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ABSTRACT

Conventional pipeline of multimodal learning consists of three stages, including
encoding, fusion, and decoding. Most existing methods under missing modality
condition focus on the first stage and aim to learn the modality invariant repre-
sentation or reconstruct missing features. However, these methods rely on strong
assumptions (i.e., all the pre-defined modalities are available for each input sample
during training and the number of modalities is fixed). To solve this problem, we
propose a simple yet effective method called Interaction Augmented Prototype
Decomposition (IPD) for a more general setting, where the number of modalities is
arbitrary and there are various incomplete modality conditions happening in both
training and inference phases, even there are unseen testing conditions. Different
from the previous methods, we improve the decoding stage. Concretely, IPD jointly
learns the common and modality-specific task prototypes. Considering that the
number of missing modality conditions scales exponentially with the number of
modalities O(2n) and different conditions may have implicit interaction, the low-
rank partial prototype decomposition with enough theoretical analysis is employed
for modality-specific components to reduce the complexity. The decomposition
also can promote unseen generalization with the modality factors of existing condi-
tions. To simulate the low-rank setup, we further constrain the explicit interaction
of specific modality conditions by employing disentangled contrastive constraints.
Extensive results on the newly-created benchmarks of multiple tasks illustrate the
effectiveness of our proposed model.

1 INTRODUCTION

Multimodal learning is recently one of the increasingly popular yet challenging tasks involved in
both computer vision and natural language processing Ben-Younes et al. (2017); Do et al. (2019);
Gabeur et al. (2020); Liu et al. (2018). The target of multimodal learning is to utilize complementary
information contained in multimodal data for improving the performance of various tasks. Many
superior approaches on multimodal learning have been well developed in an ideal situation. However,
a common assumption underlying these approaches is the completeness of modality (i.e., the full
modalities are available in both training and testing data). In practice, such an assumption may not
always hold in real world due to some overwhelming reasons. For example, some uploaded YouTube
videos do not have audio tracks, also, the black screen may occur during the broadcast, leading to the
lack of visual modality.

Although a bunch of endeavors are devoted to developing effective methods to cope with the missing
modality conditions in the training and inference stages, there is no unified paradigm that takes into
account all possible scenarios. For instance, Pham et al. (2019); Zhao et al. (2021) only consider the
incompleteness of testing data, however, obtaining a lot of complete data for training is extremely
labor-intensive. Ma et al. (2021) formulates a new setting that considers the incompleteness of
training data, while there are only two modalities used. As we know, due to the quick developments
of feature-extraction skills, one data sample may have more than two kinds of modality representation.

In this paper, we focus on a more general setting (as showin in Fig. 1), where the number of modalities
is arbitrary and there are various incomplete modality conditions, to systematically study the missing
modality problem. We propose a simple yet effective method called Interaction Augmented Prototype
Decomposition (IPD) to capture the universality and particularity of different modality conditions
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(including both complete and incomplete conditions). To the best of our knowledge, we try to
study generalizable missing modality learning from the decoding perspective for the first time.
Following Zhou et al. (2021; 2022), we treat the weights of the standard linear classifier as task
prototypes. Since different modality conditions correspond to different task prototypes, training
multiple models separately for all the conditions is time-consuming, IPD jointly learns the common
and modality-specific prototypes. Considering that the number of missing modality conditions
scales exponentially with the number (n) of modalities O(2n) and different conditions may have
implicit interaction, the low-rank partial prototype decomposition with enough theoretical analysis is
employed for modality-specific component to reduce the complexity. To simulate the low-rank setup,
we further constrain the explicit interaction of specific modality conditions by employing disentangled
contrastive constraints. We conduct extensive experiments on the newly-created benchmarks of
multiple tasks, the experimental results show that IPD could achieve competitive results compared
with the state-of-the-art methods of conventional multimodal learning. The main contributions can be
summarized as follows:

• We propose a novel method called Interaction Augmented Prototype Decomposition (IPD) for
generalizable missing modality learning, which jointly learns the common and modality specific
prototypes. To the best of our knowledge, it is the first time to improve the decoding stage.

• Considering that the number of missing modality conditions scales exponentially with the number
(n) of modalities O(2n) and different conditions may have implicit interaction, the low-rank
partial prototype decomposition with is employed to reduce the complexity. The decomposition
also can promote unseen generalization with the modality factors of existing conditions.

• We constrain the explicit interaction of specific modality conditions by employing disentangled
contrastive constraints.

• We conduct low-rank ensemble learning to enhance the performances of the conditions with
relatively few modalities.

2 RELATED WORK

2.1 CONVENTIONAL MULTIMODAL LEARNING

M1 M2 M3

Training Testing

Figure 1: An example of generalizable miss-
ing modality learning, where M1,M2,M3

denote three modalities. There are unseen
modality combinations in the testing stage.

Multimodal learning utilizes complementary infor-
mation contained in multimodal data to improve the
performance of various tasks. The key point of this
area is multimodal fusion. Early fusion methods are
mainstream and integrate features of different modal-
ities before feeding them to the task modules. For
example, concatenating different features Zadeh et al.
(2016b) is a simple way. Zadeh et al. (2017) proposes
a product operation to allow more interaction among
different modalities during the fusion process. Liu
et al. (2018) considers the large complexity of Zadeh
et al. (2017) and utilizes modality-specific factors
to achieve efficient low-rank fusion. However, the
intra-modal dynamics cannot be effectively captured
in the above methods. Liang et al. (2019) employs
low-rank fusion for each time step of multi-view se-
quential input. Tsai et al. (2019) utilizes Transformer
to replace LSTM due to the powerful encoding ca-
pacity. Rahman et al. (2020) employs large-scale pre-trained Bert embeddings for textual modeling.
Liang et al. (2021) proposes modality-invariant crossmodal attention towards learning crossmodal
interactions over modality-invariant space in which the distribution mismatch between different
modalities is well bridged. However, these methods do not consider the missing modality problems
at all. For this aim, we propose IPD to solve the problems.
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Figure 2: The framework of IPD, where the left part denotes the low-rank partial decomposition
and the right part denotes the disentangled contrastive constraints. Different color corresponds to
different modalities (red denotes visual modality, blue denotes text modality, green denotes audio
modality). “0” and “1” denote the states of existence and nonexistence. In the left part, the process of
Eq. 1 to Eq. 6 is included. “Orth.” denotes orthogonal constraints (Eq. 4). Yellow bars denote As

that consists of asj . Gray bars of ec and esl denote the common and modality-specific prototypes.
esl can be calculated with As and β through Eqs. 2 and 3. The decoding process (Eq. 1) is developed
by correlating x and el. In the right part, we mainly present Eq. 8 of contrastive constraints. “Cons”
denotes contrastive learning (Eq. 8). The gray bars of eta, etav, ev denote the modality specific
prototypes of ta, tav, v.

