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ABSTRACT

Measuring the similarity of different representations of neural architectures is a
fundamental task and an open research challenge for the machine learning com-
munity. This paper presents the first comprehensive benchmark for evaluating
representational similarity measures based on well-defined groundings of similar-
ity. The representational similarity (ReSi) benchmark consists of (i) six carefully
designed tests for similarity measures, (ii) 24 similarity measures, (iii) 14 neural
network architectures, and (iv) seven datasets, spanning the graph, language, and
vision domains. The benchmark opens up several important avenues of research
on representational similarity that enable novel explorations and applications of
neural architectures. We demonstrate the utility of the ReSi benchmark by con-
ducting experiments on various neural network architectures, real-world datasets,
and similarity measures. All components of the benchmark are publicly available1

and thereby facilitate systematic reproduction and production of research results.
The benchmark is extensible; future research can build on it and expand on it. We
believe that the ReSi benchmark can serve as a sound platform catalyzing future
research that aims to systematically evaluate existing and explore novel ways of
comparing representations of neural architectures.

1 INTRODUCTION

Representations are fundamental concepts of deep learning that have garnered significant interest
due to their ability to shed light on the opaque inner workings of neural networks. Studying and
analyzing them has enabled insight into numerous problems, for example understanding learning
dynamics (Morcos et al., 2018; Mehrer et al., 2018), catastrophic forgetting (Ramasesh et al., 2021),
and language changes over time (Hamilton et al., 2016a). Such analyses commonly involve measur-
ing similarity of representations, which resulted in a plethora of similarity measures proposed in the
literature (Klabunde et al., 2023; Sucholutsky et al., 2023). However, these similarity measures have
often been proposed in an ad hoc manner, without a comprehensive comparison to existing similar-
ity measures. Moreover, they have often been proposed in conjunction with new quality criteria that
were deemed desirable, with previously defined quality criteria being ignored. So far, only the few
most popular measures have been compared (Ding et al., 2021; Hayne et al., 2024) or analyzed in
more detail (Dujmović et al., 2023; Cui et al., 2022; Davari et al., 2022).

In this work, we present the first comprehensive benchmark for representational similarity measures.
It comprises six tests that postulate different ground truth assumptions about the similarities between
representations that measures could capture. We implemented these tests across several architectures
and datasets in the graph, language, and vision domains. The ReSi benchmark enables tests for 24
similarity measures that have been proposed in the literature, and we illustrate how the results can
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Figure 1: Grounding similarity. In all tests within the ReSi benchmark, we design a set of models
for which we can establish a ground-truth about the similarity of their representations. The left
heatmap illustrates the true similarity between a set of models, the other heatmaps the similarity
values that different similarity measures assign to each model pair via their representations. We
rank similarity measures by their ability to capture the ground truth. In practice, a ground-truth
similarity between models is usually hard to attain. For the ReSi benchmark, we design tests where
similarity is practically grounded.

provide insights into the properties and strengths and weaknesses of these measures. That way,
ReSi can be useful as a test environment for new measures, a reference that guides the choice of
measures in an application at hand, and a tool to obtain a deeper understanding of the differences
between representations that are relevant to neural network behavior. All benchmark code and the
corresponding models are openly accessible online.

2 GROUNDING REPRESENTATIONAL SIMILARITY

Before presenting the ReSi benchmark, we briefly introduce key terms and notations for represen-
tational similarity, and discuss how ground-truths for representational similarity can be established.

2.1 REPRESENTATIONAL SIMILARITY

The ReSi benchmark is designed to evaluate the quality of measures that aim to quantify similarity
of neural representations. Such representations can be derived by applying a neural network model

f = f (L) ◦ f (L−1) ◦ · · · ◦ f (1), (1)

where each function f (l) : RD′ −→ RD denotes a single layer, on a set of N inputs {Xi}Ni=1—for
simplicity, we assume these inputs to be vectors in Rp even though, as in the vision domain, these
can also be multidimensional matrices. By stacking these inputs to an input matrix X ∈ RN×p, one
can then slightly abuse notation and, at any layer l, extract the model’s representation

R := R(l) =
(
f (l) ◦ f (l−1) ◦ · · · ◦ f (1)

)
(X) ∈ RN×D, (2)

where the rows Ri = f(Xi) ∈ RD denote instance representations. Representational similarity
measures compare full representation matrices R,R′, and can thus be defined as mappings

m : RN×D × RN×D′
−→ R (3)

that assign a scalar similarity score m(R,R′) to a pair of representations R,R′. For brevity,
throughout this work we will often denote these measures as similarity measures. Unless noted
otherwise, we always consider representations from the final hidden layer of a neural network.

2.2 GROUNDING SIMILARITY

Approaches to measuring similarity of representations vary widely. For example, similarity can
be related to comparing pairwise distances in a representation (Kornblith et al., 2019), the ability
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Figure 2: Illustration of grounding approaches. We consider two approaches to establish ground-
truths for representational similarity. When grounding by prediction, we evaluate whether differ-
ences in representation matrices correspond to differences in predictions of models, as, for instance,
measured by Jensen-Shannon divergence (JSD). Ideally, a representational similarity measure m
perfectly correlates with output similarity. When grounding by design, we design groups of models
that are similar within and dissimilar across groups. A representational similarity measure m should
distinguish these groups accordingly.

to align two representations (Williams et al., 2021; Li et al., 2015), or their topology (Barannikov
et al., 2022)—for a broader overview of approaches, see also the survey by Klabunde et al. (2023).
While these approaches are usually justified by theoretical or practical desiderata, specific practical
differences in models are not necessarily captured by these approaches—model difference is mul-
tifaceted. One can distinguish models by their behavior like accuracy, robustness to augmentations
or domain shifts, by their preference regarding texture or shapes, or by aspects like differences in
training data or their human-likeness, to name a few examples. This multidimensionality leads to a
crucial problem in measuring representational similarity, namely the lack of a general ground truth
that measures should reflect.

Due to this plurality in model behavior, a number of possible targets to ground representational
similarity have been proposed in the literature. For our purposes, we focus on the following two
broad approaches to establish a ground truth for similarity, which we also illustrate in Figure 2.
1. Grounding by Prediction. A straightforward way to obtain a ground truth for model similarity
is to consider the differences in the predictive behaviors of a pair of models: when two models yield
different predictions, they should also differ in their representations. This approach allows one to
ignore where the source of difference between the models originates, but simultaneously implies
that one cannot be sure whether ground-truth similarities stem from differences in the classifier or
the representations. Previous efforts that have used this way to ground similarity include the study
by Ding et al. (2021), who correlated representational similarity with accuracy difference, or the
work by Barannikov et al. (2022), who grounded similarity to differences in individual predictions.
2. Grounding by Design. Through careful design, one can construct groups of representations for
which one can impose a ground truth about similarity by relation. For instance, one can demand
that representations from the same group be more similar to each other than representations from
different groups. An example of such a design is shown by Kornblith et al. (2019), who trained
multiple models of the same architecture and formed groups of representations based on the depth
of their producing layer. Then, they demanded that representations of the same layer should be
more similar to each other than to representations from other layers. These relative comparisons
have the advantage that no deeper insights about the often opaque and nonlinear similarity measures
are needed. However, the validity of the evaluation hinges on the validity of the assumption that the
representations actually follow the expected groups, which requires clear justification.

3 RESI: A BENCHMARK FOR REPRESENTATIONAL SIMILARITY MEASURES

We present the main components of the ReSi benchmark. It consists of (i) six carefully designed
tests for similarity measures, (ii) 24 similarity measures, (iii) 14 neural network architectures, and
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Table 1: Overview of the tests included in the ReSi benchmark. We design six tests that define
different ground truths for representational similarity.

Test Intuition Grounding Type

Correlation to Accuracy Difference Can variation in performance of classifiers trained on representations be captured? Prediction
Correlation to Output Difference Can variation in individual predictions of classifiers trained on representations be captured? Prediction
Label Randomization Can models that were trained on different labels be distinguished? Design
Shortcut Affinity Can models that rely on different features be distinguished? Design
Augmentation Can models with different levels of training augmentation be distinguished? Design
Layer Monotonicity Does layer similarity decrease with increased layer distance within a model? Design

(iv) seven datasets, spanning the graph, language, and vision domains. In addition, we discuss how
the results for our benchmark are evaluated.

3.1 TESTS

We provide descriptions of the six tests implemented within the ReSi benchmark. We begin with
discussing two tests that are grounded by predictions, and then describe four tests that are grounded
by design. An overview of these tests is given in Table 1. In all tests, models were trained for
classification tasks. Additional details of the test configurations can be found in Appendix B.

Test 1: Correlation to Accuracy Difference. When two models are trained under similar condi-
tions but differ in their performance, this can be seen as a signal that the underlying representations
are different. Following this intuition, we correlate the representational similarity of a pair of models
with the absolute difference in their accuracies, thus similarity is grounded by predictions.
Training Protocol. We roughly follow the protocol established by Ding et al. (2021), for which ten
models are trained on each dataset, varying only by the training seeds. Afterward, we compute the
accuracy of the models on the test set.

Test 2: Correlation to Output Difference. This test follows the same intuition as Test 1, with the
difference that it focuses on differences in individual outputs of each model rather than their aggre-
gated accuracy scores. Given that models with similar accuracy may still yield different predictions
on individual instances, this provides a more fine-grained signal which can serve as a more robust
grounding for representational similarity. Thus, similarity is again grounded in predictions.
Training Protocol. Due to the similarities to Test 1, we use the same models for this experiment.

Test 3: Label Randomization. In this experiment, we train models on the same input data, but with
labels randomized to different degrees. The expectation is that models that learn to predict the
true labels learn different representations compared to the models that learn to memorize random
labels. These differently trained models are grouped by their degree of label randomization during
training. We evaluate whether similarity within a group is greater than between groups. Therefore,
representational similarity is grounded by design of these groups.
Training Protocol. For each domain, we create at least two groups of models. We always train one
group on fully correct labels and one group on fully random labels. Additional groups have partially
randomized labels (25%, 50%, 75%). Across all domains, we always trained five models per group.

Test 4: Shortcut Affinity. The ability to identify whether two models use similar or different fea-
tures can be a desirable property for a similarity measure. Hence, we create a scenario, in which we
control feature usage by introducing artificial shortcut features to the training data. Specific features
correspond to each label, thus leaking them, but not necessarily perfectly—we can add incorrect
shortcut features for some instances. Groups of models are then formed based on the degree to
which the shortcut features in the training data match the true labels. Similarly to Test 3, we assess
whether similarities within the same groups are greater than between groups. That way, representa-
tional similarity is grounded by design of these groups.
Training Protocol. For each domain, we construct one group of models trained on data with short-
cuts that always leak the correct label, one group trained on data with completely random shortcut
features, and additional groups in which the labels were leaked on a fixed percentage of training
samples. Representations are then extracted from a fixed test set, on which random shortcuts have
been introduced. Each group consists of five models, in which varying training seeds affected model
training and shortcut features.
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Table 2: Similarity measures included in the ReSi benchmark. For each measure, we present
their type of measure as specified in the survey by Klabunde et al. (2023), their abbreviations as
used in our plots and tables, a reference, and the preprocessing they require. RSM abbreviates
Representational Similarity Matrix, i.e., a matrix of pairwise similarities between the instances.
CCA denotes Canonical Correlation Analysis.

Measure Type Abbreviation Measure Reference Preprocessing

PWCCA Projection-Weighted CCA Morcos et al. (2018)CCA SVCCA Singular Value CCA Raghu et al. (2017)

AlignCos Aligned Cosine Similarity Hamilton et al. (2016b)
AngShape Orthogonal Angular Shape Metric Williams et al. (2021) Centered columns and unit matrix norm
HardCorr Hard Correlation Match Li et al. (2015)
LinReg Linear Regression Kornblith et al. (2019) Centered columns
OrthProc Orthogonal Procrustes Ding et al. (2021) Centered columns and unit matrix norm
PermProc Permutation Procrustes Williams et al. (2021)
ProcDist Procrustes Size-and-Shape-Distance Williams et al. (2021) Centered columns

Alignment

SoftCorr Soft Correlation Match Li et al. (2015)

CKA Centered Kernel Alignment Kornblith et al. (2019) Centered columns
DistCorr Distance Correlation Székely et al. (2007)
EOS Eigenspace Overlap Score May et al. (2019)
GULP GULP Boix-Adserà et al. (2022) Centered rows and row norm to

√
N

RSA Representational Similarity Analysis Kriegeskorte et al. (2008)

RSM

RSMDiff RSM Norm Difference Yin & Shen (2018)

2nd-Cos Second Order Cosine Similarity Hamilton et al. (2016a)
Jaccard Jaccard Similarity Wang et al. (2022)Neighbors
RankSim Rank Similarity Wang et al. (2022)

IMD IMD Score Tsitsulin et al. (2020)Topology RTD Representation Topology Divergence Barannikov et al. (2022)

ConcDiff Concentricity Difference Wang et al. (2022)
MagDiff Magnitude Difference Wang et al. (2022)Statistic
UnifDiff Uniformity Difference Wang & Isola (2020)

Test 5: Augmentation. Augmentation is commonly used to "teach" models to become invariant to
changes in the input domain which do not affect the labels. In this test, we evaluate whether the sim-
ilarity measures are able to capture robustness to such changes, by developing models with varying
amounts of augmentation in their training data. Similar to before, we train groups of models with
different degrees of augmentation. Models of the same group should yield more similar represen-
tations than models from other groups trained on differently augmented data—again, similarity is
grounded by design of the models.
Training Protocol. In all domains, we trained one group of reference models on standard data, and
additional groups of models with varying degree of augmentation on the training data. Each group
consists of five models, which only vary in their training seed. Representations are computed on the
standard, non-augmented test data.

Test 6: Layer Monotonicity. As noted in Section 2.1, the individual layers f (l) of a neural network
f all yield representations R(l) that can be compared. Given that these layers also represent a
sequence of transformations of the input data X , i.e., R(l) = f (l)(R(l−1)), it seems intuitive that
representations of neighboring layers should be more similar than representations of layers that are
further away, given the greater number of transformations between the further-apart layers2. Thus,
in this experiment, we extract layer-wise representations of a neural network and test whether a
representational similarity measure can distinguish pairs of layers based on their distances from
each other. Similarity of representations is, therefore, grounded by design.
Training Protocol. We reuse the trained models of Test 1 and Test 2, as no changes were made in
the training scenario – only for graph neural networks, we increased the number of layers to five
inner layers to enable a sufficient number of comparisons.

3.2 REPRESENTATIONAL SIMILARITY MEASURES

ReSi evaluates 24 different similarity measures, for which we provide a brief overview in Table 2.
We used the reference implementations of the measures where possible. Otherwise, we closely fol-
lowed the given definitions and recommendations, also in the preprocessing of representations. Ex-
plicit definitions of all measures and details on hyperparameter choices can be found in Appendix A.

