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ABSTRACT

To train a question answering model based on machine reading comprehension
(MRC), significant effort is required to prepare annotated training data composed
of questions and their answers from contexts. To mitigate this issue, recent re-
search has focused on synthetically generating a question from a given context
and an annotated (or generated) answer by training an additional generative model,
which can be utilized to augment the training data. In light of this research direc-
tion, we propose a novel pre-training approach that learns to generate contextually
rich questions, by recovering answer-containing sentences. Our approach is com-
posed of two novel components, (1) dynamically determining K answers from a
given document and (2) pre-training the question generator on the task of gener-
ating the answer-containing sentence. We evaluate our method against existing
ones in terms of the quality of generated questions as well as the fine-tuned MRC
model accuracy after training on the data synthetically generated by our method.
Experimental results demonstrate that our approach consistently improves the
question generation capability of existing models such as T5 and UniLM, and
shows state-of-the-art results on MS MARCO and NewsQA, and comparable re-
sults to the state-of-the-art on SQuAD. Additionally, we demonstrate that the data
synthetically generated by our approach is beneficial for boosting up the down-
stream MRC accuracy across a wide range of datasets, such as SQuAD-v1.1, v2.0,
and KorQuAD, without any modification to the existing MRC models. Further-
more, our experiments highlight that our method shines especially when a limited
amount of training data is given, in terms of both pre-training and downstream
MRC data.

1 INTRODUCTION

Machine reading comprehension (MRC), which finds the answer to a given question from its ac-
companying paragraphs (called context), is an essential task in natural language processing. With
the release of high-quality human-annotated datasets for this task, such as SQuAD-v1.1 (Rajpurkar
et al., 2016), SQuAD-v2.0 (Rajpurkar et al., 2018), and KorQuAD (Lim et al., 2019), researchers
have proposed MRC models even surpassing human performance. These datasets commonly involve
finding a snippet within a context as an answer to a given question.

However, these datasets require significant amount of human effort to create questions and their rel-
evant answers from given contexts. Often the size of the annotated data is relatively small compared
to that of data used in other self-supervised tasks such as language modeling, limiting the accuracy.

To overcome this issue, researchers have studied models for generating synthetic questions from
a given context along with annotated (or generated) answers on large corpora such as Wikipedia.
Golub et al. (2017) suggest a two-stage network of generating question-answer pairs which first
chooses answers conditioned on the paragraph and then generates a question conditioned on the
chosen answer. Dong et al. (2019) showed that pre-training on unified language modeling from
large corpora including Wikipedia improves the question generation capability. Similarly, Alberti
et al. (2019) introduced a self-supervised pre-training technique for question generation via the next-
sentence generation task.

However, self-supervised pre-training techniques such as language modeling or next sentence gen-
eration are not specifically conditioned on the candidate answer and instead treat it like any other

1



Under review as a conference paper at ICLR 2021

[C
L

S
]

w
1

w
t-1

w
t

BERT Encoder-A

Contextual EmbeddingFC

Answer-containing Sentence 
Excluded Context

Answer

BERT Encoder-Q

Answer

Transformer Decoder

Q1 Qt-1 Qt

0 Qt-2 Q t-1

K

(1) Answer Generator

(2) Question Generator

Attention on encoder embedding

Generating 
Answer-containing 

Sentence

Top-K

Q1

Q2
Contextual Embedding

w
2

w
t-2

ContextContext

Figure 1: Architecture of a simple generative model, BertGen. When applying our training method
“ASGen” to the model, the question generator takes as input the answer and the context with the
answer-containing sentence removed and generates the missing answer-containing sentence.

phrase, despite the candidate answer being a strong conditional restriction for the question genera-
tion task. Also, not all sentences from a paragraph may be relevant to the questions or answers, so
task of their generation may not be an ideal candidate as a pre-training method for question gen-
eration tasks. Moreover, in question generation it is important to determine which part of a given
context can be a suitable answer for generating questions.

To address these issues, we propose a novel training method called Answer-containing Sentence
Generation (ASGen) for a question generator. ASGen is composed of two steps: (1) dynamically
predicting K answers to generate diverse questions and (2) pre-training the question generator on
the answer-containing sentence generation task. We evaluate our method against existing ones in
terms of the generated question quality as well as the fine-tuned MRC model accuracy after training
on the data synthetically generated by our method.

Experimental results demonstrate that our approach consistently improves the question generation
quality of existing models such as T5 (Raffel et al., 2020) and UniLM (Dong et al., 2019), and shows
state-of-the-art results on MS MARCO (Nguyen et al., 2016), NewsQA (Trischler et al., 2017), as
well as comparable results to the state-of-the-art on SQuAD. Additionally, we demonstrate that the
synthetically generated data by our approach can boost up downstream MRC accuracy across a
wide range of datasets, such as SQuAD-v1.1, v2.0, and KorQuAD, without any modification to the
existing MRC models. Furthermore, our experiments highlight that our method shines especially
when a limited amount of training data is given, in terms of both pre-training and downstream MRC
data.

2 PROPOSED METHOD

This section discusses our proposed training method called Answer-containing Sentence Gener-
ation (ASGen). While ASGen can be applied to any generative model, we use a simple Trans-
former (Vaswani et al., 2017) based generative model as our baseline, which we call BertGen. First,
we will describe how the BertGen model generates synthetic questions and answers from a context.
Next, we will explain the novel components of our methods and how we pre-trained the question
generator in BertGen based on them. BertGen encodes given paragraphs with two networks, the
answer generator and the question generator.

Answer Generator. To make the contextual embeddings and to predict answer spans for a given
context without the question, we utilize a BERT (Devlin et al., 2019) encoder (Fig. 1-(1), BERT
Encoder-A). We estimate the number of answer candidates K by applying a fully connected layer
on the contextual embedding of BERT’s classification token “[CLS]”. Depending on the estimated
number K, we select the K top candidate answer spans from the context. We use the K selected
answer spans as input to the question generator.

