing by a
stride s ≤ k), we extract the subvolume x

(n)
d:d+k−1 (size k ×H ×W ) along with its corresponding

local annotation. This set of subvolumes forms the training data. At test (inference) time, for a
new volume with Dnew slices, we apply the trained model to subvolumes extracted using the same
sliding window approach (depth k, stride s). The predictions from these potentially overlapping
subvolumes are then fused (e.g., by averaging in overlapping regions) to produce a final, full-volume
result, ensuring 3D continuity while respecting memory constraints. This strategy, common in 3D
medical image analysis, allows for the processing of arbitrarily large volumes with a fixed memory
footprint.

3.3 PDE-DRIVEN DECOMPOSITION OF ANATOMICAL AND TEXTURAL FEATURES

Our core idea is to leverage the properties of PDEs to guide the network in learning disentangled
representations of anatomical structures and textural details within its latent feature space z. This is
achieved by conceptually splitting the latent representation and evolving each component according to
tailored PDE dynamics, which provides a powerful inductive bias for feature learning. We postulate
that the latent feature representation z(x, t) at a spatial location x and conceptual ’evolution time’ t
can be decomposed into two complementary components: z(x, t) = zA(x, t) ⊕ zT (x, t), where zA
represents anatomical (smooth, large-scale, lower-frequency) information, and zT represents textural
(detailed, potentially noisy, higher-frequency) information. The symbol ⊕ denotes concatenation or
summation in the feature channel dimension.

We enforce this separation by defining distinct PDE evolution rules for zA and zT . For the anatomical
component zA, we desire smoothing and enhancement of coherent structures. This behavior is

Figure 2: Visualization of four distinct masking strategies applied to a 3D subvolume of k slices,
where 75% of the volume is masked.
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GT 25% M. 25% R. 50% M. 50% R. 75% M. 75% R.

Figure 3: Qualitative examples of MAE reconstruction. The key insight from this figure is the
remarkable consistency of reconstruction quality even as the masking ratio increases dramatically
from 25% to 75%. This demonstrates the robustness of our PDE-guided features, which are rich
enough to enable high-fidelity anatomical recovery from extremely sparse visible data. Columns
from left to right: Ground Truth (GT), Masked Input (M.), and Reconstructed Output (R.) for 25%,
50%, and 75% masking ratios. Each row shows a different patient slice.

naturally modeled by diffusion processes, which act as low-pass filters.

∂zA
∂t

= ∇ ·
(
DA(x, z, t)∇zA

)
+ GA(zA,∇zA). (1)

Intuitively, this equation is analogous to the heat equation. Just as heat diffuses to smooth out
temperature variations, this process smooths the feature map, encouraging zA to capture the "forest"
(large structures) rather than the "trees" (fine details). Here, DA is an adaptive diffusion coefficient
that promotes smoothing, and GA represents optional reaction terms. For the textural component zT ,
we want to preserve or even enhance fine details. This suggests using dynamics that are less diffusive
or that actively preserve high-frequency information.

∂zT
∂t

= ∇ ·
(
DT (x, z, t)∇zT

)
+ GT (zT ,∇zT ) + Odetail(zT ). (2)

In this equation, the operator Odetail is designed to counteract the smoothing effect, acting as a
high-pass or detail-preserving filter. This encourages zT to capture the "texture of the bark on the
trees," isolating the fine-grained patterns that the anatomical stream smooths over. Here, DT could
be smaller than DA or zero, and Odetail can be implemented, for example, through frequency-domain
filtering that boosts high frequencies.

Adaptive Control via Entropy and Attention: The behavior of the diffusion coefficients can be
made adaptive based on local image content. Entropy-Based Adaptation: We can modulate the
diffusion based on local information content, often measured by entropy H(p(x)) of the local feature
distribution. For example, we define an adaptive factor λ(x, t):

λ(x, t) =
1

1 + exp
[
−α(H(p(x))− τ)

] ,
where τ is an entropy threshold and α controls the transition sharpness. This factor λ can then scale
the diffusion terms to reduce smoothing near high-entropy regions like edges or complex textures.
This is particularly relevant as attenuating smoothing in high-entropy regions (often corresponding to
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invasive tumor margins or necrotic cores) helps preserve diagnostically important heterogeneity. The
hyperparameters τ and α were determined via a systematic grid search on a held-out validation set. A
sensitivity analysis provided in the supplement shows that performance is robust to minor variations
around the chosen optimal values.

α(x, z) = softmax
(

I(X;z(x,t))∑
x′ I(X;z(x′,t))

)
,

This attention map α(x, z) spatially weights the PDE update steps, effectively allocating more
processing capacity to important regions. Because entropy quantifies local feature diversity, this
mechanism can adapt automatically across different tumor types (e.g., Lung Adenocarcinoma (LUAD)
vs. Lung Squamous Cell Carcinoma (LUSC)) without redesigning filters. An overview of the SCOPE-
MIA model illustrating this concept is presented in Figure 1.

4 EXPERIMENTS

4.1 ABLATION STUDY THROUGH RECONSTRUCTION TASK

Beyond supervised tasks, we investigate self-supervised representation learning through a Masked
Autoencoder (MAE) framework, adapted for 3D from He et al. He et al. (2022).

4.1.1 MASKING STRATEGIES AND MAE FRAMEWORK

To rigorously evaluate representation robustness, we apply four distinct masking strategies to subvol-
umes, masking 75% of voxels, as shown in Figure 2. This ensures training under diverse occlusion
scenarios.

For MAE evaluation, the SCOPE-MIA network reconstructs masked portions guided by MSE loss.
Qualitative examples are displayed in Figure 3. Reconstruction fidelity is quantified via Structural
Similarity Index Measure (SSIM) and an Anatomical Part Reconstruction Score (R):

R = 0.4∆V + 0.3H(S, Ŝ) + 0.3 (1− J(S, Ŝ)),

where ∆V is the relative volume difference, H is the Hausdorff distance between boundaries, and J
is the Jaccard index. Smaller R indicates better reconstruction.

