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ABSTRACT

Predicting individualized potential outcomes in sequential decision-making is cen-
tral for optimizing therapeutic decisions in personalized medicine (e.g., which
dosing sequence to give to a cancer patient). However, predicting potential out-
comes over long horizons is notoriously difficult. Existing methods that break the
curse of the horizon typically lack strong theoretical guarantees such as orthogo-
nality and quasi-oracle efficiency. In this paper, we revisit the problem of predict-
ing individualized potential outcomes in sequential decision-making (i.e., estimat-
ing Q-functions in Markov decision processes with observational data) through a
causal inference lens. In particular, we develop a comprehensive theoretical foun-
dation for meta-learners in this setting with a focus on beneficial theoretical prop-
erties. As aresult, we yield a novel meta-learner called DR(-learner and establish
that it is: (1) doubly robust (i.e., valid inference under the misspecification of one
of the models), (2) Neyman-orthogonal (i.e., insensitive to first-order estimation
errors in the nuisance functions), and (3) achieves quasi-oracle efficiency (i.e.,
behaves asymptotically as if the ground-truth nuisance functions were known).
Our DRQ-learner is applicable to settings with both discrete and continuous state
spaces. Further, our DRQ-learner is flexible and can be used together with arbi-
trary machine learning models (e.g., neural networks). We validate our theoretical
results through numerical experiments, thereby showing that our meta-learner out-
performs state-of-the-art baselines.

1 INTRODUCTION

Predicting individualized potential outcomes in sequential decision-making is central for optimizing
therapeutic decisions in personalized medicine (Feuerriegel et al., 2024). Typical examples are
selecting dosage schedules for cancer patients (Zhao et al.l 2009; Wang et al., [2012), scheduling
just-in-time interventions in digital health (Liao et al.| 2021} Battalio et al., [2021), or determining
treatment schedules for chronic diseases (Shortreed et al.| 2011} Matsouaka et al., 2014). In recent
years, this problem has been increasingly studied using observational data (e.g., electronic health
records) to avoid “exploration” and leverage the increasing availability of digital patient data (Allam
et al.,[2021}; Bica et al., [2021)).

Here, we focus on predicting individualized potential outcomes in Markov decision processes
(MDPs), i.e., estimating the Q-function from observational data. This task has received much atten-
tion in off-policy reinforcement learning (e.g.,|Liu et al., [2018} |Le et al., 2019; (Uehara et al., |2020),
where many approaches have focused on delivering new learners, with a focus on addressing the
curse of horizon. However, comparatively little attention has been given to developing methods in a
principled way with theoretical guarantees such as orthogonality or quasi-oracle efficiency.

*corresponding author
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Figure 1: Our work is located at the intersection of (1) causal inference & orthogonal statistical
learning and (2) MDPs. Our problem setup is in (2): we estimate Q-functions in MDPs from
off-policy data. Baselines for this task break the curse of the horizon but typically lack strong
theoretical guarantees. Our method adopts concepts from (1): we obtain a novel meta-learner called
DR@-learner that is doubly robust, Neyman-orthogonal, and quasi-oracle efficient.

In this paper, we study the problem of estimating ()-functions in MDPs from observation data
through the theoretical lens of causal inference. In particular, we develop a theoretical foundation
based on statistical orthogonality theory (Foster & Syrgkanis, [2019), which offers a novel perspec-
tive on this task (see Figure[I). For this, we first derive identifiability results and show that several
of the existing baselines correspond to naive plug-in learners, which are known to be biased. As a
remedy, we next derive the efficient influence function of the training loss and use it to construct a
debiased second-stage loss that is Neyman-orthogonal.

As a result, we obtain a novel meta-learner for this task, which we call DRQ-learner. The
DR(Q-learner enjoys several favorable theoretical properties: (1) it is doubly robust, which enables
valid inference even under model misspecification; (2) it is Neyman-orthogonal, which makes it in-
sensitive to first-order estimation errors in the nuisance functions; and (3) it achieves quasi-oracle
efficiency, meaning it attains the same asymptotic performance as if the ground-truth nuisance func-
tions were known. The DRQ-learner is applicable to settings with both discrete and continuous
state spaces. Moreover, the DRQ-learner is flexible and can be used together with arbitrary machine
learning models such as neural networks.

Our contributions are three-fold{]]

* New theoretical contributions. We provide a theoretical framework of causal inference to Q-
function estimation in MDPs. While causal inference has long been used to address statistical
challenges in treatment effect estimation from observational data, we extend these ideas to for-
malize — and solve — the challenges of estimating Q-functions from observational data. In this
setting, interventions induce a distributional shift between behavior and evaluation policies; al-
though inverse propensity weighting (IPW) can address this, IPW suffers from exponentially
decaying overlap in sequential settings (i.e., the curse of horizon), leading to instability from
division by near-zero probabilities and making consistent estimation of potential outcomes im-
possible. By leveraging statistical orthogonality theory, we derive a novel meta-learner for valid
inference with favorable statistical properties.

e New method. We propose the first meta-learner for ()-function estimation that is simulatenously
(1) doubly robust, (i) Neyman-orthogonal, and quasi-oracle efficient. Hence, this is unlike meth-
ods that rely, for example, on IPW and are thus Neyman-orthogonal but fail to break the curse
of horizon; the DRQ-learner avoids this issue and achieves all three properties while still ad-
dressing the curse of the horizon. Importantly, quasi-oracle efficiency of our method guarantees
convergence at the same rate as if oracle nuisance functions were known. We thereby aim
to make an important contribution to reliable inference in personalized medicine where strong
theoretical guarantees are important.

* Empirical performance. The primary objective of our numerical experiments is to validate
our theoretical results. Hence, we run various numerical experiments and show that the
DRQ-learner is especially effective for low overlap settings in line with our theory. Overall,
our results demonstrate state-of-the-art empirical performance.

'Code is available athttps: //github.com/EmilJavurek/Orthogonal-Q-in-MDPs|


https://github.com/EmilJavurek/Orthogonal-Q-in-MDPs
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2 RELATED WORK

We group our literature review along streams that are relevant: (1) We review theoretical foundations
from causal inference and orthogonal statistical learning to motivate our method, and (2) discuss
prior work on off-policy Q-function estimation in MDPs. The latter defines our problem setup,
while the former shares parallels in terms of the overall methodological approach to formalize causal
quantities. We provide an extended literature review in Appendix [A]

Causal inference and orthogonal learning: Both the theory of orthogonal statistical learning
(Foster & Syrgkanis|, 2019) and semiparametric efficiency theory (van der Vaart, |1998) have been
widely used to construct estimators with strong theoretical properties. Here, a particular focus is on
influence-function-based estimators (Kennedy, |2022)), with well-known examples such as targeted
maximum likelihood estimation (TMLE) (Daniel Rubin, 2006), the DoubleML framework (Cher-
nozhukov et al.l 2018]), and doubly robust approaches for off-policy policy value estimation (Kallus
& Uehara, 2022; Shi et al.,|2021)). These techniques have been extended to the estimation of individ-
ualized treatment effects (Foster & Syrgkanis| 2019), leading to a broad class of orthogonal meta-
learners (Kennedyl [2020; Nie & Wager, 2021 Morzywolek et al., 2023). Similarly, meta-learners
have been proposed for estimating individualized treatment effect estimation over time (Frauen et al.}
2025). However, works on individualized treatment effect estimation over time do not focus on the
MDP setting and are well to known to suffer from the curse of horizon (Kallus & Uehara} 2022)). Im-
portantly, a similar theoretical framework for individualized potential outcome estimation in MDPs
is still missing.

Off-policy Q-function evaluation: Several methods have been developed for estimating (Q-function
from MDPs in off-policy settings, that is, using observational data (e.g.|Liu et al., [2018; |Le et al.,
2019;|Uehara et al.| 2020). A common theme in these works is to address the curse of horizon (e.g.,
Le et al.}2019; |Uehara et al., 2020). We refer to Appendix |A|for a more detailed overvie\xﬂ

The above works have been developed typically outside of causal inference and thus without ex-
plicitly formalizing the underlying estimand as a causal quantity. One of our contributions is to link
causal inference and @)-function evaluation from observational data by formalizing the underlying
causal estimand. This allows us later to taxonomize prominent works from the literature based on
the underlying adjustment strategy. For example, in our framework, existing works correspond to
adjustment strategies based on inverse-propensity-weighting-like nuisances (e.g., Q-regression (Liu
et al.l 2018))) or implicit adjustment strategies based on (supervised learning) target construction
(e.g., FQE (Le et al2019)). From our causal inference perspective, we later obtain new theoretical
insights to understand the failing modes of existing methods. In particular, we show that several
state-of-the-art methods suffer from so-called plug-in bias (Kennedyl [2022) and potential instability
under model misspecification. To the best of our knowledge, more advanced adjustment strategies,
which are commonly used in causal inference, are missing in the literature on @-function evalua-
tion. Consequently, no prior work has developed a Neyman-orthogonal meta-learner for off-policy
Q-function estimation.