Question Generator. Next, we generate a question conditioned on each answer predicted from the
answer generator. Specifically, we give as input to a BERT encoder the context and an indicator
for the answer span location in the context (Fig. 1-(2), BERT Encoder-Q). Next, a Transformer
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decoder generates the question word-by-word based on the encoded representation of the context
and the answer span. When pre-training the question generator on an answer-containing sentence
generation task, we exclude the answer-containing sentence from the original context and train the
model to generate the excluded sentence given the modified context and the answer span as input.

Finally, we generate synthetic questions and answers from a large corpus, e.g., all the paragraphs
in Wikipedia. After generating this data, we train the MRC model on the generated data in the first
phase and then fine-tune on the downstream MRC dataset (e.g., SQuAD) in the second phase. In this
paper, we use BERT as the default MRC model, since BERT or its variants achieve state-of-the-art
performance across numerous MRC tasks.

2.1 DYNAMIC ANSWER PREDICTION

In question generation, it is important to determine which part of a given context can be a suitable
answer for generating questions. To this end, we predict the number of answer K in a given context
W = {wt}Tt=0 to obtain a more appropriate set of “answer-like” phrases, i.e.,

{wenc
t }Tt=0 = BERT Encoder-A(W ),

K = bfk(wenc
0 )c,

where T is the number of word tokens in the context, and position 0 reserved for classification token
‘[CLS]’. fk represents a fully connected unit with two hidden layers that have hidden dimensions
equal to H and 1, respectively, where H is the hidden dimension of BERT Encoder-A. For training,
we use the mean squared error loss between the output value of fk and ground-truth number of
answers Kgt.

To calculate the score si for start index i of a predicted answer span, we compute the dot product of
the encoder output with a trainable vector vs. For each start index i, we calculate the span end index
score ei,j for index j in a similar manner with a trainable vector ve, i.e.,

si = vs ◦wenc
i ,

ei,j = ve ◦ fs(wenc
j ⊕wenc

i ),

where fs represents a fully connected layer with hidden dimension H and ⊕ indicates the concate-
nation operation. For training, we use cross-entropy loss on the si, ei,j and ground truth start, end
of the answer span for each token. Predicting the number of answers and the answer span are jointly
trained to minimize the sum of their respective losses.

During inference, we choose the K top answer spans with the highest score summation of start index
score and end index score, i.e.,

Aspan = {(i, j) | 1 ≤ i < T and i ≤ j < T},
ak = max({a | #{(i, j) | (i, j) ∈ Aspan and si + ei,j ≥ a} = K}),

Aspan
k = {(i, j) | (i, j) ∈ Aspan and si + ei,j ≥ ak}.

The K selected answer spans Aspan
k are then given to the question generator as input in the form of

an indication of the answer span location in the given context.

2.2 PRE-TRAINING QUESTION GENERATOR

In order to generate questions conditioned on different answers that may arise in a context, we
generate a question for each of the K answers. Alberti et al. (2019) proposed a pre-training method
for this generative model using the self-supervised task of generating the next-sentence. We identify
several issues with this approach. This technique is not specifically conditioned on the answer,
despite the answer being a strong condition for the question generation task. Also, not all sentences
from a paragraph may be relevant to the questions or answers from within that paragraph, so their
generation is not an ideal candidate for pre-training question generation model.

To address these issues, we modify the context to exclude the sentence containing the previously
generated answer and pre-train the question generation model on the task of generating this excluded
answer-containing sentence, conditioned on the answer and the modified context.
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Specifically, we exclude answer-containing sentence Sans while retaining the answer, modifying
the original context D to Dans as

Sstart = {p | sentence start index = p} ∪ {T},
Sans = {(ps, pe, i, j) | max({p≤i})s,min({p≥j})e},
Dans = [D[:ps];D[i:j];D[pe:]], (ps, pe, i, j) ∈ Sans,

where (i, j) ∈ Aspan
k . Note that we change Sans to not exclude the answer-containing sentence for

fine-tuning the question generator, i.e.,

Sans = {(ps, pe, i, j)|ps = i, pe = j}.

In BertGen, we pass the previously generated answer to the generation model in the form of an
additional position encoding Mans that indicates the answer location within the context, i.e.,

Mans = [m0 ∗ ps;m1 ∗ (j − i);m0 ∗ (T − pe)],

where m0 and m1 indicate trainable vectors corresponding to encoding id 0 and 1, respectively.
That is, we assign the encoding id for each word in the context as 0 and each word in the answer as
1. A ∗B indicates the operation of stacking vector A for B many times.

Next, we generate answer-containing sentence output words probability W o = {wo
t }T0 as

Cenc = BERT Encoder-Q(Dans,Mans),

wg
t = Transformer Decoder({wg

i }
t−1
i=0, C

enc),

{wo
t }Tt=0 = {Softmax(wg

tE)}Tt=0,

where Cenc is encoded representation of the context and E ∈ Rd×D represents a word embedding
matrix with vocabulary size D shared between the BERT Encoder-Q and the Transformer decoder.

Finally, we calculate the loss of the generated words using the cross-entropy loss as

L = −

(
T∑

t=1

D∑
i=1

yt,ilog(wo
t,i)

)
/T,

where y indicates a ground-truth one-hot vector of the answer-containing sentence word. Note that
y is the question word in the case of fine-tuning.

In this manner, we pre-train the question generation model using a task similar to the final task of
conditionally generating the question from a given answer and a context.

3 EXPERIMENTAL SETUP

Pre-training Dataset. To build the dataset for answer-containing sentence generation tasks (AS-
Gen) and the synthetic MRC data for pre-training the downstream MRC models, we collect all para-
graphs from the entire English Wikipedia dump and synthetically generate questions and answers
on these paragraphs. We apply filtering and clean-up steps that are detailed in the appendix.

Using BertGen, we extract answers from each given paragraph, and then generate questions for
each answer-paragraph pairs. Finally, we obtain 43M triples of question-answer-paragraph for the
synthetic data. For pre-training on answer-containing sentence generation, we sample 25M answer-
paragraph pairs (Full-Wiki) from the final Wikipedia dataset to avoid extremely short contexts less
than 500 characters. For ablation studies on pre-training approaches, we sample 2.5M pairs (Small-
Wiki)1 from Full-Wiki and split 25K pairs (Test-Wiki) to evaluate the pre-training method.