Table 1: Ablation study of SCOPE-MIA components via MAE reconstruction under 75% masking.
Metrics are SSIM (↑) and Reconstruction Score R (↓). The results show that each component
contributes to robust feature learning.

Model Variant SSIM R

Full SCOPE-MIA 0.92±0.02 0.10±0.01
– PDE Stability Loss 0.88±0.04 0.12±0.02
– Entropy Adaptation 0.89±0.03 0.13±0.02
– Hessian Regularization 0.87±0.05 0.12±0.03
– Scale Consistency 0.88±0.03 0.13±0.02
– Attention Guidance 0.86±0.04 0.14±0.02

The quantitative results in Table 1 confirm that each PDE-inspired regularizer bolsters latent rep-
resentation robustness. For instance, the drop in SSIM from 0.92 to 0.89 upon removing ‘Entropy
Adaptation’ highlights the importance of adaptively preventing over-smoothing in diagnostically
critical, high-information regions. Similarly, the performance degradation when removing attention
guidance (SSIM drops to 0.86) demonstrates that focusing the PDE evolution on salient areas is cru-
cial for accurate reconstruction. Collectively, these results validate that our multi-faceted PDE-driven
approach produces the strongest and most robust anatomical representations.

4.2 VALIDATING MODEL FEATURE EXTRACTION IN REAL-WORLD DATASETS

In this study, we systematically compared two feature-extraction approaches: PyRadiomics, a widely
used open-source handcrafted feature library, and SCOPE-MIA, our proposed deep learning–based
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model. The goal was to assess the robustness, generalizability, and predictive power of each method
across a range of clinically relevant tasks and publicly available datasets.

4.2.1 JUSTIFICATION FOR EXPERIMENTAL BENCHMARK

Our primary comparison to PyRadiomics was a deliberate and principled choice. To bridge the gap
between advanced deep learning research and clinical practice, it is imperative to first demonstrate
that novel methods can decisively outperform the trusted, standardized tools used in clinical research
today. PyRadiomics, being IBSI-compliant, represents the de facto gold standard for extracting
handcrafted features for clinical prediction models Van Griethuysen et al. (2017b). By establishing a
new, validated performance ceiling over this rigorous baseline, our work provides a much stronger
foundation for future deep learning research in this domain.

Furthermore, while the field of deep learning for medical imaging is vast, there is a notable scarcity of
models specifically designed and benchmarked for extracting lesion-level embeddings for a wide array
of downstream clinical prediction tasks (e.g., genetic status, survival outcomes, age) from volumetric
data. Many state-of-the-art deep learning models, such as UNETR Hatamizadeh et al. (2022), are
primarily architected and evaluated for segmentation tasks. Their learned representations are not
directly tailored or optimized for producing a single, powerful feature vector for an entire lesion that
can be used for diverse prognostic or diagnostic predictions. Therefore, a direct comparison would be
inequitable and misaligned with our core task. SCOPE-MIA is, to our knowledge, one of the first
works to propose a principled, end-to-end 3D deep learning framework for this specific and clinically
vital task. Thus, outperforming the established non-learning gold standard is the most critical and
relevant first step.

4.2.2 COMPARING SCOPE-MIA WITH HANDCRAFTED FEATURES OF PYRADIOMICS

PyRadiomics enables reproducible extraction of a rich set of handcrafted radiomic features from
2D or 3D medical images Van Griethuysen et al. (2017b). Feature categories include intensity-
based statistics, 2D/3D geometric properties of the ROI, textural features (GLCM, GLRLM, GLSZM,
NGTDM, GLDM), and features derived from filtered images including wavelet, Laplacian of Gaussian
features derivied from original features. Overall, we compute a total of 1,319 PyRadiomics features
per ROI, providing a comprehensive handcrafted baseline against which we benchmarked SCOPE-
MIA. Further details are in the Supplementary Material.

4.2.3 PREDICTION OF EGFR STATUS IN THE CANCER IMAGING ARCHIVE DATA

We evaluated both models on the NSCLC-Radiogenomics, TCGA-LUAD & TCGA-LUSC datasets
for predicting EGFR mutation status. As summarized in Table 2, our PDE-driven features consistently
outperformed handcrafted features across a suite of classical machine learning classifiers.

Table 2: AUC Performance metrics of selected classifiers using PyRadiomics vs. SCOPE-MIA
features for EGFR status prediction.

Random Forest SVM KNN Grad. Boost Gaussian Process LDA

PyRadiomics Train 0.67 0.61 0.70 0.71 0.71 0.72
SCOPE-MIA Train 0.73 0.66 0.76 0.78 0.80 0.77
PyRadiomics Val. 0.59 0.56 0.61 0.58 0.59 0.57
SCOPE-MIA Val. 0.70 0.63 0.69 0.68 0.65 0.66

4.2.4 PREDICTION OF CLINICAL VARIABLES IN NSCLC-RADIOMICS DATASETS

We evaluated both models across multiple clinical endpoints in the NSCLC Radiomics dataset.
SCOPE-MIA achieved higher or comparable AUC values in predicting progression-free survival
(PFS), age, and tumor stage, indicating a more robust and clinically relevant feature representation
(Table 3).
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Table 3: Predictive performance (ROC-AUC ± std) of PyRadiomics vs. SCOPE-MIA features
across multiple clinical endpoints in the NSCLC Radiomics dataset. Bold values represent superior
performance.

Feature Set PFS-3mo PFS-6mo PFS-12mo Age (≥ 68) Stage (Multi)

PyRadiomics 0.80 ± 0.08 0.72 ± 0.06 0.72 ± 0.03 0.65 ± 0.06 0.70 ± 0.08

SCOPE-MIA 0.90 ± 0.03 0.74 ± 0.12 0.71 ± 0.05 0.78 ± 0.04 0.74 ± 0.08

4.2.5 PREDICTION OF GENETIC STATUS AND AGE IN BCBM-RADIOGENOMICS DATASET

To further validate our approach on a different modality (MRI) and cancer type, we evaluated
performance on the BCBM-RadioGenomics dataset for predicting hormone receptor (PR, ER) and
HER2 status. SCOPE-MIA again outperformed PyRadiomics in predicting breast cancer subtypes
(Figure 4) and patient age (Figure 5).