2This could be violated if there were skip connections, but we have controlled for this (see Appendix B.1)
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3.3 MODELS

Overall, the ReSi benchmark utilizes a range of various graph, language, and vision models. De-
tails on parameter choices can be found in Appendix B. All trained models are publicly available.
Graphs. As graph neural network architectures, we chose the classic GCN (Kipf & Welling, 2017),
GraphSAGE (Hamilton et al., 2017), and GAT (Veličković et al., 2018) models, using their respective
implementation from PyTorch Geometric (Fey & Lenssen, 2019). In addition, we considered
the position-sensitive P-GNN model (You et al., 2019), using the implementation of the authors. For
each experiment and dataset, we trained these models from scratch.
Language. We chose the popular BERT architecture (Devlin et al., 2019) and its ALBERT variant
(Lan et al., 2020) as well as SmolLM2-1.7B (Allal et al., 2025) as an LLM. For BERT, we use the
25 models pre-trained with different seeds from Sellam et al. (2022). For ALBERT and SmolLM2,
we use a single pretrained model (see Appendix B.2 for details). In our experiments, we fine-tuned
these models on the given datasets to avoid computationally expensive pre-training. We use the rep-
resentation of the token that is passed into the final classifier, i.e., CLS for BERT and ALBERT, final
token for SmolLM2, as well as mean-pooled representations over all tokens (also see Appendix B.1).
Vision. We focus on prominent classification architecture families, namely ResNets (He et al., 2016),
ViTs (Dosovitskiy et al., 2021) and older VGG’s (Simonyan & Zisserman, 2015). To capture the ef-
fect of scaling architecture sizes, we included ResNet18, ResNet34, ResNet101, VGG11, VGG19,
ViT-B/32 and the ViT-L/32 architectures. All models were trained from scratch, apart from the ViTs
which were initialized with pre-trained weights from ImageNet21k (Deng et al., 2009).

3.4 DATASETS

We provide a brief overview of the datasets used within the ReSi benchmark. More detailed de-
scriptions of the datasets can be found in Appendix B.2.1.
Graphs. We focus on graph datasets that provide multiclass labels for node classification, and for
which dataset splits into training, validation and test sets are already available. Specifically, we se-
lect Cora (Yang et al., 2016), Flickr (Zeng et al., 2020), and OGBN-Arxiv (Hu et al., 2020). For the
Cora graph, we extract representations from the complete test set of 1,000 instances, whereas for
Flickr and OGBN-Arxiv, we subsampled the test set to 10,000 instances for computational reasons.
Language. We use two classification datasets: SST2 (Socher et al., 2013) is a collection of sen-
tences extracted from movie reviews, labeled with their sentiment. MNLI (Williams et al., 2018) is
a dataset of premise-hypothesis pairs labeled with the true relation of these pairs. We used the vali-
dation and validation-matched subsets to extract representations for SST2 and MNLI, respectively.
Vision. We use ImageNet100 (IN100), a random subsample of 100 classes of ImageNet1k (Rus-
sakovsky et al., 2015) and CIFAR-100 (Krizhevsky & Hinton, 2009). IN100 reduces training time
while keeping image resolution and content similar to ImageNet1k. The image resolution was fixed
to 224x224 on IN100 and 32x32 on CIFAR-100 except for ViT models, which used 224x224.

3.5 EVALUATION

Lastly, we describe how we evaluate and quantify the performance of representational similarity
measures within the ReSi benchmark. Due to the different nature of the two approaches we use to
ground representational similarity, we present the corresponding evaluation approaches separately.

Grounding by Prediction. When grounding similarity of representations with predictions of their
corresponding classification models f , we specifically consider the outputs O := f(X) ∈ RN×C ,
where we assume that each row Oi = f(Xi) ∈ RC consists of the instance-wise class probability
scores for C given classes.

In Test 1, we leverage these outputs to correlate representational similarity with absolute differences
in accuracy. Thus, letting qacc(O) := qacc(O,y) denote the accuracy of an output O with respect to
ground-truth labels y ∈ RN , we compute the absolute difference in accuracies

∆acc(O,O′) = |qacc(O)− qacc(O
′)|. (4)

Then, given a similarity measure m, and letting F denote the set of models trained for this test,
for all model pairs f, f ′ ∈ F we collect the representational similarity scores m(R,R′) as well as
the accuracy differences ∆acc(O,O′), and report the Spearman correlation between these sets of
values, together with the levels of statistical significance.
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Figure 3: Aggregated ranks of measures across all models and tests, separated by domain. Lower
is better. Measures are ordered by their median rank, and categorized according to the taxonomy
by Klabunde et al. (2023). Tied measures all receive the best rank of their group. Boxplots indicate
quartiles of rank distributions, the whiskers extend up to 1.5 times the inter-quartile range. No single
measure or category stands out across all domains.

In Test 2, we consider differences in instance-wise predictions Oi,O
′
i rather than differences in

aggregate performance scores. Thus, for all pairs of models f, f ′ ∈ F , we compute the disagreement

∆Dis(O,O′) = 1
N

∑N
i=1 1{argmaxj Oi,j ̸= argmaxj O

′
i,j}, (5)

between their hard predictions, and the average Jensen-Shannon divergence (JSD)

∆JSD(O,O′) = 1
2N

∑N
i=1 JSD(Oi∥O′

i) (6)

of the class-wise probability scores, and report the Spearman correlation of both measures with the
corresponding set of representational similarities m(R,R′).

Grounding by Design. For all tests of this category, we do not consider functional outputs of
models as a ground truth for representational similarity anymore. Instead, we have created multiple
groups of representations G, typically separated by differences in model training, through which we
impose a ground truth about similarity by relation. In Test 3, 4 and 5, we postulate that for any
similarity measure m it should hold that representations R,R′ ∈ G from the same group should be
more similar to each other than representations R ∈ G,R∗ ∈ G∗ from different groups, that is,

m(R,R∗) ≤ m(R,R′), (7)

where we assume that for m, higher values indicate more similarity. Then, a trivial performance
measure is given by the conformity rate, i.e., the relative amount of times a similarity measure m
satisfies (7) across all combinations of groups and representations. Given that this measure can,
however, be biased by the ratio of intergroup vs. intragroup pairs, we additionally adapt the Area
under the Precision-Recall curve (AUPRC) measure to our context. This is done by assigning a
label y(R,R′) := 1{G = G′} to each pair of representations R ∈ G,R′ ∈ G′ that can be compared
within the given set of groups, and then interpreting the representational similarities m(R,R′) as
decision scores based on which one should be able to "predict" the label y(R,R′).

Finally, in Test 6, we group representations R(l) by the layers l they were extracted from. However,
in contrast to the previous tests, we postulate that an ordinal relationship between the layers has to
hold. Specifically, given a model with L layers, for all tuples 1 ≤ i ≤ j < k ≤ l ≤ L we require a
measure m to satisfy

m(R(i),R(l)) ≤ m(R(j),R(k)), (8)

assuming that for m, higher values indicate more similarity. As in the previous tests, we report the
corresponding conformity rate. Further, we report the Spearman correlation between the similarities
m(R(i),R(j)) and the distance j − i of the corresponding layers over all tuples 1 ≤ i < j ≤ L.
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Table 3: Exemplary results for selected datasets and models. We show results of GraphSAGE on
Flickr for graphs, BERT on SST2 (CLS token) for language, and ResNet18 on ImageNet100 for
vision. For the first two tests, we report the Spearman correlation between representational simi-
larity and the difference in accuracy and JSD, respectively. For Tests 3-5, we report the area under
the precision-recall curve, quantifying if the corresponding groups of models can be separated by
the similarity measures. For Layer Monotonicity (Test 6), we report the average Spearman correla-
tion between representational similarity and layer distance. Higher values indicate that a similarity
measure better reflects the ground-truths from our tests. Our benchmark highlights that similarity
measures have different strengths and weaknesses, and that there exists no measure that performs
well across all tests and all domains. For example, PWCCA (first row) separates layers of Graph-
SAGE and BERT well, but not the layers of ResNet18.

Type Grounding by Prediction Grounding by Design
Test Corr. to Accuracy Difference Corr. to JSD Difference Label Randomization Shortcut Affinity Augmentation Layer Monotonicity
Modality Graph Lang. Vision Graph Lang. Vision Graph Lang. Vision Graph Lang. Vision Graph Lang. Vision Graph Lang. Vision

PWCCA -0.05 -0.33∗ -0.02 0.38∗∗ -0.32∗∗ 0.13 0.44 0.27 0.81 0.43 0.32 0.99 0.57 0.35 0.90 1.00 1.00 0.11CCA SVCCA 0.01 -0.08 0.29∗ 0.23 0.47∗∗ 0.21 0.80 0.64 1.00 0.93 0.36 0.55 0.67 0.61 0.40 0.44 0.64 0.20

AlignCos 0.24 0.02 -0.08 0.44∗∗ 0.49∗∗ 0.08 0.42 0.99 0.45 1.00 0.54 1.00 0.70 0.45 0.71 0.68 0.99 0.52
AngShape 0.28 -0.14 0.21 0.63∗∗ 0.40∗∗ 0.24 0.43 0.49 0.72 1.00 0.43 1.00 0.76 0.52 0.71 0.98 0.99 0.55
HardCorr 0.35∗ -0.33∗ 0.21 0.50∗∗ -0.01 0.28 0.46 0.44 0.72 1.00 0.36 0.97 0.72 0.34 0.46 0.80 0.99 0.01
LinReg 0.17 -0.38∗∗ 0.19 0.48∗∗ 0.02 0.21∗ 0.45 0.40 0.91 0.61 0.46 0.99 0.81 0.40 0.94 1.00 0.90 0.55
OrthProc 0.28 -0.14 0.21 0.63∗∗ 0.40∗∗ 0.24 0.43 0.49 0.72 1.00 0.43 1.00 0.76 0.52 0.71 0.98 0.99 0.55
PermProc -0.19 -0.09 0.07 -0.10 0.04 0.18 0.90 0.45 0.70 1.00 0.55 0.72 0.69 0.31 0.41 0.68 0.75 0.20
ProcDist -0.06 0.10 0.08 -0.18 0.49∗∗ 0.10 0.62 0.86 0.70 1.00 0.52 1.00 0.81 0.43 0.58 1.00 0.89 0.55

Alignment

SoftCorr 0.33∗ -0.33∗ 0.27 0.53∗∗ -0.01 0.45∗∗ 0.45 0.48 0.72 1.00 0.34 0.97 0.58 0.41 0.45 0.89 0.95 0.11

CKA 0.27 -0.06 0.36∗ 0.58∗∗ 0.48∗∗ 0.30∗ 0.66 0.59 1.00 1.00 0.38 1.00 0.75 0.61 0.90 0.89 0.96 0.87
DistCorr 0.42∗∗ -0.10 0.31∗ 0.43∗∗ 0.51∗∗ 0.26 0.43 0.59 1.00 1.00 0.39 1.00 0.79 0.62 0.83 0.99 0.98 0.97
EOS -0.27 -0.38∗∗ 0.05 0.38∗∗ -0.21∗∗ 0.09 0.42 0.36 0.84 0.43 0.33 1.00 0.53 0.30 0.93 1.00 0.92 0.88
GULP -0.27 -0.36∗ 0.02 0.38∗∗ -0.30∗∗ 0.07 0.42 0.28 0.89 0.43 0.30 1.00 0.54 0.33 0.92 1.00 0.45 0.53
RSA 0.32∗ -0.23 0.06 0.63∗∗ 0.44∗∗ 0.12 0.42 0.48 0.75 1.00 0.47 1.00 0.72 0.61 0.98 0.99 0.96 0.97

RSM

RSMDiff -0.16 0.20 0.09 -0.04 0.24∗∗ -0.41∗∗ 0.92 0.91 1.00 0.92 0.37 0.57 0.93 0.34 0.45 0.65 0.84 -0.33

2nd-Cos -0.19 0.30∗ -0.08 0.15 0.49∗∗ -0.13 0.42 0.37 1.00 1.00 0.64 1.00 0.92 0.40 0.78 0.96 0.97 0.55
Jaccard 0.28 0.17 -0.11 0.42∗∗ 0.54∗∗ 0.36∗ 0.43 0.35 1.00 0.83 0.64 1.00 0.88 0.39 0.79 0.97 0.96 0.55Neighbors
RankSim 0.31∗ 0.14 0.07 0.30∗ 0.56∗∗ -0.15 0.43 0.34 1.00 0.77 0.64 0.99 0.88 0.36 0.71 0.97 0.96 0.55

IMD 0.37∗ -0.06 0.17 0.29 0.02 -0.11 0.37 0.47 1.00 0.97 0.34 0.67 0.57 0.30 0.56 0.82 0.54 -0.00Topology RTD 0.13 0.05 0.09 -0.14 0.33∗∗ -0.18 0.59 0.27 1.00 1.00 0.39 1.00 1.00 0.38 0.57 0.98 0.39 0.97
ConcDiff -0.29 0.12 -0.11 -0.03 -0.02 -0.29∗ 0.57 0.96 0.81 0.18 0.27 0.53 0.35 0.32 0.43 -0.27 0.96 -0.78
MagDiff -0.17 -0.13 -0.16 0.06 0.11 -0.38∗ 0.72 0.38 1.00 0.78 0.35 0.37 0.17 0.31 0.37 0.50 0.48 -0.37Statistic
UnifDiff 0.03 0.35∗ -0.18 0.02 0.38∗∗ -0.34∗ 0.90 0.60 0.21 0.50 0.37 0.75 0.24 0.33 0.17 0.89 0.77 0.18

Statistical significance for prediction-grounded tests evaluated with correlation is indicated by ∗ (5%) and ∗∗ (1%).

4 BENCHMARK RESULTS

In the following, we illustrate selected benchmark results. Due to limited space, we focus on pre-
senting (a) an aggregated overview and (b) an exemplary detailed result for a single dataset and a
single architecture. We provide detailed results in Appendix C. We further present average runtimes
of the similarity measures, which can vary by multiple magnitudes, in Appendix D.

For an aggregated result overview, we rank all measures for each combination of test, dataset, and
architecture. The rank distribution across tests in each domain is shown in Figure 3. We observe
that no measure outperforms the others consistently across the domains, with most measures having
high variance in their rankings. However, some domain-specific trends can be identified, such as
neighborhood-based second-order cosine similarity (2nd-Cos), Jaccard similarity, or rank similarity
measures that perform well in the graph domain. In the language domain, the popular linear CKA
measure performs best. Further, in the vision domain, various types of measures perform well—
particularly the less-used Jaccard similarity. Orthogonal Procrustes, which has overall performed
well in the analysis by Ding et al. (2021), consistently ranks among the top 50% of measures. By
contrast, other prominent measures, such as RSA or SVCCA, do not appear to stand out in general.