Benchmark Datasets. In most MRC datasets, a question and a context are represented as a se-
quence of words, and the answer span (indices of start and end words) is annotated from the context
words based on the question. Among these datasets, we choose SQuAD as the primary benchmark
dataset for question generation, since it is the most popular human-annotated MRC dataset. For fair
comparison with existing question generation methods, we use the same splits of SQuAD-v1.1, as

1We use the Korean Wikipedia for KorQuAD, which is 15x smaller than English Wikipedia.
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Table 1: Comparison with existing question generation methods on the test set of SQuAD Split1 and
Split2. Models marked as ‘*’ indicate results we reproduced.

Generation Model Split1 Split2
BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L

Du et al. (2017) 12.3 16.6 39.8 - - -
Zhao et al. (2018)* 13.0 18.2 41.2 15.1 19.5 43.4
ASs2s (Kim et al., 2019) 16.2 19.9 44.0 - - -
Zhao et al. (2018) - - - 16.4 20.3 44.5
UniLM (Dong et al., 2019) 22.1 25.1 51.1 23.8 25.6 52.0
BertGen (Large) + ASGen 22.8 25.3 51.2 24.6 25.8 53.0
UniLM + ASGen 23.7 25.9 52.3 25.3 26.7 53.3

Table 2: Application of ASGen to other existing
question generation models. BL-4, MTR, RG-L
indicate BLEU-4, METEOR, ROUGE-L.

Test set on Split1 BL-4 MTR RG-L
Zhao et al. (2018)* 13.0 18.2 41.2
+ ASGen 14.2 19.4 42.8
T5 (Small)* 15.6 23.3 37.1
+ ASGen 17.0 24.2 38.9
UniLM 22.1 25.1 51.1
+ ASGen 23.7 25.9 52.2
Test set on Split2 BL-4 MTR RG-L
Zhao et al. (2018)* 15.1 19.5 43.4
+ ASGen 16.4 20.6 44.7
T5 (Small)* 18.8 25.2 40.5
+ ASGen 19.6 26.1 41.9
UniLM 23.8 25.6 52.0
+ ASGen 25.3 26.7 53.3

Table 3: Comparison with existing question
generation methods on the test set of MS
MARCO and NewsQA. (L) indicate (Large).

MS MARCO BL-4 MTR RG-L
Zhao et al. (2018) 17.2 - -
Tuan et al. (2020) 18.3 19.4 42.8
Ma et al. (2020) 20.5 24.7 49.9
BertGen (L) + ASGen 22.9 26.7 51.8
NewsQA BL-4 MTR RG-L
Zhou et al. (2017) 9.9 16.7 42.3
Liu et al. (2019) 11.1 17.4 43.2
Tuan et al. (2020) 12.4 19.0 44.1
BertGen (L) + ASGen 13.8 18.6 44.5

previously done in Du et al. (2017), Kim et al. (2019), and Dong et al. (2019). We refer to this
dataset as Split1. This split has 77K/10K/10K samples for train/dev/test sets. We also evaluate on
the reversed dev-test split, referred to as Split2.2 Additionally, we test our question generation on
MS MARCO (Nguyen et al., 2016) and NewsQA (Trischler et al., 2017) for evaluating generaliza-
tion of our method to other datasets. In the case of MS MARCO, questions are collected from real
user query logs in Bing. For these datasets, we follow pre-processing of Tuan et al. (2020), sam-
pling a subset of original data where the answers are sub-spans of their corresponding paragraphs
to obtain train/dev/test sets with 51K/6K/7K samples for MS MARCO and 76K/4K/4K samples for
NewsQA. To calculate the scores BLEU-4 (Papineni et al., 2002a), METEOR (Banerjee & Lavie,
2005b), and ROUGE-L (Lin, 2004), we use the scripts from Du et al. (2017).

To evaluate the effectiveness of generated synthetic MRC data, we test the fine-tuned MRC model
on the downstream MRC dataset after training on the generated synthetic data. We calculate the
EM/F1 score of the MRC model on SQuAD-v1.1 and v2.0 development set. We also evaluate on
the test set of KorQuAD, a Korean dataset created with the same procedure as SQuAD-v1.1.

To further demonstrate the effectiveness of our approach, we additionally conduct experiments on
question generation with Natural Questions (Kwiatkowski et al., 2019) and on the downstream MRC
task with QUASAR-T (Dhingra et al., 2017) and BioASQ (Tsatsaronis et al., 2015) in the appendix.

Implementation Details. For all experiments and models, we use all official original hyper-
parameters unless otherwise stated below. For BertGen model, we use pre-trained BERT (Base
and Large) as encoder and 12 stacked layers of Transformer as decoder. For large version of the
model, we use 24 layers of the encoder and the decoder with 737M parameters. For dynamic answer
prediction, we use the annotated answers in SQuAD for learning the number of answer candidates

2We use the same splits as provided by Du et al. (2017)
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Table 4: Ablation of pre-training methods, i.e.,
pre-training on NS, ASGen, and ASGen without
conditioning on a given answer (w/o A), on the
test set of SQuAD splits. “Wiki” indicates the sen-
tence generation score on Test-Wiki.

Pre-train on Small-Wiki Wiki Split1 Split2
BertGen (w/o pre-train) - 15.0 17.1
BertGen+NS 1.4 19.0 20.2
BertGen+ASGen w/o A 5.2 19.9 21.0
BertGen+ASGen 5.2 20.1 21.4
Pre-train on Full-Wiki Wiki Split1 Split2
BertGen+NS 3.4 20.6 22.6
BertGen+ASGen 8.2 22.2 24.2
BertGen(Large)+ASGen 8.3 22.8 24.6

Table 5: Average of 10 human evaluation
scores over 50 randomly picked samples from
SQuAD. Each column indicates Syntax (ST),
Semantics (SM), Context-Relevance (CR) and
Answer-Relevance (AR) in the range 1 to 5.

