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Abstract
Preference-based Reinforcement Learning
(PbRL) enables agents to learn policies based
on preferences between trajectories rather than
explicit reward functions. Previous approaches to
PbRL are either experimental and successfully
used in real-world applications but lack theoreti-
cal understanding, or they have strong theoretical
guarantees but only for tabular settings. In
this work, we propose a novel practical PbRL
algorithm in the continuous domain called Hal-
lucinated Inputs Preference-based RL (HIP-RL)
which filled the gap between theory and practice.
HIP-RL reparametrizes the set of transition
models and uses hallucinated inputs to facilitate
optimistic exploration in continuous state-action
spaces by controlling the epistemic uncertainty.
We construct regret bounds for HIP-RL and show
that they are sublinear for Gaussian Process
dynamic and reward models. Moreover, we
experimentally demonstrate the effectiveness of
HIP-RL.

1. Introduction
Reinforcement Learning (RL) (Sutton & Barto, 2018)
showed promising results in recent years, in games (Tesauro
et al., 1995; Mnih et al., 2015), robotics (Kober et al., 2013),
and industrial (Wang & Usher, 2005) and medical problems
(Zhao et al., 2011). However, one of the main challenges
in using RL to solve real-world problems is in defining the
reward function, since the learned policy can often be very
sensitive to small variations. Consequently, selecting the
correct reward function becomes crucial in training a good
agent, often requiring extensive reward engineering efforts.
In general, the design is demanding mainly for two reasons.
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Figure 1. An illustration of PbRL. The agent only receives relative
preference feedback, from which it has to learn an optimal control
policy.

Firstly, determining the appropriate weighting for multiple
desired goals presents a challenge. Balancing these goals
effectively becomes crucial in achieving a satisfactory out-
come. Secondly, the mathematical definition of abstract and
vaguely defined objectives poses another obstacle (Chris-
tiano et al., 2017).

An easier way is to ask humans to provide feedback on a tra-
jectory. This is what is called Preference-based RL (PbRL)
(Wirth et al., 2017; Busa-Fekete et al., 2014). Rather than
relying on explicit reward functions, PbRL enables agents
to learn an optimal policy based on preferences between
trajectories.

Despite the success of PbRL in many tasks, including
robotics (Christiano et al., 2017) and games (Wirth &
Fürnkranz, 2013), there is still little theoretical understand-
ing. Novoseller et al. (2020); Xu et al. (2020); Pacchiano
et al. (2021) study the tabular setting and provide conver-
gence guarantees, however, their complexity bounds scale
polynomially with the cardinality of the state-action space,
making them not suitable in many practical applications.
The first work on continuous state-action space was con-
ducted by Chen et al. (2022), who prove a regret bound
when employing general function approximators to learn
both the transition and reward functions. However, their al-
gorithm is intractable to implement in practice as it requires
the construction of high-confidence sets over the transition,
preference, and policy spaces, which is generally not com-
putationally feasible.

Recent work on Model-Based RL (MBRL) using probabilis-
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tic dynamical models has shown great sample efficiency
(Chua et al., 2018). These algorithms alternate between two
phases: first, a policy is rolled out to collect data about the
transition model, then this data is used to simulate transi-
tions and optimize a policy over them. One of the reasons
for the success of recent MBRL algorithms can be attributed
to the ability to distinguish aleatoric and epistemic uncer-
tainty when learning the model (Gal et al., 2016). This
was however not done when optimizing the policy until re-
cently. Curi et al. (2020); Kakade et al. (2020); Abeille &
Lazaric (2020); Neu & Pike-Burke (2020) use the principle
of Optimism-in-the-Face-of-Uncertainty (OFU) to perform
provable optimistic exploration in MBRL. For example,
Curi et al. (2020) augments the action space of the agent
with an additional hallucinated control that allows the agent
to control the epistemic uncertainty in the next state. In our
work, we extended these concepts from RL to the PbRL
setting.

Contributions In this paper, we investigate regret mini-
mization for PbRL in continuous state-action spaces, with
an unknown dynamical model and preference function.

This paper makes the following contributions:

1. We propose a novel algorithm for PbRL in the con-
tinuous state-action space setting called Hallucinated
Inputs Preference-based RL (HIP-RL). By leveraging
the concept of hallucinated inputs (Curi et al., 2020),
our algorithm enables optimistic exploration in contin-
uous domains.

2. We provide rigorous theoretical analysis and regret
bounds for HIP-RL (Theorem 4.2). Specifically, we
demonstrate sublinear regret bounds for Gaussian Pro-
cess (GP) dynamics models and reward functions (The-
orem 4.3).

3. We provide an experimental evaluation of our algo-
rithm in Section 5 and show that even with a limited
amount of preference feedbacks, it can perform as well
as traditional RL algorithm.

