
Published in Transactions on Machine Learning Research (08/2023)

Mitigating Confirmation Bias in Semi-supervised Learning
via Efficient Bayesian Model Averaging

Charlotte Loh cloh@mit.edu
MIT EECS
MIT-IBM Watson AI Lab

Rumen Dangovski rumenrd@mit.edu
MIT EECS

Shivchander Sudalairaj shiv.sr@ibm.com
MIT-IBM Watson AI Lab

Seungwook Han swhan@ibm.com
MIT EECS
MIT-IBM Watson AI Lab

Ligong Han hanligong@gmail.com
Rutgers University
MIT-IBM Watson AI Lab

Leonid Karlinsky leonidka@ibm.com
MIT-IBM Watson AI Lab

Marin Soljačić soljacic@mit.edu
MIT Physics

Akash Srivastava akash.srivastava@ibm.com
MIT-IBM Watson AI Lab

Reviewed on OpenReview: https: // openreview. net/ forum? id= PRrKOaDQtQ&

Abstract

State-of-the-art (SOTA) semi-supervised learning (SSL) methods have been highly successful
in leveraging a mix of labeled and unlabeled data, often via self-training or pseudo-labeling.
During pseudo-labeling, the model’s predictions on unlabeled data are used for training and
may result in confirmation bias where the model reinforces its own mistakes. In this work, we
show that SOTA SSL methods often suffer from confirmation bias and demonstrate that this
is often a result of using a poorly calibrated classifier for pseudo labeling. We introduce BaM-
SSL, an efficient Bayesian Model averaging technique that improves uncertainty quantification
in SSL methods with limited computational or memory overhead. We demonstrate that BaM-
SSL mitigates confirmation bias in SOTA SSL methods across standard vision benchmarks of
CIFAR-10, CIFAR-100 and ImageNet, giving up to 16% improvement in test accuracy on the
CIFAR-100 with 400 labels benchmark. Furthermore, we also demonstrate their effectiveness
in additional realistic and challenging problems, such as class-imbalanced datasets and in
photonics science.
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1 Introduction

While deep learning has achieved unprecedented success in recent years, its reliance on vast amounts of
labeled data remains a long standing challenge. Semi-supervised learning (SSL) aims to mitigate this by
leveraging unlabeled samples in combination with a limited set of annotated data. In computer vision,
two powerful techniques that have emerged are consistency regularization (Bachman et al., 2014; Sajjadi
et al., 2016) and pseudo-labeling (also known as self-training) (Rosenberg et al., 2005; Xie et al., 2019b).
Broadly, consistency regularization enforces that random perturbations of the unlabeled inputs produce
similar predictions, while pseudo-labeling assigns artificial labels to unlabeled samples, which are then used
to train the model. These two techniques are typically combined by minimizing the cross-entropy between
pseudo-labels and predictions that are derived from differently augmented inputs, and have led to strong
performances on vision benchmarks (Sohn et al., 2020; Assran et al., 2021).

In many SOTA SSL methods, a selection metric (Lee, 2013; Sohn et al., 2020) based on the model’s confidence
is often used in conjunction with pseudo-labeling, where only confident pseudo-labels are selected to update the
model. As such, there is a need for proper confidence estimates; in other words, the calibration of the model
should be of paramount importance. Model calibration (Guo et al., 2017) can be understood as a measure of
how a model’s output truthfully quantifies its predictive uncertainty, i.e. it denotes the alignment between its
prediction confidence and its ground-truth accuracy. Apart from the importance of calibration arising from
the selection metric, the use of cross-entropy minimization objectives common in SSL implies that models will
naturally be driven to output high-confidence predictions (Grandvalet & Bengio, 2004). Having high-confidence
predictions is highly desirable in SSL since we want the decision boundary to lie in low-density regions of
the data manifold, i.e. away from labeled data points (Murphy, 2022). However, without proper calibration,
a model would easily become over-confident. This is highly detrimental as the model would be encouraged to
reinforce its mistakes, resulting in the phenomenon commonly known as confirmation bias (Arazo et al., 2019).

In this work, we propose to mitigate confirmation bias in semi-supervised learning by incorporating approximate
Bayesian techniques, which have been widely known to improve uncertainty estimates (Wilson & Izmailov,
2020). Our main approach, BaM-, performs Bayesian Model averaging during pseudo-labeling by incorporating
a Bayesian last layer to the model and is illustrated in Fig. 1. Broadly, BaM- can be described as follows;
instead of single-fixed-value weights, the last layer are parameterized as Gaussian random variables and two
main modifications are made during pseudo-labeling: 1) multiple weight samples are drawn from the layer
and averaged to derive the predictions and 2) the selection criterion is based on their posterior variances
(further details follow in Section 4.1). We further contextualize the novelty of BaM- against prior art in the
SSL literature in Table 1. In contrast to prior methods, BaM- is designed to specifically target improving
model calibration in order to mitigate confirmation bias.

Our contributions are summarized as follows:

1. We introduce BaM-, which is designed to mitigate confirmation bias via Bayesian model averaging in
SOTA SSL methods based upon a selection metric. BaM- incorporates two new features to improve
uncertainty estimation: 1) bayesian averaging over multiple weight samples and 2) a selection metric
based on the variance of the predictions

2. We empirically demonstrate that BaM- effectively improves model calibration, resulting in better
performances on standard benchmarks like CIFAR-10 and CIFAR-100, notably giving up to 16%
gains in test accuracy.

3. We also demonstrate the efficacy of BaM- in more challenging and realistic scenarios, such as
class-imbalanced datasets and a real-world application in photonic science.

2 Related Work

Semi-supervised learning (SSL) and confirmation bias. A fundamental problem in SSL methods
based on pseudo-labeling (Rosenberg et al., 2005) is that of confirmation bias (Tarvainen & Valpola, 2017;
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Figure 1: Illustration of our Bayesian Model averaging (BaM) approach. The last layer of the model has
weights that are represented by probability distributions rather than the typical single fixed value. BaM- incorporates
two main modifications to a traditional semi-supervised learning approach: 1) During pseudo-labeling of each unlabeled
data point, multiple weights are sampled and averaged to derive the prediction; and 2) the selection criteria is based
upon the variance over predictions.

Table 1: Comparison of techniques used in BaM- with techniques used in prior art of SSL.

SSL method Augmentation Pseudo-label Selection metric
Temporal ensemble (Laine & Aila, 2016) Weak Model from earlier step -
Mean teacher (Tarvainen & Valpola, 2017) Weak EMA -
UDA (Xie et al., 2019a) Weak & strong Sharpen Logit thresholding
MixMatch (Berthelot et al., 2019) Weak Averaging aug + sharpen -
FixMatch (Sohn et al., 2020) Weak & strong Hard labels Logit thresholding
FlexMatch (Zhang et al., 2021) Weak & strong Hard labels Class-wise logit threshold
Our main method BaM- Weak & strong Posterior sampling + sharpen Variance thresholding

Murphy, 2022), i.e. the phenomenon where a model overfits to incorrect pseudo-labels. Several strategies have
emerged to tackle this problem; Guo et al. (2020) and Ren et al. (2020) looked into weighting unlabeled samples,
Thulasidasan et al. (2019) and Arazo et al. (2019) proposes to use augmentation strategies like MixUp (Zhang
et al., 2017), while Cascante-Bonilla et al. (2020) proposes to re-initialize the model before every iteration to
overcome confirmation bias. Another popular technique is to impose a selection metric (Yarowsky, 1995) to
retain only the highest quality pseudo-labels, commonly realized via a fixed threshold on the maximum class
probability (Xie et al., 2019a; Sohn et al., 2020). Recent works have further extended such selection metrics
to be based on dynamic thresholds, either in time (Xu et al., 2021) or class-wise (Zou et al., 2018; Zhang
et al., 2021). Different from the above approaches, our work proposes to overcome confirmation bias in SSL
by directly improving the calibration of the model through approximate Bayesian techniques.