The ReSi benchmark can also provide more detailed results for analysis. To provide some exam-
ples, Table 3 presents the outcomes for a single dataset and architecture in each domain. Higher
values always indicate better adherence of measures to similarity groundings. Again, we observe
that, even for a single dataset, there is no single measure that outperforms the others across all tests.
Instead, most of the measures appear to perform well in some tests, but not in others. For instance,
measures such as the eigenspace overlap score or GULP appear to be able to perfectly distinguish
layers of a GraphSAGE model but appear incapable of identifying whether they have learned spe-
cific shortcuts, which most other measures appear to be capable of. One can also identify model-
specific trends, such as neighborhood-based measures correlating particularly well with predictions
from BERT models. In addition, considering the performance of descriptive statistics-based mea-
sures may provide additional geometric insights on representations: for instance, the concentricity
of BERT representations appears to inform relatively well about the degree to which it was trained
to memorize data.
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5 TAKEAWAYS

No Free Lunch. Throughout our benchmark, we observe that ranks of individual measures vary sig-
nificantly. For example, CKA (Kornblith et al., 2019) ranks first in Language, eighth in Vision, and
11th in Graphs when aggregating across all tests. This inconsistency extends beyond CKA, high-
lighting limitations in the general applicability of established measures. This implies that measures
should be chosen carefully for a task at hand and that specific tasks may require the development of
specialized similarity measures to appropriately capture relevant aspects of model behavior.
Preprocessing Matters. The similarity measures analyzed in this study include Orthogonal Pro-
crustes (OrthProc) and Procrustes Size-and-Shape Distance (ProcDist), which differ only in the way
the representations are preprocessed. Our results indicate that this seemingly small difference has
a substantial impact on what properties of models similarity measures capture. This highlights av-
enues for future work: preprocessing implicitly assumes that representations are equivalent under
the preprocessing transformation. If, in the case of OrthProc, results are consistently worse after
normalizing representations to unit norm, this could be an indicator that the absolute magnitude of
each axis carries semantic meaning that similarity measures need to pick up on. Therefore, a bet-
ter understanding of what kinds of representation are truly equivalent is crucial, and the tests from
ReSi could be used to empirically investigate the impact of different preprocessing techniques.
Need of Best Practices. Currently, similarity measures are often selected without deeper justifica-
tion. Our results indicate that this practice leads to similarity scores that are difficult to interpret, as it
is unclear whether the score indicates similarity on an interpretable axis and whether the score is spe-
cific to a measure. We argue that the community needs to develop a holistic set of best practices that
enables robust and reliable analyses with similarity measures, which was also recently advocated for
by Soni et al. (2024) in a neuroscience context. This further highlights potential for cross-domain
pollination. With the following recommendations, we make a step towards such guidelines.
General Recommendations. Based on our results, from Figure 3, we can derive some general
recommendations for applying similarity measures on specific domains. For graphs, neighborhood-
based measures appear favorable, for language models, one should likely prefer CKA or distance
correlation, and for vision models, Jaccard similarity appears to be the overall best choice. In gen-
eral, the groups of alignment-, RSM- and neighborhood-based measures also appear to overall per-
form better than CCA-, topology- and descriptive statistics-based measures. However, this does not
imply that measures from these families cannot be useful in specific applications. If one considers
grounding to a specific test as particularly important, the tables in Appendix C inform on the ability
of similarity measures in that test. If, for instance, one considers correlation with output difference
the best grounding, Jaccard similarity would be preferable for the vision domain, distance correla-
tion for the language domain, and RSA for the graph domain.
Unexpected Efficacy of Overlooked Measures. Within our benchmark, we implement a broad set
of 24 measures, of which several measures have hardly been considered before in related literature
and which sometimes performed surprisingly well. For example, Jaccard similarity emerged as the
best-performing measure in the vision domain. This finding challenges popular opinion and sug-
gests that rarely used measures, despite their limited prior application in these contexts, may possess
unique properties that make them particularly well suited for certain types of data. This unexpected
performance highlights the potential for revisiting and rigorously testing lesser known measures.
Potential for Deeper Insights. ReSi can also be used in different ways to obtain deeper insights
about neural representations. One way comes from direct analysis of the given results. For instance,
the finding that neighborhood-based measures perform well in the graph domain may indicate that
neighborhoods within GNN representations are driven by training objectives. Similarly, the results
of Test 5 indicate that augmentation of BERT models particularly affects uniformity of their repre-
sentations. Although these findings can only be considered preliminary signals, they illustrate how
ReSi can provide valuable pointers for future research. Additionally, the groundings provided by
ReSi’s tests can be used to more systematically analyze the impact of preprocessing (as pointed
out above), neural network design choices such as the type of normalization layer, or parameters of
similarity measures such as similarity functions for RSMs, on representational similarity scores.

6 RELATED WORK

Despite the large amount of representational similarity measures that have been proposed in the lit-
erature (Klabunde et al., 2023), only few efforts have focused on a comparative analysis of existing
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similarity measures. In the following, we briefly provide an overview of existing work.
Grounding by Prediction. Ding et al. (2021) first proposed grounding similarity of representations
to performance differences of probes trained on them. They benchmarked three similarity measures,
with tests focusing on identifying effects of seed variation or manually manipulating the represen-
tations. Compared to ReSi, they focus only on a single test in our framework. Their work was
extended by Hayne et al. (2024) with a focus on measuring similarity of high-dimensional repre-
sentations in CNNs. Similar to Test 2 in ReSi, Barannikov et al. (2022) tested the ability of their
similarity measure to capture prediction disagreement.
Grounding by Design. Similar to Tests 3-5 in ReSi, some previous work has also tested whether
similarity measures could distinguish representations based on differences in their underlying mod-
els. Boix-Adserà et al. (2022) considered representations of models from different architectures,
and required similarity measures to distinguish representations by model family. Tang et al. (2020)
tested whether measures could distinguish models based on differences in their training data. In a
setting similar to Test 6, Kornblith et al. (2019) grouped representations of models that only differ in
their training seed by layer depth, and tested whether measures assign more similarity to represen-
tations from corresponding layers. Finally, a few analyses have tested whether similarity measures
can detect model-independent changes in representations. For instance, it has been explored whether
measures distinguished synthetic representations with different cluster structure (Barannikov et al.,
2022), levels of noise (Morcos et al., 2018), or subsampled dimensions (Shahbazi et al., 2021).

7 DISCUSSION AND CONCLUSIONS

We briefly summarize our contributions and discuss limitations as well as potential avenues for fu-
ture research to be built on ReSi.
Contributions. In this paper, we have presented ReSi, the first comprehensive benchmark for rep-
resentational similarity measures. By applying its six tests on a wide range of 24 similarity measures
to evaluate their capabilities on graph, language, and vision representations, we have demonstrated
that it (i) can serve as a test environment for new measures, (ii) provide guidance regarding which
measures to choose for specific domains, architectures or application scenarios, and (iii) can be
leveraged to obtain deeper understanding of representational similarity. We provide all code pub-
licly online, and invite the machine learning community to use it to test (potentially new) measures,
or to extend it to include more models or even additional tests.
Limitations. We have put considerable effort into properly grounding the benchmark tests. Specif-
ically, when grounding by design, we have not only carefully set up distinct training conditions,
but also verified from the validation performance of the models under consideration that these in-
deed follow the intended behavior and adapted the generation process if necessary. Still, we cannot
fully control what models learn. Two behaviorally identical models could still differ in their internal
process and, thereby, their representations, potentially confounding the resulting test scores. Never-
theless, our tests would inform whether the grounding property can be inferred from representations
without supervision. When grounding by predictions, we have deliberately restricted the tests to
models that only vary in their training seed, to reduce the potential for additional confounders as
much as possible. Furthermore, in our tests, we solely focus on last-layer representations. The va-
lidity of the existing tests at other layers could be verified by evaluating whether the probes follow
the same behavioral patterns as the full model.
Future Work. While ReSi implements 24 similarity measures, not all existing measures are in-
cluded. Additionally, we did not explore the effects of different preprocessing approaches or pa-
rameter choices of individual measures. Given that such factors can lead to different results (Boix-
Adserà et al., 2022; Timkey & van Schijndel, 2021), ReSi opens the way for a systematic evaluation
of such steps in future work. Similarly, the six tests implemented in ReSi should be considered a
comprehensive but extensible foundation of tests that users can build upon. We see a great potential
in augmenting ReSi with additional tests, with the aim of a unified test suite that can inform the
whole community of researchers and practitioners. For example, tests could be grounded via insights
from interpretability, e.g., how similar reliance on specific input features is, as found via explana-
tions (Eberle et al., 2022)—assuming the explanation is faithful—or how similar internal features
are, as discovered via sparse autoencoders (Lan et al., 2024). Finally, we acknowledge that ReSi
currently evaluates similarity measures within single-modality settings. However, these measures
are also crucial for measuring the alignment of representations in multimodal contexts. Extending
ReSi to encompass multimodal settings represents highly promising future work.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Grant No.: 453349072. The authors acknowledge support by the state of Baden-
Württemberg through bwHPC and DFG through grant INST 35/1597-1 FUGG. This work was
partly funded by Helmholtz Imaging (HI), a platform of the Helmholtz Incubator on Information
and Data Science.

REPRODUCIBILITY STATEMENT

All our code and data as well as instructions how to run the benchmark are publicly available at
https://github.com/mklabunde/resi.

REFERENCES

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo,
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A REPRESENTATIONAL SIMILARITY MEASURES

In this section, we first provide explicit descriptions of all similarity measures that we included in
ReSi, and then give details on the hyperparameter choices.

A.1 DEFINITIONS OF SIMILARITY MEASURES

In the following, we provide brief descriptions of all the representational similarity measures that we
consider in this study, where we follow the categorization proposed in the recent survey by Klabunde
et al. (2023). For more detailed descriptions and a broader overview of existing measures, we also
point to this survey.

CCA-based Measures. Canonical Correlation Analysis (CCA) Hotelling (1936) is based on the
problem of finding weights wR ∈ RD,wR′ ∈ RD′

for the columns in the representations, such
that the linear combinations RwR and R′wR′ ∈ RN have maximal correlation. Assuming mean-
centered representations, one can determine a set of canonical correlations ρi that satisfy

ρi := max
w

(i)
R ,w

(i)

R′

⟨Rw
(i)
R ,R′w

(i)

R′ ⟩

∥Rw
(i)
R ∥·∥R′w

(i)

R′∥

s.t.Rw
(j)
R ⊥Rw

(i)
R , R′w

(j)

R′⊥R′w
(i)

R′ ∀j < i.

(9)

A single similarity score m(R,R′) can then be obtained by aggregating the individual canonical
correlations ρi, e.g., via taking their mean:

mCCA(R,R′) = 1
D

∑D
i=1 ρi. (10)

In Singular Value CCA (SVCCA) (Raghu et al., 2017), this exact aggregation is used, but represen-
tations are first denoised by applying PCA on the mean-centered representations, removing those
principal components, which explain less than a fixed percentage (usually 1%) of the variance.

For their Projection-weighted CCA (PWCCA) measure, Morcos et al. (2018) considered a weighted
average of the canonical correlations, where the weighting coefficients αi =

∑D
j=1 |⟨Rw

(i)
R ,R−,j⟩|

model the importance of each canonical correlation ρi.

Alignment-based Measures. Several measures from this category are based on solving the or-
thogonal Procrustes problem, which intuitively is based on finding the best orthogonal mapping of
to representations onto each other. Specifically, the Orthogonal Procrustes (OrthProc) measure is
defined via

mOrthProc(R,R′) = min
Q∈O(D)

∥RQ−R′∥F = (∥R∥2F + ∥R′∥2F − 2∥RTR′∥∗)
1
2 , (11)

where it is assumed that columns of the input representations are centered, and scaled to unit norm.
The Procrustes Size-and-Shape-Distance only differs in preprocessing, as it does not assume that the
matrix is scaled to unit norm. For the Permutation Procrustes measure, the minimization in Equa-
tion (11) is restricted to permutation matrices. The Orthogonal Angular Shape Metric (Williams
et al., 2021) follows a similar rationale, but optimizes minimizes a Frobenius norm:

mAngShape(R,R′) = min
Q∈G(D)

arccos⟨RQ,R′⟩F . (12)
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The matrix Q∗ that yields the solution of the Procrustes Problem in Equation (11) is also used for
the Aligned Cosine Similarity measure. Specifically, it considers the cosine similarities between all
instance representations after alignment, and uses their average as similarity score:

mAlignCos(R,R′) = 1
N

∑N
i=1 cos-sim ((RQ∗)i,R

′
i) . (13)

In a slightly different approach, (Li et al., 2015) proposed to align representations by matching
neurons based on their correlation. For the Hard Correlation Match measure, neurons are matched
one-to-one in a greedy fashion. Letting M denote the matrix that matches the neurons, which is a
permutation matrix in this strict matching, the measure then yields the average correlation between
the matched neurons:

mHardCorr(R,R′) = 1
D

∑D
j=1

⟨R−,j ,(R
′M)−,j⟩

∥R−,j∥2∥(R′M)−,j∥2
. (14)

For the Soft Correlation Match, this matching is relaxed, so that one neuron from R can be matched
to multiple neurons from R′.

Finally, the Linear Regression measure aligns representations by predicting one from the other via a
linear transformation. The resulting R2 score can then be used as similarity score:

mLinReg(R,R′) = 1− minW∈RD×D ∥R′−RW ∥2
F

∥R′∥2
F

=

∥∥(R′(R′TR′)−1/2
)T

R
∥∥2

F

∥R∥2
F

. (15)

RSM-based Measures. To avoid issues in finding optimal alignments, several methods consider
representational similarity matrices (RSMs), which describe the similarity of each instance Ri to all
other instances in a representation R. Formally, the RSM S ∈ RN×N of a representation R can be
defined in terms of its elements via

Si,j := s(Ri,Rj). (16)

where s : RD × RD −→ R denotes a given instance-wise similarity function. Common choices for
the similarity function s include correlation Kriegeskorte et al. (2008) or kernel functions Kornblith
et al. (2019). A direct way to obtain a representational similarity measure is then to consider the
norm of the difference between two RSMs, as in the RSM Norm Difference Yin & Shen (2018):

mRSMDiff(R,R′) = ∥S − S′∥. (17)

More broadly, Kriegeskorte et al. (2008) proposed Representational Similarity Analysis (RSA),
which considers an inner similarity function sin to compute RSMs, of which the lower triangles
are then vectorized to a vector v(S) ∈ RN(N−1)/2 and compared via an outer similarity function
sout:

mRSA(R,R′) = sout(v(S), v(S
′)). (18)

One of the most commonly used similarity measures in related literature is Centered Kernel Align-
ment (CKA), which has been proposed by Kornblith et al. (2019). CKA applies kernel functions as
instance-wise similarity measures s to compute the RSMs, which are then compared via the Hilbert-
Schmidt Independence Criterion (HSIC) (Gretton et al., 2005). Specifically, the similarity score is
computed via

mCKA(R,R′) = HSIC(S,S′)√
HSIC(S,S)HSIC(S′,S′)

. (19)

Distance Correlation (DistCorr) (Székely et al., 2007) is motivated from testing statistical depen-
dence of two random variables, but can also be applied as representational similarity measure. As-
suming that RSMs are mean-centered in both rows and columns, one can compute their squared
sample distance covariance dCov2(S,S′) = 1

N2

∑N
i=1

∑N
j=1 Si,jS

′
i,j , and then derive the distance

correlation via
mDistCorr(R,R′) = dCov2(S,S′)√

dCov2(S,S) dCov2(S′,S′)
. (20)

Eigenspace Overlap Score (May et al., 2019) compares RSMs by comparing the spaces spanned
from their eigenvectors. Letting U ∈ RN×D,U ′ ∈ RN×D′

denote the matrices of eigenvectors that
correspond to the non-zero eigenvalues of S,S′, respectively, the measure is defined as

mEOS(R,R′) = 1
max(D,D′)∥U

TU ′∥2F . (21)

16



Published as a conference paper at ICLR 2025

Finally, GULP (Boix-Adserà et al., 2022) aims to measure the extent of how differently linear
(ridge) regression models that use either the representation R or the representation R′ can gen-
eralize. Letting the RSMs S = 1

NRTR denote the matrix of covariance within a representation,
SR,R′ = 1

NRTR′ the cross-covariance matrix, and S−λ = (S + λID)−1 the inverse of a regular-
ized covariance matrix, they provide a closed-form definition of the GULP measure

mλ
GULP(R,R′) =

(
tr(S−λSS−λS) + tr(S′−λS′S′−λS′)− 2 tr(S−λSR,R′S′−λST

R,R′)
)1/2

,

(22)
where the hyperparameter λ ≥ 0 corresponds to the regularization weight of the ridge regression
models.