To the best of our knowledge, HIP-RL is the first practical al-
gorithm for PbRL in continuous domains with regret-bound
guarantees.

1.1. Related Work

Preference-based RL Initially, the problem of PbRL has
been tackled experimentally with success (Busa-Fekete
et al., 2014; Wirth et al., 2016; 2017; Christiano et al., 2017).
Only recently, there have been works analyzing the PbRL
framework theoretically.

Novoseller et al. (2020) proposes an algorithm for PbRL
based on Double Posterior Sampling (DPS) and proves

asymptotic sublinear regret bounds for the finite horizon set-
ting in tabular MDPs. Xu et al. (2020) shows near-optimal
sample complexity in their finite-time analysis for PbRL.
Pacchiano et al. (2021) proposes a formal framework to
study the PbRL problem with a linearly parametrized re-
ward function. Moreover, they present and analyze two
algorithms, when the transition model is known and un-
known. The authors show sublinear regret bounds for both
algorithms.

PbOP (Chen et al., 2022) extends the discrete state-action
space results to the infinite one, proposing an algorithm to
learn the preference and transition function with a general
function approximation. The regret of the proposed algo-
rithm is shown to be sublinear in the number of episodes
(in the general case). Moreover, the authors show that the
bound is tight with respect to the feature dimension and the
number of episodes in the linear setting. Unfortunately, the
algorithm is intractable in practice.

PbRL is also closely related to the dueling bandits setting
(Yue et al., 2012; Zoghi et al., 2015), which can be regarded
as a particular instance of PbRL with only one state and
1-step horizon.

Model-Based RL Thanks to its sample efficiency, MBRL
can be applied to many real-world settings for complex
decision-making (Deisenroth et al., 2013). For example,
Kaiser et al. (2019) propose SimPLe, a model-based deep
RL algorithm to efficiently learn how to play Atari games,
Chua et al. (2018) uses uncertainty-aware deep network
dynamics models to solve high-dimensional continuous-
control problems. However, all these works perform greedy
exploitation with the current policy, which is in general
sub-optimal.

Curi et al. (2020) propose H-UCRL, which reduces opti-
mistic exploration to greedy exploitation by parametrizing
the model space and augmenting the control space with
hallucinated actions, which allow the agent to control the
epistemic uncertainty in the next state. Kakade et al. (2020)
prove tight confidence bounds for the setting of Curi et al.
(2020). Abeille & Lazaric (2020) proved that the planning
problem for linear quadratic regulators (LQR) (Mania et al.,
2019) can be solved efficiently. Neu & Pike-Burke (2020),
also reduce optimistic exploration to greedy exploitation
using reward bonuses.

Liu et al. (2023) propose MoP-RL, a PbRL algorithm that
combines MBRL and preference learning. The authors
experimentally show the effectiveness of their algorithm.

2. Preliminaries
We consider an undiscounted, finite horizon Markov Deci-
sion Process M defined by a tuple M = (S,A,P, r,H),
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where S ⊆ Rp is the state space, A ⊆ Rq is the action
space, P : S ×A → ∆(S)1 are the transition probabilities,
r : S × A → R is the latent reward function, unobserved
by the agent during training, and H is the horizon. Given
s ∈ S,a ∈ A, the dynamics can be written as

st+1 = f(st,at) + ωt (1)

where f : S × A → S is the true transition function, and
ωt ∈ Rp is i.i.d., additive noise.

Assumption 2.1. The true transition function f is Lf -
Lipschitz continuous and for all time steps t ≥ 0, the noise
ωt is element-wise σ-sub-Gaussian.

This is a standard assumption when using Gaussian Process
models (Srinivas et al., 2009; Chowdhury & Gopalan, 2019;
Curi et al., 2020).

We study the episodic setting with K episodes, where each
episode has a horizon H . We aim to learn a deterministic,
time-dependent control policy πt : S → A from a set Π
that selects action at = πt(st), from preference feedback
over trajectories.

Let us first define some notations for our analysis. Exe-
cuting policy π on the environment starting from state s0
yields a trajectory τ = (s0,a0, s1,a1, . . . , sH−1,aH−1).
We denote the set of all possible trajectories of length H by

ΓH = {τ = (s0,a0, . . . , sH−1,aH−1) | st ∈ S,at ∈ A} .

Then, given a trajectory τ at iteration k, we will denote each
state and action at time step t as st,k and at,k. Instead, given
two trajectories τ1, τ2, we use a superscript to denote the
trajectory to which each state and action belongs, i.e., s1t,k
and a1t,k belong to trajectory τ1 (similarly for τ2). When
the episode k is not important for our analysis, we simplify
notation by simply using st = st,k and sit = sit,k (similarly
for actions).