Model calibration and uncertainty quantification. Proper estimation of a network’s prediction
uncertainty is of practical importance (Amodei et al., 2016) and has been widely studied. A common approach
to improve uncertainty estimates is via Bayesian marginalization (Wilson & Izmailov, 2020), i.e. by weighting
solutions by their posterior probabilities. Since exact Bayesian inference is computationally intractable for
neural networks, a series of approximate Bayesian methods have emerged, such as variational methods (Graves,
2011; Blundell et al., 2015; Kingma et al., 2015), Hamiltonian methods (Springenberg et al., 2016) and
Langevin diffusion methods (Welling & Teh, 2011). Other methods to achieve Bayesian marginalization also
exist, such as deep ensembles (Lakshminarayanan et al., 2016) and efficient versions of them (Wen et al., 2020;
Gal & Ghahramani, 2015), which have been empirically shown to improve uncertainty quantification. The
concept of uncertainty and calibration are inherently related, where calibration is commonly interpreted as the
frequentist notion of uncertainty. It is known that a well specified Bayesian model (i.e. one where the prior
captures the model uncertainty) has a well-calibrated posterior (Gelman et al., 2021). Motivated by this, in our
work we adopt some approximate bayesian techniques specifically for the context of semi-supervised learning
in order to improve model calibration during pseudo-labeling and empirically validate their effectiveness.
While other methods for improving model calibration exists (Platt, 1999; Zadrozny & Elkan, 2002; Guo
et al., 2017), these are most commonly achieved in a post-hoc manner using a held-out validation set; instead,
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we seek to improve calibration during training and with a scarce set of labels. In the intersection of SSL
and calibration, Rizve et al. (2021) proposes to leverage uncertainty to select a better calibrated subset of
pseudo-labels. Our work builds on a similar motivation, however, in addition to improving the selection metric
with uncertainty estimates, we show that directly incorporating approximate Bayesian techniques into SSL
methods can indeed improve calibration via its better-calibrated approximate posterior. Finally, our work
also bears some close resemblance to acquistion functions used in Bayesian active learning. There, we seek
data points for which the parameters under the posterior disagree about the outcome the most (Houlsby et al.,
2011; Kirsch et al., 2019). In contrast, in semi-supervised learning where the goal is to reduce confirmation
bias by selecting samples where the network is most certain about predicting, we instead seek data points for
which the parameters under the posterior agree the most.

3 Notation and Background

Given a small amount of labeled data L = {(xl, yl)}Nl

l=1 (here, yl ∈ {0, 1}K , are one-hot labels) and a large
amount of unlabeled data U = {xu}Nu

u=1, i.e. Nu ≫ Nl, in SSL, we seek to perform a K-class classification
task. Let f(·, θf ) be a backbone encoder (e.g. ResNet or WideResNet) with trainable parameters θf , likewise
let h(·, θh) be a linear classification head, and H denote the standard cross-entropy loss.

SSL methods based on a selection metric. Many SSL methods such as Pseudo-Labels (Lee, 2013),
UDA (Xie et al., 2019a) and FixMatch (Sohn et al., 2020) use a selection metric in conjunction with
pseudo-labeling to achieve SOTA performance. These methods minimizes a cross-entropy loss on augmented
copies of unlabeled samples whose confidence exceeds a pre-defined threshold. Let α1 and α2 denote two
augmentation transformations and their corresponding network predictions for sample x to be q1 = h◦f(α1(x))
and q2 = h◦f(α2(x)), the total loss on a batch of unlabeled data has the following form:

Lu = 1
µB

µB∑
u=1

1(max(q1,u) ≥ τ)H(ρt(q1,u), q2,u) (1)

where B denotes the batch-size of labeled examples, µ a scaling hyperparameter for the unlabeled batch-size,
τ ∈ [0, 1] is a threshold parameter often set close to 1. ρt is either a sharpening operation on the pseudo-labels,
i.e. [ρt(q)]k := [q]1/t

k /
∑K

c=1[q]1/t
c when soft-pseudo-labels are used, or a one-hot operation (i.e. t → 0)

when hard pseudo-labels are used. In the latter, we only care about the class where the maximum logit
occurs. ρt also implicitly includes a “stop-gradient” operation, i.e. gradients are not back-propagated from
predictions of pseudo-labels. Lu is combined with the expected cross-entropy loss on labeled examples,
Ll = 1

B

∑B
l=1 H(yl, q1,l) to form the combined loss Ll + λLu, with a scaling hyperparameter λ. Differences

between Pseudo-Labels, UDA and FixMatch are detailed in Appendix D.1.

Calibration metrics. A popular empirical metric to measure a model’s calibration is via the Expected
Calibration Error (ECE). Following (Guo et al., 2017; Minderer et al., 2021), we focus on a slightly weaker
condition and consider only the model’s most likely class-prediction, which can be computed as follows. Let
qmax denote the model’s confidence, or the prediction at the most likely class (i.e. the maximum logit value
after the softmax), the model’s confidence on a batch of N samples are grouped into M equal-interval bins,
i.e. Bm contains the set of samples with qmax ∈ ( m−1

M , m
M ]. ECE is then computed as the expected difference

between the accuracy and confidence of each bin over all N samples:

ECE =
M∑

m=1

|Bm|
N
|acc(Bm)− conf(Bm)| (2)

where acc(Bm) = (1/|Bm|)
∑

i∈Bm
1(argmax(qi) = yi) and conf(Bm) = (1/|Bm|)

∑
i∈Bm

qmax,i with yi the
true label of sample i. In this work, we estimate ECE using M = 10 bins. We also caveat here that while
ECE is not free from biases (Minderer et al., 2021), we chose ECE over alternatives (Brier, 1950; DeGroot
& Fienberg, 1983) due to its simplicity and widespread adoption.

4



Published in Transactions on Machine Learning Research (08/2023)

4 Mitigating Confirmation Bias in Semi-supervised learning

As we see from Eq. (1), the model’s confidence (the maximum softmaxed logit value) is used to determine if
the pseudo-label of a particular unlabeled data point is used to update the model; as such it is important
for the model to have proper confidence estimates, i.e. to be well-calibrated. More recently, temperature
scaling (Guo et al., 2017) or other similar methods (Platt, 1999; Zadrozny & Elkan, 2002) have been highly
effective towards model calibration. However, such methods pose several challenges in the semi-supervised
setting; 1) they operate post-hoc, i.e. after training is completed, while in SSL the model needs to be
calibrated constantly during training to reduce confirmation bias of pseudo-labels; 2) these methods use a
held-out labeled set (typically around 10% of the total dataset size (Guo et al., 2017)) to perform calibration,
while common benchmarks of SSL typically have label percentages less than that (up to as little as <1%),
making it challenging to create a held-out set with so little data to begin with.

4.1 Mitigating Confirmation Bias with Bayesian Model Averaging

Given the above limitations of post-hoc calibration methods, in this work we propose to incorporate
approxmate Bayesian methods such as Bayesian Neural Networks (BNN) into existing SSL methods. Bayesian
models, when well-specified (i.e. where the prior captures the model’s uncertainty), are known to produce
well-calibrated posteriors (Gelman et al., 2021) and approximate Bayesian techniques have been widely
empirically shown to produce well-calibrated uncertainty estimates in deep neural networks (Wilson &
Izmailov, 2020; Lakshminarayanan et al., 2016; Blundell et al., 2015).

Implementing a last-layer BNN. In order to minimize the computational overhead and reduce the risk
of overall poorer model accuracy arising from a full Bayesian approach Wenzel et al. (2020), we propose to
only replace the final layer of the network, i.e. the linear classification head h, with a BNN layer. While
there may be several options towards the implementation of the BNN layer, we propose to use a BNN with
a variational posterior trained via stochastic variational inference (SVI) for computational efficiency. This
would allow one to optimize both the non-bayesian backbone and the BNN layer simulataneously in a single
backward pass, as opposed to other Bayesian approaches such as Hamiltonian Monte Carlo (Neal, 2012)
which may require separate optimization loops.

Stochastic variational inference in BaM-. For notation convenience, we denote the input embedding
to the BNN layer to be v in this section. In SVI, we first assume a prior distribution on weights p(θh). Given
some training data DX := (X, Y ), we seek to calculate the posterior distribution of weights, p(θh|DX ), which
can then be used to derive the posterior predictive p(y|v,DX ) =

∫
p(y|v, θh)p(θh|DX )dθh. This process is

also known as “Bayesian model averaging” or “Bayesian marginalization” (Wilson & Izmailov, 2020). Since
exact Bayesian inference is computationally intractable for neural networks, we adopt a variational approach
following Blundell et al. (2015), where we learn a Gaussian variational approximation to the posterior qϕ(θh|ϕ),
parameterized by ϕ, by maximizing the evidence lower-bound (ELBO) (see Appendix C.1 for details). The
ELBO = Eq log p(Y |X; θ) −KL(q(θ|ϕ)∥p(θ)) consists of a log-likelihood (data-dependent) term and a KL
(prior-dependent) term. We provide some preliminary theoretical connections to generalization bounds
via Corollary 1 in Appendix A. Corollary 1 shows that the generalization error is upper bounded by the
negative ELBO, i.e. by maximizing the ELBO we may improve generalization. Apart from the last layer, the
rest of the network is non-bayesian and are point values which are trained via regular Maximum Likelihood
Estimation (MLE).