PyRadiomics = 0.87
SCOPE−MIA = 0.91

PyRadiomics = 0.79
SCOPE−MIA = 0.84

PyRadiomics = 0.82
SCOPE−MIA = 0.89
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Figure 4: Receiver operating characteristic (ROC) curves for breast cancer subtype prediction.
SCOPE-MIA achieves a higher micro- and macro-averaged AUC, demonstrating stronger discrimina-
tion compared to PyRadiomics features.

Overall, these results demonstrate the generalizability of SCOPE-MIA across multiple cancer types,
imaging modalities, and clinical endpoints, showing that PDE-driven 3D embeddings capture clini-
cally meaningful biological patterns more effectively than an extensive suite of handcrafted features.

5 DISCUSSION

The empirical results presented in this study underscore the advantages of explicitly embedding
PDE-inspired scale-space constraints within a 3D CNN framework. Across both self-supervised MAE
reconstructions and a spectrum of supervised clinical tasks, SCOPE-MIA consistently demonstrates
enhanced performance. In the reconstruction experiments, the network’s ability to recover occluded
anatomy highlights the efficacy of the dual-pathway PDE Blocks. The ablation study (Table 1)
confirms that each PDE-driven component contributes meaningfully to this robustness.

In classification and regression benchmarks spanning multiple cancer imaging datasets, the SCOPE-
MIA embeddings systematically outperform traditional PyRadiomics features. The improved AUC
and R2 metrics illustrate that PDE-optimized latent representations capture clinically relevant patterns

8
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(a) R2 PyRadiomics (b) R2 SCOPE-MIA
Figure 5: Scatter plots of actual vs. predicted age on the BCBM-RadioGenomics dataset. The higher
R2 score for SCOPE-MIA indicates that its learned embeddings capture more information related to
biological age than the comprehensive set of handcrafted features.

- such as mutation status and survival outcomes - that handcrafted radiomics often fail to encode
robustly. A deeper, qualitative interpretation of this success lies in the principle of feature disentan-
glement. Although not explicitly visualized in this paper due to space constraints, analysis of the
latent feature maps suggests that the anatomical pathway (zA) preferentially attends to macro-scale
structures like organ boundaries and overall lesion extent, producing smooth, coherent activations.
In stark contrast, the textural pathway (zT ) isolates micro-anatomical cues, with high-frequency
activations corresponding to areas of intra-tumoral heterogeneity, such as necrosis or varied cell
density. This principled separation allows downstream classifiers to leverage distinct sources of
information: the anatomical stream provides context and shape information, while the textural stream
provides fine-grained biomarkers of tumor biology. This offers a significant interpretability advantage
over monolithic CNN feature maps, where these signals remain entangled.

Despite these promising outcomes, several limitations warrant attention. First, as quantified in
Supplementary Tables 4 & 5, the integration of PDE Blocks increases computational overhead
compared to standard architectures. Second, the selection of multiple PDE-based regularizers
introduces additional hyperparameters that require careful tuning. While we found performance to be
stable around the chosen values, automating this process remains an open challenge. Third, while
sliding-window inference is effective, fusion strategies for predictions from overlapping subvolumes
could be further refined. Finally, our experimental validation, while comprehensive against the
clinical gold standard, does not include comparisons to other deep learning methods. As discussed
in Section 4.2.1, this was a principled choice due to the lack of directly comparable models for our
specific task, but future work should aim to establish such benchmarks as the field matures.

6 CONCLUSION AND FUTURE DIRECTIONS

In this work, we introduced SCOPE-MIA, a novel 3D CNN framework that embeds PDE-inspired
constraints to explicitly decompose volumetric features into anatomical and textural streams. By
integrating tailored diffusion dynamics and entropy-adaptive control within a subvolume training
strategy, our approach delivers robust, interpretable, and scale-consistent embeddings. Extensive
experiments demonstrate that SCOPE-MIA significantly outperforms handcrafted radiomics across
a range of clinical prediction tasks. Future research will focus on several key areas: exploring
anisotropic diffusion flows to better preserve boundary integrity of elongated structures; developing
hybrid PDE-Transformer modules to capture long-range dependencies beyond local subvolumes;
and conducting prospective multicenter validation to ensure robustness under varied clinical settings.
Our open-source implementation (code will be made available at https://anonymized_for_
review/SCOPE-MIA) invites the community to build upon this PDE-driven radiomics paradigm,
with the ultimate goal of extracting deeper medical insights from routinely collected imaging data.

9
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ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. All experiments were conducted exclusively on
publicly available, de-identified datasets commonly used in medical imaging research (e.g., NSCLC-
Radiomics/RadioGenomics, TCGA-LUAD/LUSC, and BCBM-RadioGenomics); no new human or
animal data were collected. We adhered to each dataset’s data-use policies and did not attempt any
re-identification; no protected health information is released. Our models are intended for research
only and are not a substitute for clinical judgement or regulatory-approved tools. To reduce potential
harms and misuse, we: (i) avoid presenting results as diagnostic guidance; (ii) report cross-dataset
evaluations to surface domain shift (scanner/site/protocol) risks; and (iii) commit to releasing code
that enables subgroup and site-level auditing (sex/age/site where available) to assess fairness and
robustness. We discuss interpretability and potential confounders in the manuscript (Sections 3.3,
4), and we explicitly caution that prospective, multi-center clinical validation and regulatory review
would be required prior to any deployment. The authors are unaware of conflicts of interest or
sponsorship that could unduly influence this work. All co-authors have read and agree to the ethical
standards and the Code of Ethics.