Research gap: To the best of our knowledge, a method for Q-function evaluation in MDPs with
observational data that enjoys favorable theoretical properties - such as Neyman-orthogonality and
quasi-oracle efficiency - is missing. As a remedy, we first reframe off-policy @Q-function evaluation
through the lens of causal inference and then develop a new meta-learner called DRQ-learner.

3 PROBLEM FORMULATION

Notation: We denote random variables by capital letters S, A, R and their realizations by small
letters s, a, r from domains S, A, R. Let P(.S) denote a distribution of some random variable S, and
let p(S = s) be a corresponding density or probability mass function, and let P(S) denote the set of
all probability distributions over S. We write E,[] := Ep_[-] = [ - dP, to denote expectation with
respect to a distribution P, arising from a stochastic process created by following the MDP with
policy 7 (equivalently, E, p[] when « ~ P).

*Many of these works focus on off-policy evaluation (and thus target scalar average outcomes), where
methods for Q-function evaluation are often a necessary first step (e.g.,/Shi et al.| (2021) propose a method for
interval estimation that yields a Q-function evaluation as byproduct)
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Figure 2:  Our task: we aim to estimate Q. _, a functional of the unobserved evaluation policy 7.
(right), from the observational dataset D, from the behavioral policy 7, (left). A trajectory from a time-
invariant Markov decision process (MDP) is determined by environment dynamics (gray) and by selecting
actions according to a policy. We observe the MDP with 7, (top left), while a potential MDP with 7. (top
right) is unobserved. Our target estimand (). must thus be estimated from available observational data D, .

Data-generating process: We consider the following definition of a time-invariant MDP, as is com-
mon in the literature and in many practical apphcatlonsﬂ (Uehara et al.,[2020; |Shi et al., [2021}; |[Kallus
& Uehara) 2022). Formally, a time-invariant MDP is given by tuple <S AR, pr, Ds, 'y> with: (1) S
is the state space that can be discrete or continuous; (ii) A is the action space; (iii) R is the re-
ward space, (iv) p, : S x A — P(R) is the reward distribution, (v) ps : S x A — P(S) is the
stochastic state transition distribution, and (vi) v € (0, 1) is the discount rate for future rewards.
A trajectory {(S;, A¢, Ry)}i>0 is generated by following a stationary stochastic policy 7: at time
step t, a decision-maker in state Sy = s € S selects an action A; = a € A with probability
m(A; = a | St = s), areward R; = r is observed according to the law R; ~ p,(s,a), and one
transitions to a new state Sy 1 = §', Sgr1 ~ ps(s,a).

In our data-generating process, we assume (i) that the time-invariant MDP model has the Markov
property P(Si11 = s | {Sj, A4, Rj}o<j<t) = ps(s | St, A¢) and (ii) that the conditional mean
independence property holds, i.e., E[R; | {S;,4;, Rj}o<j<i—1, S, Ar) = pr(Si, A). Together,
the assumptions (i) and (ii) guarantee the existence of an optimal stationary policy (Puterman)|1994)
and permit us to decompose a dataset of i.i.d. trajectories into one-step transitions, namely

- {(Sz ty Az it Rz ty Sz t+1)}0<t<T 1<i<n — {(5]7 A]7 Rju SjJrl) N nT {O N nT7 (1)
where we use O = (5, A4, R, S) to denote observations.

Key quantities: Given an observational dataset from a behavioral policy D, ~ m,, we are then
interested in estimating outcomes under a different evaluation policy 7.. The target estimand is
the state-action value function Q.. of 7., which is defined as the y-discounted expected cumulative
reward across trajectories generated according to the policy 7., i.e.,

Qr. (s a) [ZV

See Figure [2] for a visual illustration of the estimation task. We also define a state value function
vy (8) £ Eacn(|s) @~ (s, A)]. We further introduce nuisance functionﬂ of the cumulative and
stationary density ratio via

S():S,AO:(I:|. (2)

2 21 Pe(Se=5"] S0 = 5,40 = a)
pb(S—S) ’

3Importantly, we can always incorporate any historical information into state variable, simply by concate-
nating both and creating an “augmented” state variable where S = (S, H) where H is any additional historical
information we wish to store beyond any natural concept of state. The Markov framework will natively apply
to such a setup. As such, the MDP setting can also be seen as a generalization of contextual bandits and some
dynamic treatment regime (DTR) setups. Specifically, contextual bandits are a one-step MDP with no state
transitions (or equivalently, all state transitions are equally possible, i.e., irrelevant). DTR setups usually oper-
ate on short time horizons since without assuming Markovianity (=MDP), they invariably also suffer from the
curse of horizon. We refer to Appendix [A]for extended related work regarding DTR and the relevant overview
materials.

*We call nuisance functions all auxiliary functions that are not of primary interest but are required for
estimation.

w, /b(s | s,a) =

t
Te(Ar = ap | Sk = sk)
=11 - 3)

pl:t_k:l (Ak:ak‘skzsk)v
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respectively. The subscripts e, b in p., p, are used to denote densities arising from following an
MDP with an evaluation and behavioral policy, respectively. We collect the nuisances in a tuple

n= (pa wv/b)'
3.1 CAUSAL INTERPRETATION

Objective: Given an observational dataset from a behavioral policy D, ~ 7, we are then inter-
ested in estimating outcomes under a different evaluation policy 7.. Since data following 7. is not
observed, our target is a causal quantity. To formalize this, we use the potential outcomes framework
(Neyman et al., 1923}, Rubin| [1974) and denote the potential reward by R[a], i.e., the reward that

would have been observed had action a been selected. Then, R[r.] £ > _ , Rla]r.(a | S) is the

potential reward that would have been observed under the policy 7. (Uehara et al., 2022). Hence,
we are interested in estimating the potential state-action value had policy 7. been followed:

& (s,a) = ]E[RO + Z’tht[m(~ | St)] ‘ So=8,40 = a]. 4)

t=1

The causal estimand &, (s, a) characterizes the expected individualized potential outcomes in se-
quential decision-making (e.g., the patient-specific outcome from a dosage schedule of anti-cancer
drugs for a specific patient trajectory). If identification assumptions hold (see Appendix [B)), the
causal estimand &, is identified as a statistical estimand @ .. and can thus be estimated from the
observational data (i.e. can be expressed as functional of only the observable distribution from
following 7). Below, we state the identification results in two ways: in Lemma [I] we take obser-
vational data at the level of trajectories, whereas, in Lemma@ we take the observational data at the
level of one-step transitions. While the first approach is more straightforward, the second allows us
to later break the curse of horizon when we develop the DRQ-learner.

Lemma 1 (Identification over trajectories). Under Assumptions (1)—(3) from above, the causal
estimand in Eq. (@) is identifiable from the observed data of trajectories via

(610 = Qo (50) =B [ Ro 4 Y3
t=1

Proof. See Appendix [D.4] O

Lemma 2 (Identification over one-step transitions). Under Assumptions (1)—(3), the causal es-
timand in Eq. is identifiable from the observed data of one-step transitions via &, (s,a) =
Q.. (s,a) = f(s,a), where f is the unique solution (unique up to equality almost everywhere) to
the Bellman equation for ., i.e.,

SOZS7A0:CL:|. (5)

f(s,a) =E {R +E 4o 3L (S, A)] ‘ S=s5A= a] : (6)
Proof. See Appendix [D.4] O

While the derivations of the above identifiability results are straightforward, our aim behind these
is to cast the target explicitly as a causal estimand. In the following section, we build on these
identification Lemmas and recast existing (), estimation algorithms as causal plug-in learners.

4 A ROADMAP TO ORTHOGONAL LEARNING

To derive our method for estimating ()., from observational data D,,, we proceed in three steps:

1) We first leverage the above identifiability results to construct simple plug-in learners (Sec-
tion[4.T)). We show that these plug-in learners recover existing methods from the literature, namely,
Q-regression (Liu et al.,[2018)) and FQE (Le et al.| 2019). However, plug-in learners have inherent
limitations such as so-called plug-in bias (Kennedy, 2022). This serves two-fold: to formalize the
drawbacks of existing methods theoretically (using the lens of the potential outcomes framework)
and to motivate an alternative estimation strategy. (2) We then sketch out the idea behind design-
ing two-stage meta-learners based on Neyman-orthogonal losses (Section . 3) Finally, we then
present our new Neyman-orthogonal meta-learner called DRQ-learner (Section [5). To do so, we
leverage semiparametric efficiency theory and derive the efficient influence function. We also show
that our new meta-learner has several favorable theoretical properties, namely, double robustness,
Neyman-orthogonality, and quasi-oracle efficiency. We provide an overview of the different learners
in Figure 3]
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4.1 WHY PLUG-IN LEARNERS ARE SUB-OPTIMAL

The identification results from above (i.e., Lemma [I] and Lemma [2) give immediately rise to two
naive plug-in estimators. However, as we show later, each comes with inherent 1imitationsE]

o IPTW plug-in learner: A straightforward way to obtain an estimator of (), is to take the iden-
tification result based on Lemma [I] (i.e., right-hand side of Eq. (3))) and “plug-in” an estimated
cumulative density ratio nuisance p1.¢. This yields