Pseudo-labeling via BaM-. As depicted in Fig. 1, pseudo-labeling in BaM- proceeds in two-stages: 1)
M weights from the BNN layer are sampled and predictions are derived from the Monte Carlo estimated
posterior predictive, i.e. q̂ = (1/M)

∑M
m h(v, θ

(m)
h ), and 2) the selection criteria is based upon their variance,

σ2
c = (1/M)

∑M
m (h(v, θ

(m)
h )− q̂)2, at the predicted class c = argmaxc′ [q̂]c′ . This constitutes a more intuitive

measure of model uncertainty compared to the maximum logit value commonly used in prior SSL methods
which does not have an uncertainty interpretation. In section 7, we verify through ablations that the
variance of predictions is indeed more effective than the maximum logit value for mitigating confirmation bias.
The variance is also highly intuitive — if the model’s prediction has a large variance, it is highly uncertain
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and the pseudo-label should not be accepted. We later show that better uncertainty estimates from BaM-
effectively mitigates confirmation bias. In practice, as σ2

c decreases across training, we use a simple quantile
Q over the batch to define the threshold where pseudo-labels of samples with σ2

c < Q are accepted, with
Q as a hyperparameter. Algorithm 1 shows a snippet of pseudo-code to highlight the main modifications
introduced by BaM- during pseudo-labeling (a more complete version of the pseudo-code can be found in
Appendix C.1).

We explore the effectiveness of BaM- by modifying upon SOTA SSL methods and denote them with the BaM-
suffix, i.e. “BaM-X” incorporates approximate Bayesian Model averaging (BaM) during pseudo-labeling for
SSL method X.

5 Experimental Setup

In all our experiments, we begin with and modify upon the original implementations of the baseline SSL
methods. The backbone encoder f is a Wide ResNet-28-2 and Wide ResNet-28-8 for the CIFAR-10 and
CIFAR-100 benchmarks respectively. We use the default hyperparameters and dataset-specific settings
(learning rates, batch size, optimizers and schedulers) recommended by the original authors for both the
baselines and in BaM-. We set the weight priors in BaM- as unit Gaussians and use a separate Adam
optimizer for the BNN layer with learning rate 0.01, no weight decay and impose the same cosine learning rate
scheduler as the backbone. We set Q = 0.75 for the CIFAR-100 benchmark and Q = 0.95 for the CIFAR-10
benchmark; which are both linearly warmed-up from 0.1 in the first 10 epochs. As Q is computed across
batches, we improve stability by using a moving average of the last 50 quantiles.

ECE and test accuracy evaluation. In our experiments, we found that the test accuracy exhibits a
considerable amount of noise across training, especially in label-scarce settings. Sohn et al. (2020) proposes
to take the median accuracy of the last 20 checkpoints, while Zhang et al. (2021) argues that this fixed
training budget approach is not suitable when convergence speeds of the algorithms are different (as the faster
converging algorithm would over-fit more severely at the end) and thus report also the overall best accuracy. In
our experiments, we adopt a balance between the two aforementioned approaches: we consider the median of 20
checkpoints around the best accuracy checkpoint as the convergence criteria, and report this value as the test
accuracy. The ECE is reported when the model reaches this convergence criteria (one could also also aggregate
the ECEs up till convergence — we found this gave similar trends and thus report the simpler metric).

Algorithm 1 Snippet of PyTorch-style pseudocode showing pseudo-labeling in BaM-UDA.
# Q: quantile parameter
# num_samples : number of weight samples

q_list = []
for x_weak , x_strong in unlabeled_loader :

z_weak , z_strong = encoder ( x_weak ), encoder ( x_strong ) # get representations
mean_weak , std_weak = bayes_predict ( bayes_classifier , z_weak ) # get mean and std of predictions
q_list .pop (0) if len( q_list ) > 50 # keep 50 most recent quantiles
q_list . append ( quantile (std_weak , Q))
accept_mask = std_weak .le( q_list .mean ()) # determine acceptance for samples with small std

# compute unlabeled loss using soft pseudo - labels on accepted samples
loss_unlab = cross_entropy_loss ( bayes_classifier ( z_strong ), sharpen ( mean_weak )) * accept_mask
loss_kl = KL_loss ( bayes_classifier ) # prior - dependent (data - independent ) loss
loss = loss_unlab + loss_kl

def bayes_predict (h, z):
outputs = stack ([h(z). softmax (-1) for _ in range( num_samples )] # sample weights
return outputs .mean (), outputs .std () # mean and std of predictions
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Table 2: BaM- in SSL showing “Test accuracy (%) / ECE”. BaM- improves calibration and result in better test
accuracies, consistently across all benchmarks and across two SSL methods, FixMatch (FM) (Sohn et al., 2020) and
UDA (Xie et al., 2019a). For each benchmark, results are averaged over 3 random dataset splits.

CIFAR-10 CIFAR-100
250 labels 2500 labels 400 labels 4000 labels 10000 labels

FM (repro) 95.0±0.19 / 0.046±0.002 95.7±0.03 / 0.039±0.0 56.4±1.6 / 0.366±0.017 74.2±0.2 / 0.183±0.003 78.1±0.2 / 0.147±0.001
BaM-FM (ours) 95.1±0.07 / 0.044±0.000 95.7±0.1 / 0.039±0.0 59.0±1.4 (↑2.6) / 0.331±0.015 74.8±0.09 (↑0.6) / 0.171±0.002 78.1±0.2 / 0.139±0.002

UDA (repro) 94.1±0.6 / 0.053±0.006 95.7±0.05 / 0.039 44.1±0.7 / 0.473±0.013 72.9±0.01 / 0.189±0.003 77.2±0.3 / 0.154±0.002
BaM-UDA (ours) 95.2±0.04 (↑1.1) / 0.042±0.00 95.9±0.08 (↑0.2) / 0.038 60.3±0.6 (↑16.2) / 0.314±0.005 75.2±0.1 (↑2.3) / 0.165±0.002 78.3±0.2 (↑1.1) / 0.138±0.003

(c)(b)(a)

(d)

Figure 2: FixMatch, UDA, BaM-FM and BaM-UDA across training on CIFAR-100 with 400 labels (a) Test
accuracies and (b) ECE as a function of training time. (c) Selection purity shows the accuracy of unlabeled samples
that are accepted by the selection metric and (d) Max. logit shows the model’s confidence, i.e. the average maximum
class probability of all unlabeled samples.

6 Results

6.1 BaM- improves model calibration and consistently leads to better SSL performances

Results on the CIFAR-10 and CIFAR-100 benchmarks for various number of labels are depicted in Table 2.
Table 2 demonstrates that BaM- successfully reduces the ECE over the baselines across all the benchmarks
and as a result, we also attained significant improvements in test accuracies, notably up to 16.2% (for
UDA on CIFAR-100-400 labels). Interestingly, while the baseline FixMatch outperforms UDA across all
the benchmarks, improving calibration in UDA (i.e. BaM-UDA) allows it to outperfom both FixMatch and
BaM-FixMatch. A key difference between FixMatch and UDA is the use of hard pseudo-labels in FixMatch
(i.e. t→ 0 in ρt defined in Section 3) versus soft pseudo-labels in UDA (with t = 0.4); this suggests that a
Bayesian classifier is more effective in conjunction with soft pseudo-labels. Leveraging on this insight, we set
t = 0.9 in BaM-UDA (also see Section 7.2 for ablations on t), resulting in consistently better performances
over the two SSL baselines across all CIFAR benchmarks.

Overall, we found that the improvements in both calibration and test accuracy are more significant for
label-scarce settings, as expected, since the problem of confirmation bias is more acute there and BaM- can
provide greater benefits by mitigating this. We explore even more extreme settings in Appendix I, when
there are only 1 or 2 labels per class in CIFAR-100. In the setting with only 1 label per class, BaM-UDA
gives a decent 35.2% accuracy. In contrast UDA gives a poor 8.2% accuracy in such a challenging setting.
Furthermore, the additional computation overhead incurred from BaM- is minimal, adding approximately
only 2-5% in wall-clock time for the CIFAR-100 settings (see Appendix H). While previous works (Sohn et al.,
2020) also include extreme low label settings such as CIFAR-10-40 labels, we found this benchmark to be
highly sensitive to the random initialization and different splits of the data, giving up to 2% variance with the
exact same SSL method and thus we exclude them in our study. Such variance in CIFAR-10 is significant,
given that all methods are giving accuracies 95-96% and we do not realistically expect gains of 2% or more.
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Table 3: Long-tailed CIFAR-10 & CIFAR-100 showing “Test accuracy (%) / ECE”. We use 10% of labels from
each class. For better interpretation, we also show the supervised (100% labels) accuracy reported in Cao et al. (2019),
which use a different architecture, ResNet-32, and an algorithm targeted for long-tailed problems.