2.2 MULTIMODAL LEARNING WITH INCOMPLETENESS

Multimodal learning with incompleteness is another topic of concern. There are also two lines
of incomplete multimodal learning. One is to process the representation noise, for example, the
visual features of several time steps are not available, while all the remaining time steps are normal.
Liang et al. (2019) proposes rank constraints to solve this problem. The other is to process the
missing modality conditions that are more likely to be encountered in real-world applications. Also,
there exist more researches that study it. Parthasarathy & Sundaram (2020) proposes a strategy
to randomly discard the visual input during training at the clip or frame level to mimic real-world
missing modality scenarios for audio-visual multimodal emotion recognition. Tran et al. (2017); Zhao
et al. (2021) proposes Cascaded Residual Autoencoder (CRA) to utilize the residual mechanism over
the autoencoder structure, which can take the corrupted data and estimate a function to well restore the
incomplete data. Pham et al. (2019) proposes a sequential translation-based model to learn the joint
representation between the source modality and multiple target modalities. Although many efforts
are devoted to developing effective methods to cope with the missing modality conditions during
training and inference, there is no unified paradigm considering all possible scenarios. Thus, we
focus on a more general setting. Also, inspired by the usage of low-rank decomposition in multi-view
interaction Liu et al. (2018); Do et al. (2019); Piratla et al. (2020), we introduce it into the task.

3 APPROACH

3.1 PROBLEM FORMULATION

We formulate the problem setting for generalizable missing modality learning in this section. Suppose
the number of modalities is n, there are various modality scenarios in both training and inference
stages. Concretely, about 2n − 1 scenarios 1 are available, since each modality has two states (i.e.
0-nonexistence, 1-existence). Under such real-world conditions, there are two challenging problems,
one is to obtain good performances of existing modality combinations. The other is to generalize to
unseen conditions, when the training set does not cover all the modality scenarios.

3.2 COMMON-SPECIFIC JOINT LEARNING

Following the previous work, we employ different encoding blocks for corresponding tasks. For
multimodal sentiment analysis and speaker traits recognition, we adopt the same structure as LMF
Liu et al. (2018), where LSTMs are utilized to process the multimodal features. As for multimodal

1For convenience, we utilize 2n in the following sections.
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video retrieval, we borrow the idea from MMT Gabeur et al. (2020), where the multimodal features
are encoded by Transformer. To fuse the multimodal features, we use the mainstream tensor-based
method, LMF, which considers the fine-grained interaction among different modalities. The training
paradigms of multimodal sentiment analysis and speaker traits recognition are similar to the settings
of LMF. As for the training objective of video retrieval, we employ the contrastive cross-entropy loss
and transform it to a classification task (i.e., the matched pairs are positive samples)

We mainly focus on classification and regression. Similar to Zhou et al. (2021), Zhou et al. (2022),
we treat the linear weights of the final layer as task prototypes of different modality scenarios. There
are 2n scenarios and the examples (x, y) (x ∈ Rm denotes the fusion result of multiple modalities,
y ∈ R denotes the label or regression score) from specific scenario l ∈ [2n] are generated as:

y = x>el, el = ec + esl , (1)

where ec ∈ Rm denotes the common prototypes of different modality combinations, esl ⊥ ec ∈ Rm

denotes the modality-specific prototypes of l-th modality scenarios, el denotes the complete task
prototype for l-th modality combination. Intuitively, the common component contains more high-level
semantic information (i.e., the reasoning of performance), and the modality-specific part contains
more low-level detailed information (i.e., the loudness of voice, the movement range). y = ±1 for
classification tasks and y ∈ [−p, p] for regression tasks.

3.3 LOW-RANK PARTIAL PROTOTYPE DECOMPOSTION

Based on Eq. 1, there exist superior scenario specific classifiers {el|l ∈ [2n]}, one for each modality
scenario, such that el = ec + esl . Note that all these classifiers share the common component ec.
If we are able to find multiple specific classifiers of this form, ec and esl could be extracted from
them. Although the prototypes cover all the modality combinations, the complexity (O(2n)) would
be large when n increases. Further, training the modality-specific prototypes separately is inefficient
with neglecting the interaction among different modality scenarios. Therefore, we reformulate the
Es ∈ Rm×2n that consists of esi as As · β>, where As ∈ Rm×k, β ∈ R2n×k, and k denotes the
low-rank value. Our idea can be extended from Eq. 1:

y = x>(ec +

k∑
j=1

βl,jasj ) = x>(ec +Asβ
>
l ) (2)

where asj ⊥ ec ∈ Rm, and asj ⊥ asq for j, q ∈ [k], j 6= q are modality specific features. The
correlation between the asj and task is given by the coefficients βl ∈ Rk, varies among multiple
modality combinations. Under this setting, there also exists superior modality specific classifier el
such that el = ec + Asβ

>
l ∈ Rm, where ec ∈ Rm, As ∈ Rm×k, βl ∈ Rk are trainable variables.

More concretely, the trainable task prototypes can be written as:

E = ec1
> +Asβ

> = [ec, As][1, β]> (3)

where E = [e1, e2, ..., e2n ] ∈ Rm×2n , 1 ∈ R2n denotes the all ones vector and β> =
[β1, β2, ..., β2n ] ∈ Rk×2n . However, in practice, given a general matrix E which can be writ-
ten as E = ec1

> +Asβ
>, there are multiple ways of decomposing E into this form, ec and Asβ

>

cannot be uniquely determined by the decomposition alone. Therefore, we conduct constraints to the
[ec, As] with orthogonal regularization:

Lo = ||Ik+1 − [ec, As]
>[ec, As]||2 (4)

where Lo denotes the regularization loss, Ik+1 ∈ R(k+1)×(k+1) denotes identity matrix. Such
regularization term caters the following propositions:

Proposition 1: When ec ⊥ Span(As), the decomposition of E = ec1
> + Asβ

> has a unique
solution. SupposeE = ec1

>+Asβ
> = wc1

>+WsΓ
> is a rank-(k+1) matrix, whereAs ∈ Rm×k,
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β ∈ R2n×k, Ws ∈ Rm×k, and Γ ∈ R2n×k are all rank-k matrices with k ≤ min(m, 2n). When
ec ⊥ Span(As), wc = ec is equal to wc ⊥ Span(Ws).

