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Abstract

One of the main obstacles for deploying Active001
Learning (AL) in practical NLP tasks is high002
computational cost of modern deep learning003
models. This issue can be partially mitigated004
by applying lightweight models as an acquisi-005
tion model, but it can lead to the acquisition-006
successor mismatch (ASM) problem. Previous007
works show that the ASM problem can be par-008
tially alleviated by using distilled versions of009
a successor models as acquisition ones. How-010
ever, distilled versions of pretrained models are011
not always available. Also, the exact pipeline012
of model distillation that does not lead to the013
ASM problem is not clear. To address these014
issues, we propose to use adapters as an alter-015
native to full fine-tuning for acquisition model016
training. Since adapters are lightweight, this017
approach reduces the training cost of the model.018
We provide empirical evidence that it does not019
cause the ASM problem and can help to deploy020
active learning in practical NLP tasks.021

1 Introduction022

Recent progress in the natural language processing023

(NLP) tasks has become possible due to an abun-024

dant range of pre-trained language models. Data025

annotation is a rather important process, since the026

performance of model depends greatly on the qual-027

ity of data it was trained on. Active learning (AL),028

which is a technique used to annotate data and029

train models efficiently, has been first introduced in030

(Cohn et al., 1996). This technique has been widely031

used to train language models to solve such NLP032

tasks as text classification (Dor et al., 2020), named033

entity recognition (Chen et al., 2015) and sequence034

labeling tasks (Settles and Craven, 2008a).035

Active learning helps to reduce annotation costs036

by employing a specifically designed query strat-037

egy which works on sampling the data points that038

would bring the most substantial information gains039

for model training. One problem that has been040

described by (Tsvigun et al., 2022) is acquisition- 041

successor mismatch (ASM). This refers to employ- 042

ing models of different architectures for acquisi- 043

tion (evaluating which samples would be the most 044

beneficial) and successor (retraining with newly 045

acquired samples) negatively impacts the perfor- 046

mance. For some popular models, such as BERT, 047

distilled versions can be used as acquisitions to 048

save time and computational resources. We suggest 049

using parameter-efficient fine-tuning methods for 050

those models that do not have a distilled version. 051

The findings of this study indicate that utilizing 052

an adapter model with a successor of identical ar- 053

chitecture consistently yields superior outcomes 054

compared to a distilled model with a different ar- 055

chitecture. 056

Our main contributions are the following: 057

• We show that training an acquisition model 058

with adapters can speed up an AL loop (in 059

comparison with using the full model for ac- 060

quisition) and does not harm overall perfor- 061

mance of AL; 062

• Our method can be efficiently applied to per- 063

form AL in various textual domains of the 064

data; 065

• We experimentally show that our approach 066

can be used with various types of pretrained 067

encoder models that can be tuned with adapter 068

networks; 069

• Total time of AL loop can be decreased by 070

20.84% on average. 071

2 Related work 072

In (Shelmanov et al., 2021) it was proposed to ac- 073

celerate training and data selection steps for AL by 074

leveraging distilled versions of the successor model 075

during AL iterations. A similar approach was in- 076

troduced in (Nguyen et al., 2022), where it was 077
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proposed to use on-the-fly knowledge distillation078