CIFAR-10-LT CIFAR-100-LT

α = 10 α = 100 α = 10 α = 100

FixMatch 91.3 / 0.073 70.0 / 0.26 48.8 / 0.38 28.6 / 0.55
BaM-UDA (ours) 91.6 (↑0.3) / 0.067 71.2 (↑1.2) / 0.24 53.6 (↑4.8) / 0.32 31.9 (↑3.3) / 0.50

Supervised (reported) 88.2 77.0 58.7 42.0

6.2 BaM- improves performances by reducing confirmation bias

To further understand how BaM- mitigates confirmation bias, we track the test accuracy, ECE, model
confidence and ground-truth accuracy of accepted pseudo-labels (i.e. the “selection purity”) over the course
of training for the baselines and BaM-, as shown in Fig. 2. While the baselines learn effectively for the initial
stages of training, learning is eventually hindered. Due to the entropy minization objective, the model is
encouraged to output increasingly confident predictions (as evident from the growing model confidence in
Fig. 2d). Thus, in the absence of explicit calibration, the baselines quickly become over-confident, resulting in
confirmation bias where the model reinforces its mistakes. Confirmation bias in the baselines is particularly
evident from the selection purity (i.e. the ground truth accuracy of accepted pseudo-labels) in Fig. 2c —
after a short amount of training, the selection purity starts to drop suggesting that the model begins to
accept pseudo-labels that it makes mistakes on. In contrast, BaM- successfully mitigates confirmation bias
as evident from the constantly improving selection purity, thus promoting learning for longer periods to
result in better final performances. Further ablation studies are discussed in Section 7.2 and Appendix G.

6.3 BaM- is more effective in class-imbalanced settings

Long-tailed image datasets. Datasets in the real world are often long-tailed or class-imbalanced, where
some classes are more commonly observed while others are rare. We curate long-tailed versions from the
CIFAR datasets following Cao et al. (2019), where α indicates the imbalance ratio (i.e. ratio between the
sample sizes of the most frequent and least frequent classes). We randomly select 10% of the samples in
each class to form the labeled set; see further details in Appendix E. We use the best performing baseline
method from Table 2, i.e. FixMatch (FM), as our baseline and compare against BaM-UDA. Results are shown
in Table 3, where BaM-UDA achieves consistent improvements over FM in both calibration and accuracy
across all benchmarks. Notably, gains from BaM- are more significant than those in the class-balanced
settings (for e.g. BaM-UDA improves upon FM by a smaller margin of 1.5% on the CIFAR-100-4000 labels
benchmark which is also approximately 10%). Further analysis are provided in Appendix E.2, where test
samples were separated into three groups depending on the number of samples per class and test accuracies
are plotted for each group.

Table 4: Photonic crystals (PhC) band gap prediction showing “Test accuracy (%) / ECE”. The fully-supervised
(100% labels) accuracy is 88.5%.

PhC-10% PhC-1%

FixMatch 78.8 / 0.098 55.0 / 0.385
BaM-UDA 81.0 (↑2.2) / 0.052 56.9 (↑1.9) / 0.356

Photonics science. A practical example of a real-world domain where long-tailed datasets are prevalent
is that of science – samples with the desired properties are often much rarer than trivial samples. Further,
SSL is highly important in scientific domains since labeled data is particularly scarce (owing to the high
resource cost needed for data collection). To demonstrate the effectiveness of BaM-, we adopt a problem in
photonics (Loh et al., 2022), where the task is a 5-way classification of photonic crystals (PhCs) based on their
band gap sizes. A brief summary and visualization of this dataset are available in Appendix F. We explored
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an approach similar to FixMatch for the baseline and similar to BaM-UDA for ours (some modifications
were needed in the augmentation strategies to respect the correct physics of this problem; see Appendix F).
Results are shown in Table 4, where we demonstrate the consistency of BaM-UDA’s effectiveness in improving
calibration and accuracies in this real-world problem.

7 Ablation studies on BaM

7.1 Ablating the key components of BaM

BaM- consists of two main features; 1) several weight samples are taken from the BNN layer and averaged to
derive the predictions, and 2) the selection criteria is modified to be based upon the variance of the samples.
To further investigate the effect of each feature, we perform ablation studies on BaM-UDA to isolate the
contribution of averaging predictions from the contribution of replacing the selection metric. Results are
shown in Table 5, rows indicated with “BNN no σ2” show experiments using a BNN layer in BaM-UDA only
for averaging predictions while maintaining the original selection metric, i.e. pseudo-labels are accepted if the
maximum prediction class probability is greater than τ = 0.95. Comparing the first two rows, indeed we
see that by not using the uncertainty estimates from the BNN, we already get some improvements (minor
improvements in cases where labels are not so scarce). The difference between the last two rows show the effect
of replacing the selection metric and indeed we observe larger and consistent gains across the benchmarks
from doing so.

Table 5: Uncertainty estimate by BNN. Ablating the importance of uncertainty estimate provided by
the variance of BNN predictions. “BNN no σ2” indicates that the BNN layer is only used for bayesian
model averaging, i.e. predictions are replaced by the posterior predictive but selection metric still follows the
baseline, i.e. pseudolabels are accepted if maximum logit value after the softmax > 0.95. Cyan indicates the
default configuration.

CIFAR-100
400 4000

UDA (t=0.4) 44.0 / 0.491 72.9 / 0.185
BaM-UDA, BNN no σ2 (t=0.4, τ=0.95) 48.3 / 0.418 73.0 / 0.184
BaM-UDA, BNN no σ2 (t=0.9, τ=0.95) 54.2 / 0.368 74.5 / 0.170
BaM-UDA (t=0.9) 59.7 / 0.327 75.3 / 0.167

7.2 Importance of sharpening temperature

From our results in Section 6, we found that BaM was more effective in conjunction with soft pseudo-labels.
In Table 6, we show ablation experiments on the temperature of the sharpening operation on the CIFAR-100-
400 labels benchmark. Overall, we observe a trend that softer pseudo-labels (i.e. reducing the sharpening
of pseudo-labels) led to better calibration and improved test performance. As such, in our experiments we
modify upon the original sharpening parameter of UDA and set t = 0.9 for BaM-UDA in all our benchmarks.

Table 6: Ablation of sharpening temperature in BaM-UDA. Dataset is CIFAR-100 with 400 labels. Highlighted
in cyan is the main configuration used.

t Test Accuracy ECE
0.4 57.9 0.344
0.8 58.1 0.340
0.9 59.7 0.327
1.0 59.2 0.334
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8 Conclusion and Broader Impact

Since confirmation bias is a fundamental problem in SSL, in this work we showed that it is imperative for the
model to have proper uncertainty estimates, or be well-calibrated, to mitigate this problem. In particular,
we empirically demonstrated that approximate Bayesian techniques such as a last Bayesian layer or weight
averaging approaches can be used to improve a model’s uncertainty estimates which can result in better model
performance across a variety of SSL methods. We further underscore their importance in more challenging
real-world datasets. We hope that our findings can motivate future research directions to incorporate
techniques targeted for optimizing calibration during the development of new SSL methods. Furthermore,
while the primary goal of improving calibration is to mitigate confirmation bias during pseudo-labeling, an
auxiliary benefit brought about by our approach is a better calibrated network, i.e. one that can better
quantify its uncertainty, which is highly important for real-world applications. A potential limitation in our
work lies in the use of ECE as a metric to measure calibration which, while commonly used across literature,
are not free from flaws (Nixon et al., 2019). However, in our work, we empirically demonstrate that despite
their flaws, the ECE metric still provides good correlations to measuring confirmation bias and test accuracy.
We provide further discussion of the societal impact and ethical considerations of our work in Appendix J.
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A Theoretical Connections to Generalization Bounds

In the training of BaM-, we adopt a variational approach and maximize the evidence lower-bound (ELBO),

ELBO = Eq log p(Y |X; θ)−KL(q(θ|ϕ)∥p(θ))

with notation consistent with those used in Section 4.1 of the main text. We motivate this approach by
using Corollary 1 below, derived from the PAC-Bayes framework (for the complete proof, see Appendix A.1
below). The statement shows the generalization error bounds on the variational posterior in the SSL setting
and suggests that this generalization error is upper bounded by the negative ELBO. This motivates our
approach, i.e. by maximizing the ELBO we improve generalization by minimizing the upper bound to the
generalization error. The second term on the right side of the inequality characterises the SSL setting, and
vanishes in the supervised setting.