Trajectory Preference Given two trajectories τ1, τ2 ∈
ΓH , we define the preference function g : ΓH × ΓH → R
as the utility difference of τ1 and τ2:

g(τ1, τ2; r) =

H−1∑
t=0

r(s1t ,a
1
t )− r(s2t ,a

2
t ),

which is the difference in the cumulative rewards obtained
over the trajectories. This preference feedback is effectively
what the learner receives from the environment; the learner
has no access to the true reward feedback, but only to a
measure of how much trajectory performances differ.

1∆(S) denotes the probability distribution over S.

Policy Preference Given two policies π1, π2 ∈ Π, we
define the preference function over policies, overloading the
notation of g, as

g(π1, π2; f, r) = E
τ1∼(f,π1),τ2∼(f,π2)

[g(τ1, τ2; r)] , (2)

where τi ∼ (f, πi) denotes that τi is sampled from the
environment with dynamics f using policy πi.

Assumption 2.2 (Optimality). There exists a policy π∗ ∈ Π
such that

g(π∗, π; f, r) ≥ 0, ∀π ∈ Π,

so that the objective of regret minimization can be well-
defined.

Objective We aim to find a control policy that minimizes
cumulative regret, defined as

Reg(K) =

K∑
k=1

reg(k) =

K∑
k=1

g(π∗, πk; f, r), (3)

where reg(k) = g(π∗, πk; f, r) is the regret at iteration k.

2.1. Hallucinated Upper Confidence Reinforcement
Learning

We briefly review the Hallucinated Upper Confidence Re-
inforcement Learning (H-UCRL) algorithm by Curi et al.
(2020) since we will use ideas from it.

Assumption 2.3 (Calibrated Dynamics Model). The learned
dynamics model is calibrated with respect to the true dy-
namics f , i.e., there exists a sequence of positive βk such
that, with probability (1 − δ), for all k ≥ 0 and for all
s,a ∈ S ×A, it holds that:

|f(s,a)− µk(s,a)| ≤ βkσk(s,a),

element-wise, where σk(·) = diag(Σk(·)).

Model Learning In MBRL, the agent selects a policy πk

in each episode and executes it for H steps. During each
episode, the agent collects data Dk = {(st,at, st+1)}H−1

t=0 .
The collected data, D1:k = ∪k

i=1Di, can then be used
to estimate a model f̃ using a frequentist model with
mean and covariance estimates µk(s,a) and Σk(s,a), or
a Bayesian model with posterior p(f̃ | D1:k), defining
µk(·) = Ef̃∼p(f̃ |D1:k)

[f̃(·)] and Σ2
k(·) = Var[f̃(·)].

Exploration Strategy The authors propose a novel ex-
ploration strategy to optimistically explore the environment
and maximize the cumulative reward

J(f̃ , π) = E
ω̃0:H−1

[
H−1∑
t=0

r(s̃t, ãt) | s0, π
]
, (4)
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where s̃t+1 = f̃(s̃t, π(s̃t)) + ω̃t.

H-UCRL is a variant of the Upper Confidence Reinforce-
ment Learning (UCRL) algorithm (Auer et al., 2008) that
reparametrizes the statistical model of the dynamics at each
iteration k as

f̃(s,a) = µk−1(s,a) + βk−1σk−1(s,a)η(s,a), (5)

where η : S × A → [−1, 1]
p. Then, the policy at each

iteration k is

πk = argmax
π∈Π

max
η∈[−1,1]p

J(f̃ , π). (6)

The authors show that the optimization problem in H-UCRL
can be solved efficiently by a greedy oracle that acts on both
the action and the hallucinated control η. In practice, this
is implemented with a combination of offline policy search
and online planning.

3. HIP-RL: Hallucinated Inputs
Preference-based Reinforcement Learning

We propose a novel practical algorithm called Hallucinated
Inputs Preference-based RL (HIP-RL) that combines the
ideas of H-UCRL and preference-based reinforcement learn-
ing. The main idea is to learn a dynamics model f̃ and a
reward function r̂ from the set of trajectories T and pref-
erences P and then use these for the policy search and
optimistic planning in H-UCRL.

We will show that the uncertainty induced by the learned
reward function can be bounded. Therefore we can prove
regret bounds the proposed algorithm.

Transition Model Learning We adopt the approach used
in the H-UCRL algorithm (Curi et al., 2020) to learn the
transition model. In each episode, the agent collects tran-
sitions while following the current policy πk and adds this
information to the set of trajectories T . Using this data,
we estimate a model f̃ . We assume a calibrated dynamics
model with respect to the true dynamics f .