of the successor model to the acquisition model.079

However, model distillation is expensive in terms080

of both time and computational resources. Further-081

more, this approach cannot always be directly used082

in practice due to the lack of distilled models for083

several architectures.084

In (Tsvigun et al., 2022), it was proposed to085

use pseudo labeling-based approach to mitigate the086

ASM problem. However, this approach can also087

suffer from the lack of distilled/teacher model pairs,088

especially for some specific domains.089

Furthermore, (Jukić and Šnajder, 2023) explores090

the application of adapters in active learning in091

low-resource settings. The research concludes that092

some adapter configurations provide performance093

gains over full fine-tuning. The authors also in-094

vestigate learning stability and compare layerwise095

representations obtained from adapters and fully096

fine-tuned models. They find that adapter models097

are more similar to the base model in earlier lay-098

ers which are considered to contain foundational099

knowledge. In our work, we provide another kind100

of analysis: we compare uncertainty scores of dif-101

ferent kinds of models and conclude that adapters102

can be applied in many areas of active learning,103

since the they do not affect the uncertainty scores.104

The research (Jukić and Šnajder, 2023) also pro-105

vides comparison of performance scores of full and106

adapter models. However, there is no mention of107

time taken to train the models. We close this gap108

by measuring the speed of full and adapter models.109

Finally, in (Nguyen et al., 2022), adapters were110

used to improve time efficiency of the successor111

model, but their impact on the acquisition model112

was not analysed. We explore how adapters affect113

the time of the whole AL loop.114

In our research, we bring empirical contribution115

by testing and analyzing the adapter application in116

active learning. We provide analysis of the uncer-117

tainty scores of adapter models to demonstrate the118

potential applicability of adapters in any domain119

of AL. Time efficiency of adapters in the AL loop120

is explored as well. It is also shown that adapters121

can help solve the ASM problem in active learning.122

2.1 Adapters123

Adapter modules were first introduced in (Houlsby124

et al., 2019). These modules are a small set of new125

layers introduced to the pre-trained model to be126

further updated without affecting the weights of127

the original model. Adapters offer a faster, more128

lightweight alternative to full fine-tuning, while 129

maintaining the performance level of the latter. 130

As adapter training has proved to be a good 131

PEFT method, a convenient open-source frame- 132

work for adapters has been introduced in (Pfeiffer 133

et al., 2020). The Adapters library (Poth et al., 134

2023)1 offers a seamless way of adding, training 135

and sharing a wide range of adapter modules for 136

transformer models. This framework is used in this 137

research to train and evaluate models with adapters. 138

3 Experiments 139

3.1 Experimental setup 140

The methodology we employ to set up our active 141

learning experiments is consistent with the schema 142

widely utilized in numerous prior studies (Settles 143

and Craven, 2008b; Shen et al., 2017; Siddhant 144

and Lipton, 2018; Shelmanov et al., 2021). This 145

approach involves a simulated cycle of active learn- 146

ing, which consists of several distinct phases: 147

1. A small random sample (1% in our case) is 148

taken from the dataset to initialize the training 149

and annotation cycle. 150

2. An initital version of the acquisition model is 151

constructed using the random data sample. 152

3. Each iteration of the cycle is continued by 153

sampling a fraction of the data from the unla- 154

beled pool (also 1%) by a query strategy and 155

adding it to the training dataset that is used on 156

the subsequent iterations. 157

4. On each iteration, the successor model is 158

trained on the acquired data and evaluated 159

on the whole test set. 160

5. Several iterations (12 in our case) are run in 161

this way and a performance chart is built. Ac- 162

curacy is used as a performance metric for 163

the classification task investigated in this re- 164

search. 165

6. Each reported experiment is run on five fixed 166

random seeds to report standard deviation of 167

the scores. 168

We use four query strategies to evaluate unla- 169

beled samples in the active learning loop. For the 170

classification task we use least confidence (LC) 171

and breaking ties (BT). For NER, the strategy is 172

1https://github.com/adapter-hub/adapters
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Maximum Normalized Log-Probability (MNLP).173