Q¥™(s,a) = %Z [( i0 + ZWtﬁi,1;tRi7t) I{Si0 = s, Aio = a}|, (7

t=1

which involves the density ratio p;.; and thus captures the inverse probability of treatment weighting
(IPTW). When we then generalize the estimator from a tabular point-wise solution to learning the
best model g from a restricted model class G, we yield

Qr, =G = argmln * Z {Z’Y Pi,1: t Yie — (Sz ty Ai, t))Q] forY; s = Z’Vt 7tﬁi,(t+1):t’Ri,t’7 8)

= t>0 t'>t

which corresponds exactly to Q-regression (Liu et al.| 2018)E] A specific limitation of the [PTW
plug-in learner (=Q-regression) is that it suffers from the curse of horizon as a consequence of using
the cumulative density ratio nuisance py.;.

e Recursive plug-in learner: An alternative is to use the second identification result from Lemma[2]
Analogous to the technique used in the identification proof (see Appendix [D.4), we can recursively
obtain an estimator Qkﬂ by “plugging-in” into the right-hand side of Eq. e previous estimator
Qk. Formally, we have

N
Q. = lim Qi for Quii(s,0) = & Y [(Ri+1Eaer, (15 [Qu (S0 A I{S: = 5,4 = a}] . ©)

i=1

This yields an estimated solution to the empirical approximation of Eq. (6). Generalizing this ap-
proach to a minimization over a model class G, we yield

N N ~ ~ 2
Qr. =§= lim g for gpp1 =argmin » {(Ri FAE 4, (150 (Si, A)] — g(S, Az-)) } , (10)
k— oo geg P}

which corresponds exactly to the FQE baseline (Le et al.l 2019)). While the recursive plug-in learner
(=FQE) breaks the curse of horizon, its recursive fitting procedure may lead to unpredictable failure
modes or even divergence (see the problem of deadly trlad in, e. g Sutton & Barto| (2018)).
= Fundament.al problems of plug-in learn- L Y —5 (e )
ers: Both plug-in learners suffer from so-called _

. . . (S0, 4o, Ro, S1. N
plug-in bias (Kennedy, 2022): that is, errors }ﬁ pus :( o
in the nuisance estimates directly propagate to ’ N2 ) ) = [ Die
the causal estimand. In contrast, we now derive ) ) (G 1L
our Neyman-orthogonal meta-learner that elim-
inates first-order bias from the nuisance func-
tions. Hence, bias from nuisance function es-
timates propagates into the final estimand only
via higher-order errors.

‘ Observational data D;, ‘ Nuisance estimators Learners

Figure 3: Comparison. After observing the data
Dy, the learner-specific nuisance functions are
estimated first, followed by the actual estimand.
4.2 INTUITION w= our DRQ-learner. Learners suffering from

BEHIND TWO-STAGE META-LEARNERS plug-in bias are marked with X.

To resolve issues from plug-in bias, we later de-
velop a two-staged meta-learner (see Fig. . The basic idea is: (1) In the first stage, the nuisances

SFor ease of exposition, we adopt the nomenclature for naming different methods based on causal inference
literature, but later state the corresponding names of the benchmarks in the literature.

8To see why this is a generalization of the tabular Q'P TV consider the case of having a free parameter 6 for
each possible point evaluation. The learned minimizer g is then nothing else than a point-wise solution to the
estimating equation V£ (6) = 0, which will simply equate §(s,a) = = 37" | Y, - I{Si: = s, Aiy = a}.
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are estimated, yielding some estimate 7). (2) In the second stage, the target g with true value g* is
estimated by empirical risk minimization (ERM) over a risk £ via

§ = argmin L(7, g). (11)
=Y
Here, one seeks a learner (second-stage loss) with small error despite learning § with the estimated
nuisance 7 carrying first-stage estimation error. However, deriving such a second-stage loss is non-
trivial.

A common feature for the second-stage loss is to employ Neyman-orthogonal loss functions (Cher-
nozhukov et al., [2018]), which (in population) satisfy the property

DyDyL(g*,n)[g—g9,71—n] =0, (12)

where D, and D,, are directional (Gateaux) derivatives in function space (Foster & Syrgkanis},2019).
Informally, orthogonality means the gradient of the loss D,L (i.e., the estimating function, or also
known as the score) is insensitive to small perturbations in the nuisances around their oracle value
7, such as those arising from nuisance estimation error[]

5 OUR DR@-LEARNER

We proceed in three steps: (1) We first derive our Neyman-orthogonal loss. (2) Next, we show the
Quasi-oracle efficiency and double-robustness properties of our loss. (3) Finally, we elaborate on the
practical implementation.

5.1 THEORETICAL RESULTS

We denote our Neyman-orthogonal loss by L2 (1, g), which we formally derive in Theorem
Therein, we derive and employ the efficient influence function (EIF). With the perspective of classi-
cal semiparametric inference, we replace the ERM estimate of the population risk with a debiased
estimator based on the EIF. Under standard regularity conditions, the resulting population analogue
is Neyman-orthogonal. Hence, by deriving the EIF of a standard MSE population risk, we obtain
our main result, namely, the Neyman-orthogonal loss Lf’Te (n,9).

Theorem 1 (Neyman-orthogonality). The loss

L?re (7779) = EO’pr |:Z7T€(a ‘ Sl) ((bl - 9(5,70’))2

+Eo! npy,s~pp(s) [Zﬂ’e(a |'s)(¢2 — 9(57’1))2 (13)

where
]I(A / / / /
B=2 e O AR 4 90, (3) ~ Qo (A} + Qr (5,0), (14)
me(A' ] S , , ~ ;o
P2 = 27ﬂbEA, : S,iwe/b(S | s,a) {R + 70 (57) = Qr (57, A )} + Qn.(s,0) (15)

is Neyman-orthogonal w.r.t. all the nuisance functions 1 = (7, We /b, Q). For intuition on the
form of the pseudo-outcomes ¢1, p2, we refer to Appendix[D.1.1]

Proof. We refer the reader to Appendix [D.T]for formal proof Here, to provide intuition, we show
the efficient influence function of the standard MSE loss, L. . (1, 9), which is shown to be

IF(Ly, (1,9),0")

=2 me(al) (Qre(8',0) oS )? = Lk, (1,9) + 2 { K + y0r,(8') = Qr. (5", A

N} s A1) )

W (A']57)
Qﬂ'e(slvA/) - g(Sl»Al) +Es,a~pb(s)ﬂ'e(a|s) [(Qﬂ'e(s?a) - g(s,a) e/b S ‘S a’) :|

Afterward, we derive the loss L?re (1, g) with the debiasing procedure (and some algebraic manip-
ulations). Neyman-orthogonality is then proved by taking the necessary derivatives. A formal and
detailed derivation is in Appendix [D.1] O

"For an extended discussion of orthogonal statistical learning, we refer to Appendix
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Theorem 1 shows that our loss, Lf’rc (n, g), for estimating @), is Neyman-orthogonal and, therefore,
robust to nuisance estimation error. Finally, we prove our loss is quasi-oracle efficient and doubly
robust.

Theorem 2 (Quasi-oracle efficiency). Under standard assumptions (see |Foster & Syrgkanis
(2019)), L3 (n, g) achieves quasi-oracle efficiency, specifically, for § = arg ming g Lz (1, 9)

lg™ = 4115 p,m. S IA*AIZNA*Qr, (I3 + | A% [511 A Q. I3 (17

where x < y is taken to mean there exists a constant C > 0 such that © < Cy, the Ak operator is

defined as k— k* Jfor any function k, and g* = argmin g L?re (1, g), which equals the true Q,
provided the function class G is expressive enough to include it. Lastly, the norm weighting py7, in
I-[13,p, =, mirrors that of the loss.

Corollary 1 (Double robustness). The learned approximation § is doubly robust. Specifically, if

either AQﬂE — 0or Aty — Ay, — 0, then g is a consistent estimator of g*, i.e., asymptotically
g™ = 4l =0.

2
2,ppTe

Proof. See Appendix [D.3|for the proofs of both the theorem and the corollary. O

The bound in Eq. shows that the excess risk of g depends only on products of nuisance esti-
mation errors. This means that even if one nuisance component (e.g. Q}T) converges slowly, the
overall estimator still converges at the fast rate of the better-estimated component. In other words, §
behaves as if oracles nuisances were used, up to higher-order terms (cf. Foster & Syrgkanis} |2019;
Nie & Wagerl, [2021)). The estimation error is thus shielded from first-order nuisance misspecification
and is only impacted through second-order interactions.