Reward Function Learning One possible interpretation
of the preference function g is that it is a distance function
between two trajectories. Therefore, we can use the prefer-
ence function to learn a reward function r̂ that is consistent
with the preferences. We can also interpret the reward esti-
mate r̂ as a predictor of the preference function, i.e., human
preferences can be viewed as arising from some latent re-
ward function.

Assumption 3.1 (Calibrated Preference Function). The
preference function induced by the reward function r̂ is
calibrated with respect to the true preference function g,
i.e., there exists a sequence of positive αk such that, with

Algorithm 1 HIP-RL

Initialize π0, s0, f̃ , r̂
Initialize a set of preferences P = ∅
Initialize a set of trajectories T = {τ0 ∼ (f, π0)}
for k = 1, . . . ,K do
πk, ηk = PolicySearch(f̃ , r̂, πk−1)
τk = [ ]
for t = 1, . . . ,H do
τk = τk.append(st−1,k)

(at−1,k,a
′
t−1,k) = Plan(st−1,k; f̃ , r̂)

st,k = f(st−1,k,at−1,k) + ωt−1,k

τk = τk.append(at−1,k)
end for
Sample τ ∼ T
Add new trajectory T = T ∪ {τk}
Add new preference P = P ∪ {g(τk, τ ; r)}
Update reward model r̂ = EstReward(P, T )
Update transition model f̃ = EstDynamics(T )

end for

probability (1−δ), for all k ≥ 0 and all τ, τ ′ ∈ ΓH , it holds
that:

|g(τ, τ ′; r)− µk(τ, τ
′; r̂)| ≤ αkσk(τ, τ

′; r̂),

where µk(τ, τ
′; r̂) and σk(τ, τ

′; r̂) are the mean and stan-
dard deviation of the predicted preference g(τ, τ ′; r̂).

One possible approach to learning the reward function is
to minimize the mean squared error between the predicted
preferences and the observed preferences. In particular,
we can learn a reward function r̂ by solving the following
optimization problem

min
r̂

1

|P |
∑

(g,τ,τ ′)∈P

(g(τ, τ ′; r)− g(τ, τ ′; r̂))
2
, (7)

where (g, τ, τ ′) ∈ P is a shorthand for the preference over
trajectories g(τ, τ ′; r) and the trajectories τ and τ ′ in the set
of preferences P . Note that the mean squared error is only
one possible choice of the loss function. We can also use
other loss functions for regression problems.

Offline Policy Search and Online Planning Having es-
timated the transition model f̃ and the reward function
r̂, we can solve the optimization in (6) to obtain the
next policy πk and hallucinated control ηk. Curi et al.
(2020) prove that it is sufficient to optimize over Lipschitz-
continuous bounded functions, therefore one can optimize
over Lipschitz-continuous η(·). This allows us to use a
greedy oracle that acts on both the action and the halluci-
nated control η. In practice, this is implemented with a
combination of offline policy search and online planning
(Lowrey et al., 2018). We note in Algorithm 1 that in the
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planning step, e.g., using Model Predictive Control (MPC)
(Morari & Lee, 1999), we obtain both the true action a and
the hallucinated action a′, but during execution, we only
execute the true action a.

4. Theoretical Guarantees
Our objective is to learn a policy that performs as well as the
optimal policy π∗. One way to measure the performance of
a policy is to measure the cumulative regret Reg(K), which
quantifies how much the optimal policy π∗ is preferred
over the learned policy. If we show that the cumulative
regret Reg(K) is sublinear in K, then we can know that
the preference of the optimal policy over the learned policy
vanishes as K goes to infinity. In other words, the learned
policy will eventually perform as well as the optimal policy.

Assumption 4.1 (Lipschitz Continuity). We assume that the
preference function g is Lg Lipschitz continuous, the policy
π is Lπ Lipschitz continuous, the functions µk and σk are
Lµf

and Lσf
Lipschitz continuous, and the functions µk

and σk are Lµg
and Lσg

Lipschitz continuous.

Transition Function and Reward Function Complexity
We define the complexity of the transition function and
reward function as

IfK(S,A) = max
τ1,...,τK∈ΓH

K∑
k=1

∑
s,a∈τk

∥σk−1(s,a)∥22 (8)

and

IgK(ΓH ,ΓH) = max
(τ1,τ

′
1),...,(τK ,τ ′

K)
∈ΓH×ΓH

K∑
k=1

|σk−1(τk, τ
′
k; r̂)|

2
.

(9)

Theorem 4.2. Under Assumptions 2.1, 2.2, 2.3, 3.1, and
4.1, for any K ≥ 1, with probability (1− δ), the regret of
Algorithm 1 is at most

Reg(K) ≤ O
(√

2K

[
HL1

√
2HIfK(S,A)

+ L2

√
IgK(ΓH ,ΓH)

])
.