Model ST SM CR AR
BertGen 4.04 3.93 4.20 3.25
BertGen+NS 4.60 4.54 4.49 3.63
BertGen+ASGen 4.71 4.69 4.74 4.14
UniLM 4.25 4.31 4.54 4.06
UniLM+ASGen 4.71 4.79 4.70 4.17

K and the answer spans. For the generation of unanswerable questions in SQuAD-v2.0, we sepa-
rate unanswerable and answerable cases and then train separate generation models. For all BertGen
models, we pre-train the question generator for 5 epochs on Wikipedia and fine-tune it for 30 epochs
on MRC dataset with batch size of 32. For other question generation models, we pre-train for 1
epoch on Wikipedia. For UniLM and T5, the input is formulated as sequence-to-sequence, the first
input segment is the concatenation of context and answer, while the second output segment is a
missing answer-containing sentence or a question to be generated. We use all official settings for
UniLM, and use the official pre-trained weights. The training time depends on the data size and
the model complexity. For Zhao et al. (2018), pre-training on Full-Wiki takes only 48 hours. Pre-
training BertGen on Small-Wiki in Table 4 takes 48 hours with 8 Tesla V100 GPU, resulting in 5.1,
4.3 BLEU-4 improvement on Split1, Split2 respectively. The pre-training for BertGen (Large) with
Full-Wiki takes 1,224 hours and fine-tuning takes 72 hours. For MRC models, we use BERT (Large
and WWM). Mecab (Kudo, 2006) is used for Korean tokenizer.

Comparison of the Pre-training Method. We compare ASGen with a method from Alberti et al.
(2019), which is pre-training on next-sentence generation task (NS), and with a method from Golub
et al. (2017), which only trains the generative model on the final MRC dataset. We reproduced these
methods on BertGen as described in their original work and evaluate question generation scores on
the SQuAD splits as well as corresponding sentence generation scores on Test-Wiki.

Comparison of Downstream Results. To check the effectiveness of our method on downstream
MRC tasks, we evaluate our generated synthetic data on SQuAD-v1.1, v2.0, and KorQuAD by
training MRC models (BERT and BERT+CLKT) on generated data followed by fine-tuning on the
train set for each dataset. The structure of BERT+CLKT model is the same as that of original
BERT except that the model is pre-trained for the Korean language. Due to the absence of common
pre-trained BERT for Korean, we used this model as a baseline.

4 EXPERIMENTAL RESULTS

4.1 QUESTION AND ANSWER GENERATION

Comparison to Existing Methods. To evaluate ASGen, we fine-tune the question generation mod-
els on both SQuAD splits, after pre-training on answer-containing sentence generation task. As
shown in Table 1, ‘BertGen (Large) + ASGen’ and ‘UniLM + ASGen’ outperforms UniLM on both
splits. As shown in Table 3, ‘BertGen (Large) + ASGen’ outperforms all existing models on all
scores on both MS MARCO and NewsQA, except for comparable METEOR scores in NewsQA.

Application to Existing Methods. As shown in Table 2, ASGen consistently improves the perfor-
mance when applied to other question generation models such as Zhao et al. (2018), T5 (Small), and
UniLM across all metrics for both splits. In particular, applying ASGen on UniLM further improves
its question generation capability, achieving BLEU-4, METEOR, and ROUGE-L as 23.7, 25.9, 52.2,
and 25.3, 26.7, 53.3 on both splits, respectively. We reproduce Zhao et al. (2018) and T5, and use
the official code of UniLM with no architecture or parameter changes.
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Ablation Study of Pre-training Task. We also compare the BLEU-4 scores between various pre-
training tasks to show the effectiveness of ASGen. As shown in Table 4, ASGen outperforms NS
in the recreation score of sentence on Test-Wiki, e.g. 5.2 vs. 1.4 in Small-Wiki and 8.2 vs. 3.4 in
Full-Wiki. Also, ASGen outperforms NS in question generation, e.g. 22.2 vs. 20.6 and 24.2 vs.
22.6 in the two splits, respectively. We also observe that conditioning on a given answer improves
ASGen, e.g. 20.1 vs. 19.9 in Split1 and 21.4 vs. 21.0 in Split2.

Human Evaluation. Additionally, we also judge the quality of questions by human evaluation
involving 10 evaluators over metrics such as syntax, validation of semantics, question to context
relevance and question to answer relevance on 50 randomly chosen samples on SQuAD-v1.1 dev
set. As shown in Table 5, applying ASGen consistently improves the human evaluation scores.

Answer Prediction. Table 6 shows the effectiveness of
our method in generating the number of answers in a
given context. In the case of fixed K, the MAE from the
ground-truth is smallest at Kpred = 5 at 1.92 and 0.99
for test set of Split1 and Split2, respectively. Thresh-
olding on the sum of the start and end logits shows an
error of 2.31 and 1.12 on the two splits, respectively. In
contrast, our method generates an appropriate number
of answers, by reducing MAE to 1.24 and 0.76.

Table 6: Mean absolute error (MAE)
between prediction Kpred and ground-
truth Kgt on the test set of SQuAD

Approach MAE
Split1 Split2

Thresholding on Logits 2.31 1.12
Fixed-K (Kpred = 5) 1.92 0.99
Dynamic-K (ASGen) 1.24 0.76

4.2 DOWNSTREAM MRC TASK PERFORMANCE

To show the effectiveness of the generated synthetic data, we train MRC models on generated data,
before fine-tuning on the downstream data. As shown in Table 7, the synthetic data generated by
‘BertGen (Large) + ASGen’ consistently improves the performance of BERT (Large, WWM) by
a significant margin. Pre-training BERT on synthetic data improves F1 scores by 1.8 on SQuAD-
v1.1 and 5.6 on SQuAD-v2.0 for BERT (Large), and 0.7 on SQuAD-v1.1 and 2.5 on SQuAD-v2.0
for BERT (WWM). Synthetic data also improves BERT+CLKT performance on KorQuAD. Also,
to show improvement due to our pre-training method in the downstream MRC task, we compare
between the EM/F1 scores of BERT (Large) models trained on synthetic data generated by different
question generation models, ‘BertGen’, ‘BertGen + NS’ and ‘BertGen + ASGen’. As shown in
Table 8, our method outperforms other methods both on SQuAD-v1.1 and SQuAD-v2.0.