Remark: Our above theory is different from [Shi et al| Algorithm 1 Our DRQ-learner for Qnr.
(2021)) in the following ways: For the purpose of 0b- 15w Observed dataset Dy ol G

taining a tight confidence interval for OPE, [Shi et al.| output: Doubly Robust estimator QR

(2021) have derived a point-wise iterative debiasing
procedure for (in their view nuisance) (), that, when
restricted to the discrete state setting with no model
class G restrictions, corresponds to our learner. We
provide a more general solution that (i) is applicable to
both continuou and discrete state spaces, (ii) able to
fit an estimator § € G, and (iii) provides the theory nec-
essary to show Neyman-orthogonality and quasi-oracle
efficiency. Additionally, our derivation of the efficient influence function means that, for the discrete
setting, we show that the estimator is efﬁcienﬂ

. // First stage (nuisance estimation)

Dp(a,s) «— Pp(A=a|S=s)

$22 Fe(Sp=s"ISg=s,49=a)
Py, (s")

QL. < Ba [25207 Re|So = 5, 40 = q

. // Second stage (DR adjustment)

ADR . 73 A ~ Al
QPR = argmingeg L3 (.. 5, QL) 9)

: 'Li)ﬁ/b(s/, s,a) +

. Return: Q?ri

5.2 IMPLEMENTATION

Pseudocode: The pseudocode for our DRQ-learner is in Algorithm [T} (1) The first stage simply
estimates the nuisance functions, namely, 1) = (7, We /3, Q}Te). Notably, the nuisances include the

target itself (),. (2) The aim of the second stage estimation is to refine the first stage estimate Q}re
with a loss designed to bring favorable theoretical properties to the second stage refinement. Put
differently, we construct a meta-learner that in the first stage accepts any off-policy Qr, estimation
method and subsequently refines it. Furthermore, we may choose to restrict the space of solutions G
of the second stage and obtain the best projection of true g* ¢ G onto G, for example, if we wish to
obtain an interpretable solution.

Implementation: Our DRQ-learner is generally flexible and can be implemented with arbitrary
machine learning models for estimating the nuisance functions as well as the second-stage. We
provide details about the architectures and fitting process we use in our experiments in Appendix [E]

8Note that the approach of [Shi et al| (2021) cannot readily be extended to continuous settings since their
point-wise debiasing step includes a Dirac delta function on the state. In a continuous setting, this is either zero
or infinite, and thus not directly applicable.

“Meaning it achieves the semiparametric efficiency bound on asymptotic variance dictated by the EIF.



Published as a conference paper at ICLR 2026

6 EXPERIMENTS

The primary goal of our experiments is not traditional benchmarking but rather to validate our theo-
retical results: (1) that our DRQ-learner outperforms the plug-in learners; (2) that our DRQ-learner
is especially effective in settings that benefit from Neyman-orthogonality such as settings with low
overlap; and (3) that our theory is applicable to different function classes including restricted model
classes G.

Settings: We consider the Taxi and Frozen Lake environments from the OpenAl Gym package
(Brockman et al., [2016). We set our data-generating policy 7, and our target evaluation policy 7,
as epsilon-greedy policies, 7; + e-greedy(Q*,¢;) for i € {e, b} and for the optimal Q*, which
we acquire in an online fashion. We generate a dataset D, of n trajectories following 7. We
consider two settings: (A) when the model class G is left unrestricted, and (B) when the model class
G is restricted to a simple linear model. For each setting, we conduct three sets of experiments:
(1) We consider a varying dataset size n € [2000, ..., 6000]. (2) By varying the discount factor ~,

we alter the length of the horizon considered. Here, we vary the effective horizo h & ﬁ in
the range h € [3,...,20], or in other words, v € [0.66,...,0.95]. (3) By varying the greediness
ge € [0.1,...,0.9] of the target evaluation policy, while holding ¢, fixed, we can directly vary the
degree of overlap between the dataset and the off-policy potential distribution whose @)-function we
seek to estimate. We use a simple metric Overlap = ) min(m,(a), 7.(a)) to quantify the level of

overlap.

_ 110-Qx I3

Metric: We evaluate the performance of all methods using rMSE(Q7 Qx.) TEMAIE
e ll2

the mean (+ 1 standard error) over 5 runs with different seeds.

. We report

Baselines: As baselines, we implement standard ()., estimation methods of ()-regression (Liu
et al., 2018)) and FQE (Le et al., 2019). We have previously shown that these correspond to plug-
in methods and should thus be inferior. Additionally, we implement Minimax ()-learning (MQL)
(Uehara et al.}|2020). For implementation details, see Appendix E]

Al: varying dataset size A2: varying length of horizon A3: varying overlap

Overlap
0.67 0.75 0.83 0.92 1.00 0.92 0.83 0.75 0.67

rMSE
rMSE

\//

2000 2500 3000 3500 4000 4500 5000 5500 6000 345678 91011121314151617181920 01 02 03 04 05 06 07 08 09
n effective horizon €

1072

Figure 4: Setting A — Taxi environment: Unrestricted model class G. The results confirm the
theoretical properties: our DRQ-learner in blue is better than the plug-in learners in red/ ,
robust for varying lengths of the horizon, and is especially effective for settings with low overlap.

Results: Results for Setting A (unrestricted) are in Fig.[d] Our DRQ-learner performs best across
a variety of configurations. In particular, we confirm: (1) our method consistently outperforms the
plug-in learners. Further, our experiments show our method successfully incorporates the density
ratio nuisance without degrading performance in the low overlap scenario (see Fig. [A3). Hence,
the empirical results confirm our theoretical properties. In particular, we confirm (2) that our
DRQ@-learner is especially effective for long horizons and for low overlap settings in line with our
theory. Results for Setting B (restricted) are in Fig. [5| Our method is highly effective and performs
best for many settings, especially with low overla Thereby, we confirm (3) that our theory is also
applicable to restricted model classes.

 fntuition: Since Yoo = ﬁ, state-action values will have a magnitude of ﬁ times that of rewards.
Instead of thinking of discounted rewards across an unbounded trajectory, we consider effectively taking a
horizon of h steps with undiscounted rewards.

" Note about Figure ' At large ¢, the target policy becomes nearly random, making Q-regression behave
unusually well. This is because the density ratios shrink rather than explode, removing its usual instability.
In this easy-nuisance regime the robustness and asymptotic benefits of DRQ-learner matter less, so its finite-
sample performance does not strictly dominate.
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B1: varying dataset size B2: varying length of horizon B3: varying overlap

Overlap
0.67 0.75 0.83 0.92 1.00 0.92 0.83 0.75 0.67

=\ /
/ 107 = /
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2000 2500 3000 3500 4000 4500 5000 5500 6000 345678 91011121314151617181920 01 02 03 04 05 06 07 08 09
n effective horizon €

Figure 5: Setting B — Taxi environment: linear model class G. The results confirm that our theory
and thus our DRQ-learner (in blue) are applicable to different (restricted) function classes.

Al: varying dataset size A2: varying length of horizon A3: varying overlap
Overlap
0.67 0.75 0.83 0.92 1.00 0.92 0.83 0.75 0.67

rMSE
rMSE

50 100 200 500 345678 91011121314151617181920 01 02 03 04 05 06 07 08 09

n effective horizon e
Figure 6: Setting A — Frozen Lake environment: Unrestricted model class G. The results confirm
the theoretical properties: our DRQ-learner in blue is better than the plug-in learners in red/ ,

robust for varying lengths of the horizon.

Conclusion: In sum, our DRQ-learner is the first approach to jointly achieve double robustness,
Neyman-orthogonality, and quasi-oracle efficiency. Thereby, we provide a principled and flexible
foundation for reliable individualized decision-making in sequential settings. A particular advantage
of our DRQ-learner is its flexibility to accommodate real-world constraints such as interpretability
or fairness into the solution space G.

10
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ETHICS STATEMENT

Our work develops a theoretically principled approach, the DRQ-learner, for estimating individu-
alized potential outcomes in MDPs from observational data. The primary goal of this work is to
improve the reliability of decision-making algorithms, particularly in high-stakes settings such as
personalized medicine. To promote reliable decision-making, we focus on identifiability results that
transparently state the boundary conditions of our method and thus ensure when our method can be
safely used.

Potential benefits and risks: Our method aims to enhance safe and effective individualized decision-
making by providing more statistically reliable ()-function estimates even under model misspeci-
fication and low-overlap conditions. This can ultimately contribute to better treatment policies in
healthcare and other critical applications. However, like any method that can be applied to personal-
ized decision-making, misuse in inappropriate or sensitive settings could have unintended negative
consequences (e.g., reinforcing biases present in observational data). We therefore emphasize that a
successful application of our method requires domain expertise to ensure causal assumptions such as
unconfoundedness and positivity, which are necessary for identifiability. Our work explicitly frames
Q-function estimation as a causal inference problem, aligning with recent arguments that reliable
algorithmic decision-making must be grounded in causal reasoning to ensure valid and trustworthy
deployment (cf. [Kern et al., 2025).

Societal and fairness considerations: While our method is model-agnostic and does not impose
fairness constraints by design, it can be combined with fairness-aware modeling or post-hoc policy
adjustment techniques. We encourage practitioners to monitor for disparate impact across subpopu-
lations when deploying systems trained with DRQ-learner, especially in high-stakes domains.

REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our results. All theoretical contribu-
tions, including identifiability results, the derivation of the efficient influence function, and the proof
of double robustness and quasi-oracle efficiency, are presented in full detail in the main text and
rigorously proven in Appendix [D] Our algorithm is specified formally in Section and summa-
rized in pseudocode to facilitate implementation in Section[5.2] Hyperparameters, model classes,
and training details are provided in Appendix [E] For our empirical evaluation, we rely exclusively
on environments from the OpenAl Gym package, as described in Section [6] which ensures that
experiments can be exactly reproduced by other researchers. We also provide an anonymized, open-
source implementation of DRQ-learner and scripts to reproduce all figures and tables, available at
https://github.com/EmilJavurek/Orthogonal-Q-in-MDPs, Upon acceptance, we
will make our code publicly available via GitHub repository. Together, these materials enable in-
dependent researchers to fully replicate both the theoretical and empirical results presented in this
work.
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A EXTENDED RELATED WORK

Here, we provide an extended related work to offer additional context for our work.

Off-policy @-function evaluation: Methods targeting the off-policy @-function from MDPs,
as is our goal, are often presented as plug-in off-policy evaluation (OPE) methods. In the
OPE literature, (),  is a nuisance functio where a new fitting procedure for ()., is taken
to imply a new plug-in learner for OPE. An odd consequence of this is that the perfor-
mance of Qwe function estimation is often evaluated only via the implied performance of the
estimated scalar average off-policy policy value. Yet, many practical applications have di-
rect interest in estimating individualized outcomes such as ()., to personalize medical deci-
sions (Feuerriegel et all 2024), and, hence, we focus here on estimating ()., directly. Ex-
isting (). estimation techniques address the off-policy nature of the problem either explicitly
via an inverse-propensity-weighting-like nuisance (Liu et al. 2018} [Farajtabar et al.| 2018 |Ue-
hara et al., [2020; Munos et al., 2016), or implicitly in the (supervised learning) target con-
struction (Le et al.l 2019} |Lagoudakis & Parr}, 2003}, |Precup et al., [2000; Harutyunyan et al.,[2016).
Finally, we mention the work of |van der Laan et al.| (2025)), who have developed a debiased esti-
mator for linear functionals of ()r,. While this generalizes debiased estimation from just OPE to
all linear functionals of @)_, it cannot be applied to @), itself.

Potential outcomes in MDPs: Off-policy (potential outcome) estimation in MDPs is commonly
encountered in OPE for RL. Here, the goal is to estimate the scalar policy value of an evaluation
policy different from the one that generated the observed MDP trajectories. Various doubly-robust
meta-learning methods have been developed to make the OPE estimate robust to errors in the learned
nuisances (Kallus & Uehara, [2022} |[Farajtabar et al., 2018; [Shi et al., [2021). Notably, Kallus &
Ueharal (2022) have derived the efficient influence function of the off-policy policy value and a
corresponding efficient DR-learner. For a detailed statistical overview of OPE in RL, see [Uehara
et al.| (2022). However, none of these learners are targeted at ()-function estimation, but only target
the scalar policy value instead.

Individualized potential outcomes over time: Several methods have been proposed for estimat-
ing individualized potential outcomes in time-series settings (Lim et al., [2018} |Bica et al.l 2020;
Melnychuk et al., |2022; [Li et al., 2021} Hess et al., [2024; Lewis & Syrgkanis|, [2021). These can
be grouped into both model-based (e.g., adaptations of the transformer architecture for estimating
individualized potential outcomes over time, such as in (Melnychuk et al.,2022)) and meta-learners
(e.g., model-agnostic “recipes” for leveraging existing models to perform valid causal inference).
Notably, [Frauen et al.|(2025) have derived a DR-learner and variations thereof. Methods in this
stream target the conditional average potential outcome Y;4,,7 > 0 provided the entire history H,
up to time t. Hence, while these methods could theoretically be adapted to target the long-term
average of future outcomes (our goal), they do not take advantage of the Markov structure of MDPs
and thus suffer from the curse of horizon.

DTR: An adjacent field are dynamic treatment regimes (DTR), which are concerned with optimizing
(individualized) treatment assignment in a time-series setting. For an overview, see Chakraborty &
Moodie| (2013)). While there are extensions of DTRs using machine learning (e.g., Theresa Blumlein
et al.| [2022)), these have limitations for our setting. In particular, the DTR literature also typically
does not consider the MDP setting, and methods from DTR thus suffer from the same curse of
horizon as other general time-series methods.

2By Q~., we mean the off-policy Q of an evaluation policy 7. that differs from the policy , that we
observe data from.
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B ADDITIONAL DETAILS

Identification. To be able to estimate this causal quantity from observational data generated with
7, we need the following standard identification assumptions (Robins et al., 2000; [Uehara et al.,
2022): (1) Weak positivity: The support of 7.(- | s) is included in the support of 7, (- | s) for any
s € 8. (2) Consistency: Ry = R:[A:], almost surely. (3) Unconfoundedness: For any a € A, A
and R]a] are conditionally independent given S, i.e., A; L R;[a:] | S;. Of note, these assumptions
are standard in the causal inference literature (Lim et al., 2018} Bica et al., [2020; Melnychuk et al.,
2022; Seedat et al., 20225 [Frauen et al., [2025))

Curse of horizon. The curse of horizon refers to the phenomenon that estimation error in off-
policy RL grows exponentially with the time horizon when the estimand depends on long sequences
of actions. The reason for this is the exponential decay in overlap between trajectories from the
observed and evaluation policies. This is an inherent difficulty of the setting, for all estimation
tasks in the off-policy setting and any corresponding approaches. The technical challenge lies in
successfully and also efficiently leveraging the time-invariant Markov property of the MDP setting
to break this curse. We refer to|Kallus & Uehara| (2022)) for exhaustive treatment of this problem for
off policy policy value estimation.

Practical aspects of nuisance estimation. The nuisances required by our second-stage model can
in practice be quite complex and difficult to estimate. Here, we give several thoughts on this topic:

1) The second stage is agnostic to choice of nuisance estimation model. Apart from the suffi-
cient convergence guarantees, the practitioner is free to employ any method of their choos-
ing to estimate the nuisance. This is especially important in cases such as ours, where some
of the nuisances are more complex.

ii) The two-stage learner can, in principle, only ever improve upon the Ist stage. Since our
method requires the estimation of the target () in the first stage nuisance estimation, we
are, of course, always free to stick with the nuisance estimate. Our DRQ learner is of
use in settings where additional estimation complexity is worth it for the strong theoretical
guarantees we provide in return. This motivation is natural for many high-stakes real-world
applications such as medical applications listed in the Introduction.

iii) The nuisances are only as complex as the underlying setting. Given the principled deriva-
tion of our method with the efficient influence function, all nuisance functions present in
the loss come from the statistical model inherent to the problem setting. It is worth pointing
out existing papers that propose estimation methods for similar stationary density ratio nui-
sances such as ours ( e.g., the work in [1]). Conversely, methods not using these complex
nuisances may be deceptively simple: FQE does not use this nuisance but is well known to
have unpredictable failure regimes (see “deadly triad” problem, Sutton & Barto (2018)).
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C BACKGROUND ON INFLUENCE FUNCTIONS, ORTHOGONAL LEARNING

In this section, we provide a brief overview of efficient influence functions and orthogonal learning,
following the treatment in (Kennedy, [2022).

Efficient influence function (EIF). In semiparametric statistics, estimation is framed in terms of a
statistical model { P € P}, where P denotes a family of probability distributions. We are interested
in a functional ¢ : P — R. For instance, one might consider ©)(P) = Ep[R|S = s]. If ¢ is
sufficiently smooth, it admits a von Mises (distributional Taylor) expansion:

B(P) — §(P) = / 6(t, P) d( P — P)(t) + Ra(P, P), (18)

where Ry (P, P) is a second-order remainder term and ¢(t, P) is the efficient influence function
(EIF) of 1. By definition, the EIF satisfies [ ¢(¢, P)dP(t) = 0 and [ ¢(t, P)2dP(t) < oc.

Plug-in bias and bias correction. Consider an estimator P of P and the associated plug-in estima-
tor ¢)(P). The expansion above implies a first-order plug-in bias:

B(P) — () = - / o(t, P) dP(t) + Ro(P, P), (19)

because [ ¢(t, P)dP(t) = 0. Intuitively, simply plugging estimated nuisance functions into the
identification formula generally leads to a biased estimator. A classical way to correct this bias
is to estimate the term on the right-hand side and add it back, yielding a one-step bias-corrected
estimator:

b = p(P) + P, [¢(T, P)]. (20)

This correction removes the leading-order bias, leaving only a second-order remainder.