Neighborhood-based Measures. The following set of measures is based on comparing the nearest
neighbors of instances in the representation space. Each measure determines the sets of k nearest
neighbors N k

R(i) of each instance representation Ri from the full representation matrix R with
respect to a given similarity function s, and then computes a vector of instance-wise neighborhood
similarities

(
vNN(R,R′)i

)
i∈{1,...,N}, which are averaged over all instances to obtain similarity

measures for the full representations R,R′:

mNN(R,R′) = 1
N

∑N
i=1 vNN(R,R′)i. (23)

For the k-NN Jaccard Similarity, this vector simply contains the Jaccard similarities of the nearest
neighbors of each pair of corresponding instance representations Ri and R′

i:(
vk

Jaccard

(
R,R′))

i
:=

|Nk
R(i)∩Nk

R′ (i)|
|Nk

R(i)∪Nk
R′ (i)|

. (24)

Second-Order Cosine Similarity (Hamilton et al., 2016a) considers the union of the instance-wise
nearest neighbors in terms of cosine similarity as an ordered set {j1, . . . , jK(i)} := N k

R(i)∪N k
R′(i),

and then compares these cosine similarities to the nearest neighbors via(
vk

2nd-Cos

(
R,R′))

i
:= cos-sim

((
Si,j1 , . . . ,Si,jK(i)

)
,
(
S′
i,j1 , . . . ,S

′
i,jK(i)

))
,

where S,S′ denote the RSMs w.r.t. cosine similarity.

Rank Similarity (Wang et al., 2022) not only considers the cardinality of the overlap between
instance-wise neighborhoods N k

R′(i), but also factors in the order of common neighbors with respect
to cosine similarity. To increase the importance of close neighbors, this measure defines distance-
based ranks rRi(j) for all j ∈ N k

R(i), where rRi(j) = n if Rj is the n-th closest neighbor of Ri.
Based on these ranks, the instance-wise similarities are then defined as(

vk
RankSim(R,R′)

)
i
= 1

(vmax)i
·
∑

j∈Nk
R(i)∩Nk

R′ (i)
2

(1+|rRi
(j)−rR′

i
(j)|)(rRi

(j)+rR′
i
(j)) , (25)

where (vmax)i is a normalization factor that limits the maximum of the ranking similarity to one.

Topology-based Measures. Measures of this category aim to approximate and compare lower-
dimensional data manifolds, which the high-dimensional representations are assumed to be con-
centrated on. This approximation is often done using discrete structures such as graphs, and this
approach has also been chosen by Tsitsulin et al. (2020) for their Multi-Scale Intrinsic Distance
(IMD) measure. Specifically, they considered k-NN graphs G(R) for each representation, which
are then compared through their heat kernel trace, which is defined as hktG(R)(t) =

∑
i e

−tλi , with
λi denoting the eigenvalues of the normalized graph Laplacian of G(R). The IMD score is then
defined as

mIMD(R,R′) = sup
t>0

e−2(t+t−1)|hktG(R)(t)− hktG(R′)(t)|. (26)

Similarly, the Representation Topology Divergence (RTD) (Barannikov et al., 2022) considers
graphs Gα(R), in which nodes are connected if the Euclidean distance of the corresponding in-
stance representations is lower than α, and union graphs Gα(R,R′), where edges are formed if in
at least one of the two representations this condition is satisfied. Based on these graphs, one collects
a set B(R,R′) of intervals (α1, α2), in which these graphs differ in the number of their connected
components. The total length of these intervals, denoted as b(R,R′) =

∑
(α1,α2)∈B(R,R′) α2−α1,
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then quantifies similarity between two representations. Given that this similarity score is not sym-
metric, one, however, further takes the average

mRTD(R,R′) = 1
2 (b(R,R′) + b(R′,R)). (27)

Instead of computing one score for the full representation matrices R,R′, Barannikov et al. (2022)
further recommend sampling multiple subsets of instances based on which this score can be com-
puted, and again averaging the resulting scores in the end.

Descriptive Statistics. The final set of measures that we test within our benchmark considers
statistical properties of individual representations R. Given a pair of representations R,R′, and a
statistic mstat, the individual statistics are then compared by taking their absolute difference:

mStatDiff = |mstat(R)−mstat(R
′)|. (28)

Toward that end, the first statistic we consider is Magnitude (Wang et al., 2022), which corresponds
to the length of the mean instance representation:

mMag(R) := ∥ 1
N

∑N
i=1 Ri∥2. (29)

Concentricity (Wang et al., 2022), by contrast, considers the average distance of each instance rep-
resentation to the mean representation:

mConc(R) := 1
N

∑N
i=1 cos-sim(Ri,

1
N

∑N
j=1 Rj). (30)

Finally, Uniformity (Wang & Isola, 2020) measures how close the distribution of instance represen-
tations is to a uniform distribution on the unit hypersphere, and is defined as

mUnif(R) = log
(

1
N2

∑N
i=1

∑N
j=1 e

−t∥Ri−Rj∥2
2

)
, (31)

where t is a hyperparameter Wang & Isola (2020).

A.2 HYPERPARAMETER CHOICES

Regarding the hyperparameters of the measures under study, we largely followed recommendations
made in the original references. Specifically, we made the following choices:

• For SVCCA, we included as many principal components as necessary to explain 99% of
the variance in the training data.

• For RSMDiff, we computed the RSMs based on Euclidean distance
• For RSA, we applied Pearson correlation as inner and Spearman correlation as outer simi-

larity function.
• For CKA, we used the original, non-batched implementation, and chose a linear kernel as

similarity function.
• For the distance correlation (DistCorr), we computed RSMs based on Euclidean distance.
• In GULP, we set the regularization weight to λ = 0.
• For all neighborhood-based measures (Jaccard, RankSim, 2nd-Cos), we set the neighbor-

hood size to k = 10 and determined nearest neighbors based on cosine similarity.
• For the IMD score, we used 8,000 approximation steps and five repetitions.
• For RTD, we always sampled 10 subsets of 500 instances.
• For the uniformity difference (UnifDiff), we set t = 2.

All other measures did not provide any hyperparameters.

B EXPERIMENT DETAILS

Complementing the higher level experiment descriptions in the main manuscript, a more detailed
description of them is provided in this section. This includes general information about the chosen
model architectures, datasets and hyperparameters for each domain, with additional details that are
unique to individual experiments provided later.
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B.1 REPRESENTATION EXTRACTION

In order to measure representational similarity, representations need to be extracted from the trained
architectures. As noted in the main manuscript, we use the representations of the last hidden layer
for all experiments, except the monotonicity experiment, where we use additional hidden layers of
the architectures as well. We chose to do so as we can verify our assumptions of a model learning
shortcuts or learning to be more robust to augmentations with the predictions directly derived from
these representations. In an earlier layer, for example, we would not be able to verify whether a
model learned the shortcut or not. For the output correlation, a similar argument can be made, as
predictions are directly derived from these representations. Only for the layer monotonicity test,
intermediate representations were used. Moreover, we carefully extract representations at locations
where no residual connection bypasses the location of representation extraction to ensure that we
measure the entirety of the representation and not just a part of it, i.e., after transformer and residual
blocks. This is especially important for the monotonicity experiment where a disregard for this may
invalidate the setting assumptions. Architectures, where this was important to consider, were all
Transformer architectures, as well as the vision-specific ResNets.

Graphs. For the graph neural networks, the extracted representations naturally follow the desired
matrix format R ∈ RN×D, where each row corresponds to the representation of a specific node in
the network. Thus, no additional processing was necessary.

Language. Transformers produce one representation per token of each input. As we focus on the
last-layer representations, we focus on the representation of the CLS token as the representation
for the whole input for BERT and ALBERT. As this token is used by the final classifier, we argue
that all relevant information for that input will be contained in this representation making this token
representation the most important one. However, we also compare models via representations mean-
pooled over all tokens of an input to give representations of other tokens more direct influence. For
SmolLM2, we use the final token of the input as it decides what the next prediction is, similar to the
CLS token for BERT and ALBERT.

While it is possible to compare representations of all tokens, inputs with many tokens would take
up more rows in the final representation matrix, which could bias similarity estimates towards sim-
ilarity of long inputs. Additionally, the runtime of many representational similarity measures scale
quadratically in the number of rows of the representations, which practically limits the size of the
representations given the many comparisons that we had to run in our benchmark.

Vision. Vision models vary in their representations. CNNs generally conduct a global average
pooling operation before their classifier, leading to representations being in the desired R ∈ RN×D

format. Transformer-based vision models yield a CLS token in conjunction to additional tokens,
hence we follow the language domain and only use the CLS token when comparing ViT representa-
tions.

In the monotonicity experiment, CNN representations were extracted prior to the global average
pooling layer, resulting in representations with varying spatial extents. This poses challenges for
measures that leverage spatial extent to increase sample size N , as such measures often assume
correspondence between features at identical spatial positions. Furthermore, for spatial dimensions
of w = 112 and h = 112, the number of values in the representation exceeds 10,000, leading
to potential memory issues. To address these concerns, we restricted representation extraction to
layers with a global stride ≥ 8 , yielding w = h = 28 in the ImageNet experiments. Additionally,
we limited the extraction to the final six layers of the architecture. The extracted representations
were subsequently scaled to a uniform 7×7 spatial extent via average pooling, ensuring consistency
across all layers except the classifier layer, which lacks spatial dimensions. For spatial representation
comparisons, the spatial dimensions w and h were folded into the channel dimension c , converting
representations of shape N × c × h × w to N × (chw), unless the measure required N > D or
exhibited prohibitively high computational complexity. In such cases, the spatial extent was moved
into the sample dimension, reshaping N × c × h × w to (Nhw) × c. To mitigate memory and
time constraints, the sample size was reduced from Nhw to N by subsampling every 49th value.
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For comparisons between spatial and non-spatial representations, spatial dimensions were removed
entirely through average pooling.

We note that this resampling and subsampling of the representations in the CNN case is suboptimal,
yet this issue originates from the limitations of the similarity measure, namely requiring N > D or
scaling prohibitively.

Moreover, in all vision experiments, representations were extracted from test images that models
had not seen during training. For ImageNet100, the 50 validation cases per class are used, resulting
in N = 5000 samples, and for CIFAR100 we use the full test dataset.

B.2 GENERAL EXPERIMENT DETAILS

Across all modalities and experiments, efforts were made to keep architectures, training hyperpa-
rameters or dataset choices as static as possible, while minimizing the overall compute effort that
was necessary to compare representations with all these measures. In the following, we describe
general experimental settings which apply to all tests, separately for each domain.

B.2.1 GRAPH SETTINGS

Models and Parametrization. As graph neural network architectures, we chose the GCN (Kipf
& Welling, 2017), GraphSAGE (Hamilton et al., 2017), and GAT (Veličković et al., 2018) models
due to their widespread prominence. In our implementation, we used the respective model classes
as provided in the PyTorch Geometric (Fey & Lenssen, 2019) package. We further applied
the P-GNN (You et al., 2019) architecture, since its position-aware approach to aggregation of node
information provides a contrast to the other three models, which only aggregate information of
neighboring nodes in their convolutions. We applied the reference implementation by the authors,
which was adapted to the given node classification tasks. Due to its large memory consumption, it
was only feasible to apply this model on the Cora dataset. Further, we did not use this model for the
augmentation test, because the DropEdge approach that we use for this test is not appropriate for
position-aware embeddings – dropping edges would alter the distances of nodes to the corresponding
anchor sets, and these distances are the key element of the message passing of P-GNNs. Overall, we
also think that the consideration of datasets, where the corresponding task fits better to the strength of
these position-aware GNNs, may be a good extension for future studies that build on our benchmark.

For each experiment and dataset, we trained these models from scratch. Regarding the hyperpa-
rameters, we roughly followed values that were used for these models in existing benchmarks. An
overview of the hyperparameter choices for each algorithm and dataset are presented in Table 4. The
layer count also includes the classification layer, thus the number of inner layers is one less than the
number given in the table. For the GAT model, we always used h = 8 attention heads. We always
used the Adam optimizer (Kingma & Ba, 2015) as implemented in PyTorch (Paszke et al., 2019)
to optimize a cross-entropy loss on the given multiclass datasets. To validate the performance, we
plot the training, validation and test accuracies of the final models in Figure 4.

All these parameter choices were consistently applied in all our benchmark tests, except for Test 6
(layer monotonicity), where we increased the number of layers to six, yielding five inner layers.

Table 4: Hyperparameters for all architectures on the respective datasets in the graph domain.

Dataset Architecture Dimension Layers Activation Dropout Rate Learning Rate Weight Decay Epochs

GCN 64 3 relu 0.5 0.01 0.0 200
Cora GraphSAGE 64 3 relu 0.5 0.005 0.0005 200

GAT 64 2 elu 0.6 0.005 0.0005 200
P-GNN 32 2 relu 0.5 0.01 0.0 200

GCN 256 3 relu 0.5 0.01 0.0 200
Flickr GraphSAGE 256 3 relu 0.5 0.01 0.0 200

GAT 256 3 relu 0.5 0.01 0.0 200

GCN 256 3 relu 0.5 0.01 0.0 500
OGBN-Arxiv GraphSAGE 256 3 relu 0.5 0.005 0.0005 500

GAT 256 3 relu 0.5 0.01 0.0 500
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Figure 4: Validation accuracies of GNN models trained with standard parametrization. We used
standard train/validation/test-splits provided with the given datasets. Test accuracies largely corre-
spond to those obtained in common benchmarks.