4.3 EFFECTS OF DOWNSTREAM AND SYNTHETIC DATA SIZE

Fig. 2 shows the effects of varying amounts of downstream MRC data and synthetic data on F1
scores of BERT (Large). In Fig. 2-(a), where we fix the size of synthetic data as 43M, pre-training
with ‘BertGen + ASGen’ consistently outperforms ‘BertGen + NS’ for all sizes of downstream data.
While the performance difference is particularly apparent for smaller sizes of downstream data, it
still persists even on using the entire MRC data (SQuAD-v1.1). In Fig. 2-(b), we also conduct
experiments by training BERT (Large) using different amounts of generated synthetic data, while
using the full size of downstream MRC data. The total number of pre-training steps for all data
sizes is kept the same as that of 10M synthetic data. Increasing the amount of synthetic data used
consistently improves the accuracy of the MRC model.

4.4 QUALITATIVE ANALYSIS OF QUESTIONS GENERATION

Comparison of Sample Questions. We qualitatively compare the generated questions after pre-
training BertGen with NS and ASGen to demonstrate the effectiveness of our method. For the correct
answer “49.6%” as shown in the first sample in Table 9, the word “Fresno”, which is critical to make
the question specific, is omitted by NS, while ASGen’s question does not suffer from this issue.
Note that the word “Fresno” occurs in the answer-containing sentence. This issue also occurs in the
second sample, where NS uses the word “available” rather than relevant words from the answer-
containing sentence, but ASGen uses many of these words such as “most” and “popular” to generate
contextually rich questions. Also, the question from NS is about “two” libraries, while the answer
is about “three” libraries, showing the lack of sufficient conditioning on the answer. Similarly, the
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Table 7: Comparison of downstream MRC
task EM/F1 scores after pre-training on the
generated synthetic data (syn data). The
scores are obtained from the dev set of
SQuAD-v1.1 and SQuAD-v2.0, and the dev
set and the test set of KorQuAD (KQD).

MRC Dev-v1.1 Dev-v2.0
model EM F1 EM F1

BERT (Large) 83.9 90.9 78.8 81.8
+syn data 86.3 92.7 84.5 87.4

BERT (WWM) 86.5 92.8 83.1 85.9
+syn data 87.4 93.5 85.5 88.4

MRC Dev-KQD Test-KQD
model EM F1 EM F1

BERT+CLKT 87.1 94.5 86.2 94.1
+syn data 87.8 95.0 86.7 94.6
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Figure 2: F1 scores of BERT (Large) on SQuAD-
v1.1 dev by limiting size of MRC and synthetic data.

Table 8: Comparison of downstream MRC task EM/F1 scores using the synthetic data from different
pre-training methods. The scores are obtained from SQuAD-v1.1 and SQuAD-v2.0 dev set.

MRC model Synthetic Data generated by SQuAD-v1.1 SQuAD-v2.0
EM F1 EM F1

BertGen (w/o pre-train) 85.1 91.4 80.9 83.9
BERT(Large) BertGen+NS 85.6 92.3 81.5 85.8

BertGen+ASGen 86.3 92.7 84.5 87.4

third example also shows that ASGen generates more contextual questions than NS by including the
exact subject “TARDIS” based on the corresponding answer. Based on these observations and from
the score improvements in Table 4, we conjecture that ASGen leads the question generation model
to better condition on the answer and to generate more contextualized questions than NS.

Categorization of Reasoning Type. We manually categorized the reasoning type of 150 randomly
sampled generated questions on Wikipedia for both answerable and unanswerable questions. The
results Table 10 and Table 11 show that generated questions using ASGen often require multi-hop or
other non-trivial reasoning. We follow the same categorization as done by SQuAD-v1.1 (Rajpurkar
et al., 2016) and SQuAD-v2.0 (Rajpurkar et al., 2018). Note that each example can be assigned to
multiple reasoning types for the answerable questions.

5 RELATED WORK

Question Generation. Research on question generation has a long history, such as Kalady et al.
(2010) and Skalban et al. (2012). Researchers have actively studied question generation for various
purposes, including for data augmentation in question answering. Du et al. (2017) proposed an
attention-based model for question generation by encoding sentence-level as well as paragraph-
level information. Zhao et al. (2018) utilized a gated self-attention encoder with a max-out unit to
handle long paragraphs. Song et al. (2018) introduced a query-based generative model to jointly
solve question generation and answering tasks. Kim et al. (2019) separately encoded the answer and
the rest of the paragraph for question generation. Ma et al. (2020) suggested sentence-level semantic
matching and answer-position-aware question generation. Tuan et al. (2020) show that incorporating
interactions across multiple sentences enhances question generation performance. Our approach
can further improve the question generation quality of these methods by pre-training them with the
answer-containing sentence generation task.

Transfer Learning. Pre-training methods are popular in natural language processing for learning
contextualized word representations. Open-GPT (Radford et al., 2018), BERT (Devlin et al., 2019),
XLNet (Yang et al., 2019), PEGASUS (Zhang et al., 2019), ERNIE-GEN (Xiao et al., 2020), UniLM
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Table 9: Examples of questions generated on SQuAD-v1.1 development set. We compare generated
questions from ‘BertGen + ASGen’ with ‘BertGen + NS’. Colored Text indicates given answers.

Context (omit) ... The population density was 4,404.5 people per square mile. (1,700.6km).
The racial makeup of Fresno was 245,306 ( 49.6% ) White, 40,960 (8.3%) ... (omit)

BertGen + NS What percent of the population is White?
BertGen + ASGen What percentage of the Fresno population is White?