Debiased target loss and orthogonality. While one-step correction works well for finite-
dimensional parameters such as average treatment effects, it is not directly applicable for infinite-
dimensional targets such as conditional treatment effects 7 (X). In such settings, the EIF can still
be used to construct a debiased loss function rather than directly de-biasing the target parameter.
Minimizing this orthogonalized loss leads to estimators that are first-order insensitive to nuisance
estimation error, which is the core idea behind Neyman-orthogonal learners.
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D PROOFS

D.1 DERIVATION OF OUR LOSS

We construct our Neyman-orthogonal loss by debiasing the ERM esrimate using the efficient influ-
ence function (EIF). We begin by taking the EIF of a standard MSE loss L. .
STATISTICAL MODEL

First, we must define our statistical model. Let us define a model for observations O = (5, A, R, S ) €
S% x Ax Rvia

M = {p | p(o) = p(s)p(als)p(r|s,a)p(3|s, a); p(s)p(als) > 0} . (1)

We denote the (unknown) true data-generating (observational) distribution P € M and a one-
dimensional parametrized submodel of distributions by

Pe = {pe | pe(0) = p(0) + €(p'(0) — p(0));e € [0,1)} (22)
where P. C M, i.e., p. € M. We take p without subscript to be a density corresponding to P, i.e.,
plals) = mo(als), p(r|s, a) = pr(rs, a), p(3]s, a) = ps(3]s, a).

We take the strategy advocated by |Kennedy| (2022)), where, by cleverly choosing the parametric
submodel to represent point-mass deviation from P, i.e. the Dirac delta at point O’, p’(0) = 6(O" =
o), the EIF derivation reduces to taking a Gateaux derivative

IF(F(P),0") = ZF(P.)| . (23)

€
e=0

We refer to |[Kennedy| (2022); [Fisher & Kennedy| (2018) for comprehensive tutorials and technical
details of efficient influence functions.

TAKING THE EIF OF L

With the MSE population risk under the evaluation distribution L% defined as

Ly, (1,9) = Eomp, [(Qr.(S,a) = g(S,0))*] = Eonp, {Zwe(als) (Q=.(S,a) — g(S,a)*|, (24

we take the EIF via

IF(Ly.(n,9),0") = (25)
=" melalS) (Qn. (S, 0) — g(S,)* = L: (1, 9) (26)
+ / S pu(s)me(als)2 Q. (5, @) — g5, @) IF(Qr, (s, ), O')ds. @7)

To derive IF(Qx.(s,a),0’), we decompose the Q. via its definition Q. (s,a) =
Ex [Y520 7' Re|So = s, Ao = a]. Taking the EIF of the individual elements of the sum, we have,
sequentially, the EIF for the the null and first conditional expected reward by

6(so = S’ ag = A’)

IF (Ex. [Ro So = s0,Ag = ag],0’) =
(Ex. [Rol 1o P (S = s0, A = ag)

(R/ — E[R0|So = 50,40 = a()]) (28)
IF (Eﬂe [Rl‘So = 50,40 = ao], O/) = (29)

=1IF (/p(sl\so,ao)ﬂe(a1|31)p(r1|51,a1)r1dslda1dr1> (30)

6(so=85",a9 = A’ -
= / {w(é(sl =95 —p(s1|so,ao))} me(a1|s1)p(ri]s1, ar)ridsidaidry 31)
Po(S = s0, A = ao)

5(s1 =S a1 = A/
+ /P(Sl\smao)ﬂe(allsl) {M@(Tl =R/ —P(Tl\shal)} ridsidaidry (32)
(S =s1,A =a1)
5(so =95",a0 =A") =
= M50 =0,80 = A ) [ 1R|S1 = §'] — Ex. [R1|S0 = s0, Ao = 33
pb(S:so,A:ao){ |R11S1 ] .[R1]S0 = s0, Ao ao}} (33)
pe(S1 = S/,A1 = A/|So = So,Ao = ao) / ’ ’
R —E,_ [R1|S1=5",A1 =A]}. 34
! (S = A= A) {7 = Er sy = 5 = 1) G
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We further yield the EIF for the second conditional expected reward by

IF (Ex, [R2|So = s0, Ag = ao),0’) = (35)

=1IF (/ p(51|so,ao)we(a1|51)p(32|sl,al)we(a2|52)p(r2\32,ag)rgdsldaldSQdazdm) (36)

8(so =95",a0 = A') =
=/ ——————(0(s1 = 5") — p(s1]s0,a0)) ¢ Te(a1|s1)p(s2]s1, a1)me(az|s2)p(ra|s2, az)radsida;dsadazdrs
Po(S = s0, A = ao)

(37
( S’ ;a1 = /) &t
+/ p(s1ls0,a0)me(ar|s1) m(6(52 =5") — p(s2|s1,a1) p me(az|s2)p(ra|s2, az)radsidaidsedasdrs
(38)

d(s2 = S’ a2 = A')

+ /p(81|80, ag)me(a1|s1)p(s2|s1,a1)me(az|s2) {—(5(7"2 = R') — p(ra|s2, az)} radsidajdsadasdrs
pp(S = s2, A = a2)

(39)
4 =9
= o0 =500 2 ) (g (Ral$: = §') — Ex. [R50 = 0, Ao = ao]} (40)
Py (S = s0, A = ao)
pe(S1=5", A1 = A’'|So = s0, Ao = ao) - , ,
Er. [R2|S2 =S| —E; [R2|S1 =85,A1=A 41
+ PRI T HEe, [RalS: = 9] - Er, [Ro]S) 1= A} (4D
— ! — / — —
pe(S2 =5, Aa = A’|So = so0, Ao = ao) {R/ —En,[Ra|S2 = S, Ay = A']}. 42)
pp(S=5,A=A)

Generally, for k£ > 1 (where we abuse the notation with the arrows for readability), we thus have
IF (Ex, [Ri|So = so, Ao = ag],0’) =

=1IF (/pg(sl — k|80, a0)rrdss — drk,O/)

Pe(81 — T'k[S0, G0
_/ZHF(p st|st—1,at— 1))Mmd31 — dry
p(st|st—1,at—1)

Pe(s1 — 71|50, a0)
N—————
p(Tk|sk, ar)

{Ewe [RilS1 = '] = Ex, [R|S0 = s0, 40 = ao] }

+/]HF(p(rk|skvak rrds; — dryg

. 8(so =8",a0 =
(S = s0, A =ao)

k—1
o(Se = §', Ay = A'|So = s0, Ag = i
+ Z pelSt pb(g -9 ‘AO: Z?) o= 20) {Eﬂ'e [Ri|St+1 = 5] —Ex [R|S: = 5", Ay = A/]}

(Sp = S, A = A'|So = s0, Ap =
+p( k k [So = s0, Ao ao){R’fIEﬁc[Rk\Skzs’,Ak=A’]}.

p(Sp = 8", A = A7)
Putting it together, we get

k
I <E7"e [> 4" Ri|So = s0, Ao = ao), 0')

t=0

k
=Y A'IF (Ex, [Rt]So = s0, Ao = ao])

t=0
:M{R%Z "En, [Re|S S]—Z “Er, [Rt]So = s0, Ao = ao] }
(S = 50, A = a0) 2 17 e [Bt|S1 = 2 O’Y e [F2¢|S0 0, Ao 0

YPe(S1 = 8", A1 = A'[Sp = s0, Ao = ao) 1 t—1
R Ex,[Re|S2 = S'] — 'Eq [Re|S1=5",A1=A
+ G =5 A=) { +§h [Re|S2 = ) ;p RS = 8, A1 = A}

k k
’Y]pe(s =5 A = A |SO—507A0—‘10 / t—j & t—j ’ ’
+ R+ > 4" B [Re|Sjp1 =1 =D 4 B, [Re|S; = S, Aj = A']
pb(S =8,A= A/ { t=j+1 t=j }

Bpe(Sk = S, A, = A|Sp = s0, Ag =
+7p(k Ak [So = s0, Ao ao){R’—Ewe[RuSk:S’,Ak:A’]},

po(S =S5, A= A
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for 2 < j < k. Now, we recognize that, for all second terms in the brackets, we yield

k k—(j+1)
> AV TR [RilSi =81 = > AT ER [Re]So = 8] = e, (8) as k — oo, 43)
t=j+1 t=0

and, analogously, for the final terms, we yield

k k—j
> A TR [Re|S; =S, Ay = A= 4'Er [Re|So = 8", Ag = A'] = Qn (8", A)ask = 0. (44)
t=j t=0

Recognizing that, in the limit, the brackets are equivalent, we find the limit of the whole expression
to be

k
IF(Qxr. (s0,a0),0’) = IF ( lim Er, [Z 7' Re|So = so0, Ao = a0]70'> (45)
k— oo =0
5(50 = S,,‘ZO = A/) 7"6(‘4/|S,) / ) / &t Y
= S R e (S) — Qr, (S, A") ». 46
( pu(S)mp(A|S) 7 (A’]S) wE/b( s, ao) { +7vr, (S") — Qn, ( )} (46)