Datasets. We focus on graph datasets that provide multiclass labels for node classification, and
for which dataset splits into training, validation and test sets are already available. Thus, we selected
the following networks.

1. Cora (Yang et al., 2016): in this citation network, nodes represent documents and edges
represent citation links. Node features are given by bag-of-words representations of the
corresponding documents, and node labels correspond to topical categories of the papers.

2. Flickr (Zeng et al., 2020): in this network, nodes represent images uploaded to Flickr,
and edges are formed if two images share some common properties, such as geographic
location, gallery, or users who have commented on it. Node features correspond to bag-of-
word representations of the images, classes were formed based on image tags.

3. OGBN-Arxiv (Hu et al., 2020): this dataset represents a citation network between Computer
Science papers on arXiv. Each node corresponds to a paper, and directed edges indicate
that one paper cites another one. Node features are given by aggregated word embeddings
of paper titles and abstracts, labels correspond to the subject area of each paper.

Statistics of the datasets can be found in Table 5.

B.2.2 LANGUAGE SETTINGS.

Models. We use BERT (Devlin et al., 2019), ALBERT (Lan et al., 2020) and SmolLM2 (Allal
et al., 2025) models. BERT and ALBERT are encoder-only transformer models, whereas SmolLM2
is a decoder-only transformer. Pretraining of these models is expensive, so we rely on publicly avail-
able models, which we will fine-tune for our tests. To make the tests challenging, the fine-tuning
must induce non-negligible differences in behavior and representations. Otherwise, it would be triv-
ial to find models of the same group in the design-based grounding tests, for instance. We generally
fine-tune with different seeds, but BERT models in their whole are relatively little affected by this

Table 5: Statistics of the graph datasets used within the ReSi benchmark

Dataset Nodes Edges Features Classes

Cora 2,708 10,556 1,433 7
Flickr 89,250 899,756 500 7
OGBN-Arxiv 169,343 1,166,243 128 40

21



Published as a conference paper at ICLR 2025

approach (Merchant et al., 2020). Thus, we start fine-tuning of BERT from different pretrained
models, provided by Sellam et al. (2022). For ALBERT, we fine-tune the same pretrained model3
as the weights are shared across layers, which should increase the changes induced in the model by
fine-tuning. Finally, for SmolLM2, we finetune the 1.7B base model4.

Datasets. We used two classification datasets: SST2 (Socher et al., 2013) is a collection of sen-
tences extracted from movie reviews labeled with positive or negative sentiment. MNLI (Williams
et al., 2018) is a dataset of premise-hypothesis pairs. They are labeled according to whether the hy-
pothesis follows from the premise. We used the validation and validation-matched subsets to extract
representations for SST2 and MNLI, respectively.

Training Hyperparameters. As we used the pretrained models from Sellam et al. (2022) for
BERT, we only fine-tuned the models for our experiments. While the number of epochs varies be-
tween 3 and 10 depending on the experiment, we always used the checkpoint with the best validation
performance. We generally used a linear learning rate schedule with 10% warm up to a maximum
of 5e-5, evaluate every 1000 steps, and used a batch size of 64. Otherwise, we used default hyperpa-
rameters of the transformers library5. For ALBERT, the training is identical with the exception
of always training for 10 epochs. For SmolLM2, we use full finetuning for 500 steps with a batch-
size of 16. Otherwise, we use the default hyperparameters as released with the finetuning script of
the SmolLM2 release.

B.2.3 VISION SETTINGS

Architecture Choices. In the vision domain, a plethora of architectures exist which could have
been used in the scope of the benchmark. To narrow the scope and to keep computational overhead
manageable, only architectures for classification were considered. Moreover, a subset of architec-
ture of prominent classification architecture families were evaluated, namely ResNets (He et al.,
2016), ViTs Dosovitskiy et al. (2021) and older VGG’s Simonyan & Zisserman (2015). To capture
whether architecture size influences the measures, different sizes for the architectures were evalu-
ated, resulting in 1. ResNet18, 2. ResNet34, 3. ResNet101, 4. VGG19, 5. ViT-B/32 and 6. ViT-L/32
as the final architecture choice. Pre-trained checkpoints for ViT-B/32 and ViT-L/32 use are taken
from huggingface provided under the Apache 2.0. Specific checkpoints are ’google/vit-base-
patch32-224-in21k’ and ’google/vit-large-patch32-224-in21k’.

Datasets. In the vision domain, we use the ImageNet100 (IN100) and the CIFAR-100
(Krizhevsky & Hinton, 2009) datasets. IN100 is derived from ImageNet1k (Russakovsky et al.,
2015) by subsampling 100 randomly chosen classes. This reduces training time while keeping im-
age resolution and content similar to ImageNet1k. When training the models on the IN100 dataset,
the image resolution was fixed to 224x224, while the resolution was set to 32x32 when training

3https://huggingface.co/albert/albert-base-v2
4https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B
5https://huggingface.co/docs/transformers/v4.40.2/en/main_classes/

trainer#transformers.TrainingArguments

Table 6: Vision domain: Training hyperparameters for all architectures on the ImageNet100 dataset.
Aside from the listed parameters, we note that all models shared more hyperparameters, namely
label smoothing of 0.1 and a cosine annealing learning rate schedule.

Dataset Architecture Batch Size Learning Rate Weight Decay Optimizer Epochs

ResNet18 128 0.1 4e-5 SGD 200
ResNet34 128 0.1 4e-5 SGD 200
ResNet101 128 0.1 4e-5 SGD 200

ImageNet100 VGG11 128 0.1 4e-5 SGD 200
VGG19 128 0.1 4e-5 SGD 200
ViT-B32 512 3e-3 0.1 AdamW 300
ViT-L32 512 3e-3 0.1 AdamW 300
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Figure 5: Validation accuracies of GNN models trained for Test 3 (Label Randomization). Accu-
racies were computed on test sets with regular labels. With increasing degree of randomization of
target labels, performance degraded strongly. Clusters of accuracies per group are clearly separated.

models on the CIFAR-100 dataset. A notable exception are the ViT models trained on CIFAR-100,
which used images CIFAR-100 images that were upsampled from 32x32 to 224x224, as proposed
by Touvron et al. (2021). This intervention was necessary to remain compatibility to the pre-trained
weights of the patch encoder.

Training Hyperparameters. The ReSi benchmark requires models that can be differentiated
by their training setting. Hence, it is mandatory to either train models from scratch or to fine-tune
them accordingly. For all models of the vision domain, the choice was made to train the models
from scratch for each respective dataset, except for ViTs whose encoders were initialized from a
pre-trained IN21k checkpoint. The chosen training hyperparameters are kept static across tests. A
selection of hyperparameters is displayed in Table 6. While the parameter choices worked well for
ResNets and VGGs, the ViT performance was lower than the ResNets, despite attempts to optimize
their training settings. We assume this may originate from the fewer overall steps taken due to the
90% lower dataset size relative to full ImageNet1k.

B.2.4 COMPUTE RESOURCES

To conduct the experiments, a broad spectrum of hardware was used: For the model training, GPU
nodes with up to 80GB VRAM were employed. Depending on domain, representations were either
extracted on GPU nodes and saved to disk for later processing, or extracted on demand on CPU
nodes. Lastly, the representational similarity measures were calculated between representations on
CPU nodes with 6-256 CPU cores and working memory between 80 and 1024 GB.

To extend the current tests with additional similarity measures, practitioners need to have CPU
compute resources to compute their own similarity measures on the existing model’s representations.
To introduce novel tests, practitioners would need to provide GPU compute resources for network
training and subsequent CPU resources to evaluate all similarity measures on the new models.

B.3 TEST 3: LABEL RANDOMIZATION - DETAILS

Graphs. We trained groups of five models each, for which r ∈ {25%, 50%, 75%, 100%} of all
labels are randomized during training. The models in each group were initialized with different
training seeds, and different seeds also imply different randomization of labels. Given that we
exclusively consider predictions on datasets with L ≥ 7 classes, for all labels that were drawn to
be randomized, we randomly drew a new label from the set of all existing labels, excluding the
actual ground-truth label, with uniform probability. After observing the performance of the models
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Figure 6: Validation accuracies of vision models trained for Test 3 (Label Randomization). Training
with varying degrees of random labels resulted in models of highly different accuracies. We high-
light the three clusters used in the Label Randomization test for the vision domain.

with randomized labels on validation and test data, we decided to only include models for which
r ∈ {25%, 100%} were altered during training for this test, along with five models trained on the
regular data. This is mainly due to the models already having shown behavior indicating that for
higher degrees of randomization than 25%, there was hardly any relationship left between features
and true labels that the models would have learned. We illustrate the performance of the models
trained under varying degrees of label randomization in Figure 5, where we can see that the models
are strongly affected by such randomization.

Language. We create datasets where r ∈ {25%, 50%, 75%, 100%} of all labels are randomized
so they can only be learned by memorization. If an instance should get a randomized label, we
pick uniformly at random from a new set of five labels that are entirely unrelated to the data. After
validating behavior, we use models without randomization of 0%, 75%, and 100% for BERT and
ALBERT. For SmolLM2, we use 0% and 100%.

Vision. We create datasets where r ∈ {25%, 50%, 75%, 100%} of all labels in the training set
are randomized, forcing models to memorize. Whenever a label is chosen to be randomized, we
randomly sample from all 100 existing labels, and replace the true label with the sampled one.
Moreover, we re-use the first five models from Test 1 and 2 which represent a dataset with r = 0.
After validating behavior, we use models with 0%, 50%, 75%, with clusters visualized in Figure 6.

B.4 TEST 4: SHORTCUT AFFINITY - DETAILS

Graphs. For all graph datasets, shortcuts were added by appending a one-hot encoding of the
corresponding labels to the node features. Nodes which were not assigned a true level short-
cut obtain a one-hot encoding of a random label instead. We trained models with a ratio of
ρ ∈ {0%, 25%, 50%, 75%, 100%} true shortcuts in the training data, but only considered the models
trained on with ρ ∈ {0%, 50%, 100%} shortcuts in the training data for the benchmark, as otherwise
there would not have been a very clear separation of the models. We illustrate the performance of
models influenced by the remaining degrees of shortcut likelihood in the training data in Figure 7,
where we can see that most models are indeed affected. In particular, GraphSAGE appears very sen-
sitive to shortcuts, whereas other methods appear more robust - this may also be due to differences
in the way node information is updated in the convolutional layers.
Overall, on Cora the effect was the smallest, which is likely due to the models fitting easily to the
training labels even without a shortcut.

For all groups and seeds, we extracted representations based on the same fixed dataset, which con-
tained one-hot encodings of random labels.

24



Published as a conference paper at ICLR 2025

GCN SAGE GAT PGNN
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Cora

GCN SAGE GAT
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Flickr

GCN SAGE GAT
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
OGBN-Arxiv

Shortcut
   Rate

0%
50%
100%

Figure 7: Validation accuracies of GNN models trained for Test 4 (Shortcut Affinity). Accuracies
were computed on test sets with random shortcuts, but regular labels. With increasing degree of
shortcut correlation with target labels, performance generally degraded strongly. Only for Cora, the
effect was weaker, likely due to the models not requiring the shortcuts for strong performance. Still,
clusters of accuracies per group are mostly well-separated.

Language. We added shortcuts to the data by prepending a new special token to each sen-
tence for BERT and ALBERT. Their embedding matrix was extended with one token per class
and trained during fine-tuning. We created datasets with five levels of shortcut strength, i.e., the
rate at which the shortcut leaks the correct label. For SmolLM2, we added the correct answer
token as a shortcut during the task prompt. As completely incorrect shortcut tokens would per-
fectly leak the label in binary problems like SST2, the lowest rate is the relative frequency of the
majority class. Then we made four equally sized steps up to perfect shortcuts. This means that
SST2 datasets have shortcut rates r ∈ {55.8%, 66.8%, 77.9%, 88.9%, 100%} and for MNLI we
have r ∈ {35.4%, 67.7%, 51.55%, 83.85%, 100%}. We trained models with five different seeds for
each shortcut dataset, but after validating sufficiently different behavior (see Figure 13, Figure 14,
and Figure 15), we only used the models with the lowest and the two highest rates.

Vision. In the vision domain, shortcuts were created through insertion of a colored dot. Each dot
has a static color, a diameter of 5, and is placed randomly in the image. To turn this into a shortcut,
each class is assigned a unique color code, which is uniformly drawn once and shared across all
experiments. By varying how often the pre-determined color appears on an image containing the
corresponding class label, one can control how useful the color dot feature is to the class in the
image. A few exemplary images of the shortcuts are shown in Figure 8.

We trained models under five degrees of correlation ρ ∈ {0%, 25%, 50%, 75%, 100%}, providing
a more or less potent shortcut. To validate that these different ratios lead to sufficiently different
behavior that our grouping assumption holds, we measure the test set accuracy of all models with
r = 0%. Models that learned to utilize the shortcut will show a stronger decrease in accuracy as the
shortcut does not provide any meaningful signal anymore. In order to provide clearly distinguishable
clusters, we discarded models trained with r ∈ {25%, 50%}. The accuracy clusters after removing
the two groups are shown in Figure 9.

B.5 TEST 5: AUGMENTATION - DETAILS

Graphs. To augment the graph data during training, we applied the DropEdge approach (Rong
et al., 2020), which, at each training epoch, samples a fixed fraction of edges that are removed from
the network for this specific epoch. Based on this approach, we trained four groups of augmented
models, for which r ∈ {20%, 40%, 60%, 80%} of all edges were removed at each epoch. Again,
after considering the performance of the models on validation and test data, we chose to only include
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Figure 8: Visualization of the shortcuts introduced in the vision domain. We statically assign each
class label a color code representing the class. In our benchmark, we control the extent as to which
the color dot correlates with the true label, thereby making the shortcut more or less useful. In the
top row, the cases where color dots are placed randomly are displayed, while at the bottom the color
labels of the dot always correspond to the class label.
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Figure 9: Validation accuracies of vision models trained for Test 4 (Shortcut Affinity). Models
trained with highly correlated shortcuts show lower accuracy when the correlation of the shortcut
feature with the image label is removed. After evaluating all trained models under this setting, we
removed groups that were not well separated from others.
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Figure 10: Validation accuracies of GNN models trained for Test 5 (Augmentation). Accuracies
were computed on unaltered test sets. In general, augmentation impacts the performance of models,
though the these effect differ over models and datasets. In general, clusters of accuracies per group
are identifiable.

the models with r ∈ {20%, 80%} for this test along with a group of models trained with standard
parameters, which was due to the overall weak effect impact that the intermediate steps appeared to
have. The performance of these remaining models is shown in Figure 10, where we overall observe
weak, but visible effect from augmentation.