Corollary 1 Let D be a data distribution where i.i.d. training samples are sampled, of which Nl are labeled,
(x, y) ∼ DNl and Nu are unlabeled, (x, ŷ) ∼ DNu where ŷi (yi) denotes the model-assigned pseudo-labels
(true labels) for input xi. For the negative log likelihood loss function ℓ, assuming that ℓ is sub-Gaussian
(see Germain et al. (2016)) with variance factor s2, then with probability at least 1− δ, the generalization
error (denoted as Lℓ

D) of the variational posterior q(θ|ϕ) is given by,

Eq(θ|ϕ)Lℓ
D(q) ≤ 1

N
[−ELBO]− Eq(θ|ϕ)

[
1

Nu

Nu∑
i=1

log p(ŷi|xi; θ)
p(yi|xi; θ)

]
+ 1

N
log 1

δ
+ s2

2 (3)

A.1 Proof of Corollary 1

PAC-Bayesian theory aims to provide bounds on the generalization risk under the assumption that samples
are i.i.d.. While PAC-Bayesian bounds typically apply to bounded losses, Germain et al. (2016) extends them
to unbounded losses (which is necessary in our work since it uses the unbounded log-loss). Their theoretical
result is reproduced below in Theorem 1, under assumptions for sub-Gaussian losses. These bounds commonly
assume the supervised setting; in this proof, our goal is to extend them to the semi-supervised learning
setting where in addition to labels from an empirical set, our loss is also mediated by pseudo-labels assigned
by the model.

Let (X, Y ) ∼ DN denote N i.i.d. training samples from the data distribution D, where (X, Y ) ={
{(xi, yi)}Nl

i=1, {(xi, ŷi)}Nu
i=1

}
represents the set of Nl labeled input-output pairs and Nu pairs of unlabeled

input and their model-assigned pseudo-labels ŷ. Here, Nl + Nu = N . Let the loss function be ℓ(f, x, y)→ R,
the generalization risk on distribution D, i.e. Lℓ

D(f), and the empirical risk on the training set, i.e. Lℓ
X,Y (f),

is given by:

Lℓ
D(f) = E

(x,y)∼D
ℓ(f, x, y); Lℓ

X,Y (f) = 1
Nl

Nl∑
i=1

ℓ(f, xi, yi) + 1
Nu

Nu∑
i=1

ℓ(f, xi, ŷi)

On assumptions that the loss is sub-Gaussian (see Boucheron et al. (2013) section 2.3), i.e. a loss function ℓ
is sub-Gaussian with variance s2 under a prior π and D if it can be described by a sub-Gaussian random
variable v = Lℓ

D(f)− ℓ(f, x, y), the generalization error bounds are given by Theorem 1 (Germain et al., 2016)
below.

Theorem 1 (Corollary 4 from Germain et al. (2016)) Let π be the prior distribution and ρ̂ be the posterior. If
the loss is sub-Gaussian with variance factor s2, with probability at least 1− δ over the choice of (X, Y ) ∼ DN ,

E
f∼ρ̂
Lℓ

D(f) ≤ E
f∼ρ̂
Lℓ

X,Y (f) + 1
N

(KL(ρ̂∥π) + log(1/δ)) + 1
2s2

Beginning from Theorem 1, the generalization error of the variational posterior q(θ|ϕ) under the negative
log likelihood loss and prior p(θ) in our SSL setting can be found by replacing ρ̂ with q(θ|ϕ) and ℓ with
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ℓnll(f, xi, yi) := − log p(yi|xi; θ);

E
f∼q
Lℓ

D(f) ≤ E
f∼q
Lℓ

X,Y (f) + 1
N

(KL(q(θ|ϕ)∥p(θ)) + log(1/δ)) + 1
2s2

= Eq
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= Eq

[
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p(yi|xi; θ)
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N
log p(Y |X; θ)

]
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f∼q
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D(f) ≤ Eq

[
− 1
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i=1

log p(ŷi|xi; θ)
p(yi|xi; θ)

]
+ 1

N
[−ELBO] + 1

N
log(1/δ) + 1

2s2

where we define ELBO = Eq(θ|ϕ) [logp(Y |X; θ)] − KL(q(θ |ϕ)∥P (θ)). In the later sections, Appendix C.1,
we will see that this is the term we are maximizing in our loss objective. By maximizing the ELBO, i.e.
minimizing the negative ELBO, we are minimizing the upper bound to the generalization error of our
variational posterior. The first term in the last line adds a divergence measure between the pseudo-label
prediction distribution and the ground truth distribution — in the fully supervised setting ŷi → yi and this
term vanishes.

B Exploring SSL methods without a selection metric

In the main text, we have looked at two popular SSL methods that are based on a selection metric. More
recently, there is also a family of SSL methods based upon representation learning (Assran et al., 2021; Chen
et al., 2020b; Caron et al., 2021), where the model is first trained to produce useful representations and
subsequently fine-tuned on limited labeled data. This give rise to some interesting questions: Is confirmation
bias still an issue in SSL methods without a selection metric? And if so, can BaM- or other approximate
Bayesian techniques be used to mitigate confirmation bias? We explore these questions in this section, using
PAWS (Assran et al., 2021) as a canonical example for the family of SSL methods based on representation
learning approach. Details about the training loss used in PAWS are explained in Appendix B.1. The main
difference PAWS has in contrast to the methods studied above is in its prediction generation technique —
instead of a classification head, PAWS uses a non-parametric nearest neighbour classification method over its
representations.

B.1 SSL methods based on representation learning

PAWS. More recently, there has been a newer family of SSL methods based upon visual representation
learning Chen et al. (2020a;b); Assran et al. (2021). We use PAWS Assran et al. (2021) as a canonical
example of a SSL method from this family. A key difference of PAWS as compared to other selection-metric
based SSL methods is the lack of a parametric classfier layer. Instead, predictions are derived from a
non-parametric soft-nearest-neigbour classifier based on representations. Let z1 = f(α1(x)) and z2 = f(α2(x))
be the representations for the two views from the backbone encoder, their pseudo-labels (q1, q2) and the
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unlabeled loss are given by:

qi = πd(zi, {zs}) =
B∑

s=1

d(zi, zs) · ys∑B
s′=1 d(zi, zs′)

; Lu = 1
2µB

µB∑
u=1

H(ρt(q1,u), q2,u) + H(ρt(q2,u), q1,u) (4)

where {zs}B
s=1 is the set of representations of the labeled examples, d(a, b) = exp(a · b/(∥a∥∥b∥τp)) is a

similarity metric with temperature hyperparameter τp and all other symbols have the same meanings defined
before in Section 3 of the main text. The combined training loss for PAWS is Lu + Lme-max where the latter
is a regularization term Lme-max = H(q̄) that seeks to maximize the entropy of the average of predictions
q̄ := (1/(2µB))

∑µB
u=1(ρt(q1,u) + ρt(q2,u)).

B.2 Exploring other approximate Bayesian techniques

Since BaM- replaces the classification head and PAWS does not have one, we incorporate BaM- into PAWS
by using a Bayesian last layer in the encoder and “Bayesian marginalizing” over the representations (also
see Appendix B.4.1 for detailed formulation). Nonetheless, apart from Bayesian marginalization, BaM- is
originally desirable towards improving uncertainty estimates in the selection metric. Since PAWS does not
use a selection metric, instead of Bayesian marginalizing or aggregating over just one layer, one could seek to
aggregate over the entire network. This can be most commonly acheived by approximate bayesian techniques
such as model ensembling approaches Lakshminarayanan et al. (2016), which has been highly successful at
improving uncertainty estimation. However, training multiple networks would add immense computational
overhead. To perform this aggregation computational efficiently, we instead explored weight averaging
approaches, such as Stochastic Weight Averaging (Izmailov et al., 2018) (SWA) and Exponential Moving
Averaging (EMA) (Tarvainen & Valpola, 2017; He et al., 2020; Grill et al., 2020) and studied their role
in mitigating confirmation bias during pseudo-labeling. Weight averaging however differs from traditional
bayesian model averaging approaches typically used in ensembles since we are averaging in the weight-space
(i.e. averaging model weights) instead of function-space (i.e. averaging predictions). The approximation of
SWA to Fast Geometric Ensembles (Garipov et al., 2018) has been shown by previous works (Izmailov et al.,
2018); however, to the best of our knowledge the connection of EMA to ensembling has not been formally
shown.

Weight averaging during pseudo-labeling We maintain a separate set of non-trainable weights θg

containing the aggregated weight average of θh which is used to produce pseudo-labels throughout training.
In SWA, we update them via θg ← (naθg + θf )/(na + 1) at every iteration, where na represents the total
number of models in the aggregate and θf are the trainable parameters of our backbone encoder as before. In
practice, we switch on SWA only after some amount of training. In EMA, this update is θg ← γθg + (1−γ)θf ,
where γ is a momentum hyperparameter controlling how much memory θg should retain at each iteration
(see Appendix C.2 for pseudocode). While EMA has been previously explored in the context of SSL (Tarvainen
& Valpola, 2017), to the best of our knowledge SWA has not been explored in SSL and more importantly,
their link to mitigating confirmation bias in pseudo-labeling has not been explicitly shown.

Table 7: “Test accuracy (%) / ECE” for PAWS (Assran et al., 2021) and our methods. ‘BaM-” refers to Bayesian
Model averaging via a BNN final layer, while +SWA and +EMA are using weight averaging techniques. For each
benchmark, results are averaged over 3 random dataset splits.