Plugging the result into the EIF of LL_, we obtain

IF(Ly, (1,9),0") = @
_ ’ ’ / 2 1 ’ o Y 7re(A’|S’)
= melals) @re('0) = 9(5", )" = L (1.9) + 2 {R + 705, (5~ @n. (8", 40} TR0 @)
X |:Q7l'e (Slv A/) - g(slv A/) + Es,a~pb(s)7rc(a|s) [(Qﬂ'e (Sv a) - 9(57 a))we/b(s/‘sr a)] :| . (49)
DEBIASING THE L},
Applying the EIF to debias the ERM estimare of the population risk, we obtain a debiased loss
L2, (n.9) = Eorp, [Lr, (1.9) +IF (L7, (n,9),0")] (50)
5 ’ ’ / 2 / ot Y 7"'E(AI|S/)
B, { Zajwe(a\s ) (@ne(8',0) = 9(8",@)* +2{ R’ + y0r.(8) = Qn (8", 4) } s oY
X l:QT"e(S,1 A’) - 9(5/7 A/) + ES,(LNPb(S)ﬂ'e(llls) [(QT\'e (57 a‘) - 9(57 a))we/b(sllsv a)] :| } (52)
We complete the squares to obtain a final loss:
L2 (n.g) = B2 (n,9) (53)
~Bormy, | S melals') (22 R r0n, () = @ (5,4} + Qe () — o5 a))2 (54)
O’ ~py — e ﬂ_b(A,IS/) Te Te ) Te ’ H
> me(A'|S) ’ 7 ar Y 2
01y (o [gmas) (22 g e (15,0 {R 905, (3) = Qr. (8" 4)} + Qr .0) ~ a(5,)) }
(55)

This completes the derivation. The corresponding proof that L2 is minimized by Q~, can be found

in[Appendix D.5] We continue with the proof that L3 _ is Neyman-orthogonal.

D.1.1 INTUITION BEHIND ¢ AND ¢o

Both ¢, and ¢ are the respective targets or “pseudo-outcomes” of the MSE subcomponents of the
Neyman-oOrthogonal loss. Each contains the @, term, which, if alone, would correspond simply
to the standard MSE loss without debiasing. This is the non-Neyman-orthogonal starting point
that we aim to debias in order to obtain robustness wrt. Nuisance estimation error. The additional
debiasing terms of both ¢ and ¢, are two variations of temporal difference error (curly brackets
R+ yvr, (8") — Qr. (S, A")) scaled by an importance-sampling-like density ratio.

While the density ratios here are quite complicated, the overall form of the Neyman-orthogonal loss
is not. The debiasing being of the form “mean zero error scaled by density ratio” is common across
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many instances of DR learners in standard causal inference, including but not limited to ATE and
CATE estimation.

In ¢1, the density-ratio is the simple one-step (first-step) inverse propensity weighting. In ¢, the
density-ratio is of the conditional stationary state density. Borrowing from Markov chain terminol-
ogy, %we /(S | s,a) is the ratio of the likelihood of observing the state-action pair (S’, A")
following from the stationary distribution of the chain induced by following policy w. (conditional
on the chain having begun at pair s, a) versus following from the initial distribution following policy
Th.

D.2 NEYMAN-ORTHOGONALITY OF L3

First, we state a useful Lemma:

Lemma 3 (Expected TD error is zero). The expectation of the temporal difference error of m. w.r.t. to any mea-
surable distribution in the model (i.e., the distribution generated by any policy ), weighted by any (measurable
and bounded) function f(S', A’) is zero.

Ex [£(5,A") (R +70n, (3) = @r, (8, 4))] =0 (56)
Proof.
E. (5, (R +70r.(§) = Qe (8, 4)) | = 57)
E. [E [ (R + yor, (8 —QWE(S’,A’)) |S’,A’H (58)
~E. [f ( (B +70n ()| 8, 4'] = Qe (8", 41) ] (59)
=Ex [f(S, A") (Q. (5", A) = Qr. (5", A"))] = 0 (60)
O

PROOF OF NEYMAN-ORTHOGONALITY

Proof. We show the Neyman-orthogonality of our loss Lf’re. We define

Ag() =2 9() =g (). (61)

The first (Gateaux) derivative is
DgL3 (n,g")§—9"] = (62)
=~ 20y ls) [80(5',0) (20 (R or, (8) = @ (81,40} + @ (8'0) = 075" ) |
(63)

me(A’|S")

= 2E0/ npyis,ampp (s)me (als) {Ag(‘g’ a) (2 Ty (A’|S7)

wen (815, {4705 (5) = Qe (8, 40} + Qr(0) = 97 (5,0 ) |
(64)

Continuing, we take second derivatives with respect to all the nuisances 7 = (7, we 3, @, ). First, for m, we
yield

Dry Dy Lz, (1,97)1g = 9" 7 — ] (65)
_ ~oal A ot _ ’ ’ 1
=~ 280 e (als) [0S AR AN = ) {R 10, (5) = Qe (8 AV} (1) s
(66)
1
2By ale) | A5, VAT (A1) 2m (1S (515, 0) {70 (5 = Qe (8" A (1) i
(67)
=0. (68)
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We use Lemma 3] to show equality to zero.
Second, for w, p, we yield

Duw,,, DgL3, (n,g")[6 — g%, ey, — wep] = (69)
me(A']S")
mp(A'|S")
=0 (71)

= 2]EO/~pb;s,a~pb(s)7re(a\s) AQ(S, a)2 {R/ + YVre (S'/) - QTFe (Slv Al)} AuA]e/b(S,|57 a):| (70)

Lastly, for Q. , we have

Dq,, DL (n,9")G— 9% Qn. — Qr.] = (72)
R (A" =a A A R
=~ 280 e tals 805" 0) (22 (Vg5 [0, (5, A0) = AQr (81, 4)) + 80, (5',0) )|
(73)
me(A’|S’ . A N
= 2E0/ npyis,anpy (s)me(als) ﬁwe/l)(s/‘& a)Ag(s,a) (’YEA’NWG(A/G/)[AQM (8", A")] = AQx. (S, Al))
74
+A3(s,a)AQr, (aa)} (75)
. 0(A' =a) e
=~ B0y amretals) [ 808" B ) [AQR, (5, ) 6)
me(A’|S’ . A, R
- 4EO’~pb;s,a~pb(s)7re(a|s) {Wwe/b(sq& a)Ag(sz (l) <’YIEA/~71.€(A/“§/> [AQTFP (S/7 A/)] — AQwe (Sl, Al))i|
()
=—4E s~pp(s),a~me(als),5~p(3|s,a),a~me(al3) o [Ag(sv a) (’YAQTrc (gv &) + ’YAQATFC (S'/? Al) - AQTFC (3/7 A/)>]
5~ Be(8'|s,a),A" v (A']S7),5 ~p(8']5", A7), A ~vme (AT]S7)
(78)
=0. (79)

Since v(5 + §') £ S, the distribution of S’ in the final expectation is 3. (S’|s, a) 2 “T” > e (S =
S’|So = s, Ao = a), which can be interpreted as a conditional discounted stationary state distribution.

Hence, Lf’,E is Neyman-orthogonal. O
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D.3 QUASI-ORACLE EFFICIENCY

We prove our loss achieves quasi-oracle efficiency. We write L2 as

L?re (77, g) = EO’NPb;aNTre(a\S’) [(¢1 - g(S/, a)) } + EO’pr ;s,arvpy (s)me (als) [(¢)2 - ( ))2] y (80)

where we define

HO(A =a)

1 = ( /) {R +’Y’U1T€( ) Qwe S A }+QS a) 1)
ﬂ—"( ‘ /) !

= (S )wQ/b(S|S’a){R+W”e( ) = Q. (S, A)}JFQM(s,a). (82)

Additionally, we repeat the definitions § = argmin g L3 (,g) and g* = argmingg L3 (n,9),
where 7 are the estimated nuisances and # are the (unknown) true oracle nuisances.

So, we now arrive at
L3, (1,9) =Eormpyiamn. als) [ (1 = 9(5',0) +¢7(8',a) = 7 (', @))?] (83)
+ Eormpyis.ammomeals) | (b2 = 3(s,0) +7(s,0) = g7 (5,0))7] (84)

=L3_ (71,9") + 2Bs ampy (s)me (als) [(97(5:0) — §(5,0))*] + DgL3_ (7,97)[Ag],  (85)

where we obtain the last line by decomposing the square and recognizing terms. Rearranging, we
see

2lg" = §ll3,pym. = Rg — Dy, (9,97)[AG], (86)
where Ry = L3 (i}, §) — L3, (1,9%)-

We now arrange Dy L3 (i), g*) via a second-order Taylor approximation to the true 7, i.e.,

Dy Lz, (,97)IA3] = Dy Lz, (n.97)[A3] 87)
+ D, D, Lfre (n, g*)[Ag, A7] (= 0 by Neyman-Orthogonality ) (88)

1 - A A A
+ 5 DaDy L, (71, 97)[Ag, A, Ad, (89)

for some 7 € star(#,n), where denotes the star-shaped set with respect to n. The last term is of the
form

DjDgL3 (71, 9%)[Ag, A, Af) = (90)
= 72]Eol~pb;a~7rc(a|s/) [Ag(‘s/»a)AﬁTvafglAﬁ] - 2EO’~pb;s,a/wpb(s)ﬂ'C (als) [Ag(sa a)AﬁTV”VWQ_bAﬁ] .
(C)Y)