Language. BERT has been trained on large-scale data of varying quality and, as preliminary
experiments showed, highly robust to augmentation like word casing, synonyms, and typos6. There-
fore, we chose more aggressive augmentation that can also scale to large amounts of data. We
randomly replace words with synonyms, delete and swap words, and randomly insert a synonym of
a word in the sentence in a random position, as described by Wei & Zou (2019) and implemented in
the textattack library7 (Morris et al., 2020). To create datasets with different level of augmen-
tation, we augmented r ∈ {0%, 25%, 50%, 75%, 100%} of all words per sentence. We train five
models with different seeds per dataset. For SST2, we use the 0% and 100% models; for MNLI,
we use 0%, 25%, and 100%for BERT models and 0% and 100% for ALBERT models. We do not
implement this test for SmolLM2.

Vision. For the augmentation test, we utilized increasing levels of additive Gaussian noise with
five different noise variance intervals [0, v], v ∈ {0, 1000, 2000, 3000, 4000}. We refer to these
levels as Off, S, M, L and Max. Exemplary images of the augmented images are displayed in
Figure 11. Aside from the noise, only RandomResizeCrop and HorizontalFlip augmentations are
used. After validating model behavior, we decided to use Max, S and M for our benchmark, see
Figure 12 for the resulting clusters.

B.6 TEST 6: LAYER MONOTONICITY - DETAILS

Graphs. Since for the graph neural network models, we never used more than three layers in
the previous experiments, for this test we trained a new set of five graph neural network models,
each with five inner layers. That way, we can obtain a sufficient number of comparisons, while still
preserving decent performance—with higher number of layers, the performance began to strongly
deteriorate. As all inner layer shared the same number of channels, no preprocessing was necessary
to compare the layer-wise representations.

6We tested most of the augmentations from https://langtest.org/docs/pages/tests/
robustness.

7https://textattack.readthedocs.io/
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Figure 11: Visualization of the additive Gaussian noise used in the vision augmentation test. We
show an exemplary image to highlight the gradually increasing level of noise introduced. From left
to right (Off, S, M, L, Max).
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Figure 12: Validation accuracies of vision models trained for Test 5 (Augmentation). Models trained
with varying degrees of additive Gaussian noise show lower accuracy on noise-free samples. Two
groups were removed to improve separation. Further, ViT-B/32 and ViT-L/32 did not qualify the
group-separation requirement and were excluded.
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Figure 13: Validation accuracies of BERT models trained for tests 3-5. Across all tests, groups are
clearly separated.
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Figure 14: Validation accuracies of ALBERT models trained for tests 3-5. For SST2, there is no
separation between groups. Thus, we exclude the augmentation test on SST2 for ALBERT.
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Figure 15: Validation accuracies of SmolLM2 models trained for tests 3 and 4. For the label random-
ization test, we only use two groups as the three different training setups cannot be distinguished.

Language. We used ten models trained on standard data with varying seeds for each dataset. We
used the CLS token representations or mean-pooled representations across all 12 transformer blocks
and the embedding layer for BERT and ALBERT. For SmolLM2, we again use the final token of
the prompt. As the skip-connections only skip layers inside the block, we argue that representations
after the blocks should follow our assumptions.

Vision. For the layer monotonicity test, we used the 10 models from Test 1 and 2. Differently to
those tests, we extracted representations not only before the classifier, but we also needed to extract
representations in intermediate layers.

C FULL BENCHMARK RESULTS

In the following, we provide the full results of all experiments within our benchmark. For the tests
grounded by prediction, we report statistical significance of the shown Spearman correlations on the
5% (*) and the 1% (**) level.

C.1 GRAPH RESULTS

We begin with presenting the results from the graph domain. Results are shown in Tables 7-12,
with each table presenting results of a single test. For the PWCCA measure, we report some NaN
values—in these cases, the reference implementation consistently yields negative eigenvalues for a
covariance matrix, which then results in undefined values when the square root of these eigenvalues
is taken to compute the pseudo-inverse of this matrix.
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Table 7: Results of Test 1 (Correlation to Accuracy Difference) for the graph domain.

Eval. Spearman
Dataset Cora Flickr OGBN-Arxiv
Arch. GCN SAGE GAT PGNN GCN SAGE GAT GCN SAGE GAT

PWCCA -0.05 0.07 -0.26∗ -0.09 nan -0.05 -0.16 -0.09 0.06 -0.30∗∗
CCA SVCCA -0.02 -0.13 -0.19 -0.33∗ 0.01 0.01 -0.18 -0.27 0.10 -0.10

AlignCos -0.33∗ 0.13 -0.29 -0.08 0.35∗ 0.24 -0.07 -0.08 0.17 -0.17
AngShape 0.15 -0.29 -0.12 -0.02 0.39∗∗ 0.28 -0.15 -0.04 0.09 -0.09
HardCorr 0.11 -0.11 -0.14 -0.12 0.31∗ 0.35∗ 0.06 0.37∗ 0.02 0.04
LinReg 0.06 -0.21∗ -0.11 -0.14 -0.04 0.17 -0.18 0.07 -0.01 -0.19
OrthProc 0.15 -0.29 -0.12 -0.02 0.39∗∗ 0.28 -0.15 -0.04 0.09 -0.09
PermProc -0.12 0.18 -0.26 0.29 0.20 -0.19 0.15 -0.09 0.03 0.43∗∗

ProcDist 0.08 0.01 -0.19 0.29 0.02 -0.06 0.11 -0.17 0.07 0.43∗∗

Alignment

SoftCorr 0.18 -0.05 0.03 -0.02 0.30∗ 0.33∗ -0.07 0.35∗ 0.12 0.12

CKA 0.16 -0.17 0.02 -0.08 0.03 0.27 -0.16 -0.17 0.11 -0.05
DistCorr 0.01 -0.17 0.03 0.17 0.41∗∗ 0.42∗∗ -0.19 -0.10 0.15 -0.06
EOS -0.24 0.08 -0.05 -0.04 0.15 -0.27 0.29 -0.21 0.05 -0.32∗

GULP -0.43∗∗ 0.08 -0.12 -0.02 0.04 -0.27 -0.27 -0.08 0.06 -0.34∗

RSA -0.27 0.04 -0.28 0.21 0.53∗∗ 0.32∗ -0.08 -0.07 0.25 0.32∗

RSM

RSMDiff -0.19 0.07 -0.14 0.24 -0.18 -0.16 0.13 -0.05 -0.19 0.02
2nd-Cos -0.10 0.04 -0.11 0.13 0.54∗∗ -0.19 0.01 -0.47∗∗ 0.22 -0.19
Jaccard 0.02 -0.11 -0.16 0.07 0.32∗ 0.28 -0.18 -0.32∗ -0.13 -0.14Neighbors
RankSim -0.00 -0.10 0.32∗ 0.23 0.35∗ 0.31∗ -0.20 -0.28 0.05 -0.09

IMD -0.10 0.00 -0.03 0.04 -0.10 0.37∗ -0.09 -0.21 -0.02 -0.15Topology RTD 0.06 -0.26 0.13 -0.44∗∗ 0.19 0.13 -0.17 -0.23 0.15 -0.33∗

ConcDiff 0.15 -0.25 -0.20 0.13 -0.08 -0.29 -0.07 -0.07 -0.13 -0.12
MagDiff 0.08 -0.13 -0.19 0.18 0.02 -0.17 0.14 -0.18 -0.20 0.11Statistic
UnifDiff -0.10 -0.04 -0.09 -0.13 -0.18 0.03 -0.18 -0.19 -0.20 -0.25

Table 8: Results of Test 2 (Correlation to Output Difference) for the graph domain.

Type Grounding by Prediction
Test JSD Corr. Disagr. Corr.
Eval. Spearman Spearman
Dataset Cora Flickr OGBN-Arxiv Cora Flickr OGBN-Arxiv
Arch. GCN SAGE GAT PGNN GCN SAGE GAT GCN SAGE GAT GCN SAGE GAT PGNN GCN SAGE GAT GCN SAGE GAT

PWCCA 0.08 0.27∗ 0.02 -0.37∗∗ nan 0.38∗∗ 0.27∗ -0.22∗ -0.04 0.29∗∗ 0.08 0.36∗∗ -0.14 0.06 nan 0.32∗∗ 0.16 -0.24∗ -0.08 0.03CCA SVCCA -0.09 0.02 0.26 -0.06 -0.04 0.23 0.13 0.19 0.16 -0.17 -0.06 0.04 0.17 0.02 -0.27 0.21 0.03 0.08 0.11 -0.15

AlignCos 0.02 0.38∗∗ 0.17 -0.15 0.31∗ 0.44∗∗ -0.01 -0.03 0.05 0.28 -0.08 0.27 -0.05 0.01 0.15 0.37∗ -0.08 -0.10 0.00 0.17
AngShape 0.70∗∗ 0.27 0.28 -0.15 0.43∗∗ 0.63∗∗ 0.13 0.04 -0.15 0.44∗∗ 0.62∗∗ 0.16 0.05 0.20 0.19 0.57∗∗ 0.03 0.02 -0.16 0.27
HardCorr 0.48∗∗ 0.16 0.52∗∗ -0.15 0.53∗∗ 0.50∗∗ 0.09 -0.05 -0.28 0.46∗∗ 0.45∗∗ 0.10 0.26 0.27 0.40∗∗ 0.46∗∗ -0.09 0.02 -0.24 0.24
LinReg 0.58∗∗ 0.33∗∗ 0.19 -0.27∗ 0.15 0.48∗∗ 0.18 -0.09 -0.17 0.47∗∗ 0.57∗∗ 0.09 -0.06 0.10 0.12 0.46∗∗ 0.06 -0.10 -0.19 0.22∗

OrthProc 0.70∗∗ 0.27 0.28 -0.15 0.43∗∗ 0.63∗∗ 0.13 0.04 -0.15 0.44∗∗ 0.62∗∗ 0.16 0.05 0.20 0.19 0.57∗∗ 0.03 0.02 -0.16 0.27
PermProc 0.29 0.10 0.13 0.22 0.29 -0.10 -0.42∗∗ 0.34∗ -0.55∗∗ 0.06 0.24 0.33∗ -0.14 0.46∗∗ 0.18 -0.10 -0.27 0.25 -0.41∗∗ 0.22
ProcDist 0.52∗∗ 0.08 0.05 0.22 0.02 -0.18 -0.38∗ 0.36∗ -0.50∗∗ 0.13 0.45∗∗ 0.24 -0.17 0.46∗∗ -0.13 -0.15 -0.27 0.26 -0.38∗∗ 0.30∗

Alignment

SoftCorr 0.53∗∗ -0.01 0.21 -0.13 0.53∗∗ 0.53∗∗ 0.23 0.02 -0.28 0.56∗∗ 0.49∗∗ 0.06 0.07 0.23 0.39∗∗ 0.49∗∗ 0.02 0.03 -0.26 0.35∗

CKA 0.43∗∗ -0.03 0.53∗∗ -0.25 0.03 0.58∗∗ 0.17 0.12 -0.02 0.38∗∗ 0.36∗ 0.00 0.45∗∗ 0.07 -0.21 0.53∗∗ 0.06 0.03 -0.04 0.23
DistCorr 0.60∗∗ 0.05 0.60∗∗ -0.28 0.46∗∗ 0.43∗∗ 0.03 0.16 0.12 0.36∗ 0.53∗∗ -0.08 0.46∗∗ 0.10 0.17 0.40∗∗ -0.03 0.11 0.08 0.20
EOS 0.17 0.22 -0.04 -0.26 -0.03 0.38∗∗ 0.11 -0.17 0.11 0.37∗ 0.13 0.02 -0.09 0.17 0.02 0.33∗ 0.23 -0.25 -0.02 0.12
GULP -0.10 0.18 -0.04 0.19 0.15 0.38∗∗ 0.13 0.10 0.11 0.35∗ -0.17 -0.09 -0.13 0.53∗∗ 0.03 0.33∗ -0.01 0.15 -0.04 0.10
RSA 0.12 0.13 0.20 0.21 0.52∗∗ 0.63∗∗ 0.14 0.20 0.14 0.46∗∗ 0.06 0.33∗ -0.02 0.38∗ 0.35∗ 0.59∗∗ 0.06 0.17 0.15 0.45∗∗

RSM

RSMDiff 0.11 -0.01 -0.07 0.18 -0.22 -0.04 -0.37∗ -0.20 0.11 0.33∗ 0.05 0.14 -0.15 0.43∗∗ -0.30∗ -0.00 -0.26 -0.14 0.09 0.36∗

2nd-Cos 0.43∗∗ 0.54∗∗ 0.53∗∗ -0.19 0.47∗∗ 0.15 0.07 0.11 0.34∗ 0.11 0.40∗∗ 0.25 0.30∗ 0.02 0.30∗ 0.14 -0.10 0.04 0.27 0.06
Jaccard 0.44∗∗ 0.45∗∗ 0.38∗ -0.02 0.33∗ 0.42∗∗ 0.11 0.20 0.09 0.37∗ 0.44∗∗ 0.33∗ 0.12 0.24 0.04 0.42∗∗ -0.00 0.14 0.01 0.22Neighbors
RankSim 0.36∗ 0.56∗∗ 0.51∗∗ 0.06 0.33∗ 0.30∗ 0.21 0.02 0.36∗ 0.13 0.34∗ 0.23 0.44∗∗ 0.24 0.06 0.24 0.05 0.03 0.27 0.10

IMD 0.24 -0.38∗ -0.09 0.05 -0.08 0.29 0.04 -0.13 -0.03 0.01 0.20 -0.11 -0.13 0.01 -0.10 0.33∗ -0.02 -0.13 0.01 0.04Topology RTD 0.54∗∗ 0.49∗∗ 0.28 0.07 0.19 -0.14 0.04 -0.06 0.16 -0.11 0.48∗∗ 0.25 0.24 -0.11 -0.01 -0.12 0.01 -0.11 0.07 -0.19

ConcDiff 0.03 0.04 0.01 0.34∗ -0.17 -0.03 0.03 -0.13 0.02 -0.22 -0.04 -0.10 0.03 0.13 -0.21 -0.04 0.03 -0.25 0.07 -0.16
MagDiff 0.00 0.06 -0.15 0.24 0.03 0.06 -0.26 -0.13 -0.13 0.08 -0.07 -0.25 -0.07 0.36∗ 0.06 0.07 -0.20 -0.25 -0.19 0.22Statistic
UnifDiff 0.13 0.27 -0.11 -0.20 -0.32∗ 0.02 0.21 -0.34∗ 0.12 0.12 0.07 0.16 -0.15 0.15 -0.34∗ 0.04 0.18 -0.33∗ 0.10 0.06

Table 9: Results of Test 3 (Label Randomization) for the graph domain.