Proposition 2: If the orthogonal regularization is not satisfied (ec is not orthogonal to Span(As)),
the performance of partial modality combinations will be influenced.

3.4 HIERARCHICAL DECOMPOSITION OF Asβ
> AND UNSEEN GENERALIZATION

Although the decomposition of Asβ
> results in the change of complexity (from m · 2n to k · 2n),

the exponential term 2n still exits. Furthermore, the decomposition of Asβ
> does not consider the

fine-grained interaction among different modality combinations. To solve this problem, we employ
the hierarchical decomposition for the high-order tensor β ∈ R2n×k. Concretely, we divide β into a
series of n-order tensors:

β = [C1, C2, ..., Ck] (5)

where Cj ∈ R2n , we apply CP decomposition Harshman et al. (1970) to each Cj :

Cj =

R∑
r=1

n⊗
i=1

Cj
i,r, Cj

i,r ∈ R2 (6)

where ⊗ denotes tensor outer product operation over a set of vectors, R denotes the rank value of CP
decomposition. Such operations change the complexity of β from exponential to linear. With the
approximation, the weights for unseen modality combinations can also been obtained with tensor
multiplication. We employ these weights for the evaluation of missing modality generalization.

3.5 DISENTANGLED CONTRASTIVE CONSTRAINTS FOR DECOMPOSITION

The rank value is related to the interaction among different modality combinations to some extent.
To further enhance the explicit interaction of specific modality combinations and control the rank
value, we employ disentangled contrastive constraints for decomposition. Specifically, we suggest
employing the task prototype (i.e. esi) of the modality-specific part. Different from the obscure
modality gaps that cannot be obtained, the interaction between different modality combinations
is obvious. For example, suppose that there are totally three modalities (t, a, v) and the possible
combinations include {t, a, v, ta, tv, av, tav}. We can easily find that ta is more related to t, a, and
tav than v, since ta and v do not have intersection. We express the above statements as:

D(ta, η) ≥ D(ta, v), η ∈ {t, a, tav} (7)

where D() denotes the correlation function. Following the laws of nature, we conduct disentangled
contrastive constraints to the modality-specific part. The naturally similar pairs like ta and tav should
have higher matching scores than negative pairs like ta and v,

Lc = max
(

0,∆−h(eta, etav) + h(eta, ev)
)

(8)

where eta, etav, ev denote the modality-specific prototypes, ∆ is the margin value, h() denotes the
normalized inner product operation (cosine similarity). In practice, the number of existing positive
and negative pairs also scales exponentially with the number of modalities, therefore, we utilize the
maximum suppression sampling scheme to reduce it. Concretely, for a specific input (i.e. eta), we
consider the combination (i.e. etav) with most modalities that contain the processed modalities as a
positive object, the complementary set (i.e. ev) is treated as a negative object.

3.6 LOW-RANK ENSEMBLE LEARNING

With the approximation of β, we employ low-rank ensemble learning as an auxiliary, since the
samples with more modalities could enhance the training of more modality factors produced by Eq.
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6 (e.g. a sample with modalities ta can be used for training eta, et, ea simultaneously). Concretely,
a data point with n∗ modalities can be augmented to 2n

∗
modality combinations. We calculate the

average results of all the augmented modality scenarios of an input sample. Suppose that the encoded
features are represented as u1, u2, ...un ∈ Rm, where ui denotes the feature of i-th modality. If a
modality is missing, the original input would be replaced with all zeros vector, the encoded features
are represented as o1, o2, ...on ∈ Rm. Thus, if the i-th modality is missing, ui = oi. We concatenate
each W b

i ui and corresponding W b
i oi to vi = [W b

i ui,W
b
i oi] ∈ Rm×2, where W b

i ∈ Rm×m denotes
the linear mapping weights following LMF. The fusion results for all the modality combinations
can be denoted as V ∈ Rm×2n , where Vt1,t2,...,tn =

∏n
i=1 vi,ti ∈ Rm. The result Oe = Oc + Os

consisting of common Oc and specific Os parts can be calculated as follows:

Oc = sum
([ n∏

i=1

vi · 1
]
� ec

)
/M

Os = sum
([ R∑

r=1

n∏
i=1

viCi,r

]
�As

)
/M

(9)

where� denotes element-wise multiplication, sum() denotes summation operation for all the elements
of the vector, Ci,r ∈ R2×k, M denotes the ensembled number (i.e. 2n

∗
) which is related to n∗. The

detailed derivation is shown in the appendix (section A).

4 TRAINING AND INFERENCE

The overall framework is shown in Fig. 2. We employ Lt = f(y∗, y) to denote the prediction loss,
where y∗ denotes the prediction result with LMF and y is the ground-truth label, f() can be MAE for
sentiment analysis or cross-entropy loss function for retrieval. Le = f(Oe, y) denotes the loss when
using ensemble learning. The final optimization objective is Lt + λ1Le + λ2Lo + λ3Lc.

During inference, we employ E = [e1, e2, ..., e2n ] for both existing modality combinations and
unseen ones. The unseen task prototypes can be calculated by the trainable modality factors as
introduced in Eq. 6. We provide the training and inference details in the appendix (Algs. 1 and 2).

5 EXPERIMENTS

5.1 DATASET AND METRICS

We evaluate our method on three challenging tasks, multimodal sentiment analysis, multimodal
speaker traits recognition, and multimodal video retrieval. In this section, we provide a brief
introduction of the datasets and metrics:

CMU-MOSI Zadeh et al. (2016a): It is a collection of 93 opinion videos from YouTube movie
reviews. Each video consists of multiple opinion segments (2199 segments in total) and each segment
is annotated with the score in the range [−3, 3], where −3 and 3 indicate highly negative and positive.
We report the metrics of BA (binary accuracy), F1, Corr (Correlation Coefficient), MA (Multi-class
accuracy, higher is better), MAE (Mean-Absolute Error, lower is better).