(10)

We will provide a proof sketch of the Theorem 4.2 in this
section. The full proof can be found in Appendix A.

Proof sketch. Let us first note that we can write the episodic

regret in Equation (3) as

reg(k) = g(π∗, πk; f, r) (11)

= g(π∗, πk; f, r)− g(π∗, πk; f̃ , r) (12)

+ g(π∗, πk; f̃ , r)− g(π∗, πk; f̃ , r̂)

+ g(π∗, πk; f̃ , r̂)

≤
∣∣∣g(π∗, πk; f, r)− g(π∗, πk; f̃ , r)

∣∣∣ (13)

+
∣∣∣g(π∗, πk; f̃ , r)− g(π∗, πk; f̃ , r̂)

∣∣∣
+ g(π∗, πk; f̃ , r̂).

We will then bound each of the terms in Equation (13)
separately. By Lemma A.3, we have∣∣∣g(π∗, πk, f, r)− g(π∗, πk, f̃ , r)

∣∣∣
≤ βk−1L̄

H−1
f Lg

√
(1 + Lπ)E

ω
[A+B] ,

(14)

where

A =

H−1∑
t=0

t−1∑
j=0

∥∥σk−1(s
∗
j,k)
∥∥
2
,

B =

H−1∑
t=0

t−1∑
j=0

∥∥σk−1(s
k
j,k)
∥∥
2
,

and s∗j,k and skj,k are the states visited by the optimal policy
and the learned policy at time k respectively.

By Lemma A.4, we have∣∣∣g(π∗, πk, f̃ , r)− g(π∗, πk, f̃ , r̂)
∣∣∣

≤ 2αk−1 E
ω
[|σk−1(τ

∗, τk; r̂)|] ,
(15)

where τ∗ indicates that the trajectory was obtained by exe-
cuting the optimal policy and τk is obtained from πk.

Lastly, by Lemma A.5, we have

g(π∗, πk, f̃ , r̂) ≤ 0. (16)

Using Lemma A.7, we can then bound the squared regret at
time k, then using this bound, we can obtain the final bound
on the cumulative regret by Lemma A.8 and Corollary A.9.

Gaussian Process Model In order to prove that the
learned policy indeed performs as well as the optimal policy,
we need to show that the regret in Theorem 4.2 is sublinear
in K. Equivalently, we need to show that the complexity
of the transition function and the reward function is sublin-
ear in K. We will show that this is the case when we use
Gaussian Process dynamics models and reward functions.



HIP-RL: Hallucinated Inputs for Preference-based Reinforcement Learning in Continuous Domains

Table 1. Performance of HIP-RL and standard PPO agent. Each
algorithm was evaluated by averaging 10 rollouts of the model.

ENVIRONMENT HIP-RL PPO

INVPENDULUM 1000.0 ± 0.0 1000.0 ± 0.0
HALFCHEETAH 2638.2 ± 133.5 1877.5 ± 58.7

Theorem 4.3. Under Assumptions 2.1, 2.2, 2.3, 3.1, and
4.1, for any K ≥ 1, with probability (1− δ), the regret of
Algorithm 1 is at most

Reg(K) ≤ O
(√

4K(p+ q)

[
L1H

2p
√

log(pHK)

+ L2H
√

log(K)

]) (17)

if the transition and the reward models are learned using
Gaussian Processes with squared exponential kernels.

Proof. The proof is a direct consequence of Lemma 17
in (Curi et al., 2020) and the bounds on the information
capacity of Gaussian Processes with squared exponential
kernels by (Srinivas et al., 2009; Krause & Ong, 2011).

5. Experimental Evaluation
We present the findings of a series of initial experiments2,
where we evaluate the performance of HIP-RL on two Mu-
joco environments (Todorov et al., 2012). In our imple-
mentation, we model the reward function as a probabilistic
neural network and the transition model as a 5-head prob-
abilistic ensemble. The policy search step is performed by
using a modified version of the Proximal Policy Optimiza-
tion (PPO) algorithm (Schulman et al., 2017) to support
hallucinated inputs, our learned transition dynamics and
reward function. Further details on the choice of hyperpa-
rameters can be found in Appendix B.

During our experiments, we include a buffer consisting of
5 episodes, where a random agent is deployed to gather
trajectory and preference data. As depicted in Figure 2,
we observe that with less than 30 preferences, our method
successfully learns effective behavior in both the Inverted-
Pendulum and Half-Cheetah environments.

Furthermore, we compare the performance of our agents
to that of two agents trained using PPO with the actual
dynamics and reward functions. The results presented in
Table 1 demonstrate that we surpass the performance of
PPO trained for 1× 106 steps.

2The open-source implementation can be found at https:
//github.com/calvincbzhang/hip-rl.