Eval. AUPRC Conformity Rate
Dataset Cora Flickr OGBN-Arxiv Cora Flickr OGBN-Arxiv
Arch. GCN SAGE GAT PGNN GCN SAGE GAT GCN SAGE GAT GCN SAGE GAT PGNN GCN SAGE GAT GCN SAGE GAT

PWCCA 0.26 0.33 0.28 0.25 nan 0.44 0.24 0.24 0.44 0.36 0.60 0.52 0.64 0.58 nan 0.64 0.53 0.43 0.61 0.56CCA SVCCA 0.35 0.31 0.42 0.20 0.33 0.80 0.27 1.00 1.00 0.93 0.62 0.56 0.59 0.39 0.69 0.91 0.54 1.00 1.00 0.96

AlignCos 0.46 0.48 0.43 0.23 0.84 0.42 0.29 0.98 0.70 0.93 0.66 0.66 0.60 0.60 0.94 0.50 0.58 1.00 0.67 0.97
AngShape 0.43 0.42 0.42 0.23 0.88 0.43 0.27 0.83 0.73 0.77 0.54 0.51 0.52 0.60 0.95 0.60 0.53 0.97 0.84 0.88
HardCorr 0.42 0.42 0.42 0.21 0.77 0.46 0.33 0.83 0.83 0.54 0.53 0.51 0.51 0.54 0.94 0.68 0.67 0.97 0.97 0.77
LinReg 0.49 0.43 0.46 0.24 0.22 0.45 0.23 0.44 0.68 0.47 0.71 0.58 0.69 0.54 0.49 0.66 0.52 0.63 0.81 0.63
OrthProc 0.43 0.42 0.42 0.23 0.88 0.43 0.27 0.83 0.73 0.77 0.54 0.51 0.52 0.60 0.95 0.60 0.53 0.97 0.84 0.88
PermProc 0.44 0.39 0.44 0.27 0.77 0.90 0.19 0.68 0.72 0.93 0.64 0.71 0.61 0.52 0.94 0.97 0.50 0.84 0.88 0.98
ProcDist 0.45 0.45 0.43 0.27 0.79 0.62 0.19 0.92 0.98 1.00 0.67 0.68 0.60 0.51 0.93 0.88 0.51 0.98 1.00 1.00

Alignment

SoftCorr 0.42 0.42 0.42 0.23 0.60 0.45 0.33 0.83 0.82 0.55 0.53 0.51 0.50 0.55 0.85 0.67 0.65 0.97 0.96 0.71

CKA 0.43 0.42 0.42 0.24 0.73 0.66 0.27 1.00 1.00 1.00 0.55 0.51 0.51 0.58 0.91 0.86 0.54 1.00 1.00 1.00
DistCorr 0.43 0.44 0.42 0.25 0.86 0.43 0.22 1.00 1.00 1.00 0.59 0.63 0.52 0.66 0.95 0.56 0.52 1.00 1.00 1.00
EOS 0.30 0.26 0.28 0.26 0.41 0.42 0.22 0.25 0.43 0.34 0.65 0.55 0.66 0.58 0.50 0.52 0.58 0.50 0.54 0.51
GULP 0.28 0.26 0.28 0.26 0.19 0.42 0.23 0.30 0.43 0.30 0.63 0.56 0.66 0.54 0.50 0.51 0.57 0.49 0.55 0.56
RSA 0.46 0.44 0.43 0.23 0.74 0.42 0.33 0.96 0.43 0.49 0.69 0.61 0.54 0.58 0.89 0.52 0.64 0.99 0.58 0.63

RSM

RSMDiff 0.52 0.53 0.78 0.29 0.71 0.92 0.19 1.00 1.00 1.00 0.73 0.83 0.86 0.61 0.91 0.97 0.51 1.00 1.00 1.00
2nd-Cos 0.56 0.73 0.73 0.21 0.61 0.42 0.36 0.99 0.96 0.95 0.80 0.87 0.86 0.51 0.82 0.50 0.66 1.00 0.99 0.99
Jaccard 0.42 0.42 0.43 0.24 0.56 0.43 0.29 0.83 0.43 0.78 0.53 0.51 0.55 0.57 0.77 0.58 0.57 0.97 0.53 0.93Neighbors
RankSim 0.45 0.42 0.47 0.22 0.47 0.43 0.33 0.84 0.55 0.78 0.65 0.54 0.64 0.54 0.66 0.53 0.58 0.97 0.63 0.93

IMD 0.73 0.97 0.84 0.23 0.24 0.37 0.23 1.00 1.00 0.90 0.93 0.99 0.96 0.54 0.47 0.70 0.54 1.00 1.00 0.97Topology RTD 0.56 0.82 0.92 0.20 0.86 0.59 0.22 0.93 0.87 0.93 0.80 0.96 0.98 0.50 0.96 0.83 0.49 0.99 0.97 0.99

ConcDiff 0.20 0.39 0.39 0.18 0.37 0.57 0.21 0.96 1.00 1.00 0.54 0.78 0.74 0.46 0.72 0.85 0.48 0.99 1.00 1.00
MagDiff 0.20 0.24 0.37 0.28 0.66 0.72 0.18 0.55 0.49 0.34 0.51 0.60 0.74 0.61 0.89 0.93 0.47 0.83 0.86 0.75Statistic
UnifDiff 0.33 0.50 0.32 0.29 0.53 0.90 0.40 0.53 0.54 0.33 0.70 0.81 0.67 0.59 0.84 0.96 0.75 0.78 0.81 0.66
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Table 10: Results of Test 4 (Shortcut Affinity) for the graph domain.

Eval. AUPRC Conformity Rate
Dataset Cora Flickr OGBN-Arxiv Cora Flickr OGBN-Arxiv
Arch. GCN SAGE GAT PGNN GCN SAGE GAT GCN SAGE GAT GCN SAGE GAT PGNN GCN SAGE GAT GCN SAGE GAT

PWCCA 0.33 0.47 0.22 0.38 nan 0.43 0.33 0.99 0.72 1.00 0.73 0.71 0.56 0.50 nan 0.60 0.73 1.00 0.83 1.00CCA SVCCA 0.23 0.36 0.46 0.24 0.24 0.93 0.32 1.00 0.97 0.83 0.46 0.60 0.69 0.52 0.57 0.97 0.66 1.00 0.99 0.91

AlignCos 0.64 0.60 0.59 0.40 0.89 1.00 0.48 1.00 1.00 1.00 0.84 0.88 0.89 0.63 0.98 1.00 0.77 1.00 1.00 1.00
AngShape 0.63 0.79 0.62 0.35 0.58 1.00 0.31 1.00 1.00 1.00 0.79 0.91 0.90 0.63 0.80 1.00 0.72 1.00 1.00 1.00
HardCorr 0.28 0.35 0.29 0.35 0.55 1.00 0.52 0.80 0.72 0.83 0.65 0.77 0.70 0.69 0.83 1.00 0.81 0.96 0.83 0.97
LinReg 0.70 0.74 0.50 0.34 0.37 0.61 0.36 1.00 1.00 1.00 0.88 0.95 0.75 0.62 0.70 0.81 0.72 1.00 1.00 1.00
OrthProc 0.63 0.79 0.62 0.35 0.58 1.00 0.31 1.00 1.00 1.00 0.79 0.91 0.90 0.63 0.80 1.00 0.72 1.00 1.00 1.00
PermProc 0.23 0.27 0.25 0.25 0.42 1.00 0.27 0.65 0.43 0.77 0.57 0.67 0.64 0.57 0.72 1.00 0.58 0.86 0.60 0.91
ProcDist 0.60 0.81 0.68 0.25 0.60 1.00 0.33 1.00 1.00 1.00 0.77 0.91 0.92 0.58 0.82 1.00 0.61 1.00 1.00 1.00

Alignment

SoftCorr 0.31 0.40 0.30 0.39 0.66 1.00 0.57 0.82 0.72 0.83 0.68 0.79 0.71 0.67 0.87 1.00 0.82 0.96 0.83 0.97

CKA 0.61 0.78 0.78 0.34 0.28 1.00 0.33 1.00 0.98 1.00 0.75 0.90 0.94 0.63 0.57 1.00 0.65 1.00 1.00 1.00
DistCorr 0.66 0.82 0.80 0.42 0.33 1.00 0.32 1.00 0.99 1.00 0.83 0.92 0.95 0.62 0.69 1.00 0.72 1.00 1.00 1.00
EOS 0.30 0.50 0.20 0.37 0.46 0.43 0.54 1.00 0.72 0.97 0.71 0.74 0.46 0.50 0.87 0.60 0.81 1.00 0.83 0.99
GULP 0.31 0.50 0.20 0.37 0.20 0.43 0.45 0.99 0.72 0.96 0.72 0.74 0.46 0.50 0.49 0.60 0.81 1.00 0.83 0.99
RSA 0.49 0.43 0.73 0.42 0.89 1.00 0.52 0.97 0.98 0.90 0.72 0.78 0.91 0.70 0.97 1.00 0.81 0.99 0.99 0.98

RSM

RSMDiff 0.46 0.50 0.69 0.37 0.48 0.92 0.36 1.00 1.00 1.00 0.70 0.76 0.91 0.64 0.75 0.97 0.59 1.00 1.00 1.00
2nd-Cos 0.85 0.91 0.81 0.34 1.00 1.00 0.52 1.00 1.00 1.00 0.95 0.97 0.95 0.68 1.00 1.00 0.82 1.00 1.00 1.00
Jaccard 0.74 0.78 0.86 0.42 1.00 0.83 0.54 1.00 1.00 1.00 0.91 0.93 0.97 0.53 1.00 0.96 0.84 1.00 1.00 1.00Neighbors
RankSim 0.73 0.64 0.85 0.43 1.00 0.77 0.54 1.00 1.00 1.00 0.87 0.89 0.95 0.58 1.00 0.92 0.83 1.00 1.00 1.00
IMD 0.71 0.82 0.60 0.25 0.78 0.97 0.36 0.61 0.92 0.92 0.92 0.96 0.88 0.68 0.94 0.99 0.62 0.84 0.98 0.97Topology RTD 0.71 0.89 0.71 0.35 0.77 1.00 0.25 1.00 1.00 1.00 0.87 0.97 0.93 0.64 0.90 1.00 0.63 1.00 1.00 1.00
ConcDiff 0.51 0.17 0.20 0.17 0.18 0.18 0.32 0.81 0.96 1.00 0.77 0.43 0.54 0.44 0.50 0.46 0.61 0.96 0.99 1.00
MagDiff 0.37 0.15 0.18 0.21 0.27 0.78 0.20 0.55 0.53 1.00 0.74 0.41 0.49 0.58 0.67 0.89 0.48 0.82 0.82 1.00Statistic
UnifDiff 0.30 0.64 0.71 0.29 0.59 0.50 0.48 0.99 0.72 0.97 0.62 0.91 0.91 0.65 0.83 0.77 0.67 1.00 0.86 0.99

Table 11: Results of Test 5 (Augmentation) for the graph domain.

Eval. AUPRC Conformity Rate
Dataset Cora Flickr OGBN-Arxiv Cora Flickr OGBN-Arxiv
Arch. GCN SAGE GAT GCN SAGE GAT GCN SAGE GAT GCN SAGE GAT GCN SAGE GAT GCN SAGE GAT

PWCCA 0.60 0.65 0.42 nan 0.57 0.51 nan 0.48 0.82 0.86 0.89 0.83 nan 0.83 0.75 nan 0.74 0.96CCA SVCCA 0.27 0.29 0.34 0.64 0.67 0.49 0.89 0.81 0.82 0.54 0.55 0.58 0.84 0.86 0.68 0.89 0.85 0.91

AlignCos 0.51 0.63 0.91 0.69 0.70 0.54 0.74 0.43 1.00 0.78 0.88 0.98 0.87 0.90 0.81 0.87 0.54 1.00
AngShape 0.81 0.78 0.83 0.63 0.76 0.54 0.72 0.72 0.74 0.95 0.93 0.95 0.85 0.94 0.77 0.83 0.83 0.89
HardCorr 0.51 0.63 0.51 0.71 0.72 0.57 0.47 0.51 0.54 0.85 0.89 0.81 0.89 0.92 0.85 0.59 0.77 0.79
LinReg 0.94 0.85 0.87 0.30 0.81 0.34 0.72 0.72 0.81 0.98 0.96 0.95 0.53 0.93 0.69 0.83 0.83 0.93
OrthProc 0.81 0.78 0.83 0.63 0.76 0.54 0.72 0.72 0.74 0.95 0.93 0.95 0.85 0.94 0.77 0.83 0.83 0.89
PermProc 0.70 0.61 0.42 0.65 0.69 0.40 0.88 0.73 0.94 0.78 0.89 0.51 0.87 0.90 0.62 0.97 0.87 0.98
ProcDist 0.76 0.69 0.75 0.70 0.81 0.40 1.00 1.00 1.00 0.88 0.90 0.90 0.89 0.95 0.63 1.00 1.00 1.00

Alignment

SoftCorr 0.63 0.70 0.50 0.73 0.58 0.55 0.43 0.46 0.45 0.89 0.92 0.80 0.87 0.85 0.84 0.51 0.71 0.66

CKA 0.70 0.73 0.91 0.57 0.75 0.51 1.00 1.00 0.99 0.90 0.92 0.97 0.83 0.91 0.74 1.00 1.00 1.00
DistCorr 0.79 0.73 0.89 0.60 0.79 0.61 1.00 1.00 0.99 0.93 0.91 0.97 0.84 0.94 0.81 1.00 1.00 1.00
EOS 0.53 0.62 0.34 0.68 0.53 0.46 0.82 0.49 1.00 0.86 0.90 0.75 0.88 0.80 0.70 0.96 0.75 1.00
GULP 0.45 0.61 0.35 0.22 0.54 0.55 0.56 0.48 1.00 0.79 0.89 0.76 0.52 0.81 0.84 0.80 0.75 1.00
RSA 0.39 0.57 0.78 0.68 0.72 0.59 0.75 0.49 0.67 0.68 0.84 0.94 0.86 0.92 0.84 0.89 0.78 0.85

RSM

RSMDiff 0.99 0.79 1.00 0.64 0.93 0.40 1.00 1.00 1.00 1.00 0.93 1.00 0.87 0.97 0.62 1.00 1.00 1.00
2nd-Cos 0.73 0.86 0.97 0.78 0.92 0.62 1.00 0.99 1.00 0.88 0.97 0.99 0.91 0.98 0.84 1.00 1.00 1.00
Jaccard 0.78 0.81 0.95 0.74 0.88 0.58 1.00 0.99 1.00 0.90 0.95 0.98 0.88 0.97 0.84 1.00 1.00 1.00Neighbors
RankSim 0.54 0.62 0.95 0.75 0.88 0.55 1.00 1.00 1.00 0.72 0.88 0.98 0.89 0.96 0.83 1.00 1.00 1.00
IMD 0.74 0.34 0.20 0.59 0.57 0.28 1.00 1.00 1.00 0.93 0.64 0.46 0.87 0.86 0.53 1.00 1.00 1.00Topology RTD 0.91 0.79 0.98 0.72 1.00 0.54 1.00 1.00 1.00 0.98 0.95 0.99 0.90 1.00 0.75 1.00 1.00 1.00
ConcDiff 0.17 0.50 0.62 0.41 0.35 0.53 0.43 0.53 0.51 0.49 0.78 0.87 0.78 0.68 0.74 0.76 0.80 0.84
MagDiff 0.20 0.39 0.54 0.59 0.17 0.43 0.77 1.00 0.69 0.51 0.74 0.83 0.87 0.45 0.66 0.93 1.00 0.91Statistic
UnifDiff 0.75 0.53 1.00 0.68 0.24 0.25 0.76 0.53 0.45 0.91 0.86 1.00 0.90 0.52 0.66 0.88 0.81 0.78

Table 12: Results of Test 6 (Layer Monotonicity) for the graph domain.