POM Pérez-Rosas et al. (2013): POM is a speaker traits recognition dataset made up of 903 movie
review videos. Each video has 16 speaker traits. We report the multi-class accuracy of different traits.

MSR-VTT Xu et al. (2016): MSR-VTT is composed of 10K YouTube videos, collected using 257
queries from a commercial video search engine. Each video is 10 to 30s long, and is paired with 20
natural sentences describing it. We report the common metrics of R@K and MdR.

5.2 DATA PREPROCESSING

CMU-MOSI and POM. Each dataset (CMU-MOSI, POM) consists of three modalities, including
textual, visual, and audio modalities. For textual features, we employ the pre-trained 300-dimensional
Glove embeddings Pennington et al. (2014). For visual features, we utilize Facet iMotions (2017)
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Table 1: The results on CMU-MOSI.

Method Existing Combs. Unseen Combs.
BA F1 MAE Corr MA BA F1 MAE Corr MA

Random Drop 61.7 61.8 1.594 0.277 15.8 70.6 70.5 1.252 0.482 26.4
TFN Zadeh et al. (2017) 62.7 62.2 1.407 0.317 19.8 71.6 71.1 1.090 0.513 28.6
MFN Zadeh et al. (2018a) 64.3 64.1 1.329 0.381 24.0 73.2 73.0 1.012 0.577 32.9
LMF Liu et al. (2018) 63.3 63.6 1.276 0.417 22.7 72.2 72.5 1.037 0.613 31.6
T2FN Liang et al. (2019) 64.3 64.1 1.250 0.428 23.0 72.7 72.8 1.055 0.610 31.9
MulT Tsai et al. (2019) 64.8 64.7 1.236 0.439 24.5 73.5 73.6 1.015 0.620 33.2
MVAE Wu et al. (2018) 65.1 65.3 1.283 0.425 25.0 74.9 74.7 0.997 0.608 32.5
MCTN Pham et al. (2019) 64.8 65.1 1.244 0.456 24.7 73.7 74.0 1.007 0.607 32.5
MMIN Zhao et al. (2021) 65.4 65.6 1.208 0.445 25.6 74.5 74.0 1.054 0.618 31.9
IPD (Ours) 67.7 68.0 1.142 0.486 27.9 76.6 77.4 0.984 0.625 34.0

Table 2: Ablation study on CMU-MOSI.

Method Existing Combs. Unseen Combs.
BA F1 MAE Corr MA BA F1 MAE Corr MA

w/o. All 63.3 63.6 1.276 0.417 22.7 72.2 72.5 1.037 0.613 31.6
w/o. LR 66.7 67.0 1.180 0.459 26.2 73.8 73.6 0.998 0.617 32.8
w/o. Orth 65.5 65.6 1.207 0.449 24.2 73.6 73.7 1.007 0.622 32.4
w/o. Ens 67.5 67.7 1.161 0.464 26.8 75.2 75.3 0.994 0.627 33.0
w/o. Cs 67.0 66.7 1.195 0.467 26.4 74.5 74.3 0.987 0.623 33.2
IPD (Full) 67.7 68.0 1.142 0.486 27.9 76.6 77.4 0.984 0.625 34.0

to indicate 35 facial action units, which records facial muscle movement for representing the basic
and advanced emotions. For audio features, we use COVAREP Degottex et al. (2014) acoustic
analysis framework. To align the different modalities along the temporal dimension, we perform
word alignment with P2FA Yuan & Liberman (2008).

MSR-VTT. The videos contain abundant multimodal information. Thus, we use multiple pre-trained
models for extracting features. Concretely, we utilize seven modality experts: motion, scene, OCR,
audio, speech, face, appearance following Gabeur et al. (2020).

5.3 MISSING MODALITY SETTING

We evaluate IPD from two views. One is the performances of existing modality combinations, the
other is the performances of unseen combinations. Concretely, we divide CMU-MOSI, POM into
23 − 1 = 7 pieces (scenarios). One piece is kept for the evaluation of unseen generalization (Since
the combinations of fewer modalities can be augmented with those of more modalities, we employ
the complete modality combination for unseen evaluations). As for the remaining 6 pieces, We
employ 70%, 10%, 20% of the samples for training, validation, and testing for existing modality
combinations2. To be realistic, we randomly generate the ratio of 7 pieces (by giving each piece a
number from 0 to 1 and employing normalization) for 5 times and report the average results.

For the simulation of a large number of the modality combinations, we conduct video retrieval
experiments on MSR-VTT, which contains rich multimodal information. Since the number of
modalities is 7, there are 27 − 1 = 127 combinations. For the evaluation of unseen modality
combinations, we employ 8 pieces (the combinations with more modalities). The remaining pieces
are divided in the proportion of previous work Gabeur et al. (2020) (90% for training, 10% for
testing). We follow CMU-MOSI to randomly generate ratio and report the average results.

2The experimental details of all the tasks are shown in the appendix.
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Table 3: The performances on POM, where we report the multi-class accuracy of four traits , including
Credible (Cre), Vivid (Viv), Expertise (Exp), Entertaining (Ent).