6. Conclusion and Future Work
In this paper, we introduced a novel Preference-based RL
(PbRL) algorithm in continuous state-action spaces called
Hallucinated Inputs Preference-based RL (HIP-RL). HIP-
RL leverages the concept of hallucinated inputs (H-UCRL)
to enable optimistic exploration and achieve convergence
guarantees. We provided sublinear regret bounds for Gaus-
sian Process (GP) dynamics and reward functions, bridg-
ing the gap between preference-based RL and continuous
control tasks. Finally, we demonstrate the feasibility and
efficiency of implementing our algorithm by showcasing its
ability to learn a high-quality policy with a minimal number
of preference feedbacks required.

Some interesting future research directions include investi-
gating the setting in which comparisons are not only pair-
wise, which would allow using previously seen trajectories
more efficiently. Another direction for future research con-
cerns non-linear reward function, by using tools from con-
cave utility RL (Hazan et al., 2019). On the practical side,
similar algorithms could be developed and tested in real-
world settings, where alignment with human objectives is of
particular importance. Our contributions pave the way for
practical implementations of PbRL in real-world scenarios
such as autonomous driving and robotic manipulation.
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A. Proof of Theorem 4.2
We will first prove a few ancillary lemmas that will be used in the proof of the main theorem.

Lemma A.1 (Lemma 1 in Curi et al. (2020)). Under Assumption 2.3, for any sequence generated by the true system in
Equation (1), there exists a function η : Rp → [−1, 1]

p such that st,k = s̃t,k if ω = ω̃.

Lemma A.2 (Lemma 4 in Curi et al. (2020)). Under Assumptions 2.1, 2.3 and 4.1, let L̄f = 1+Lfc+2βk−1Lσf

√
(1 + Lπ),

with Lfc = Lf

√
(1 + Lπ). Then, for all iterations k > 0, any function η : Rp × Rq → [−1, 1]

p and any sequence ωt with
ω̃t = ωt, π ∈ Π, with 1 ≤ t ≤ H , we have that

∥st,k − s̃t,k∥2 ≤ 2βk−1L̄
H−1
f

t−1∑
j=0

∥σk−1(sj,k)∥2 . (18)

Lemma A.3. Let π1 = π∗, π2 = πk ∈ Π, then under the assumptions of Theorem 4.2, we have that with probability at least
(1− δ),

∣∣∣g(π1, π2; f, r)− g(π1, π2; f̂ , r)
∣∣∣ ≤ 2βk−1L̄

H−1
f Lg

√
(1 + Lπ)E

ω

∑
i=1,2

H−1∑
t=0

t−1∑
j=0

∥∥σk−1(s
i
j,k)
∥∥
2

 . (19)

Proof. At episode k, consider π1 = π∗, π2 = πk ∈ Π, then we have that (dropping the dependence on k in the following
derivation to lighten the notation)∣∣∣g(π1, π2; f, r)− g(π1, π2; f̃ , r)

∣∣∣ = ∣∣∣∣∣ E
τ̃1∼(f̃ ,π1),τ̃2∼(f̃ ,π2)

[g(τ̃1, τ̃2; r)]− E
τ1∼(f,π1),τ2∼(f,π2)

[g(τ1, τ2; r)]

∣∣∣∣∣ (20)

=
∣∣∣Ẽ
ω
[g(τ̃1, τ̃2; r)]− E

ω
[g(τ1, τ2; r)]

∣∣∣ (21)

=
∣∣∣ E
ω̃=ω

[g(τ̃1, τ̃2; r)− g(τ1, τ2; r)]
∣∣∣ (22)

≤ E
ω̃=ω

|[g(τ̃1, τ̃2; r)− g(τ1, τ2; r)]| , (23)

where the second and third equality hold by Lemma A.1 and the inequality follows from Jensen’s inequality.

By Lg-Lipschitz continuity of the preference function, we have

|[g(τ̃1, τ̃2; r)− g(τ1, τ2; r)]| ≤ Lg ∥(τ̃1 − τ1, τ̃2 − τ2)∥2 (24)

= Lg

√
∥τ̃1 − τ2∥22 + ∥τ̃2 − τ2∥22 (25)

= Lg

√∑
i=1,2

∥∥(s̃i0, ãi0, . . . , s̃iH−1, ã
i
H−1)− (si0,a

i
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i
H−1,a

i
H−1)

∥∥2
2

(26)

= Lg

√∑
i=1,2

∥∥s̃i0 − si0, πi(s̃i0)− πi(si0), . . . , s̃
i
H−1 − siH−1, πi(s̃iH−1)− πi(siH−1)

∥∥2
2

(27)

= Lg

√∑
i=1,2

∥∥s̃i0 − si0
∥∥2
2
+
∥∥πi(s̃i0)− πi(si0)

∥∥2
2
+ · · ·+

∥∥πi(s̃iH−1)− πi(siH−1)
∥∥2
2

(28)

≤ Lg
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∥∥s̃i0 − si0
∥∥2
2
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∥∥s̃i0 − si0
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2
+ · · ·+ Lπ
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∥∥2
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(30)

≤ Lg

∑
i=1,2
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t=0

√
(1 + Lπ)

∥∥s̃it − sit
∥∥
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, (31)
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where Equation (29) follows from Lπ-Lipschitz continuity of the policy.