Context (omit) ... in the world. Cabot Science Library, Lamont Library, and Widener Library
are three of the most popular libraries for undergraduates to use ... (omit)

BertGen + NS Which two libraries are available for undergraduates to use?
BertGen + ASGen What are the three most popular libraries for undergraduates?

Context (omit) ... in a stolen Mark I Type TARDIS “Time and Relative Dimension in Space”
time machine which allows him to travel across time and space. ... (omit)

BertGen + NS What does the doctor refer to?
BertGen + ASGen What does the TARDIS stand for?

Table 10: Manual categorization of the reasoning
type for 150 randomly sampled answerable ques-
tions generated questions on Wikipedia. Note that
each example can be assigned to multiple types.

Reasoning Type BertGen SQuAD
+ASGen v1.1

Lexical Variation (Synonymy) 40.7% 33.3%
Lexical Variation (World Knowledge) 4.0% 9.1%
Syntactic Variation 53.3% 64.1%
Multi Sentence Reasoning 21.3% 13.6%
Ambiguous/Unanswerable 4.0% 6.1%

Table 11: Manual categorization of the rea-
soning type for unanswerable questions.

Reasoning Type BertGen SQuAD
+ASGen v2.0

Negation 8.0% 9.0%
Antonym 14.7% 20.0%
Entity Swap 36.0% 21.0%
Mutual Exclusion 9.3% 15.0%
Impossible Condition 7.3% 4.0%
Other Neutral 19.3% 24.0%
Answerable 5.3% 7.0%

(Dong et al., 2019), UniLMv2 (Bao et al., 2020), T5 (Raffel et al., 2020) and BART (Lewis et al.,
2020) utilize Transformer (Vaswani et al., 2017) to learn different types of language models on a
large dataset followed by fine-tuning on a downstream task. These pre-training approaches tend to be
very generic, while our approach is a more appropriate pre-training method focused on the specific
task of question generation. Lee et al. (2019b) suggested a pre-training method for information
retrieval called Inverse Cloze Task which treats a sentence as a pseudo-query and its surrounding
context as a pseudo-target. Unlike this method, our pre-training task for the question generator is
strongly conditioned on the answer and focuses on generating missing answer-containing sentence
in the context to learn better representations more suitable to the question generation task.

Synthetic Data Generation. Subramanian et al. (2018) show that neural models generate better
candidate answers from a given paragraph than using off-the-shelf tools for selecting named entities
and noun phrases. Yang et al. (2017) introduced a training method for the MRC model by combining
synthetic data and human-annotated data. Similar to our method, Golub et al. (2017) proposed to
generate questions conditioned on generated answers by separating the answer generation and the
question generation. Unlike this paper, they do not estimate the number of answers, and they do not
pre-train their question generator. Dong et al. (2019) also show that utilizing synthetic data boosts
the performance of MRC models. Inspired by these previous studies, we propose a newly designed
pre-training technique that improves capability of question generation models.

6 CONCLUSIONS

We propose a novel pre-training method called ASGen to learn generating contextually rich ques-
tions better conditioned on the answers. Our approach improves question generation ability of exist-
ing methods, achieves new state-of-the-art results on MS MARCO and NewsQA, and the synthetic
data increases downstream MRC accuracy across a wide range of datasets, such as SQuAD-v1.1,
v2.0, and KorQuAD, without any modification to the existing MRC models.
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APPENDIX

A QUESTION GENERATION ON MORE MRC DATASETS

We also evaluate the question generation model on another data split (Split3) from Zhao et al. (2018).
Split3 is obtained by dividing the original development set in SQuAD-v1.1 into two equal halves
randomly and choosing one of them as the development set and the other as test set while retaining
the train set in SQuAD-v1.1. As shown in Table 12, applying ASGen to the reproduced question
generation model from Zhao et al. (2018) improves BLEU-4, METEOR, and ROUGE-L score on
Split3 by 1.3, 0.9, and 1.3, respectively.

We also test generalization capability of our method by evaluating on Natural Ques-
tions (Kwiatkowski et al., 2019) dataset, where questions are collected from real user query logs
on Google and may have less biased questions than other datasets. As shown in Table 13, applying
ASGen to BertGen shows improvement in the question generation score on Natural Questions short
answer dataset by 3.8 BLEU-4, 2.5 METEOR and 1.1 ROUGE-L.

Table 12: Additional experiments on the effectiveness of ASGen on the test set of SQuAD Split3.
Small-Wiki is used to pre-train the models. Models with ‘*’ indicate those results we reproduced.

Model + pre-training method BLEU-4 METEOR ROUGE-L
Zhao et al. (2018) 16.8 20.6 44.9
Zhao et al. (2018)* 16.3 20.3 44.5
Zhao et al. (2018)* + ASGen 17.6 21.2 45.8

Table 13: Ablation study of applying ASGen to question generation model on Natural Ques-
tions (Kwiatkowski et al., 2019) short answer dataset. The scores are obtained from the dev set.

Model + pre-training method BLEU-4 METEOR ROUGE-L
BertGen (Large) 31.5 30.4 60.2
BertGen (Large) + ASGen 35.3 32.9 61.3

B TRAINING ELECTRA MRC MODEL WITH GENERATED SYNTHETIC DATA

We also apply our synthetic data generated from Small-Wiki to another MRC model, ELEC-
TRA (Clark et al., 2020), which shows the state-of-the-art results. In Table 14, we report the mean
EM/F1 score on SQuAD 2.0 development set of four runs by using official Electra source code3 and
the pre-trained checkpoint. Pre-training ELECTRA on the generated synthetic data using ASGen
improves 0.5 EM and 0.6 F1 score on the downstream MRC dataset, SQuAD-v2.0, even when using
only Small-Wiki.

3https://github.com/google-research/electra
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Table 14: Ablation study of applying our method to ELECTRA (Clark et al., 2020) on SQuAD-v2.0
dev set after pre-training on the generated synthetic data using ASGen with Small-Wiki.