Method Existing Combs. Unseen Combs.
Cre Viv Exp Ent Cre Viv Exp Ent

Random Drop 19.6 23.2 19.7 24.5 25.6 27.6 25.6 29.6
TFN Zadeh et al. (2017) 23.2 23.2 19.7 24.5 28.1 27.6 25.6 29.6
MFN Zadeh et al. (2018a) 19.6 23.6 20.7 26.1 25.6 29.6 26.6 31.0
LMF Liu et al. (2018) 19.6 23.2 20.7 28.1 25.6 27.6 26.6 33.5
T2FN Liang et al. (2019) 23.2 23.2 22.7 28.1 29.6 27.6 26.6 33.5
MulT (Tsai et al., 2019) 23.2 23.6 22.7 28.1 28.1 29.6 27.6 33.5
MVAE Wu et al. (2018) 23.2 23.6 25.1 26.1 29.6 29.6 27.6 31.0
MCTN Pham et al. (2019) 23.2 23.2 20.7 24.5 29.6 27.6 25.6 31.5
MMIN Zhao et al. (2021) 25.6 27.6 25.1 28.1 30.5 30.5 27.6 33.5
IPD (Ours) 27.1 30.5 27.1 30.5 34.5 36.9 31.0 33.0

5.4 EXPERIMENTS FOR MULTIMODAL SENTIMENT ANALYSIS

Results: Table 1 presents the overall comparison of IPD and existing methods on CMU-MOSI (both
existing and unseen combinations). Note that we mainly compare IPD with the methods that use
the same features for fairness. As for the evaluation of existing modality combinations, we could
observe that MFN, TFN, LMF, and MulT perform worse than IPD as they pay more attention to the
usage of complete modalities, leading to the poor adaptation on the missing modality scenarios. Even
MulT utilizes Transformer Vaswani et al. (2017). Besides, IPD achieves the best performances on
all the metrics among the existing missing-modality learning methods (including MVAE, MCTN,
MMIN). Particularly, the performance of IPD increases the “MA” from 25.6 to 27.9 compared to the
best counterparts. We carefully analyze the observations: (1) The mainstream reconstruction based
methods (i.e. MCTN, MMIN) depends on the existence of all the modalities to obtain the supervised
information in the training stage, therefore, when the samples for training are imcomplete, there will
be a big drop in performance. (2) The methods about modality invariant representation (i.e. MVAE)
are also widely studied, however, since the noise covariance matrix in Eq. 1 varies across different
modality combinations and samples, none of the features have the same distribution. Further, the
assumptions for training of MVAE also include the availability of all of the pre-defined modalities. As
for the evaluation of unseen modality combinations, IPD performs better than all the baseline methods,
which demonstrates that IPD has competitive generalization ability. In general, the best performances
of IPD attribute to the advanced prototype decomposition which captures modality-shared knowledge
and modality-specific knowledge, respectively, as well as the disentangled contrastive constraints that
enhances the interaction of different modality conditions.

Ablation Study: We set some control experiments on CMU-MOSI to verify the effectiveness of IPD
and the results are shown in Table 2. “w/o. All” denotes the model without all the contributions and
equals to LMF. “w/o. LR” denotes that all the orthogonal task prototypes are trained separately without
other contributions (i.e. low-rank approximation, contrastive constraints, augmented ensemble). “w/o
Orth” denotes that we just remove the orthogonal constraints for ec and As from the complete model.
“w/o. Ens” denotes that we just remove the low-rank ensemble learning from the complete model.
“w/o. Cs” denotes the model without contrastive constraints for the modality specific prototypes. From
the Table 2, we could find that “w/o. All” achieves worst results on all the metrics, which is consistent
with the objective law, since all the contributions for missing-modality learning are removed. The
results of “w/o. LR” is similar to those of “IPD (Full)”, we analyze that the model without low-
rank constraints can also learn limited multimodal interaction from scratch. “w/o. Orth” achieves
limited improvement based on the baseline method, which fits Proposition 2, the performance of
some modality combinations would be influenced. The bad performances of “w/o. Ens” reveal the
effectiveness of data augmentation. “w/o. Cs” achieves relatively bad results compared with IPD
(Full), since the interaction enhancement among different modality combinations is important to
simulate the low-rank condition.

We utilize low-rank approximation for Es and β, the rank values k,R should be considered. We
examine the performances of IPD on CMU-MOSI (Existing Combs.) with different values of k,R,
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Table 4: Retrieval performances (text-to-video) on the MSR-VTT dataset.

Method Existing Combs. Unseen Combs.
R@1↑ R@5↑ R@10↑ MdR↓ R@1↑ R@5↑ R@10↑ MdR↓

CE Liu et al. (2019) 14.9 40.2 52.8 9 16.4 41.3 54.4 8.7
MMT Gabeur et al. (2020) 18.2 46.0 60.7 7 20.3 49.1 63.9 6
MVAE Wu et al. (2018) 17.8 46.5 61.0 7 20.1 48.7 64.2 6
IPD (Ours) 18.6 47.4 62.3 6.5 20.6 50.3 65.8 5.3

Table 5: Paramters of the implementation of task prototypes.

Method Params. (Prototypes) Params. (All) R@5
w/o. All 5.12× 102 1.33× 108 46.0
w/o. LR 6.56× 104 1.33× 108 46.4
IPD (Full) 2.05× 104 1.33× 108 47.4

as shown in Fig. 3. IPD with contrastive constraints could achieve competitive performances based a
relatively small rank values (suppose that k = R). When removing the contrastive constraints that
can promote the multimodal association, a large rank value is needed for the satisfactory results.

We also conduct analysis for the low-rank ensemble learning. As shown in Fig. 4, IPD has poor
performances on the single modality without the mechanism, which reveals its effectiveness again.

5.5 EXPERIMENTS FOR SPEAKER TRAITS RECOGNITION

Table 3 shows the experimental results of different methods on speaker traits recognition dataset POM,
where the top half part corresponds to existing combinations and the bottom half part corresponds to
unseen combinations, we report the multi-class accuracy of multiple traits3. The simialr observation
could be found from the table, IPD achieves competitive performances on both existing and unseen
modality combinations compared with the baseline methods. Particularly, the performance of IPD
increases the average multi-class accuracy from 26.6 to 28.8 (existing combs.) and from 30.5 to 33.8
(unseen combs.) compared to the best counterparts.

5.6 EXPERIMENTS FOR VIDEO RETRIEVAL

To evaluate the generalization for more modalities, we report the evaluation results of IPD and the
competing text-video retrieval methods on MSR-VTT (Table 4). Note that MMIN, MCTN, and most
of the existing methods (i.e. Ji et al. (2022); Lei et al. (2021)) can not be used for 7 modalities, thus,
we do not compare IPD with them. We provide the metrics from two points of views (i.e. existing
and unseen modality combinations). For both settings, IPD outperforms baseline methods in all
the metrics. Benefiting from the low-rank prototype decomposition and disentangled contrastive
constraints, the modality-shared knowledge and modality-specific knowledge are efficiently combined
for the corresponding tasks. Further, the complexity reduction is more obvious for video retrieval,
due to the larger modality number and hidden size. To provide an intuitive of complexity reduction,
we report the parameter number (Table 5) of the task prototypes.