Hence,

∣∣∣g(π1, π2, f, r)− g(π1, π2, f̃ , r)
∣∣∣ ≤ E

ω

Lg

∑
i=1,2

H−1∑
t=0

√
(1 + Lπ)

∥∥s̃it − sit
∥∥
2

 . (32)

Now, using Lemma A.2, we have

∣∣∣g(π1, π2, f, r)− g(π1, π2, f̃ , r)
∣∣∣ ≤ 2βk−1L̄

H−1
f Lg

√
(1 + Lπ)E

ω

∑
i=1,2

H−1∑
t=0

t−1∑
j=0

∥∥σk−1(s
i
j,k)
∥∥
2

 , (33)

concluding the proof.

Lemma A.4. Let π1 = π∗, π2 = πk ∈ Π, then under the assumptions of Theorem 4.2, we have that with probability at least
(1− δ), ∣∣∣g(π1, π2; f̂ , r)− g(π1, π2; f̂ , r̂)

∣∣∣ ≤ 2αk−1 E
ω

[∣∣σgk−1
(τ1, τ2; r̂)

∣∣] . (34)

Proof. At episode k, consider π1 = π∗, π2 = πk ∈ Π, then we have that (dropping the dependence on k in the following
derivation to lighten the notation)∣∣∣g(π1, π2; f̃ , r)− g(π1, π2; f̃ , r̂)

∣∣∣ = ∣∣∣E
ω
[g(τ1, τ2; r)− g(τ1, τ2; r̂)]

∣∣∣ (35)

≤ E
ω
|g(τ1, τ2; r)− g(τ1, τ2; r̂)| . (36)

Using Assumption 3.1, we have

|g(τ1, τ2; r)− g(τ1, τ2; r̂)| = |g(τ1, τ2; r)− µk−1(τ1, τ2; r̂)− αk−1σk−1(τ1, τ2; r̂)| (37)
≤ |g(τ1, τ2; r)− µk−1(τ1, τ2; r̂)|+ αk−1 |σk−1(τ1, τ2; r̂)| (38)
≤ 2αk−1 |σk−1(τ1, τ2; r̂)| . (39)

Therefore, we have ∣∣∣g(π1, π2; f̃ , r)− g(π1, π2; f̃ , r̂)
∣∣∣ ≤ 2αk−1 E

ω
[|σk−1(τ1, τ2; r̂)|] , (40)

which concludes the proof.

Lemma A.5. Let π∗ ∈ Π be the optimal policy and πk be the policy at iteration k, then

g(π∗, πk; f̃ , r̂) ≤ 0. (41)

Proof. We simply observe that πk is the optimal policy for the estimated model and reward function at iteration k. Hence,
its preference g(πk, π, f̃ , r̂) ≥ 0,∀π ∈ Π. This holds in particular for π = π∗, so we have that g(π∗, πk, f̃ , r̂) ≤ 0.

Corollary A.6. Let π1 = π∗, π2 = πk ∈ Π, then under the assumptions of Theorem 4.2, we have that with probability at
least (1− δ),

reg(k) = g(π1, π2; f, r) (42)

≤ 2βk−1L̄
H−1
f Lg

√
(1 + Lπ)E

ω

∑
i=1,2

H−1∑
t=0
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j=0
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2

+ 2αk−1 E
ω
[|σk−1(τ1, τ2; r̂)|] . (43)
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Lemma A.7. Let π1 = π∗, π2 = πk ∈ Π, then under the assumptions of Theorem 4.2, we have that with probability at least
(1− δ),

reg(k)2 ≤
∑
i=1,2

4H3L2
1 E
ω

[
H−1∑
t=1

∥∥σk−1(s
i
t,k)
∥∥2
2

]
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ω

[
|σk−1(τ1, τ2; r̂)|2

]
, (44)

where L1 = 2βk−1L̄
H−1
f Lg

√
(1 + Lπ) and L2 = 2αk−1.