We also use random sampling to verify all other174

strategies against it. The strategies are described in175

detail in the section A.1.176

Our approach is evaluated on three popular177

classification datasets that belong to different do-178

mains: English AG News topic classification179

dataset (Zhang et al., 2015), Banking77, a single-180

domain intent classification dataset (Casanueva181

et al., 2020) and the English language part of182

the Amazon MASSIVE dataset (FitzGerald et al.,183

2022), which contains utterances that belong to184

18 different domains. We also evaluate on the185

CoNLL-2003 dataset, which is used for the NER186

task (Tjong Kim Sang and De Meulder, 2003). The187

datasets statistics can be found in the the section188

A.3.189

3.2 Uncertainty scores evaluation190

In order to verify that the adapters do not tam-191

per with the output probability distributions when192

attached to a model and trained, we perform an193

analysis of the distributions of full models and194

adapter models. Since the query strategies used195

in this research rely on uncertainty scores, we eval-196

uate the scores obtained from the models with197

adapters and compare them to the those from the198

full models. To perform the analysis, we utilize199

the uncertainty estimation framework presented in200

(Vazhentsev et al., 2022). We have applied the fol-201

lowing statistical methods for scores evaluation:202

Wasserstein distance (WD) (Rubner et al., 1998)203

and Kullback–Leibler (KL) divergence (Kullback204

and Leibler, 1951).205

The uncertainty score we evaluate is Bayesian206

Active Learning by Disagreement (BALD)207

(Houlsby et al., 2011). This metric of uncertainty208

assigns scores to data points according to the209

extent to which their labels would enhance our210

understanding of the actual distribution of model211

parameters.212

All values of WD and KL divergence between213

the scores of full models and the scores of adapter214

models are presented in the Table 4.215

3.3 Models216

We conduct the experiments with pre-trained Trans-217

formers. In particular, ELECTRA-base (110M pa-218

rameters) (Clark et al., 2020) and DistilBERT (66M219

parameters) (Sanh et al., 2019) models are fine-220

tuned on the three classification datasets. We have221

picked ELECTRA for the closest inspection. This222

decision is motivated by an assumption that we 223

make: we theorize that in active learning, adapters 224

perform more efficiently than than a small under- 225

parameterized (distilled) models. For example, a 226

combination of DistilBERT as an acquisition model 227

and full ELECTRA as a successor perform worse 228

than adapter ELECTRA model as acquisition and 229

full ELECTRA as successor. Thus, we propose to 230

use adapters to solve the ASM problem by match- 231

ing the model architectures in acquisition and suc- 232

cession stages while reducing memory and time 233

consumption. See the Results section for details. 234

3.4 Adapters for acquisition model 235

The acquisition model is equipped with a bottle- 236

neck adapter which consists of feed-forward layers 237

after the multi-head attention block of each layer. 238

The parameters are kept default as they are defined 239

in the BnConfig base class of the Adapters library. 240

The performance of this acquisition model with an 241

adapter is then compared to the same kind of model 242

but with no adapter attached. 243

4 Analysis 244

Figures 1, 2, 3 and 4 represent accuracy curves of 245

four combinations of models and strategies. Each 246

curve represents metrics averaged out over five 247

seeds. 248

For both classification (Figures 3, 2, 1) and 249

NER (Figure 4) tasks, it is obvious that ELECTRA 250

with an adapter performs better than DistilBERT, 251

which means that the acquisition-successor mis- 252

match problem can be solved with adapters. In 253

addition to it, adapters save training time while pre- 254

serving the performance scores at the same level as 255

full models. 256

In order to measure the speedup that adapter 257

modules can provide in the active learning loop, 258

we train full ELECTRA and adapter ELECTRA on 259

the four datasets. We measure the time it takes to 260

train on 2, 6 and 12% of the data and report it in 261

the Table 1. As it is seen from the Table 1, adapter 262

modules benefit from shorter training times in all 263

cases. The average speedup adapters provide is 264

20.84%. 265

5 Results 266

As it is observed from Table 4, both distance met- 267

rics that have been measured between adapter and 268

full ELECTRA models are close to zero, which 269

means that the distributions of uncertainty scores 270
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Figure 1: Text classification on Amazon Massive.

Dataset 2% 6% 12%
AG NEWS - full 367 1098 2201
AG NEWS - adapter 285 860 1730
BANKING 77 - full 30 89 178
BANKING 77 - adapter 23 71 140
MASSIVE (EN) - full 34 103 207
MASSIVE (EN) - adapter 27 82 164
CONLL - full 11 32 67
CONLL - adapter 9 25 55

Table 1: Time in seconds taken to train a full ELEC-
TRA model and an ELECTRA model with a bottleneck
adapter on four different datasets with 2, 6 and 12% of
the data.