6 CONCLUSION

We propose a novel method called Interaction Augmented Prototype Decomposition (IPD) to solve
the generalizable missing modality problem. Concretely, IPD disentangles the task prototypes into
a modality-shared part and a low-rank modality-specific part. We present a principled analysis to
provide the rationality of low-rank approximation. Further, to control the rank value, we facilitate the
interaction of different modality conditions by employing disentangled contrastive constraints, which
complements the decomposition. Extensive results on the newly-created benchmarks of multiple
tasks illustrates the superiority of our proposed method.

3Due to the space limits, we provide the results of 4 traits, the complete results are shown in the appendix.
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Figure 3: Ablation study of rank value, suppose that two rank values (k in Eq. 5 and R in Eq. 6) are
equal. Left and right parts denote IPD without and with contrastive constraints, respectively.

Figure 4: Ablation study of low-rank ensemble learning, where we report the multi-class accuracy of
different modality conditions. Left and right parts denote IPD without and with ensemble learning.
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A PROOF AND DERIVATION

A.1 THE PROOF OF PROPOSITIONS

Proposition 1: When ec ⊥ Span(As), the decomposition of E = ec1
> + Asβ

> has a unique
solution.

Proof: Suppose E = ec1
> +Asβ

> = wc1
> +WsΓ

> is a rank-(k+ 1) matrix, where As ∈ Rm×k,
β ∈ R2n×k, Ws ∈ Rm×k, and Γ ∈ R2n×k are all rank-k matrices with k ≤ min(m, 2n). When

12
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ec ⊥ Span(As), to prove that wc = ec is equal to wc ⊥ Span(Ws). We should deduce the necessary
and sufficient conditions.

Sufficient Condition: Suppose that wc ⊥ Span(Ws). Then E>wc = 〈ec, wc〉 · 1 + β ·
(
A>s wc

)
=

‖wc‖2 · 1. Since E is a rank-(k + 1) matrix, we know that 1 /∈ Span(β) and so it has to be the case
that 〈ec, wc〉 = ‖wc‖2 and A>s wc = 0. Both of these together imply that wc is the projection of ec
onto the space orthogonal to As i.e., wc = ec − PAs

ec, where PAs
is the projection matrix onto the

span of vectors As. Since ec ⊥ As, we can obtain that wc = ec.

Necessary Condition: Let wc = ec. Since E is fixed, we could obtain Asβ
> = WsΓ

>, i.e.
Span(Ws) = Span(As). Since ec ⊥ Span(As), wc ⊥ Span(Ws).

Proposition 2: If the orthogonal regularization is not satisfied (ec is not orthogonal to Span(As)),
the performance of partial modality combinations will be influenced.

Proof: Suppose the modality-specific prototypes of two single modalities are e1 and e2 (e1 ⊥ e2),
the fusion representation of input sample (corresponding to e2) is u. If the orthogonal regularization
is not satisfied (i.e., e1 is not orthogonal to ec). The prediction can be expressed as u · ec + u · e2.
In the extreme situation (i.e., e1 = ec), the result is u · e2. The value of u · ec is influenced by the
nonorthogonality, to some extent.

A.2 THE DERIVATION OF EQ. 9

Note that we omit M for convenience. To prove the calculation of Os as follows:

Os = sum
(
V �

(
Asβ

>
))

= sum
([ R∑

r=1

n∏
i=1

viCi,r

]
�As

)
(10)

for convenience, we adopt the element-wise multiplication. Concretely, V ∈ Rm×2n and Asβ
> ∈

Rm×2n cannot be operated with matrix (vectorial) multiplication. Therefore, we indirectly calculate
the result of (V )d ∈ R2n and (Asβ

>)d ∈ R2n , d ∈ [m], we rewrite the above equations,

os =
(
As,dβ

>
)( n⊗

i=1

(vi)d

)
= As,d

(
β>
( n⊗

i=1

(vi)d

))
=
(( n⊗

i=1

(vi)d

)>
β
)
A>s,d =

(( n⊗
i=1

(vi)d

)>[
C1, ..., Ck

])
A>s,d

(11)

where (vi)d ∈ R2, As,d ∈ Rk. We then calculate
(⊗n

i=1(vi)d

)>
Cj as follows:

( n⊗
i=1

(vi)d

)>
Cj =

( n⊗
i=1

(vi)d

)( R∑
r=1

n⊗
i=1

Cj
i,r

)
=

R∑
r=1

n∏
i=1

(vi)dC
j
i,r (12)

we put the result of Eq. 12 into Eq. 11 and obatain:

os =
( R∑

r=1

n∏
i=1

(vi)dCi,r

)
As,d = sum

([ R∑
r=1

n∏
i=1

(vi)dCi,r

]
�As,d

)
(13)

According to the conclusion of Eq. 13, Eq. 10 is proved. We then prove the the calculation of Oc as
follows:

Oc = sum
(
V �

(
ec1
>
))

= sum
([ n∏

i=1

vi · 1
]
� ec

)
(14)

We also adopt element-wise multiplication.
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oc =
(( n⊗

i=1

(vi)d

)
· 12n

)
ec,d = sum

([ n∏
i=1

(vi)d · 12
]
� ec,d

)
(15)

According to the conclusion of Eq. 15, Eq. 14 is proved.

Algorithm 1 The Training Process of IPD

1: Given: n,m, k, λ1, λ2, λ3, train-data
2: Initialize params ec ∈ Rm, As ∈ Rm×k

3: Initialize Cj
i,r ∈ R2 : i ∈ [n], r ∈ [R], j ∈ [k] in Eq. 6

4: Lo ← ‖Ik+1 − [ec, As]
>[ec, As]‖2 . Orthonormality constraint

5: for (x, y, l) ∈ train-data do
6: E ← ec1

> +Asβ
> . βl and β are calculated based on Eqs. 5 and 6

7: el ← ec +Asβ
>
l

8: loss += Lt(y
∗(x), y; el) + λ1Le(Oe(x), y;E) + λ2Lo + λ3Lc

9: end for
10: Optimize loss wrt ec, As, C

j
i,r

11: Return ec, As, C
j
i,r

Algorithm 2 The Inference Process of IPD

1: Given: n,m, k, test-data
2: Trained params ec ∈ Rm, As ∈ Rm×k, β ∈ R2n×k . β is calculated based on Eqs. 5 and 6
3: for (x, l) ∈ test-data do
4: el ← ec +Asβl
5: y∗(x) = Net(x; el)
6: end for

B MORE EXPERIMENTAL DETAILS

B.1 THE DETAILED PROCESS OF IPD

Due to the space limitation, we put the algorithmic process (both training and testing) in this section.
The mathematic symbols are same as the main paper. In the training process, Oe(x) denotes the
output Oe of input x, Le(Oe(x), y;E) denotes the calculated loss based on modality factors E, and
Lt(y

∗(x), y; el) denotes the calculated loss based on modality factor el.