Proof. By Corollary A.6, we have

reg(k) = g(π∗, πk; f, r) (45)

≤ 2βk−1L̄
H−1
f Lg

√
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ω
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ω
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E
ω
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ω
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2
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ω
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Therefore, we have

reg(k)2 ≤

∑
i=1,2

HL1 E
ω
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t=0

∥∥σk−1(s
i
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∥∥
2
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ω
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ω
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≤
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4H2L2
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ω
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ω
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∑
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ω
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+ 2L2
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ω
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|σk−1(τ1, τ2; r̂)|2
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where we used Jensen’s inequality and that for any n real numbers x1, . . . , xn ∈ R, it the AM-QM (arithmetic mean-
quadratic mean) inequality holds, i.e., (

n∑
i=1

xi

)2

≤
n∑

i=1

nx2
i . (53)

Lemma A.8. Let π1 = π∗, π2 = πk ∈ Π, then under the assumptions of Theorem 4.2, we have that with probability at least
(1− δ),

Reg(K)2 ≤ K

K∑
k=1

∑
i=1,2

4H3L2
1 E
ω

[
H−1∑
t=0
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i
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∥∥2
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]
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2 E
ω

[
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] . (54)
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Proof. By the definition of cumulative regret, the AM-QM inequality and Lemma A.7, we have

Reg(K)2 =

(
K∑

k=1

reg(k)

)2

(55)

≤ K

K∑
k=1

reg(k)2 (56)

≤ K

K∑
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∑
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1 E
ω
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i
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2
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+ 2L2

2 E
ω
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] . (57)

Corollary A.9. Let π1 = π∗, π2 = πk ∈ Π, then under the assumptions of Theorem 4.2, we have that with probability at
least (1− δ),

Reg(K)2 ≤ 2K
(
2H3L2

1I
f
K(S,A) + L2

2I
g
K(ΓH ,ΓH)

)
. (58)

Theorem 4.2. Under Assumptions 2.1, 2.2, 2.3, 3.1, and 4.1, for any K ≥ 1, with probability (1 − δ), the regret of
Algorithm 1 is at most

Reg(K) ≤ O
(√

2K

[
HL1

√
2HIfK(S,A) + L2

√
IgK(ΓH ,ΓH)

])
. (10)

Proof. This is a direct consequence of Corollary A.9.

B. Experimental Details
Transition Model We employ an ensemble of probabilistic neural networks as in Chua et al. (2018). We train each of the
5 networks in the ensemble using Adam (Kingma & Ba, 2014) with a learning rate of 1× 10−3. The network architecture
consists of a two-layer network with 32 units and Rectified Linear Units (ReLU) activations. Figure 3 shows the deviation
of the predicted state from the true observed state.
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Figure 3. Transition function deviation for Inverted-Pendulum and Half-Cheetah (averaged over 4 runs).
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Table 2. Hyperparameters for InvertedPendulum-v4

Parameter Value

learning rate 0.00025
n steps 500
batch size 256
n epochs 5
gamma 0.999
gae lambda 0.9
clip range 0.4
ent coef 1.5e-7
vf coef 0.2
max grad norm 0.3
total timesteps 100000

Table 3. Hyperparameters for HalfCheetah-v4

Parameter Value

learning rate 1.0633e-05
n steps 512
batch size 64
n epochs 20
gamma 0.98
gae lambda 0.92
clip range 0.1
ent coef 0.000401762
vf coef 0.58096
max grad norm 0.8
total timesteps 100000

Reward Model Similarly to the transition model, we use a probabilistic neural network with the same architecture for our
reward function. We use again the Adam optimizer and a learning rate of 1× 10−2. Since we do not have access to the true
rewards, we optimize the mean squared error on the preferences induced by the true and learned reward functions,

L(r̂) = 1

|P |
∑

(g,τ,τ ′)∈P

(g(τ, τ ′; r)− g(τ, τ ′; r̂))
2 (59)

=
1

|P |
∑

(g,τ,τ ′)∈P

 ∑
(s,a)∈τ

(r(s,a)− r̂(s,a))−
∑

(s′,a′)∈τ ′

(r(s′,a′)− r̂(s′,a′))

2

. (60)

Figure 4 shows the deviation of the preference induced by the predicted reward from the true preference.
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Figure 4. Preference function deviation for Inverted-Pendulum and Half-Cheetah (averaged over 4 runs).

Policy Search and Planning We use a modified version of PPO (Schulman et al., 2017) from Stable Baselines 3 (Raffin
et al., 2021) to learn an optimal policy at every step on the learned transition model and reward function. This required a
modification of the two Mujoco environments taken into consideration. We do this by modifying and extending the class
definition of each environment provided in the Gymnasium library, an extension of OpenAI Gym (Brockman et al., 2016).
Tables 2 and 3 provide the hyperparameters used for our experiments. For the planning step, we simply sample from the
action distribution given by the learned policy.