CIFAR-10 CIFAR-100
2500 labels 4000 labels 10000 labels

PAWS (repro) 95.3±0.1 / 0.046±0.001 71.5±0.3 / 0.232±0.005 75.6±0.1 / 0.198±0.002

BaM-PAWS 95.4±0.1 (↑0.1) / 0.046±0.001 72.5±0.3 (↑1.0) / 0.228±0.003 76.5±0.2 (↑0.9) / 0.195±0.002
PAWS+SWA 95.6±0.1 (↑0.3) / 0.046±0.001 74.5±0.3 (↑3.0) / 0.193±0.002 78.4±0.4 (↑2.8) / 0.164±0.003
PAWS+EMA 95.8±0.0 (↑0.5) / 0.042±0.000 73.5±0.2 (↑2.0) / 0.193±0.005 77.2±0.1 (↑1.6) / 0.168±0.003
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Figure 3: Weight averaging techniques on PAWS for CIFAR-10 with 2500 labels displays highly consistent
relationships between increasing test accuracy and decreasing ECE.

B.3 BaM- is useful, but weight averaging is more effective when a selection metric is absent

Results are shown in Table 7; while BaM- gave some improvements over the baselines across all benchmarks,
the improvements from weight averaging approaches are consistently larger. This is unsurprising, since BaM-
relies on stochasticity only in the last layer while weight averaging aggregates over the entire model. Since
PAWS does not use a selection metric and simply “accepts all unlabeled samples”, the “selection purity” is
absent and thus we investigate the issue of confirmation bias by tracking the accuracy and model calibration on
a held-out set as shown in Fig. 3. Incorporating weight averaging results in better accuracies on the held-out
set compared to the baseline at every stage of training. This suggests that even in the absence of a selection
metric, proper uncertainty estimates (or improved model calibration) can lead to improved SSL performance.
The effectiveness of improved uncertainty estimates is particularly evident through PAWS+SWA—when SWA
was switched on (at Tswa = 200 epochs), model calibration was immediately improved (i.e. the ECE quickly
dips) and the accuracy also correspondingly spikes. Furthermore, we also observe a significant improvement
in convergence rates resulting from the weight averaging techniques, i.e. better accuracies can be attained in
just a third of the number of training iterations of the baseline. Ablations on Tswa and momentum schedules
are presented in ??.

Table 8: ImageNet-10% showing
“Top-1 test accuracy (%) / ECE” for
PAWS and our methods, trained for
200 epochs and fine-tuned with a lin-
ear head.

IN-10%

PAWS 74.4 / 0.186
+SWA (ours) 74.5 / 0.186
+EMA (ours) 75.1 / 0.183

Effective also in large-scale datasets like ImageNet. A strength
of representation learning SSL methods is in large-scale datasets
like ImageNet, where PAWS outperforms selection metric based SSL
methods (i.e. 73.9% vs 71.5% on the best performing selection metric
based method, FixMatch for the ImageNet-10% benchmark). In this
work, we use the 10% labels setting of Assran et al. (2021) with slight
modifications to the default setting in order to fit on our system (see Ap-
pendix D.2 for implementation details) and explored weight averaging
techniques SWA and EMA, given their effectiveness over BaM- in PAWS.
Results are shown in Table 8, where our methods provide consistent
improvements in calibration and test accuracy over the baseline.

B.4 Further experimental details

B.4.1 Improving calibration in PAWS with BaM- (i.e. BaM-PAWS)

Because of the lack of a classifier layer, incorporating BaM- requires some modifications. Instead, we
use a BaM- in the last layer in the encoder (which is a linear layer) and pseudo-labels are obtained by
"Bayesian marginalizing" over the representations. More specifically, let h be the Bayesian version of this
layer, parameterized by θh and let v be the input to this layer, pseudo-labels of BaM-PAWS (i.e. Eq. (4)) are
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defined as:

qi = πd(ẑ, {zs}) =
B∑

s=1

d(ẑ, zs) · ys∑B
s′=1 d(ẑ, zs′)

; ẑ = (1/M)
M∑
m

h(v, θ
(m)
h ) (5)

where M is the number of samples taken from the Bayesian layer.

B.4.2 Further training details for BaM-PAWS, PAWS+EMA, PAWS+SWA

BaM-PAWS. Unlike BaM- in selection-metric based SSL methods, we do not use a separate optimizer and
simply impose a one-minus-cosine scheduler (i.e. scheduler (2) from the next paragraph) for the coefficient to
the KL-divergence loss that goes from 0 to 1 in T epochs where we simply picked the best from T ∈ {50, 100}.

PAWS+SWA and PAWS+EMA. We delay the onset of SWA to after some amount of training has
elapsed (i.e. Tswa epochs) since it is undesirable to include the randomly initialized weights to the aggregate.
We set Tswa = 200 and Tswa = 100 for CIFAR-10 and CIFAR-100 respectively. After SWA was switched
on, the weight aggregate was simply updated after every batch iteration. In contrast, EMA has a natural
curriculum to “forget” older model parameters since more recent parameters are given more weight in the
aggregate. We experimented with two schedules for γ: 1) using a linear warm-up from 0 to 0.996 in 50 epochs
and then maintaining γ at 0.996 for the rest of training and 2) using a one-minus-cosine scheduler starting
from 0.05 and decreasing to 0 resulting in a 0.95 to 1 range for γ. We visualize these schedulers and include
ablation studies on them and on Tswa in ??.

C Formulation details and pseudocode of our methods

C.1 Bayesian model averaging via a BNN final layer

Following the notations in Section 4.1, we denote the BNN layer to be h and an input embedding to this layer
to be v in this section. We assume a prior distribution on weights P (θh) and seek to calculate the posterior
distribution of weights given the empirical/training data, P (θh|DX ), where DX := (X, Y ), which can then
be used to compute the posterior predictive during inference. As exact Bayesian inference is intractable
for neural networks, we adopt a variational approach following (Blundell et al., 2015) to approximate the
posterior with a Gaussian distribution parameterized by ϕ, q(θ|ϕ). From now, we will drop the h index in θh

for brevity. To learn the variational approximation, we seek to minimize the Kullback-Leibler (KL) divergence
between the Gaussian variational approximation and the posterior:

ϕ∗ = argminϕKL (q(θ|ϕ) ∥ p(θ|X, Y ))

= argminϕ

∫
q(θ |ϕ)log q(θ |ϕ)

p(θ |X, Y )dθ

= argminϕEq(θ|ϕ)logq(θ |ϕ)p(Y |X)
p(Y |X; θ)p(θ)

= argminϕEq(θ|ϕ) [logq(θ |ϕ)− logp(Y |X; θ)− logp(θ)] + logp(Y |X)
= argminϕKL(q(θ |ϕ)∥p(θ))− Eq(θ|ϕ)logp(Y |X; θ) + logp(Y |X)
= argminϕ ([−ELBO] + logp(Y |X))

where in the last line, ELBO = Eq(θ|ϕ) [logp(Y |X; θ)]−KL(q(θ |ϕ)∥p(θ)) is the evidence lower-bound which con-
sists of a log-likelihood (data-dependent) term and a KL (prior-dependent) term. Since KL (q(θ|ϕ) ∥ p(θ|DX ))
is intractable, we maximize the ELBO which is equivalent to minimizing the former up to the constant,
logp(Y |X).

Each variational posterior parameter of the Gaussian distribution, ϕ, consists of the mean (µ) and the
standard deviation (which is parametrized as σ = log(1 + exp(ρ)) so that σ is always positive (Blundell et al.,
2015)), i.e. ϕ = (µ, ρ). To obtain a sample of the weights θ, we use the reparametrization trick (Kingma et al.,
2015) and sample ϵ ∼ N (0, I) to get θ = µ + log(1 + exp(ρ)) ◦ ϵ where ◦ denotes elementwise multiplication.
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Algorithm 2 PyTorch-style pseudocode for Bayesian model averaging in UDA or FixMatch.
# f: backbone encoder network
# h: bayesian classifier
# KL_loss : KL term in evidence lower -bound
# H: cross - entropy loss
# Q: quantile parameter
# num_samples : number of weight samples
# method : ‘UDA ‘ or ‘FM ‘
# shp: sharpen operation

q_list = []
for (xl , labels ), xu in zip( labeled_loader , unlabeled_loader ):

x_lab , x_uw , x_us = weak_augment (xl), weak_augment (xu), strong_augment (xu)
z_lab , z_uw , z_us = f(x_lab), f(x_uw), f(x_us) # get representations
mean_uw , std_uw = bayes_predict (h, z_uw)
q_list .pop (0) if len( q_list ) > 50 # keep 50 most recent quantiles
q_list . append ( quantile (std_uw , Q))
mask = std_uw .le( q_list .mean ())

# compute losses
loss_kl = KL_loss (h) # prior - dependent (data - independent ) loss
loss_lab = H(h(z_lab), labels )
if method == ‘UDA ‘:

loss_unlab = H(h(z_us), shp( mean_uw )) * mask # sharpened soft pseudo - labels
elif method == ‘FM ‘:

loss_unlab = H(h(z_us), mean_uw . argmax ( -1)) * mask # hard pseudo - labels
loss = loss_lab + loss_unlab + loss_kl
loss. backward ()
optimizer .step ()

def bayes_predict (h, z):
outputs = stack ([h(z). softmax (-1) for _ in range( num_samples )] # sample weights
return outputs .mean (), outputs .std () # mean and std of predictions

In other words, we double the number of learnable parameters in the layer compared to a non-Bayesian
approach; however, this does not add a huge computational cost since only the last layer is Bayesian and the
dense backbone remains non-Bayesian.