of those models are quite close to each other. Since271

active learning strategies rely on uncertainty scores,272

it means that in the active learning settings, training273

a model with an adapter speeds up the training time274

and consumes less memory without influencing the275

model’s predictions compared to the full model276

fine-tuning.277

Our experiments on four datasets show that mod-278

els with the bottleneck adapter demonstrate a com-279

parable performance on each active learning itera-280

tion with full models. We have also included experi-281

ments with DistilBERT as an acquisition model and 282

this setup performs worse in comparison with all 283

other setups due to the ASM problem discussed ear- 284

lier. In addition, we have concluded that the adapter 285

helps speed up the active learning process when 286

added to the acquisition model. All this makes the 287

adapter models more efficient for classification in 288

active learning. 289

6 Conclusion 290

The finding of this study include the following: 291

1. Statistical tests of uncertainty scores (BALD, 292

in particular) obtained from full models and 293

adapter models have concluded that the pre- 294

dictions of the two types of models are similar 295

enough to use the adapter models in active 296

learning with no significant perturbation of 297

predictions. 298

2. Adapter models require shorter training time, 299

which may be utilized to accelerate the cycles 300

of active learning. 301

3. In active learning settings, adapter models can 302

be used to overcome the ASM problem caused 303

by different architectures of acquisition and 304

successor models. 305
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7 Limitations306

Although we have demonstrated that adapters can307

be useful in the active learning settings, our exper-308

iments only include the task of text classification309

and named entity recognition on four particular310

open source datasets. For further research, adapters311

may be tested on different tasks and datasets.312

In addition, this research is only focused on one313

particular model and investigates the behavior of314

ELECTRA in the active learning settings. It would315

be interesting to apply the same approach to models316

of different architectures as well.317
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Vulić, Sebastian Ruder, Iryna Gurevych, and Jonas 388
Pfeiffer. 2023. Adapters: A unified library for 389
parameter-efficient and modular transfer learning. 390
arXiv preprint arXiv:2311.11077. 391

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. 392
1998. A metric for distributions with applications to 393
image databases. In Sixth international conference 394
on computer vision (IEEE Cat. No. 98CH36271), 395
pages 59–66. IEEE. 396

Victor Sanh, Lysandre Debut, Julien Chaumond, and 397
Thomas Wolf. 2019. Distilbert, a distilled version 398
of bert: smaller, faster, cheaper and lighter. ArXiv, 399
abs/1910.01108. 400

Burr Settles and Mark Craven. 2008a. An analysis of 401
active learning strategies for sequence labeling tasks. 402
In proceedings of the 2008 conference on empirical 403
methods in natural language processing, pages 1070– 404
1079. 405

Burr Settles and Mark Craven. 2008b. An analysis 406
of active learning strategies for sequence labeling 407
tasks. In Proceedings of the 2008 Conference on 408
Empirical Methods in Natural Language Processing, 409
pages 1070–1079, Honolulu, Hawaii. Association for 410
Computational Linguistics. 411

5

https://arxiv.org/abs/2003.04807
https://arxiv.org/abs/2003.04807
https://arxiv.org/abs/2003.04807
https://arxiv.org/abs/2003.04807
https://arxiv.org/abs/2003.04807
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://doi.org/10.48550/ARXIV.2204.08582
https://doi.org/10.48550/ARXIV.2204.08582
https://doi.org/10.48550/ARXIV.2204.08582
https://doi.org/10.48550/ARXIV.2204.08582
https://doi.org/10.48550/ARXIV.2204.08582
https://doi.org/10.48550/ARXIV.1902.00751
https://aclanthology.org/D08-1112
https://aclanthology.org/D08-1112
https://aclanthology.org/D08-1112
https://aclanthology.org/D08-1112
https://aclanthology.org/D08-1112


Artem Shelmanov, Dmitri Puzyrev, Lyubov412
Kupriyanova, Denis Belyakov, Daniil Larionov,413
Nikita Khromov, Olga Kozlova, Ekaterina Artemova,414
Dmitry V. Dylov, and Alexander Panchenko. 2021.415
Active learning for sequence tagging with deep416
pre-trained models and Bayesian uncertainty417
estimates. In Proceedings of the 16th Conference418
of the European Chapter of the Association for419
Computational Linguistics: Main Volume, pages420
1698–1712, Online. Association for Computational421
Linguistics.422

Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov Kro-423
nrod, and Animashree Anandkumar. 2017. Deep424
active learning for named entity recognition. In425
Proceedings of the 2nd Workshop on Representa-426
tion Learning for NLP, pages 252–256, Vancouver,427
Canada. Association for Computational Linguistics.428

Aditya Siddhant and Zachary C. Lipton. 2018. Deep429
Bayesian active learning for natural language pro-430
cessing: Results of a large-scale empirical study.431
In Proceedings of the 2018 Conference on Empir-432
ical Methods in Natural Language Processing, pages433
2904–2909, Brussels, Belgium. Association for Com-434
putational Linguistics.435

Erik F. Tjong Kim Sang and Fien De Meulder.436
2003. Introduction to the CoNLL-2003 shared task:437
Language-independent named entity recognition. In438
Proceedings of the Seventh Conference on Natural439
Language Learning at HLT-NAACL 2003, pages 142–440
147.441

Akim Tsvigun, Artem Shelmanov, Gleb Kuzmin,442
Leonid Sanochkin, Daniil Larionov, Gleb Gusev,443
Manvel Avetisian, and Leonid Zhukov. 2022. To-444
wards computationally feasible deep active learning.445
In Findings of the Association for Computational446
Linguistics: NAACL 2022, pages 1198–1218, Seattle,447
United States. Association for Computational Lin-448
guistics.449

Artem Vazhentsev, Gleb Kuzmin, Artem Shelmanov,450
Akim Tsvigun, Evgenii Tsymbalov, Kirill Fedyanin,451
Maxim Panov, Alexander Panchenko, Gleb Gusev,452
Mikhail Burtsev, et al. 2022. Uncertainty estima-453
tion of transformer predictions for misclassification454
detection. In Proceedings of the 60th Annual Meet-455
ing of the Association for Computational Linguistics456
(Volume 1: Long Papers), pages 8237–8252.457

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.458
Character-level convolutional networks for text clas-459
sification. CoRR, abs/1509.01626.460

6

https://doi.org/10.18653/v1/2021.eacl-main.145
https://doi.org/10.18653/v1/2021.eacl-main.145
https://doi.org/10.18653/v1/2021.eacl-main.145
https://doi.org/10.18653/v1/2021.eacl-main.145
https://doi.org/10.18653/v1/2021.eacl-main.145
https://doi.org/10.18653/v1/W17-2630
https://doi.org/10.18653/v1/W17-2630
https://doi.org/10.18653/v1/W17-2630
https://doi.org/10.18653/v1/D18-1318
https://doi.org/10.18653/v1/D18-1318
https://doi.org/10.18653/v1/D18-1318
https://doi.org/10.18653/v1/D18-1318
https://doi.org/10.18653/v1/D18-1318
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/10.18653/v1/2022.findings-naacl.90
https://doi.org/10.18653/v1/2022.findings-naacl.90
https://doi.org/10.18653/v1/2022.findings-naacl.90
http://arxiv.org/abs/1509.01626
http://arxiv.org/abs/1509.01626
http://arxiv.org/abs/1509.01626


A Appendix 461

A.1 Query strategies 462

In the experiments, the following query strategies are used to evaluate the queries from the pool of the 463

unlabeled data and add them to the labeled pool: 464

Random sampling is used as a baseline for all experiments. It simply picks data from a dataset randomly 465

from a uniform distribution. 466

Least Confidence (LC) strategy is applied in most of the experiments. LC is a popular measure of 467

uncertainty which is defined as follows: 468

LC = 1−max
y

(P(y|x)) 469

where x is an instance of the unlabeled data and y is a class that was predicted for this data instance. 470

(Lewis and Gale, 1994) 471

Breaking Ties (BT) strategy inspects two maximal probabilities and picks instances with the minimum 472

margin between them. (Luo et al., 2005) 473

BT = min
y

(P(y1|x)− P(y2)) 474

where y1 and y2 are the first and second most likely labels respectively. 475

Maximum Normalized Log-Probability (MNLP) is a strategy proposed specifically for the NER task 476