In the testing process, we first obtain the modality factor el according to the modality combination
index, then, we send the input x to the network and obtain y∗(x) = Net(x; el).

B.2 THE TRAINING OBJECTIVE OF VIDEO RETRIEVAL

As shown in MMT Gabeur et al. (2020), the training objective of video retrieval is triplet contrastive
loss, which compares the matching scores between video representation and text representation. To
implement our method, we employ a new contrastive cross-entropy loss. Concretely, we treat the
query text as one of the modalities of the video and text modality always exists. If the query text and
the video are matched, the classification output is 1. In a batch, we treat the matched text and video
as positive sample and change one side to construct negative samples. Then, the cross-entropy loss
can be used to train the network.

B.3 THE FEATURE EXTRACTION FOR VIDEO RETRIEVAL

Motion embeddings are extracted from S3D Xie et al. (2018) trained on the kinetics dataset. Scene
embeddings are extracted with DenseNet-161 Huang et al. (2017) trained on the Places365 dataset
Zhou et al. (2017). OCR embeddings are extracted in three stages. First, the pixel link text detection
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model is used to detect the overlaid text. Then, the detected boxes are passed through the text
recognition model. Finally, each character sequence is encoded using a word2vec embedding. Audio
embeddings are obtained with a VGGish model, trained on the YouTube-8m dataset. Speech features
are extracted using the Google Cloud speech API, to extract word tokens from the audio stream,
which are then encoded via pre-trained word2vec embeddings Mikolov et al. (2013). Face features
are extracted by ResNet-50 He et al. (2016) trained for face classification on the VGGFace2 dataset.
Appearance features are extracted from the final global average pooling layer of SENet-154 Hu et al.
(2018) trained on ImageNet.

B.4 EXPERIMENTAL DETAILS FOR MULTIMODAL SENTIMENT ANALYSIS AND SPEAKER
TRAITS RECOGNITION

We follow LMF to implement IPD. All the components of IPD are same as those of LMF, except for
the final classification layer. Specifically, the hidden size of the task prototype is 16, the rank k and R
are set to 5. ∆ is set to 0.1. The tuning of other parameters is similar to LMF. After grid searching,
the batch size is set to 16, the learning rate is 0.001. The hidden size of common feature space is 16.
λ1, λ2, λ3 are set to 0.1. We develop all the experiments with 5 RTX-3080Ti GPUs (10GB).

B.5 EXPERIMENTAL DETAILS FOR VIDEO RETRIEVAL

We follow MMT to implement IPD. All the components of IPD are same as those of MMT. We add
the new contrastive cross-entropy loss introduced above to the module and employ it as an auxiliary
loss. Specifically, the hidden size of the task prototype is 512, the rank k and R are set to 32. ∆ is set
to 0.1. The tuning of other parameters is similar to MMT. Concretely, the batch size is 32, the initial
learning rate is set to 5e − 5, which decays by a multiplicative factor 0.95 every 1k optimization
steps. We train for 50k steps. The hidden size is 512 for all the Transformer structures, the number
of heads is 8, and there are 6 stacked attention blocks. λ1, λ2, λ3 are set to 0.1. We develop all the
experiments with 5 RTX-3080Ti GPUs (10GB).

B.6 EXPERIMENTAL DETAILS OF BASELINE METHODS

We simply reproduce the baseline methods by replace the missing-modality features by all-zero
vectors and follow these methods for the subsequent processes.

C MORE EXPERIMENTAL RESULTS

C.1 ADDITIONAL RESULTS OF POM

The results of other all 16 traits are shown in Table 6 and Table 7. We could obtain similar conclusions.

C.2 ADDITIONAL RESULTS OF THE CASE THAT ALL THE MODALITIES ARE AVAILABLE
WHEN TRAINING

We also conduct experiments when all the modalities are available during training. In this way, we
adopt the same train/val/test splits as LMF. The validation and test sets are equally divided into 7
pieces of modality combinations. We report the corresponding results of different methods. As
shown in the figure, the metric gap between IPD and baseline methods narrows, since MVAE, MCTN,
MMIN are original designed for this case.

C.3 ADDITIONAL RESULTS OF CMU-MOSEI

The results of CMU-MOSEI Zadeh et al. (2018b) are shown in Table 9. CMU-MOSEI is also
proposed for the evaluation of multimodal sentiment analysis. It is similar to CMU-MOSI and has
23454 movie review videos. We could obtain similar conclusions based on Table 9.
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Table 6: The performances on POM for existing modality combinations. MA(5,7) denotes multi-class
accuracy for (5,7) classes.