Algorithm 2 shows the PyTorch-style pseudo-code for BaM- in selection-metric based methods (here showing
asymmetric augmentation applicable for UDA or FixMatch). The main modifications upon the baseline
methods include 1) computation of an additional KL loss term (between two Gaussians, i.e. the variational
approximation and the prior), 2) taking multiple samples of weights to derive predictions and 3) replacing
the acceptance criteria from using maximum probability to using standard deviation of predictions.

C.2 Algorithm for SWA & EMA in PAWS

Algorithm 3 shows the pseudocode for the implementation of PAWS+SWA and PAWS+EMA in PyTorch.
For brevity, we leave out details of the multicrop strategy, mean entropy maximization regularization and
soft nearest neighbour classifier formulation which are all replicated from the original implementation. We
defer readers to the original paper (Assran et al., 2021) for these details.
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Algorithm 3 PyTorch-style pseudocode for PAWS-SWA and PAWS-EMA.
# f: backbone encoder network
# g: weight aggregated encoder network
# shp: sharpen operation
# snn: PAWS soft nearest neighbour classifier
# H: cross entropy loss
# ME_max : mean entropy maximization regularization loss
# N: total number of epochs
# use_swa : boolean to use SWA
# use_ema : boolean to use EMA
# swa_epochs : number of epochs before switching on SWA
# gamma: momentum parameter for EMA

g. params = f. params # initialized as copy
g. params . requires_grad = False # remove gradient computations
num_swa = 0
for i in range(N):

for x in loader :
x1 , x2 = augment (x), augment (x) # augmentations for x
p1 , p2 = snn(f(x1)), snn(f(x2))
q1 , q2 = snn(g(x1)), snn(g(x2))

loss = H(p1 , shp(q2 ))/2 + H(p2 , shp(q1 ))/2 + ME_max (cat(q1 ,q2 ))
loss. backward ()
optimizer .step ()

if use_swa :
if i > swa_epochs : # update aggregate

num_swa += 1
g. params = (g. params * num_swa + f. params ) / ( num_swa + 1)

else:
g. params = f. params # weights are just copied

elif use_ema :
g. params = gamma * g. params + (1- gamma) * f. params # update momentum aggregate

else:
g_params = f. params # PAWS baseline

D Further implementation details

D.1 Hyperparameters for various selection-metric based methods

All selection-metric based methods in this study uses an optimization loss function of the form of Eq. (1)
from the main text, with differences in the hyperparameters µ, λ, τ , ρt and α. We use the hyperparameters
from the original implementations. For Pseudo-Labels (Lee, 2013), µ = 1, τ = 0.95 and ρt=0 (i.e. hard labels);
for UDA (Xie et al., 2019a), µ = 7, τ = 0.8, ρt=0.4 (i.e. soft pseudo-labels sharpened with temperature of 0.4);
for FixMatch (Sohn et al., 2020), µ = 7, τ = 0.95, ρt=0 (i.e. hard labels). All methods use λ = 1. In addition,
UDA and FixMatch uses asymmetric transforms for the two legs of sample and pseudo-label prediction, i.e.
α1 is a weak transform (based on the standard flip-and-shift augmentation) and α2 is a strong transform
(based on RandAugment (Cubuk et al., 2019)). Pseudo-Labels uses symmetric weak transforms for both legs.

In our calibrated versions of all these methods (i.e. “BaM-X”), we maintained the exact same hyperparameter
configuration as its corresponding baseline. The only exception is the sharpening temperature of BaM-UDA,
which uses t = 0.9 instead of t = 0.4 in UDA, as we found that calibration enables, and was highly effective
with, the use of soft pseudo-labels).

D.2 Implementation details for ImageNet experiments

We maintain the default 64 GPU training configuration recommended by the authors and make slight
modifications to the default implementations to fit on our hardware. On our set up (which does not use
Nvidia’s Apex package due to installations issues), we found training to be unstable on half-precision and
had to use full-precision training. In order to fit into memory, we had to decrease the number of images
per class from 7 to 6, resulting in a slightly lower baseline performance from the reported for 200 epochs of
training (see Table 4 in Assran et al. (2021) for the study on the correlation between the number of images
per class and the final accuracy). On all ImageNet experiments on PAWS, we follow the validation and
testing procedure of PAWS (Assran et al., 2021) and swept over the same set of hyperparameters during
fine-tuning of the linear head. We report the ECE at the final checkpoint.
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E Long-tailed CIFAR-10 and CIFAR-100

E.1 Dataset preparation

We create long-tailed versions of CIFAR-10 and CIFAR-100 following the procedure from Cao et al. (2019),
i.e. by removing the number of training examples per class from the standard training set with 50,000
samples. We create the class-imbalance unlabeled dataset with an exponential decay where the severity of the
imbalance is given by the imbalance ratio α = maxi(nu,i)/mini(nu,i) ∈ {10, 100}, where nu,i is the number of
unlabeled examples for class i. The number of samples in the most frequent class is 5,000 for CIFAR-10 and
500 for CIFAR-100. To create the labeled set, we randomly select 10% of samples from each class, under the
constrain that at least 1 sample for each class is included in the labeled set, i.e. nl,i = min(1, 0.1∗nu,i), where
nl,i is the number of labeled examples for class i. The total number of labeled and unlabeled examples for the
different benchmarks in CIFAR-10-LT and CIFAR-100-LT are summarized in Table 9. The test set remains
unchanged, i.e. we use the original (class-balanced) test set of the CIFAR datasets with 10,000 samples.

Table 9: Dataset statistics for CIFAR-10-LT & CIFAR-100-LT showing total number of examples in
the labeled and unlabeled datasets for each benchmark.

CIFAR-10-LT CIFAR-100-LT
α = 10 α = 100 α = 10 α = 100

Labeled 2,041 1,236 1,911 1,051
Total 20,431 12,406 19,573 10,847

We used the exact same configuration and hyperparameters as the original (non-long-tailed) CIFAR bench-
marks, i.e. the architecture is WideResNet-28-2 for CIFAR-10-LT and WideResNet-28-10 for CIFAR-100-LT.
All training hyperparameters used to obtain the results for FM and BaM-UDA in Table 3 of the main text
also follow the ones from the original CIFAR benchmarks.

E.2 Additional classwise results

Fig. 4 shows the test accuracies for the baseline (FM) and ours (BaM-UDA) after separating samples from
the test set into three groups — the “Many” group which contains classes with more than 100 samples, the
“medium” group which contains classes between 10 and 100 samples and the “few” group which contains
classes less than 10 samples, for the benchmark of CIFAR-100-LT with α = 10 and 10% labels. We see that
BaM-UDA outperforms FM on every group; in addition, the gap between BaM-UDA and FM increases as the
number of samples are more scarce, highlighting BaM-UDA’s utility in improving accuracy over the baseline
in the more difficult classes.
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Figure 4: CIFAR100-LT. Accuracies for samples based on their their classwise sample frequency, “many”
for classes with >100 samples, “medium” for classes between 10-100 samples and “few” for classes between
<10 samples. Dataset is CIFAR-100-LT with α = 10 and 10% labels.

F Semi-supervised Learning in Photonics Science

Semi-supervised learning is highly important and applicable to domains like Science where labeled data is
particularly scarce, owing to the need for computationally expensive simulations and labor-intensive laboratory
experiments for data collection. To demonstrate the effectiveness of our proposed techniques in the Science
domain, we use an example problem in Photonics, adopting the datasets from Loh et al. (2022). The task we
studied in this work is a 5-way classification of photonic crystals (PhC) based on their band gap sizes.