(Tjong Kim Sang and De Meulder, 2003). It is based on sampling the instances with the lowest log 477

probability, which has been normalized by sequence length. 478

A.2 Statistical methods for comparing UE scores 479

• Wasserstein distance (WD), also known as the earth mover distance (Rubner et al., 1998), shows 480

how much “work” needs to be applied to transform one probability distribution into another. It can 481

be assumed that a low numerical value of WD means that two distrubutions are similar. 482

• Kullback–Leibler (KL) divergence (Kullback and Leibler, 1951) is a general measure of how 483

different one probability distribution is in reference to another. A low value of KL divergence means 484

the two distributions are identical in the context of the information they convey. 485

A.3 Datasets 486

We evaluate our approach on the classificaton task. We utilize three popular datasets: English AG News 487

topic classification dataset (Zhang et al., 2015), Banking77, a single-domain intent classification dataset 488

(Casanueva et al., 2020) and the English language part of the Amazon MASSIVE dataset (FitzGerald 489

et al., 2022). We also evaluate our approach on NER task. For this task, we utilize the CoNLL-2003 490

dataset (Tjong Kim Sang and De Meulder, 2003). 491

The statistics on the datasets are presented in the Table 2. 492

Dataset Train Test C

AG NEWS 120K 7.6K 4
BANKING 77 10K 3K 77

MASSIVE (EN) 11.5K 2.9K 60
CONLL-2003 14K 3.4 9

Table 2: Datasets statistics on the number of samples in the train, validation and test sets. C stands for the number
of classes or labels.

Amazon Massive dataset and Banking 77 dataset are distributed under Creative Commons Attribution 493

4.0 International Public License. 494

All models used in this research are distributed under Apache License 2.0. 495
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A.4 Datasets and active learning strategies496

As it can be observed from the Table 2, the AG News dataset contains much more samples and much less497

classes than any other dataset explored in this research. So the accuracy gains in the experiments on AG498

News can be explained by the fact that this information is quite easy to learn.499

While experimenting with active learning on these datasets, we pointed out several observations. In500

some cases, randomly picking data samples demonstrates very similar performance metrics to those setups501

that use a query strategy but never outperforms them, as it is seen in Figure 2 for the Banking77 dataset.502

However, in the cases of a more balanced and structured data with less classes random sampling performs503

much worse (for example, AG News in Figure 3).504

Two query strategies (LC and BT) have been analyzed for different classification datasets and it has505

been found that BT, which is based on selecting the samples with almost identical predictions for most506

probable classes, demonstrates a better performance on the AG News dataset than LC. At the same time,507

LC strategy, which simply queries the samples that the classifier is the least certain about, is more effective508

on Banking77 and Amazon Massive. We conclude that exploring a variety of strategies is important509

particularly when faced with a singular task accompanied by multiple datasets of diverse structures.510

A.5 Computing infrastructure511

Experiments were conducted using one NVIDIA GeForce RTX 3090 GPU with 24 GB of memory,512

hosted on a server with 2 Intel Xeon Silver 4216 CPUs at 2.10GHz with 60GB of RAM running513

Ubuntu 22.04.2 LTS. Our models were implemented using PyTorch 2.1.2. We ensured reproducibility by514

setting five random seeds for all experiments. Hyperparameter tuning was not performed, a fixed set of515

hyperparameters was used instead, which is listed in the Table 3. The average training time for each seed516

of our models was approximately 1.5 hours.517

Hyperparameter Value
Learning Rate 2e-5
Batch Size 16
Epochs 15
Dropout Rate 0

Table 3: Hyperparameter setup for all models used in the experiments. For adapter models the value of the learning
rate is 1e-4.

A.6 Tables518

Dataset WD KL divergence
AG NEWS 0.0004 0.0469

BANKING 77 0.0007 0.0071
MASSIVE (EN) 0.0006 0.01

CONLL 0.0007 0.0034

Table 4: Distance metrics computed over BALD scores obtained from full ELECTRA model and adapter ELECTRA
model. The two configurations of the models have been fine-tuned on four different datasets.

A.7 Figures519
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Figure 2: Text classification on Banking77.

Figure 3: Text classification on AG News.
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Figure 4: Named entity recognition on CoNLL 2003.
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