MRC model Synthetic Data Dev set
EM F1

ELECTRA - 87.4 90.2
(Large) ‘Small-Wiki’ 87.9 90.8

C TRANSFER LEARNING TO OTHER MRC DATASET (QUASAR-T)

To show that our generated data is useful for other MRC datasets, we fine-tune and test the MRC
model on QUASAR-T (Dhingra et al., 2017), which is another large-scale MRC dataset, after train-
ing on the synthetic data generated from SQuAD-v1.1. In this experiment, we first fine-tune ‘Bert-
Gen + ASGen’ using SQuAD-v1.1, and using synthetic data generated by this model, we train the
BERT (Large) MRC model. Afterwards, we fine-tune BERT (Large) for the downstream MRC task
using QUASAR-T data. QUASAR-T has two separate datasets, one with short snippets as context,
and the other with long paragraphs as context. As shown in Table 15, training with our synthetic
data improves the F1 score on the test set by 2.2 and 1.7 for the two cases, respectively.

Table 15: EM/F1 scores of the BERT (Large) fine-tuned on QUASAR-T dataset. The used synthetic
data is generated from ASGen trained on SQuAD-v1.1 (Full-Wiki).

MRC model Synthetic Data Short(Dev) Short(Test)
EM F1 EM F1

BERT - 74.3 78.6 74.1 77.8
Full-Wiki 76.5 80.1 76.5 80.0

MRC model Synthetic Data Long(Dev) Long(Test)
EM F1 EM F1

BERT - 72.1 75.6 72.1 74.8
Full-Wiki 74.2 77.4 73.8 76.5

D COMPARISON OF ANSWER GENERATION APPROACHES ON MRC TASK

We also evaluate the effectiveness of dynamic-K answer prediction by pre-training the BERT
(Large) (Devlin et al., 2019) MRC model on our synthetic data from Small-Wiki followed by fine-
tuning on the downstream MRC dataset, SQuAD-v2.0. As shown in Table 16, dynamic-K answer
prediction shows 0.3 EM and 0.2 F1 score improvements from the baseline approach, fixed-K.

Table 16: Comparison of predicting K answers with downstream BERT (Large) MRC results on
SQuAD-v2.0 dev set after pre-training on each generated synthetic data using corresponding answer
generation approach with Small-Wiki.

Answer generation approach Dev set
EM F1

Fixed-K (Kpred = 5) 81.38 (±0.09) 84.36 (±0.07)
Dynamic-K (ASGen) 81.73 (±0.06) 84.62 (±0.04)

E DETAILS OF WIKIPEDIA PREPROCESSING

To build the answer-containing sentence generation data and the synthetic MRC data for
SQuAD (Rajpurkar et al., 2016), we collect all paragraphs from all articles of the entire English
Wikipedia dump and generate questions and answers on these paragraphs. We apply extensive fil-
tering and clean-up to only retain the highest-quality paragraphs from Wikipedia, as follows.
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To filter out low-quality articles, we remove those with less than 200 cumulative page-views includ-
ing all re-directions in a two-month period. In order to calculate the number of page-views, official
Wikipedia page-view dumps were used. Of the 5.4M original Wikipedia articles, filtering by page-
views leaves 2.8M articles. We also remove those articles with less than 500 characters, as they are
often low-quality stub articles, which further removes additional 16% of the articles. We remove all
“meta” namespace pages such as talk, disambiguation, user pages, portals, etc. as they often con-
tain irrelevant text or casual conversations between editors. In order to extract clean text from the
wiki-markup format of the Wikipedia articles, we remove extraneous entities from the markup in-
cluding table of contents, headers, footers, links/URLs, image captions, IPA double parentheticals,
category tables, math equations, unit conversions, HTML escape codes, section headings, double
brace templates such as info-boxes, image galleries, HTML tags, HTML comments, and all tables.

We then split the cleaned text into paragraphs and remove all paragraphs with less than 150 charac-
ters or more than 3,500 characters. Paragraphs with the number of characters between 150 to 500
were sub-sampled such that these paragraphs make up 16.5% of the final dataset, as originally done
for the SQuAD dataset. Since the majority of the paragraphs in Wikipedia are rather short, out of the
60M paragraphs from the final 2.4M articles, our final Wikipedia dataset contains 8.3M paragraphs.
Finally, we generate 43M answer-paragraph pairs from the final Wikipedia dataset with the answer
generator of BertGen in this paper.

F TRANSFER LEARNING TO OTHER LIMITED DOMAIN DATA (BIOASQ)

We conduct experiments on BioASQ (Tsatsaronis et al., 2015) dataset to show the effectiveness of
our model in limited-data domains having less annotated data. As shown in Table 17, ASGen im-
proves the question generation scores by 6.0 BLEU-4, 7.8 METEOR and 6.9 ROUGE-L on BioASQ
factoid-type 6b. Moreover, using ‘Full-Wiki’ data enhances the performance of BERT(Large) by a
large margin and outperforms BioBERT (Lee et al., 2019a), by 0.95 Macro F1 (Yes/No) and 1.63
F1 (List). Note that BioBERT is specifically pre-trained on a medical corpus (PubMed) whereas we
use a generic corpus Wikipedia, ‘Full-Wiki’, with our generation models fine-tuned on SQuAD.

Table 17: The performance of our method on limited-data domain (BioASQ). Note that the scores
of question generation are obtained from BioASQ factoid-type 6b. All experiments were conducted
using the official source code of Yoon et al. (2020).

Question Generation Model BLEU-4 METEOR ROUGE-L
BertGen (Large) 6.6 10.0 33.1
BertGen (Large) + ASGen (Full-Wiki) 12.6 17.8 40.0
MRC model Pre-training Data Factoid (MRR) Yes/No (Macro F1) List-Type (F1)
BERT(Large) - 34.3 53.8 36.1
BERT(Large) ASGen (Full-Wiki) 49.2 81.1 39.8
BioBERT(Large) PubMed 52.3 80.1 38.1

G APPLICATION OF ASGEN TO T5 WITH LIMITED PRE-TRAINING DATA

As shown in Table 18, our pre-training method, ASGen, increases question generation scores of T5
(Small) (Raffel et al., 2020) model even using limited pre-training data of Small-Wiki. We expect
our pre-training may show a similar effect in other sized T5 models as well. Results for T5 pre-
training with Full-Wiki data are in the main paper.