REPRODUCIBILITY STATEMENT

We have taken several steps to facilitate reproducibility. The paper provides: (i) a formal description
of the method and losses (Sections 3.3, 6); (ii) complete training/inference procedures for subvolumes
and sliding-window fusion (Sections 3.2, 6); (iii) ablation definitions and metrics for the MAE study
(Section 4.1, Table 1); and (iv) task setups, data splits, and evaluation metrics for all supervised
benchmarks (Tables 2, 3, Figures 4, 5). The Appendix (S1) includes implementation details and pseu-
docode (Alg. 1), architectural placement of PDE blocks, complexity tables, and inference specifics
to match reported numbers. We will release an anonymized repository (link in the supplementary
materials) containing: configuration files (model/backbone, PDE-block hyperparameters, k and stride
s), exact data preprocessing scripts, deterministic seeds and environment specs, training/evaluation
scripts to regenerate all tables/figures, and checkpoints needed to reproduce results within expected
stochastic variation. Because some datasets require registration (e.g., TCIA/TCGA), we provide
download instructions and checksums rather than redistributing data.
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Appendices

S1: IMPLEMENTATION DETAILS

S1.1: UNIFIED VIEW OF SUBVOLUME-BASED PDE-DRIVEN TRAINING

Algorithm 1 summarizes the training process. The algorithm iteratively processes subvolumes
sampled from the full 3D scans. For each subvolume, it computes the standard task loss and the suite
of PDE-based regularization losses derived from the internal states of the PDE Blocks. The total loss
guides the optimizer to learn network parameters Θ that not only perform well on the primary task
but also generate latent representations consistent with the desired anatomical/textural decomposition
and scale-space properties enforced by the PDE constraints.

Algorithm 1 Subvolume-Based PDE-Driven Training (Pseudocode)

Require: {x(n),y(n)}Nn=1: 3D training volumes and annotations. PDE3DModel(Θ): A 3D
CNN with PDE blocks (parameters Θ). k: Subvolume depth, s: Stride, PDE loss weights
(α, β, γ, δ, κ), MaxEpochs.

Ensure: Trained model parameters Θ.
1: Initialize Θ (e.g., Kaiming or Xavier init).
2: optimizer← AdamW(Θ).
3: for epoch = 1→ MaxEpochs do
4: Shuffle the order of volumes n = 1..N .
5: for each volume n do
6: starts← { d | d+ k − 1 ≤ Dn, d increments by s}
7: for each d ∈ starts do
8: xsub ← x

(n)
d:d+k−1 ▷ Extract (k,H,W ) subvolume

9: ysub ← y
(n)
d:d+k−1 ▷ Corresponding annotation

10: (ẑ, pdeStates) ← PDE3DModel.forward(xsub; Θ) ▷
Forward pass; ẑ is task output, pdeStates contains intermediate features for PDE losses

11: Ltask ← ComputeTaskLoss(ẑ,ysub)
12: LPDE_stab ← ComputePDEStabilityLoss(pdeStates) ▷

Check consistency with Eqs. 1, 2
13: Lentropy ← ComputeEntropySensitivityLoss(pdeStates) ▷

Encourage adaptive diffusion
14: Lhessian ← ComputeHessianLoss(pdeStates) ▷ Promote smoothness
15: Lscale_inv. ← ComputeScaleInvLoss(pdeStates) ▷Ensure scale consistency (if used)

16: Lattn ← ComputeAttnLoss(pdeStates,ysub) ▷ Guide attention (if used)
17: Ltotal ← Ltask + αLPDE_stab + β Lentropy + γ Lhessian + δLscale_inv. + κLattn

18: optimizer.zero_grad()
19: Ltotal.backward()
20: optimizer.step()
21: end for
22: end for
23: (Optional) Evaluate on validation set.
24: end for
25: return Θ

S1.2: ARCHITECTURAL IMPLEMENTATION: PDE BLOCKS IN A 3D CNN

We now describe how the PDE-driven decomposition concepts from Section 3.3 are implemented
architecturally within a 3D CNN. Our core component is the "PDE Block," designed to simulate the
distinct dynamics for anatomical (zA) and textural (zT ) features.

We employ a 3D CNN architecture as the backbone, such as a 3D adaptation of ConvNeXt-Large
Liu et al. (2022). ConvNeXt provides a strong foundation with its ResNet-like staging, depthwise
convolutions, and inverted bottlenecks, adapted here for 3D inputs.
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S1.3: OVERALL FLOW:

A 3D subvolume (k ×H ×W ) is processed by an initial stem block (convolution or patchification).
The output then passes through several stages of the 3D ConvNeXt backbone. Crucially, PDE Blocks
are inserted between or within these stages. These blocks take an intermediate feature tensor f and
output a refined tensor f ′ where anatomical and textural components have been processed according
to the PDE constraints. The final output depends on the task (e.g., classification logits, segmentation
map, embedding vector).

S1.4: PDE BLOCK DESIGN

Let f ∈ RC×D′×H′×W ′
be the input feature tensor to the PDE block. The block performs the

following conceptual steps:

1. Split: Divide the input features f along the channel dimension into two parts: fA (intended
for anatomical features) and fT (for textural features). This split can be predefined (e.g., first
half vs. second half of channels) or learnable.

2. Compute Control Signals (Optional): Calculate local entropy H(p(x)) and/or attention
weights α(x, z) based on f or its components.

3. PDE Update (Parallel Paths):
• Apply a numerical scheme (e.g., finite differences) to update fA according to the

anatomical PDE (Eq. 1). This step uses the diffusion term DA (potentially adaptive
based on entropy/attention) and aims for smoothing. The update approximates one or
more time steps ∆t.

• Simultaneously, apply a numerical scheme to update fT according to the textural PDE
(Eq. 2). This uses DT and potentially the detail-preserving operator Odetail to maintain
or enhance high frequencies.

The parameters governing these updates (DA, DT , coefficients in GA, GT , parameters in
Odetail) can be partially or fully learnable.

4. Fuse: Recombine the updated f ′A and f ′T into the output tensor f ′ (e.g., by concatenation).
Optionally, a gating mechanism informed by attention or MI can modulate the fusion.

The PDE stability loss (LPDE_stability) is computed based on the changes f ′A− fA and f ′T − fT relative
to the RHS of the PDEs, encouraging the block to learn updates consistent with the desired dynamics.