Continuing, we then have
2llg* - é\l%,pbﬂe =Ry — DyL3 (n,9")[A3) — Dy Dy L3 (7, 9%)[Ag, AR, A 92)

1 ~ A~ ~
< Ry — S DDy L7, (7,9%)[Ag, A, A ©93)

<Ry +llg" — @llm{ VE [(Am[vnna@kh,jAﬁj>2}} (94)

i={1,2,3};5={1,2,3};k={1,2}

* ~ 1 ~ s ~
<Rg+llg* = 4llZ,x, | D dij | + { > 5. E (A% [V brli,j A1;)°] }7
g,k i={1,2,3};5={1,2,3};k={1,2} "Ik
95)

where we achieve the first inequality by recognizing DyL2_(n, g*)[Ag] > 0, the second using the
Cauchy-Schwarz inequality, and the third using the AM-GM inequality for any constants §;;, > 0
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such that 3, ;; dijx < 2. This then finally results the inequality
* ~ 1 A A A A - A A
2|lg™ — gH%pbﬂ-E Sﬁ (Rg + E[C%A‘lm, + C§A2ﬂ5A2QWC + C§A27rbA2we/b + CEAQwe/bAQQﬂ'C}>
i,5,k ik
%6)
<5 | B+ IC1A% w13 + | C2 AT AQr I3 + | CaATy At b3 + | Cadbe/ AQ |13
= 2,k Oigk
7
STy s (Rg A [I3 + 1A% 7, A2 Qn, (13 + A% 7y A 3|13 + | A De /5 A* Q. ||3> ;
2= 224,k Oijk
(98)
where the C1, ..., C4 collect all terms that do not contain A terms of difference between estimated

and true nuisances. In the last steps, z < y is taken to mean there exists a constant M > 0 s.t. z <
My. The last inequality is achieved by extracting A7 terms from the Cs and noting ||A7|| < ||A7]]
since 7 lies between 7 and the oracle n. For clarity of exposition, the computation of the Hessian
terms through which the C’s contain A7 terms is postponed to the end of the proof. Lastly, we make
use of Holder’s inequality

2[lg* = 4lI3,p, x. 99)

S| Bo +IA" 13 + 1A% R 1311 A%Qr |17 + |1 A6 13| A% e 61 + [|A%De 61311 A% Qe |17
2= 22,5k Oijk
(100)
SHAYR |3 + 1A% 7 A2 Qr |13 + 1A% R A0, |13 + A% e /5 A% Q|13 (101)
This finishes the proof. The double-robustness property is proved trivially by plugging in the condi-
tion (either AQr, — 0 or A7, — Adb, /s, — 0) into the here obtained bound.

Note on assumptions: The proof of Quasi-Oracle efficiency holds under the standard assumptions of
sample-splitting (first and second stage are fit on separate parts of the dataset), i.i.d. data, well-
behaved (convex) risk, sufficient convergence rates of nuisances, and boundedness of first moments.
Of specific note is the i.i.d. assumptions, which we assume for ease of exposition, while actually
only needing a less strict requirement of the empirical expectation concentrating around the exact
population expectation. For a Markov chain induced by following the policy =, (a single trajectory),
it is enough for it to be ergodic. Less formally but more intuitively, we simply need the effective
sample size to be infinite in the asymptote.

For completeness, we write out the Hessians of ¢’s with respect to n = (m, we/s, Qx.). These

terms are all included in the variables C1, ..., Cj, since they do not include any differences between
estimated and true nuisances. We thus have
D111A27?b(A/‘S/) 0 D113A77rb(14/|S/)AQ7.-e (87, A"
Vand1 = 0 0 0 (102)
D113 ATy (A'|S)AQx, (S, A') 0 0
- 1
— ’_ / N _ roan\ L
Dy =48(A" = a) {R' + yur, (§') = Qu. (5, 4) } AT (103)
5(A’ = a)
Dyjz=2——— -+ 104
13 =2 e (104)
Da11A2%7,(A’]S7) Da12 A7y (A'|S") A, (S5, a) Da213Am(A'|S))AQx, (S, A)
Vm,qbg = D212A7_rb(A/‘S/)Aﬁ)e/b(sqs,CL) 0 D223A@e/b(sl|s,a)AQﬂ-e (S/,A/)
D213A7Trb(A/|S/)AQ7rE (S/,A/) DQQsA'lI}e/b(S/‘S,a)AQﬂ—E (S/,A/) 0
(105)
- 1
_ ’ ! / / N\ _ ! /
Da1y = dme (A'|S )we/b(s s, a) {R + Y7 (8") = Q. (57, A )} ﬂ'b(A,IS/)g (106)
- 1
_ nal / N Y
Darz = =2me(A'|S) {4+ 30m (3) = Qe (8, A0} — s (107)
1
— Q! !
Doy3 = 271’5(14 ‘S )we/b(S ‘S,a)m (108)
Te(A'|S")
D =—2——= 109
T sy (1o
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where all the constants elements D are evaluated at 7.

D.4 IDENTIFICATION

PROOF OF THEOREM []]

Proof.
£r(5,0) 2 E | Ry + Z’Yth[We('|St)] So=s5,A0 = a:| . (110)
=1
=Er, |> 7' Re|So=540=a (111)
Lt=0
= Qn,.(s,a) (112)
=E;, |Ro+ Z’Ytmet So=s,4=a (113)
L t—1

The first equality follows by definition, while the second equality is by consistency and unconfoundedness
assumptions, and the final equality is by the weak positivity assumption.

Technical remark: For the last step, we must assume the rewards are bounded, \Rt| < Rmax, such that we can
apply the dominated convergence theorem to take the infinite sum out of the expectation, apply importance-
sampling style change of distribution element-wise to each R; expectation term and then collapse everything
into the final formula. O

PROOF OF THEOREM

Proof. We prove the identification is valid by showing that Eq. (€ is (i) observable and (ii) has a unique solution
(unique up to equality almost everywhere).

For the question of observability, we first notice that the inner expectation is over a known distribution, i.e., the
treatment assignment under m.. The remaining randomness is then in the outer expectation over R, S, condi-
tional on S = s, A = a. In the MDP, the reward and transition dynamics are the source of this randomness,
meaning this randomness is invariant to the policy followed. We can thus freely write the RHS of Eq. (@) as

f(s,a) = En, [R FVE i (13 (5, A)]|S = 5,4 = a] , (114)

And clearly, the RHS is observable.

The uniqueness of the solution of the Bellman equation is a well-known result in RL. A rigorous proof of which
is available, for example, in (Sutton & Barto},[2018)). Informally, defining the RHS as the Bellman operator 7¢
on f, it is shown that this operator is a y-contraction mapping in the space of bounded measure functions on
S x A. By the Banach fixed-point theorem, this implies that 77¢ admits a unique fixed point. Since f = Qx,
satisfies Eq. (6), we have shown that Q. is the unique solution (up to equality almost everywhere). O

D.5 PROOF THAT L? TARGETS Qr,
For completeness, we prove that L2 is minimized by Q..

Proof. We begin by reversing the square completion

L3 (n,9) "= L2 (n.9)

—Eo,wpb{ S el (@ ('0) — ()" +2 {490 (3) — Q8 40} TGy

X

Qﬂ'e (SI7AI) - g(S/a A/) + Es,arvpb(s)wc(a\S) [(Qﬂ'e (57 a) - 9(57 a))wE/b(Sl|37 a)] :| }
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The proof can be completed using Lemma [3|to remove the second term from the expectation (using the law of
iterated expectations on S’, A"). With only the first term remaining, we recognize L}re. Alternatively, we can
arrive at L}re by reversing the construction of Lfre, namely that

L2 =Eoinyp, [Lr.(0,9) +IF(LY (1,9),0")] = Eornp, [Lr. (n.9)] = Lx.(1,9), (115)

since efficient influence functions are mean zero by definition. Finally, showing that Q -, minimizes L~ is
trivial.

E IMPLEMENTATION DETAILS

Anonymous code is available at https://github.com/EmilJavurek/
Orthogonal-Q-in-MDPsl  Upon acceptance, we move our code to a public GitHub
repository. All experiments are implemented in the Taxi environment from the OpenAl Gym
package (Brockman et al., 2016). Since the focus of our work is on second-stage estimation, we
take the ground-truth oracle for the density ratio nuisances, while the first stage () is estimated for
each method. We list all relevant hyperparameters in the following table. All experiments were
conducted for 5 runs with different seeds.

Component Hyperparameter | Value
Taxi environment K 0.9
max_steps 100
Online @ control episodes 5000
(to construct policies via Q*) € 0.05
« 0.1
ey € 0.5
Te € 0.1
Dr, n 3000
Ground-truth reference Q) episodes 100000
online Expected SARSA prediction | ¢ 0.9
e oracle
1st Stage We /b oracle
L FQE
DR-learner iterations 1000
FQE iterations 50
Q-regression — —
MQL iterations 500

Table 1: Hyperparameter settings for experiments in the Taxi environment.
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