Method Con Pas Voi Dom Cre Viv Exp Ent
MA7 MA7 MA7 MA7 MA7 MA7 MA7 MA7

TFN Zadeh et al. (2017) 21.7 26.1 20.6 27.1 23.2 23.2 19.7 24.5
MFN Zadeh et al. (2018a) 20.6 25.5 23.2 28.5 19.6 23.6 20.7 26.1
LMF Liu et al. (2018) 23.6 26.1 24.5 29.5 19.6 23.2 20.7 28.1
MulT Tsai et al. (2019) 23.6 27.6 28.6 29.5 23.2 23.6 22.7 28.1
MVAE Wu et al. (2018) 21.7 20.2 28.6 28.5 23.2 23.6 25.1 26.1
MCTN Pham et al. (2019) 23.6 27.6 28.6 28.5 23.2 23.2 20.7 24.5
MMIN Zhao et al. (2021) 21.7 27.6 30.5 30.0 25.6 27.6 25.1 28.1
IPD (Ours) 25.6 27.1 34.5 31.5 27.1 30.5 27.1 30.5

Method Res Tru Rel Out Tho Ner Per Hum
MA5 MA5 MA5 MA5 MA5 MA5 MA7 MA5

TFN Zadeh et al. (2017) 22.7 37.4 36.9 37.4 36.5 35.5 36.0 37.4
MFN Zadeh et al. (2018a) 25.6 37.9 38.4 38.9 35.5 35.5 37.4 38.4
LMF Liu et al. (2018) 25.1 38.9 38.9 37.4 36.9 34.0 36.9 37.4
MulT Tsai et al. (2019) 27.6 39.9 38.9 37.4 37.9 35.5 36.9 37.4
MVAE Wu et al. (2018) 26.6 37.9 40.4 38.4 37.9 37.4 38.9 39.9
MCTN Pham et al. (2019) 27.6 39.9 40.9 40.9 38.4 37.9 38.9 40.4
MMIN Zhao et al. (2021) 29.6 39.9 40.4 41.9 38.4 39.4 39.9 41.9
IPD (Ours) 29.6 39.9 41.9 43.8 39.4 39.4 40.9 42.4

Table 7: The performances on POM for unseen combination. MA(5,7) denotes multi-class accuracy
for (5,7) classes.

Method Con Pas Voi Dom Cre Viv Exp Ent
MA7 MA7 MA7 MA7 MA7 MA7 MA7 MA7

TFN Zadeh et al. (2017) 27.6 32.0 27.1 32.5 28.1 27.6 25.6 29.6
MFN Zadeh et al. (2018a) 26.1 31.5 29.6 34.5 25.6 29.6 26.6 31.0
LMF Liu et al. (2018) 28.6 32.0 30.5 35.5 25.6 27.6 26.6 33.5
MulT Tsai et al. (2019) 27.6 31.5 34.5 34.5 28.1 29.6 27.6 33.5
MVAE Wu et al. (2018) 27.6 27.1 34.5 34.0 29.6 29.6 27.6 31.0
MCTN Pham et al. (2019) 28.6 33.5 34.5 34.0 29.6 27.6 25.6 31.5
MMIN Zhao et al. (2021) 27.6 33.5 34.5 35.5 30.5 30.5 27.6 33.5
IPD (Ours) 30.5 33.5 36.9 37.4 34.5 36.9 31.0 33.0

Method Res Tru Rel Out Tho Ner Per Hum
MA5 MA5 MA5 MA5 MA5 MA5 MA7 MA5

TFN Zadeh et al. (2017) 27.6 41.9 42.9 44.8 40.9 38.4 39.9 42.4
MFN Zadeh et al. (2018a) 29.6 39.9 42.9 45.8 39.9 38.9 41.9 43.8
LMF Liu et al. (2018) 28.6 41.4 43.8 44.8 39.4 38.4 40.9 43.8
MulT Tsai et al. (2019) 31.0 43.8 43.8 44.8 40.9 38.9 41.4 42.4
MVAE Wu et al. (2018) 30.5 43.3 44.3 45.3 40.4 40.9 41.9 44.3
MCTN Pham et al. (2019) 30.5 43.8 45.3 46.8 40.9 41.4 41.4 44.8
MMIN Zhao et al. (2021) 31.0 44.8 45.3 47.8 40.4 41.4 40.9 44.3
IPD (Ours) 32.5 43.8 46.8 48.3 41.9 42.4 42.9 44.8

C.4 ADDITIONAL RESULTS OF RGB-D AND XRMB

We also conduct experiments on XRMB and RGB-D. As for XRMB, it has two modalities (273D
acoustic inputs and 112D articulatory inputs) following Wang et al. (2015), thus, the power of IPD
is not obvious with achieving a similar results to baseline methods. As for RGB-D, due to the
imbalanced importance of different modalities (3D point cloud, RGB color and height, following
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Table 8: The results on CMU-MOSI when all the modalities are available when training.

Method Metrics
BA F1 MAE Corr MA

MVAE Wu et al. (2018) 74.3 74.5 1.065 0.621 27.8
MCTN Pham et al. (2019) 73.9 74.0 1.019 0.601 28.9
MMIN Zhao et al. (2021) 74.8 74.7 0.987 0.625 29.6
IPD (Ours) 75.4 75.7 0.985 0.621 30.2

Table 9: The results on CMU-MOSEI. We report BA (binary accuracy), F1, Corr (Correlation
Coefficient), MA (Multi-class accuracy, higher is better), MAE (Mean-absolute Error, lower is
better).

Method Existing Combs. Unseen Combs.
BA F1 MAE Corr MA BA F1 MAE Corr MA

MVAE Wu et al. (2018) 67.2 67.5 1.050 0.409 36.7 76.1 75.7 0.725 0.498 43.5
MCTN Pham et al. (2019) 66.9 67.3 1.007 0.440 36.4 74.9 75.0 0.735 0.497 43.5
MMIN Zhao et al. (2021) 67.5 67.8 0.975 0.429 37.3 75.7 75.0 0.782 0.508 42.9
IPD (Ours) 69.8 70.2 0.909 0.470 39.6 77.8 78.4 0.712 0.515 45.0

Liu et al. (2021)), we keep the 3D point cloud as a fixed available modality. The missing modality
setting is adopted to RGB color and height. Since it is hard to model multimodal interaction with two
modalities, IPD also performs similar to the baseline methods.
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Table 10: The results on XRMB. We report PER (phone error rate).

Method Existing Combs. Unseen Combs.
PER PER

MVAE Wu et al. (2018) 0.274 0.255
MCTN Pham et al. (2019) 0.272 0.248
MMIN Zhao et al. (2021) 0.283 0.252
IPD (Ours) 0.267 0.245

Table 11: The results on RGB-D. We report mAP@0.25 for 3D object detection.

Method Existing Combs. Unseen Combs.
mAP@0.25 mAP@0.25

MVAE Wu et al. (2018) 43.6 49.2
MCTN Pham et al. (2019) 44.7 49.5
MMIN Zhao et al. (2021) 45.8 49.8
IPD (Ours) 46.7 50.4
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