S1.5: ENCODER-DECODER ARCHITECTURES FOR VOXEL-LEVEL TASKS

For tasks requiring dense voxel-level predictions like segmentation or reconstruction, we embed
the PDE Blocks within a 3D encoder-decoder architecture (e.g., 3D U-Net or a ConvNeXt-based
equivalent). The encoder progressively downsamples spatial resolution while increasing feature
channels, capturing context. PDE Blocks can be placed within the encoder stages to enforce the
anatomical/textural decomposition at multiple scales. The decoder then upsamples the features,
potentially using skip connections from the encoder, to reconstruct the full spatial resolution output.
PDE blocks might also be used in the decoder or bottleneck to further refine the features while
maintaining the learned disentanglement. This ensures that the final voxel predictions benefit from
the structured representation learned under PDE constraints.

S1.6: OPTIMIZATION FRAMEWORK

Training involves optimizing the total loss function using standard gradient-based methods. We
used AdamW for our training tasks. To ensure numerical stability when simulating PDE steps
within the blocks, we typically unroll the finite difference updates for only a small number of steps
(e.g., 1-3) per block. We use stable numerical schemes (e.g., implicit or semi-implicit methods
if needed, though explicit methods often suffice for few steps). Gradient clipping can be applied,
especially early in training, if the PDE stability loss or gradients become excessively large. Training
is performed using the subvolumes generated as described in Sec. 3.2. Mini-batches are composed of
these k-slice subvolumes. Due to the memory demands of 3D operations, multi-GPU training (e.g.,
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using Distributed Data Parallel) is often necessary to achieve adequate batch sizes for stable learning.
The stride s for subvolume extraction can be chosen based on the trade-off between computational
cost (smaller s means more subvolumes) and data augmentation (smaller s provides more varied
local views).

S1.7: INFERENCE WITH OVERLAPPING k-SLICES

During inference on a new test volume xtest of size Dtest × H × W , we apply the trained
PDE3DModel(Θ) using a sliding window approach. We extract subvolumes xsub of depth k with
a stride s (often s < k for overlap, e.g., s = k/2), covering the entire volume from slice 1 to
Dtest − k + 1. The model processes each subvolume independently to produce a local prediction
ŷsub. To obtain the final full-volume prediction Ŷtest, these local predictions are aggregated. In
regions where subvolumes overlap, the predictions are typically fused, for example, by averaging the
predicted probabilities (for classification/segmentation) or values (for regression) across all subvol-
umes covering that voxel. This sliding window inference ensures that the full 3D context is leveraged
for the final prediction while adhering to the same memory constraints (k-slice processing) used
during training.

S1.8: MODEL ARCHITECTURE AND COMPUTATIONAL COMPLEXITY

Our proposed PDE Blocks are designed as a modular enhancement that can be integrated into a
wide range of 3D CNN backbones by replacing standard convolutional blocks at various network
stages. For the primary experiments presented in this paper, we utilize a 3D ConvNeXT backbone Liu
et al. (2022), which provides a modern foundation. A crucial consideration for any new architectural
component is its computational overhead. To provide a transparent and comprehensive analysis of
this trade-off, we evaluated the impact of our PDE Blocks across a diverse suite of well-established
3D architectures.

Table 4 first establishes a baseline, detailing the estimated computational profiles for standard 3D
versions of the ResNet, VGG, DenseNet, and ConvNeXT families. Subsequently, Table 5 presents
the same analysis for the corresponding SCOPE-MIA-enhanced versions of these architectures.

Table 4: Estimated computational complexity of various standard 3D CNN backbones. All metrics
are calculated for a single forward pass of a subvolume input of size 16 × 256 × 256 on a single
NVIDIA H100 GPU.

Metric ResNet Family VGG Family DenseNet Family ConvNeXT Family
R-18 R-34 R-50 R-152 VGG11 VGG13 VGG16 VGG19 D-121 D-161 D-169 D-201 Small Base Large

Params (M) 14.9 25.2 28.3 66.8 131.5 132.1 142.3 148.2 10.5 33.1 18.2 25.6 48.4 85.1 191.3

FLOPs (G) 33.5 61.3 80.2 219.7 151.2 159.8 189.5 198.8 44.8 105.7 64.1 87.9 95.3 165.4 340.5

Memory (GB) 3.5 5.0 6.1 11.2 14.1 15.3 16.5 17.8 6.5 13.9 9.8 12.2 7.2 9.9 15.1

Time (ms) 25 45 60 160 115 125 140 155 40 90 62 85 68 118 240

Table 5: Estimated computational complexity of SCOPE-MIA models using various 3D CNN
backbones. The integration of our PDE Blocks introduces a consistent overhead compared to the
standard architectures shown in Table 4. Input size and hardware remain the same.

Metric SCOPE-MIA (ResNet) SCOPE-MIA (VGG) SCOPE-MIA (DenseNet) SCOPE-MIA (ConvNeXT)
R-18 R-34 R-50 R-152 VGG11 VGG13 VGG16 VGG19 D-121 D-161 D-169 D-201 Small Base Large

Params (M) 15.8 26.7 30.0 70.8 139.4 140.0 150.8 157.1 11.1 35.1 19.3 27.1 51.3 90.2 202.8

FLOPs (G) 37.9 69.3 90.6 248.3 170.9 180.6 214.1 224.6 50.6 119.4 72.4 99.3 107.7 186.9 384.8

Memory (GB) 4.0 5.8 7.0 12.9 16.2 17.6 19.0 20.5 7.5 16.0 11.3 14.0 8.3 11.4 17.4

Time (ms) 30 54 72 192 138 150 168 186 48 108 74 102 82 142 288

A direct comparison between Table 4 and Table 5 reveals a clear and consistent pattern. The
integration of our PDE Blocks, implemented via efficient finite difference schemes, introduces a
modest and predictable increase in computational cost, regardless of the underlying backbone’s size or
family. On average, this amounts to an overhead of approximately 6% in parameters, 13% in FLOPs,
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15% in memory consumption, and 20% in inference time. We argue that this controlled overhead
is a justifiable trade-off for the significant performance gains and enhanced feature interpretability
demonstrated in our experiments. This extensive analysis confirms that SCOPE-MIA is a practical
and scalable framework, not a computationally prohibitive one, making it suitable for both research
and potential clinical applications.