H CENTRAL TENDENCY AND VARIATION FOR HUMAN EVALUATION

Human evaluation involves 10 evaluators over metrics such as syntax (ST), validation of semantics
(SM), question to context relevance (CR) and question to answer relevance (AR) on 50 randomly
chosen samples on SQuAD-v1.1 development set. Each score is in the range 1 to 5. Central tendency
and variation can be found in Table 19.
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Table 18: Application of ASGen to T5 Model with Limited Pre-Training data

Test set on Split1 BLEU-4 METEOR ROUGE-L
T5 (Small) 15.6 23.3 37.1
T5 (Small) + ASGen (Small-Wiki) 16.5 24.0 38.4
Test set on Split2 BLEU-4 METEOR ROUGE-L
T5 (Small) 18.8 25.2 40.5
T5 (Small) + ASGen (Small-Wiki) 19.2 25.9 41.3

Table 19: Central tendency and variation for human evaluation scores. ± is 95% confidence interval.

Model ST SM CR AR

BertGen 4.04 3.93 4.20 3.25
±0.18 ±0.19 ±0.16 ±0.22

BertGen + NS 4.60 4.54 4.49 3.63
±0.12 ±0.13 ±0.14 ±0.22

BertGen + ASGen 4.71 4.69 4.74 4.14
±0.10 ±0.11 ±0.09 ±0.18

UniLM 4.25 4.31 4.54 4.06
±0.16 ±0.16 ±0.12 ±0.19

UniLM + ASGen 4.71 4.79 4.70 4.17
±0.11 ±0.09 ±0.11 ±0.18

I CENTRAL TENDENCY AND VARIATION FOR THE DOWNSTREAM TASKS

For the EM and F1 scores on downstream SQuAD-v1.1 and v2.0 development set in Table 7 of
our main paper, we selected 5 model checkpoints from the same pre-training on the synthetic data in
different numbers of training steps. We then fine-tuned each of these models on the final downstream
data three times each, chose the best performing model on the development set, and reported its
score. Central tendency and variation can be found in Table 20.

Table 20: Central tendency and variation for the score of our approach, BertGen(Large) + ASGen,
on downstream SQuAD-v1.1 and v2.0 dataset. ± is standard deviation.

MRC model Synthetic Data Dev-v1.1 Dev-v2.0
EM F1 EM F1

BERT (Large) Full-Wiki 86.2 92.7 84.4 87.3
±0.1 ±0.1 ±0.2 ±0.1

BERT (WWM) Full-Wiki 87.4 93.4 85.5 88.3
±0.1 ±0.1 ±0.1 ±0.1

J DETAILS OF GENERATING UNANSWERABLE QUESTIONS

The mechanism of generating questions may differ in generating answerable and unanswerable ques-
tions. For example, the model could exploit a mismatching phrase to make a question plausible but
unanswerable. In order to reflect these characteristics, we train answerable and unanswerable mod-
els separately. We first take the BertGen model pre-trained on the ASGen task and then fine-tune
this model on the no-answer question generation on SQuAD-v2.0. We infer with this model on the
entire Wikipedia to make negative examples for un-answerble synthetic data for pre-training MRC
models on SQuAD-v2.0.

K DISCUSSION ON WEAK SUPERVISION FOR DYNAMIC-K PREDICTION

In question generation, it is important to find which elements of a given context are suitable answer.
To do this, we predict the number of answers to obtain a more appropriate set of “answer-like”
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phrases that humans tend to choose when they are preparing a question, rather than all possible
entity phrases. This tendency can also be found in the SQuAD dataset, which has a varying number
of annotated answers per context, even though the annotators were recommended to create up to five
answers, as shown in Table 21. While we do not have the ground-truth number of answers for all
contexts, this characteristic of SQuAD annotation can still be a useful weak supervision for learning
the number of answer candidates.

Table 21: Distribution over the number of answers in SQuAD-v1.1 dataset.

Number of Answers 1 2 3 4 5 6+
Percentage of Sample 0.5 0.9 9.1 21.9 60.1 7.5

L BLEU-4, METEOR, AND ROGUE-L

BLEU (Papineni et al., 2002b), METEOR (Banerjee & Lavie, 2005a) and ROUGE (Lin, 2004) are
widely-used metrics for evaluating the quality of generated text, where the quality indicates the de-
gree of correspondence between generated text and reference texts. BLEU uses modified precision
to compare a generated text against the reference texts. BLEU-4 calculates a weighted score of
unigram, bigram, trigram, and 4-gram based matching. METEOR uses harmonic mean between
precision and recall of unigrams, but with for recall given more importance than precision. Unlike
BLEU, METEOR also tries to match synonyms and performs stemming instead of just relying on
exact word matching. ROUGE-L is the longest common sub-sequence based word matching. The
longest co-occurrence in sequences of n-grams between generated text and reference texts are con-
sidered for calculating the score. To calculate these evaluation scores, we follow the script from
Du et al. (2017), except for the corresponding scripts from other question generation models when
ASGen is applied to them.

M LINKS TO DOWNLOADABLE COMPONENTS

For Wikipedia data, we downloaded English Wikipedia dump in Feb 2019 from (https:
//dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.
xml.bz2). Page views were obtained from (https://dumps.wikimedia.org/other/
pageviews/2019/2019-01/) and (https://dumps.wikimedia.org/other/
pageviews/2019/2019-02/). For applying our method to other existing question generation
models, we reproduce Zhao et al. (2018) using publicly available code (https://github.
com/seanie12/neural-question-generation), Raffel et al. (2020) using publicly
available code (https://github.com/patil-suraj/question_generation) and
use the official code of Dong et al. (2019) (https://github.com/microsoft/unilm).
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