PhCs are periodically-structured materials engineered for wide ranging applications by manipulating light
waves (Joannopoulos et al., 2008) and an important property of these crystals is the size of their band
gap (often, engineers seek to design photonic crystals that host a substantial band gap (Christensen et al.,
2020)). We adopt the dataset of PhCs from Loh et al. (2022), which consists of 32,000 PhC samples
and their corresponding band gaps which had been pre-computed through numerical simulations (Johnson
& Joannopoulos, 2001). Examples of PhCs and an illustration of band gap from the dataset is shown
in Fig. 5. We binned all samples in the dataset into 5 classes based on their band gap sizes; since there was a
preponderance (about 25,000) of samples without a band gap, we only selected 5,000 of them in order to
limit the severity of class imbalance and form a new dataset with just 11,375 samples (see Fig. 5c). Notably
the long-tailed distribution of this dataset is characteristic of many problems in science (and other real-world
datasets), where samples with the desired properties (larger band gap) are much rarer than trivial samples.
From this reduced dataset, we created two PhC benchmarks with 10% labels (PhC-10%) and 1% labels
(PhC-1%), where 10% and 1% of samples from each class are randomly selected to form the labeled set
respectively. The class-balanced test set is fixed with 300 samples per class (total of 1,500 samples), the
unlabeled set consists of 9,876 samples and the labeled sets consists of 1,136 samples and 113 samples for
PhC-10% and PhC-1% respectively.

For these benchmarks, we used a WideResNet-28-2 architecture, with a single channel for the first CNN
layer, and made the following changes upon FixMatch and BaM-UDA. We set µ = 1 and instead of 220

iterations, we trained for 300 epochs (where each epoch is defined as iterating through the unlabeled set
once). For BaM-UDA, we set Q = 0.9 and use a one-minus-cosine warm-up scheduler of 50 epochs to the KL
loss coefficient (resulting in a coefficient going from 0 to 1 in 50 epochs). For each benchmark, we swept the
learning rate across {0.01, 0.001} and select the best model for both the baseline and ours. The standard
image augmentations used in vision problems cannot be applied to this problem, since it destroys the scientific
integrity of the data (e.g. cropping the PhC input would result in a completely different band gap profile).
Instead, we used the augmentations proposed in Loh et al. (2022) (periodic translations, rotations and mirrors)
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class 2: 5% < bg < 12% (1343)
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Total samples = 11375 

(a) Examples of 2D Photonic crystals

(b) Illustration of a band gap for one sample 
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(c) Dataset statistics showing the class boundaries

Figure 5: Photonics dataset. (a) Examples of 2D periodic photonic crystals (PhC), (b) illustration of the
band gap size of a single PhC seen from its density-of-states, a common spectrum of interest for PhCs (Loh
et al., 2022), and (c) dataset statistics for the task used in this work where the samples were binned into
5 classes based on their band gap (bg) with class boundaries detailed in the inset. Numbers in parenthesis
show the number of samples in each class, showing strong class imbalance.

and applied them symmetrically (i.e. there is no distinction of strong and weak augmentations). In addition,
we included these augmentations to the labeled samples as well.

G Ablation Studies

G.1 Further ablation studies on BaM-

Number of weight samples. Bayesian model averaging produces better calibrated predictions through
“Bayesian marginalization”, i.e. by averaging over multiple predictions instead of using a single prediction of
the model. In Table 10, we show ablation studies on the number of weight samples taken from the variational
posterior in the BNN layer used for “Bayesian marginalization”, i.e. for computing the posterior predictive.
We observe an overall trend that increasing the number of weight samples lead to better calibration and final
test accuracies, providing direct evidence for the effectiveness in using Bayesian model averaging towards
improving calibration. In order to limit the computational overhead arising from taking a large number of
weight samples, given that pseudo-labeling happens at every iteration, we limit M to 50 in our study. The
computational overhead for M = 50 is discussed in Appendix H, where we see that incorporating Bayesian
model averaging incurs negligible computational overhead.

Table 10: Ablation of number of weight samples, M , taken from the variational posterior in BaM-UDA.
Dataset is CIFAR-100 with 400 labels. Highlighted in cyan is the main configuration used.

M Test Accuracy ECE
2 50.0 0.403
5 58.1 0.342
10 58.5 0.336
50 59.7 0.327

A basic semi-supervised learning setup. Many SOTA semi-supervised learning methods incorporate
several techniques like weak and strong augmentation, sharpening of pseudo-labels and selection criteria to
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achieve the best performance. An interesting study is to investigate a basic semi-supervised learning setup
where many of these techniques are removed. In Table 5 of the main text, we investigated the importance
of the different features in BaM- and found that even without a selection metric, BaM still leads to some
performance gains. Here, we study a simple set up of semi-supervised learning, where we remove sharpening
and the selection metric and compare this basic baseline with one where the last layer is replaced with a
BNN via BaM-; results are shown in Table 11. Results show that performance gains via BaM- are consistent
and are effective independent from the techniques commonly introduced in SSL methods.

Table 11: Basic semi-supervised learning setup without selection criteria.

CIFAR-100-400 CIFAR-100-4000
Basic setup 53.5 74.0

Basic setup + BaM 54.6 74.9

H Computational Requirements and Additional Computational Costs

All CIFAR-10 and CIFAR-100 experiments in this work were computed using a single Nvidia V100 GPU.
ImageNet experiments were computed using 64 Nvidia V100 GPUs. A key aspect of our proposed calibration
methods is the requirement of adding minimal computational cost to the baseline approaches. In the following
paragraphs we list the additional computational cost (based on wall-clock time on the same hardware) for
our proposed methods.

Computational cost of Bayesian model averaging. The main additional computational cost comes
from executing several (in our case, 50) forward passes through the weight samples of the BNN layer when
deriving predictions for the unlabeled samples. This additional overhead is minimal since only the final
layer, which consists of a small fraction of the total network weights, is (approximate) Bayesian. On the
benchmarks of CIFAR-100 where gains are larger, we found the BNN versions to take only around 2− 5%
longer in wall-clock time on the same hardware when compared to the baseline, for the same total number of
iterations. This justifies the BNN layer as a plug-in calibration approach with low computational overhead.
The recorded run times for 500 epochs for each method on the same hardware are shown in Table 12.

Table 12: Wall-clock run time (in hours) for 500 epochs for each method.

CIFAR-10 CIFAR-100
250 labels 2500 labels 400 labels 4000 labels 10000 labels

FM 30.8 19.3 77.2 74.7 71.9
BaM-FM 36.5 21.5 79.7 75.1 73.7
UDA 40.8 23.8 77.8 73.7 73.2
BaM-UDA 50.1 25.6 80.6 75.4 74.5

Computational cost of SWA & EMA. Both SWA and EMA requires storing another network of
the same architecture, denoted g in the main text, which maintains the aggregate (exponentially weighted
aggregate) of past network weights for SWA (EMA). Rather than using representations from the original
backbone, f , representations from g are used to derive the better calibrated predictions, and thus the main
computational overhead comes from the second forward pass needed per iteration. We timed the methods
and found that PAWS+SWA and PAWS+EMA took around 18% longer in wall clock training time (on the
same hardware) when compared to the baseline PAWS method for each epoch of training. However, as shown
in the main text, PAWS+SWA and PAW+EMA resulted in a significant speed up in convergence, cutting
training time by >60% and additionally giving better test performances. Hence rather than an overhead,
improved calibration in PAWS+SWA and PAWS+EMA in fact reduces the computation cost needed for the
original approach.
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I Extreme low-label settings in CIFAR-100

Table 13 compares BaM-UDA against FixMatch and UDA in the extremely low-label settings for CIFAR-100
such as 100 labels and 200 labels. These are settings with extremely small number of labels since there is
only 1 label per class (the lowest possible) for the 100 labels setting and 2 labels per class for the 200 labels
setting. In the extreme setting of 1 label per class, BaM-UDA gives a decent 35.2% accuracy, a whopping
27% improvement from the UDA baseline (without the last bayesian layer) and a 19% improvement from the
next best method (FixMatch).

Table 13: Extremely low labels in CIFAR-100.

CIFAR-100
100 labels 200 labels 400 labels

FM 16.0±3.3 45.6±0.3 56.4±1.6
UDA 8.2±0.7 19.0±0.1 44.1±0.7
BaM-UDA 35.2±1.3 51.2±0.2 60.3±0.6

J Societal Impact and Ethical Considerations

Semi-supervised learning is arguably one of the most important deep learning applications, as in real life
we often have access to an abundance of unlabeled examples, and only a few labeled datapoints. Our work
highlights the importance of calibration in semi-supervised learning methods which could yield benefits for
real-world applications in two main ways: 1) a better deep learning model that is more data efficient and 2)
a model that is better calibrated and can quantify uncertainty better. The latter is highly important for
crucial societal applications such as in healthcare. However, as with any deep learning application, there may
be biases accumulated during dataset collection or assimilated during the training process. This issue may
be more acute in a semi-supervised setting where the small fraction of labels may highly misrepresent the
ground truth data. This may lead to unfair and unjust model predictions and give rise to ethical concerns
when used for societal applications.
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