S1.10: DECODER-BASED RECONSTRUCTION OF ISOPHOTE CURVATURE MAPS

In addition to reconstructing the original input subvolumes or predicting task-specific outputs like
segmentation masks, the decoder architecture within SCOPE-MIA can be leveraged to generate
transformed representations of the input data that emphasize specific geometric properties. One such
powerful transformation is the computation of an image representing the Mean Curvature of Isophotes
(MCI). Tasking the decoder with reconstructing an MCI image from the learned latent embeddings z
(or its components zA, zT ) can force the network to explicitly learn and encode fine-grained geometric
details about the anatomical structures present in the medical scans. In an N-dimensional image I (for
this paper, N=3 corresponding to 3D medical scans), an "isophote" is an (N-1)-dimensional manifold
where all points on the manifold share the same image intensity value. For a 3D image, isophotes
are 2D surfaces of constant intensity. The "curvature" of these surfaces provides information about
the local geometry of the structures depicted in the image. Mean curvature, in particular, measures
how much an isophote deviates from being flat at a given point. The MCI is a geometric measure
that captures aspects of image geometry fundamental to image analysis. Its advantage lies in its
invariance to a range of image transformations because it is computed from image derivatives rather
than absolute pixel values. This invariance can make MCI a robust feature. The mean curvature k of
isophotes in an image I can be computed as the divergence of the normalized gradient of the image:

k = ∇ ·
(
∇I
||∇I||

)
(3)

where∇ · (∗) denotes the divergence operator,∇(∗) denotes the gradient operator, and || ∗ || denotes
the L2 norm (magnitude).

Alternatively, the mean curvature of isophotes can be expressed explicitly in terms of the second
partial derivatives of the image I(x, y, z):

k =
I2x(Iyy + Izz)− 2IyIzIyz+ I2y (Ixx + Izz)− 2IxIzIxz+I2z (Ixx + Iyy)− 2IxIyIxy

(I2x + I2y + I2z )
3
2

(4)

where Ix, Iy, Iz are the first partial derivatives (e.g., Ix = ∂I
∂x ), and Ixx, Iyy, Izz, Ixy, Ixz, Iyz are the

second partial derivatives (e.g., Ixx = ∂2I
∂x2 , Ixy = ∂2I

∂x∂y ).

Reconstructing MCI Maps with the Decoder: To guide the reconstruction of the MCI map by the
decoder, we use a specialized loss function. A simple pixel-wise comparison, like Mean Squared
Error, often doesn’t adequately capture the important structural details of an MCI map, particularly the
distinct ridges and areas of high curvature. Therefore, we employ a combined loss, which we refer to
asLMCI_recon, to better address these characteristics. ThisLMCI_recon is calculated by adding together
three different terms. First, to ensure that significant high-curvature regions (the "ridges") in the MCI
map are accurately reconstructed, we use a weighted L1 difference. The errors in these ridge regions
are given more importance by applying a weight map, Wridge. This weight map can be defined based
on the ground-truth MCI map, kgt, for example, by giving higher weights to pixels where the absolute
curvature value exceeds a certain threshold τridge: Wridge(x) = 1+α·sigmoid(β(|kgt(x)|−τridge)).
This first loss component is then

∥∥∥Wridge ⊙ (k̂− kgt)
∥∥∥
1
, where k̂ is the MCI map predicted by the

decoder and ⊙ is element-wise multiplication. The L1 norm is used here as it is generally robust.
Second, to ensure that the sharpness and orientation of features within the MCI map are correctly
reproduced, the loss includes a term that compares the spatial gradients of the predicted map k̂ and
the ground-truth map kgt. This gradient difference term is formulated as

∥∥∥∇k̂−∇kgt

∥∥∥
1
. This

helps maintain clear edges and structural details in the reconstructed MCI map. Third, to preserve
the overall structural similarity between the predicted and ground-truth MCI maps across different
scales, we incorporate a term based on the Multi-Scale Structural Similarity (MS-SSIM) index:
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1−MS-SSIM(k̂,kgt). These three terms are then combined, typically as a weighted sum, to form
the total MCI reconstruction loss LMCI_recon:

LMCI_recon = λ1

∥∥∥Wridge ⊙ (k̂− kgt)
∥∥∥
1
+ λ2

∥∥∥∇k̂−∇kgt

∥∥∥
1
+ λ3(1−MS-SSIM(k̂,kgt))

The weights λ1, λ2, λ3 balance the contribution of each component. This LMCI_recon is used as an
auxiliary loss during the training of the SCOPE-MIA model. By training the decoder to reconstruct
these MCI maps, the main encoder is encouraged to learn richer and more descriptive latent features
that capture underlying geometric information from the medical images. This same approach could
potentially be applied to other derived geometric maps, such as those representing Gaussian curvature.

S2: WHAT DOES THE MODEL SEE?

Supplementary Figure S1: Activation maps from SCOPE-MIA illustrating learned multi-scale
features, overlaid on representative CT slices. Each row shows a different input example. Columns
represent different stages of PDE-guided for different scales, showing the model’s focus shifting from
broader anatomical structures to finer textural details.

To investigate and visually interpret the multi-scale representations learned by SCOPE-MIA, we
utilize an activation visualization technique inspired by Gradient-weighted Class Activation Mapping
(Grad-CAM). This approach highlights which parts of the input CT volumes contribute significantly to
the anatomical and textural branches of the model, providing insights into how the network processes
information at different scales. To generate visualizations illustrating these distinct scales. Each 3D
subvolume passes through SCOPE-MIA. Intermediate feature maps from anatomical and textural
PDE-blocks at various PDE time steps are extracted. Gradients of the final prediction relative to the
intermediate PDE-block feature maps are computed via backpropagation, indicating the sensitivity of
predictions to features at specific scales. Gradients are spatially averaged across channels to produce
weighting factors. These weights multiply corresponding activation maps, generating a scale-specific
aggregated activation map. The activation maps are normalized, resized, and overlaid onto the original
CT slices to visualize key regions influencing model predictions at anatomical and textural scales.
Supplementary Figure S1 presents these activation maps for representative CT scans, demonstrating
distinct visual patterns associated with anatomical (larger, smoother structures) versus textural scales
(finer details). The anatomical scale activation maps emphasize large-scale structures such as organ
boundaries, overall tumor shapes, and major anatomical landmarks, validating the effectiveness of
PDE-driven diffusion. Conversely, textural scale maps highlight detailed internal textures, small
lesions, and vascular patterns, confirming that the PDE-based design captures clinically relevant
high-frequency features. This multi-scale visualization underscores SCOPE-MIA’s ability to provide
interpretable, scale-consistent representations beneficial for clinical decision-making and robust
medical image analysis.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

S3: REGRESSION PLOTS FOR PREDICTED PYRADIOMICS FEATURES USING
SCOPE-MIA EMBEDDINGS TO PREDICT PYRADIOMICS FEATURES

We assessed the predictability of 107 extracted features by evaluating the coefficient of determination
(R2) from regression models trained to approximate each feature individually. The R2 score provides
a measure of how well the variability of a given feature is captured by the model. A score of 1
indicates perfect prediction, while values near zero suggest that the model fails to capture underlying
structure.

To characterize predictability, we visualized R2 scores sorted in descending order (Figure S2). A
horizontal reference line is included at R2 = 0.5 to demarcate features with high model alignment.
The individual regression plots for all 107 features are provided in Supplementary Figures S3-S6.
The numeric IDs used in these plots correspond to the feature names listed in Supplementary Table 1.

0.0

0.2

0.4

0.6

0.8

1.0

R
² S

co
re

R² Scores by Feature

R² = 0.5

Supplementary Figure S2: R2 scores of all 107 features, sorted in descending order. A horizontal
dashed line at R2 = 0.5 highlights the threshold for strong predictability.

Of the 107 features analyzed:

• 51 features exhibited R2 scores above 0.5, indicating strong agreement between the model
and the underlying structure of those features.

• 90 features achieved scores above 0.3, suggesting that the majority of features possess
moderate to strong predictability.

• Only 7 features had R2 scores below 0.2, reflecting limited model alignment.

Closer inspection reveals that the most predictable features are largely geometric descriptors, such
as axis lengths, shape elongation, and diameter measures. These features often encode physical or
anatomical structures that are consistent across samples, leading to stronger signal-to-noise ratios and
improved model performance. Their high R2 scores support their reliability as derived representations
in the context of downstream learning tasks.

In contrast, the small subset of poorly predicted features likely reflects either high intrinsic noise or
more complex, nonlinear dependencies that are not well captured by the current modeling approach.
These features were retained for completeness but excluded from interpretability-driven analyses due
to their low explanatory value.

As a result of this analysis, we focused subsequent modeling and feature interpretation efforts on the
51 highly predictable features (R2 > 0.5). This filtering step allowed us to reduce dimensionality and
enhance interpretability while retaining the most informative subset of the feature space. Detailed
scatter plots for all 107 PyRadiomics features, illustrating the actual versus predicted values, are
shown in Supplementary Figures S3-S6.
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Supplementary Figure S3. Regression scatter plots for targets 1–30.
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Supplementary Figure S4. Regression scatter plots for targets 31–56.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 10000 20000 30000 40000
Actual

0

5000

10000

15000

20000

25000

30000

35000

40000

P
re
di
ct
ed

R2=0.78

0.0 0.1 0.2 0.3
Actual

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
re
di
ct
ed

R2=0.41

0 100 200 300
Actual

0

50

100

150

200

250

300

P
re
di
ct
ed

R2=0.25

500 1000 1500 2000
Actual

250

500

750

1000

1250

1500

1750

2000

P
re
di
ct
ed

R2=0.50

2 4 6 8 10
Actual

2

4

6

8

10

P
re
di
ct
ed

R2=0.42

57 58 59 60 61

0 5000 10000 15000
Actual

0

2500

5000

7500

10000

12500

15000

17500

P
re
di
ct
ed

R2=0.51

0.00 0.05 0.10 0.15 0.20
Actual

0.00

0.05

0.10

0.15

0.20

P
re
di
ct
ed

R2=0.59

0.00 0.02 0.04 0.06 0.08
Actual

0.00

0.02

0.04

0.06

0.08

P
re
di
ct
ed

R2=0.75

3.5 4.0 4.5 5.0 5.5
Actual

3.5

4.0

4.5

5.0

5.5

P
re
di
ct
ed

R2=0.69

0 25000 50000 75000 100000
Actual

0

20000

40000

60000

80000

100000

P
re
di
ct
ed

R2=0.55

62 63 64 65 66

0.4 0.6 0.8
Actual

0.4

0.5

0.6

0.7

0.8

0.9

P
re
di
ct
ed

R2=0.52

0.5 0.6 0.7 0.8 0.9 1.0
Actual

0.5

0.6

0.7

0.8

0.9

1.0

P
re
di
ct
ed

R2=0.50

0 1 2 3 4 5
Actual

0

1

2

3

4

5

P
re
di
ct
ed

R2=0.33

0.7 0.8 0.9 1.0
Actual

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
re
di
ct
ed

R2=0.49

500 1000 1500
Actual

200

400

600

800

1000

1200

1400

1600

P
re
di
ct
ed

R2=0.61

67 68 69 70 71

0.00 0.02 0.04 0.06 0.08
Actual

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
re
di
ct
ed

R2=1.00

0 250 500 750 1000
Actual

−200

0

200

400

600

800

1000

1200

P
re
di
ct
ed

R2=0.54

0.05 0.10 0.15
Actual

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

P
re
di
ct
ed

R2=0.15

50 100 150 200 250
Actual

50

100

150

200

250

P
re
di
ct
ed

R2=0.54

500 1000 1500
Actual

200

400

600

800

1000

1200

1400

1600

1800

P
re
di
ct
ed

R2=0.49

72 73 74 75 76

0.0 0.5 1.0 1.5 2.0
Actual 1e6

0.0

0.5

1.0

1.5

2.0

P
re
di
ct
ed

1e6 R2=1.00

0 1 2 3 4
Actual 1e9

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
re
di
ct
ed

1e9 R2=0.90

0 500 1000
Actual

0

200

400

600

800

1000

1200

1400

P
re
di
ct
ed

R2=0.99

0.00 0.01 0.02 0.03
Actual

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

P
re
di
ct
ed

R2=0.89

0 5000 10000
Actual

0

2000

4000

6000

8000

10000

12000

P
re
di
ct
ed

R2=0.47

77 78 79 80 81

Supplementary Figure S5. Regression scatter plots for targets 57–81.
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Supplementary Figure S6. Regression scatter plots for targets 82–107.
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ID Feature Name ID Feature Name
1 original_shape_Elongation 55 original_glcm_SumEntropy
2 original_shape_Flatness 56 original_glcm_SumSquares
3 original_shape_LeastAxisLength 57 original_glrlm_GrayLevelNonUniformity
4 original_shape_MajorAxisLength 58 original_glrlm_GrayLevelNonUniformityNormalized
5 original_shape_Maximum2DDiameterColumn 59 original_glrlm_GrayLevelVariance
6 original_shape_Maximum2DDiameterRow 60 original_glrlm_HighGrayLevelRunEmphasis
7 original_shape_Maximum2DDiameterSlice 61 original_glrlm_LongRunEmphasis
8 original_shape_Maximum3DDiameter 62 original_glrlm_LongRunHighGrayLevelEmphasis
9 original_shape_MeshVolume 63 original_glrlm_LongRunLowGrayLevelEmphasis

10 original_shape_MinorAxisLength 64 original_glrlm_LowGrayLevelRunEmphasis
11 original_shape_Sphericity 65 original_glrlm_RunEntropy
12 original_shape_SurfaceArea 66 original_glrlm_RunLengthNonUniformity
13 original_shape_SurfaceVolumeRatio 67 original_glrlm_RunLengthNonUniformityNormalized
14 original_shape_VoxelVolume 68 original_glrlm_RunPercentage
15 original_firstorder_10Percentile 69 original_glrlm_RunVariance
16 original_firstorder_90Percentile 70 original_glrlm_ShortRunEmphasis
17 original_firstorder_Energy 71 original_glrlm_ShortRunHighGrayLevelEmphasis
18 original_firstorder_Entropy 72 original_glrlm_ShortRunLowGrayLevelEmphasis
19 original_firstorder_InterquartileRange 73 original_glszm_GrayLevelNonUniformity
20 original_firstorder_Kurtosis 74 original_glszm_GrayLevelNonUniformityNormalized
21 original_firstorder_Maximum 75 original_glszm_GrayLevelVariance
22 original_firstorder_MeanAbsoluteDeviation 76 original_glszm_HighGrayLevelZoneEmphasis
23 original_firstorder_Mean 77 original_glszm_LargeAreaEmphasis
24 original_firstorder_Median 78 original_glszm_LargeAreaHighGrayLevelEmphasis
25 original_firstorder_Minimum 79 original_glszm_LargeAreaLowGrayLevelEmphasis
26 original_firstorder_Range 80 original_glszm_LowGrayLevelZoneEmphasis
27 original_firstorder_RobustMeanAbsoluteDeviation 81 original_glszm_SizeZoneNonUniformity
28 original_firstorder_RootMeanSquared 82 original_glszm_SizeZoneNonUniformityNormalized
29 original_firstorder_Skewness 83 original_glszm_SmallAreaEmphasis
30 original_firstorder_TotalEnergy 84 original_glszm_SmallAreaHighGrayLevelEmphasis
31 original_firstorder_Uniformity 85 original_glszm_SmallAreaLowGrayLevelEmphasis
32 original_firstorder_Variance 86 original_glszm_ZoneEntropy
33 original_glcm_Autocorrelation 87 original_glszm_ZonePercentage
34 original_glcm_ClusterProminence 88 original_glszm_ZoneVariance
35 original_glcm_ClusterShade 89 original_gldm_DependenceEntropy
36 original_glcm_ClusterTendency 90 original_gldm_DependenceNonUniformity
37 original_glcm_Contrast 91 original_gldm_DependenceNonUniformityNormalized
38 original_glcm_Correlation 92 original_gldm_DependenceVariance
39 original_glcm_DifferenceAverage 93 original_gldm_GrayLevelNonUniformity
40 original_glcm_DifferenceEntropy 94 original_gldm_GrayLevelVariance
41 original_glcm_DifferenceVariance 95 original_gldm_HighGrayLevelEmphasis
42 original_glcm_Id 96 original_gldm_LargeDependenceEmphasis
43 original_glcm_Idm 97 original_gldm_LargeDependenceHighGrayLevelEmphasis
44 original_glcm_Idmn 98 original_gldm_LargeDependenceLowGrayLevelEmphasis
45 original_glcm_Idn 99 original_gldm_LowGrayLevelEmphasis
46 original_glcm_Imc1 100 original_gldm_SmallDependenceEmphasis
47 original_glcm_Imc2 101 original_gldm_SmallDependenceHighGrayLevelEmphasis
48 original_glcm_InverseVariance 102 original_gldm_SmallDependenceLowGrayLevelEmphasis
49 original_glcm_JointAverage 103 original_ngtdm_Busyness
50 original_glcm_JointEnergy 104 original_ngtdm_Coarseness
51 original_glcm_JointEntropy 105 original_ngtdm_Complexity
52 original_glcm_MCC 106 original_ngtdm_Contrast
53 original_glcm_MaximumProbability 107 original_ngtdm_Strength
54 original_glcm_SumAverage

Supplementary Table 1: Feature mapping: Numeric IDs correspond to the PyRadiomics feature
names. The left two columns list features 1–54, and the right two columns list features 55–107 (the
final cell is left blank).
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