Eval. Conformity Rate Spearman
Dataset Cora Flickr OGBN-Arxiv Cora Flickr OGBN-Arxiv
Arch. GCN SAGE GAT PGNN GCN SAGE GAT GCN SAGE GAT GCN SAGE GAT PGNN GCN SAGE GAT GCN SAGE GAT

PWCCA 1.00 1.00 1.00 0.99 1.00 1.00 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 nan 1.00 0.37 1.00 1.00 1.00CCA SVCCA 0.63 0.80 0.81 1.00 0.75 0.69 0.57 0.49 0.41 0.56 0.41 0.78 0.61 1.00 0.53 0.44 0.47 -0.17 -0.10 0.33

AlignCos 0.97 1.00 1.00 0.64 0.59 0.77 0.46 0.83 0.93 0.89 0.98 1.00 1.00 0.45 0.33 0.68 0.04 0.84 0.93 0.84
AngShape 1.00 1.00 1.00 0.97 0.80 0.99 0.66 0.95 0.99 0.99 1.00 1.00 1.00 0.91 0.62 0.98 0.45 0.97 0.99 0.99
HardCorr 0.91 0.99 0.76 0.85 0.81 0.84 0.68 0.86 0.72 1.00 0.83 0.98 0.54 0.82 0.63 0.80 0.21 0.83 0.62 1.00
LinReg 1.00 1.00 1.00 0.95 0.67 1.00 0.59 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.45 1.00 0.03 0.99 1.00 1.00
OrthProc 1.00 1.00 1.00 0.97 0.80 0.99 0.66 0.95 0.99 0.99 1.00 1.00 1.00 0.91 0.62 0.98 0.45 0.97 0.99 0.99
PermProc 0.91 1.00 1.00 1.00 0.68 0.72 0.75 0.69 0.87 1.00 0.92 1.00 1.00 1.00 0.60 0.68 0.63 0.24 0.88 1.00
ProcDist 0.99 1.00 1.00 0.97 0.75 1.00 0.78 0.93 0.96 1.00 0.99 1.00 1.00 0.91 0.66 1.00 0.62 0.83 0.85 1.00

Alignment

SoftCorr 0.95 0.99 0.78 0.82 0.89 0.88 0.64 0.91 0.73 1.00 0.96 0.99 0.50 0.74 0.79 0.89 0.11 0.91 0.62 1.00
CKA 0.98 1.00 1.00 1.00 0.79 0.92 0.59 0.87 0.64 0.95 0.98 1.00 1.00 1.00 0.60 0.89 0.39 0.85 0.46 0.96
DistCorr 1.00 1.00 1.00 0.99 0.81 0.99 0.63 0.88 0.65 0.92 1.00 1.00 1.00 0.93 0.63 0.99 0.47 0.81 0.52 0.93
EOS 1.00 1.00 1.00 0.98 1.00 1.00 0.92 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.92 1.00 1.00 1.00
GULP 1.00 1.00 1.00 0.90 0.83 1.00 0.72 0.82 1.00 1.00 1.00 1.00 1.00 0.82 0.54 1.00 0.33 0.73 1.00 1.00
RSA 0.90 0.97 1.00 0.72 0.70 0.98 0.70 0.81 0.97 0.94 0.84 0.91 1.00 0.52 0.58 0.99 0.44 0.52 0.97 0.94

RSM

RSMDiff 0.99 1.00 1.00 0.97 0.66 0.68 0.92 0.85 0.93 1.00 0.99 1.00 1.00 0.91 0.54 0.65 0.81 0.85 0.93 1.00
2nd-Cos 1.00 1.00 1.00 0.92 0.91 0.96 0.67 0.95 1.00 1.00 1.00 1.00 1.00 0.92 0.81 0.96 0.52 0.97 1.00 1.00
Jaccard 1.00 1.00 1.00 1.00 0.94 0.96 0.96 0.96 0.98 1.00 1.00 1.00 1.00 1.00 0.95 0.97 0.95 0.97 0.99 1.00Neighbors
RankSim 1.00 1.00 1.00 0.99 0.94 0.95 0.98 0.99 0.98 1.00 1.00 1.00 1.00 0.99 0.95 0.97 0.99 0.99 0.99 1.00
IMD 1.00 1.00 1.00 0.95 1.00 0.94 0.97 0.85 1.00 1.00 1.00 1.00 1.00 0.89 1.00 0.82 0.97 0.55 1.00 1.00Topology RTD 1.00 1.00 1.00 0.95 0.54 0.99 0.63 1.00 0.98 1.00 1.00 1.00 1.00 0.90 0.18 0.98 0.37 1.00 0.99 1.00
ConcDiff 0.85 0.52 0.62 0.52 0.57 0.36 0.58 0.70 0.74 0.67 0.85 0.25 0.40 0.14 0.38 -0.27 0.24 0.73 0.39 0.40
MagDiff 0.63 0.72 0.92 0.97 0.65 0.63 0.58 0.52 0.71 0.87 0.55 0.49 0.89 0.91 0.58 0.50 0.38 0.06 0.29 0.63Statistic
UnifDiff 0.70 0.70 0.69 0.69 0.94 0.92 0.94 0.60 0.41 0.83 0.67 0.67 0.59 0.56 0.82 0.89 0.82 0.33 -0.45 0.68
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C.2 LANGUAGE RESULTS

For the language domain, we present the results in Tables 13-18. Any missing values for RTD and
IMD shown as nan are due to excessive runtime. Missing values for other measures are due to
numerical instability.

Table 13: Results of Test 1 (Correlation to Accuracy Difference) and Test 2 (Correlation to Output
Difference) for the language domain using CLS token representations for BERT and ALBERT and
final prompt token for SmolLM2.

Test Acc. Corr. JSD Corr. Disagr. Corr.
Eval. Spearman Spearman Spearman
Dataset MNLI SST2 MNLI SST2 MNLI SST2
Arch. BERT ALBERT SmolLM2 BERT ALBERT SmolLM2 BERT ALBERT SmolLM2 BERT ALBERT SmolLM2 BERT ALBERT SmolLM2 BERT ALBERT SmolLM2

PWCCA 0.01 -0.03 0.04 -0.33∗ nan nan 0.22 -0.17 0.53∗∗ -0.32∗∗ nan nan -0.37∗ -0.36∗∗ 0.32∗∗ -0.22∗∗ nan nanCCA SVCCA 0.32∗ -0.00 0.17 -0.08 0.66∗∗ 0.40∗∗ 0.47∗∗ 0.12 0.06 0.47∗∗ 0.35∗ 0.49∗∗ 0.00 0.33∗ 0.08 0.49∗∗ 0.58∗∗ 0.47∗∗

AlignCos 0.25 0.00 0.19 0.02 0.13 0.44∗∗ 0.37∗ 0.09 0.66∗∗ 0.49∗∗ 0.77∗∗ 0.39∗∗ -0.16 -0.03 0.49∗∗ 0.28∗∗ 0.51∗∗ 0.37∗
AngShape 0.28 0.12 0.14 -0.14 0.34∗ 0.46∗∗ 0.26 -0.08 0.39∗∗ 0.40∗∗ 0.40∗∗ 0.36∗ -0.02 -0.01 0.23 0.48∗∗ 0.51∗∗ 0.24
HardCorr 0.04 0.21 0.01 -0.33∗ 0.27 0.53∗∗ -0.27 -0.03 0.50∗∗ -0.01 0.40∗∗ 0.33∗ -0.43∗∗ 0.00 0.30∗ 0.34∗∗ 0.56∗∗ 0.23
LinReg 0.18 0.05 -0.01 -0.38∗∗ 0.23∗ 0.03 0.28∗∗ 0.01 0.62∗∗ 0.02 0.37∗∗ 0.34∗∗ -0.03 -0.13 0.33∗∗ 0.32∗∗ 0.37∗∗ 0.31∗∗
OrthProc 0.28 0.12 0.14 -0.14 0.34∗ 0.46∗∗ 0.26 -0.08 0.39∗∗ 0.40∗∗ 0.40∗∗ 0.36∗ -0.02 -0.01 0.23 0.48∗∗ 0.51∗∗ 0.24
PermProc 0.09 -0.02 0.15 -0.09 0.01 0.47∗∗ -0.06 0.04 0.45∗∗ 0.04 0.79∗∗ 0.16 -0.30∗ -0.04 0.31∗ 0.18∗ 0.44∗∗ 0.42∗∗
ProcDist 0.28 -0.04 0.17 0.10 0.03 0.57∗∗ 0.07 -0.00 0.60∗∗ 0.49∗∗ 0.76∗∗ 0.36∗ -0.38∗ -0.07 0.43∗∗ 0.38∗∗ 0.47∗∗ 0.52∗∗

Alignment

SoftCorr 0.11 0.18 0.07 -0.33∗ 0.29 0.55∗∗ -0.23 -0.02 0.61∗∗ -0.01 0.37∗ 0.37∗ -0.42∗∗ 0.01 0.37∗ 0.36∗∗ 0.56∗∗ 0.31∗

CKA 0.18 0.17 0.22 -0.06 0.66∗∗ 0.48∗∗ 0.30∗ 0.28 0.08 0.48∗∗ 0.37∗ 0.52∗∗ -0.01 0.57∗∗ 0.12 0.51∗∗ 0.58∗∗ 0.50∗∗
DistCorr 0.15 0.25 0.18 -0.10 0.56∗∗ 0.49∗∗ 0.39∗∗ 0.32∗ 0.13 0.51∗∗ 0.51∗∗ 0.57∗∗ 0.12 0.57∗∗ 0.17 0.53∗∗ 0.58∗∗ 0.51∗∗
EOS 0.03 -0.10 -0.11 -0.38∗∗ -0.06 -0.27 0.36∗ -0.10 -0.30 -0.21∗∗ 0.13 0.06 0.01 -0.16 -0.23 -0.07 -0.05 0.06
GULP -0.01 -0.12 0.01 -0.36∗ -0.17 nan 0.35∗ -0.10 0.25 -0.30∗∗ 0.25 nan 0.02 -0.16 0.13 -0.12 -0.13 nan
RSA 0.00 0.18 0.24 -0.23 0.43∗∗ 0.39∗∗ 0.27 0.23 -0.01 0.44∗∗ 0.53∗∗ 0.26 0.19 0.47∗∗ 0.00 0.59∗∗ 0.58∗∗ 0.15

RSM

RSMDiff 0.30∗ -0.15 0.06 0.20 -0.05 0.36∗ -0.18 -0.02 0.35∗ 0.24∗∗ 0.43∗∗ -0.03 -0.19 0.12 0.24 -0.10 0.28 0.15

2nd-Cos -0.26 -0.25 0.03 0.30∗ 0.24 0.10 0.16 0.04 -0.07 0.49∗∗ 0.30∗ 0.18 0.55∗∗ 0.12 0.01 0.15∗ 0.16 -0.20
Jaccard -0.21 -0.25 -0.03 0.17 0.23 0.31∗ 0.13 0.02 0.09 0.54∗∗ 0.32∗ 0.24 0.17 -0.05 -0.03 0.23∗∗ 0.12 0.06Neighbors
RankSim -0.09 -0.27 -0.05 0.14 0.12 0.18 0.08 -0.06 0.08 0.56∗∗ 0.26 0.15 0.05 -0.13 -0.01 0.24∗∗ 0.09 0.01

IMD -0.26 -0.08 -0.13 -0.06 0.02 0.31∗ -0.39∗∗ -0.29∗ 0.12 0.02 0.22 0.23 -0.06 -0.16 0.09 0.21∗∗ 0.08 0.25Topology RTD 0.09 -0.27 -0.02 0.05 -0.10 0.32∗ 0.04 -0.34∗ 0.33∗ 0.33∗∗ -0.08 0.27 0.10 -0.18 0.12 0.13 0.03 0.06

ConcDiff -0.00 -0.07 0.01 0.12 -0.20 0.06 0.02 -0.07 0.46∗∗ -0.02 0.59∗∗ -0.11 -0.31∗ 0.07 0.30∗ -0.26∗∗ 0.29 0.06
MagDiff 0.22 -0.06 -0.20 -0.13 0.01 -0.10 0.01 0.01 -0.39∗∗ 0.11 0.10 -0.07 -0.03 0.08 -0.46∗∗ 0.04 0.13 -0.17Statistic
UnifDiff 0.14 -0.16 -0.12 0.35∗ 0.27 -0.13 -0.02 -0.30∗ -0.05 0.38∗∗ 0.20 0.05 -0.14 -0.24 0.03 -0.01 0.17 -0.01

Table 14: Results of Test 1 (Correlation to Accuracy Difference) and Test 2 (Correlation to Output
Difference) for the language domain using mean-pooled token representations.

Test JSD Corr. Disagr. Corr.
Eval. Spearman Spearman
Dataset MNLI SST2 MNLI SST2
Arch. BERT ALBERT BERT ALBERT BERT ALBERT BERT ALBERT

PWCCA -0.11 0.56∗ -0.42∗ 0.35∗ 0.01 0.53∗ 0.10 0.19CCA SVCCA 0.46∗∗ 0.12 0.44∗∗ 0.26 0.13 0.14 0.41∗∗ 0.38∗

AlignCos -0.00 0.30∗ 0.48∗∗ 0.53∗∗ -0.12 0.25 0.29 0.33∗
AngShape 0.27 -0.09 0.34∗ 0.22 0.36∗ 0.06 0.41∗∗ 0.22
HardCorr -0.03 -0.10 -0.25 0.24 0.29∗ -0.02 0.10 0.27
LinReg -0.11 0.05 -0.07 -0.04 0.19 0.02 0.22∗ 0.05
OrthProc 0.27 -0.09 0.34∗ 0.22 0.36∗ 0.06 0.41∗∗ 0.22
PermProc -0.05 0.07 -0.16 0.53∗∗ -0.28 0.16 -0.04 0.24
ProcDist -0.05 0.05 0.44∗∗ 0.54∗∗ -0.18 0.12 0.31∗ 0.29∗

Alignment

SoftCorr 0.00 -0.03 -0.27 0.10 0.31∗ 0.02 0.11 0.24

CKA 0.45∗∗ 0.07 0.48∗∗ 0.26 0.33∗ 0.16 0.47∗∗ 0.38∗
DistCorr 0.49∗∗ 0.07 0.54∗∗ 0.33∗ 0.38∗∗ 0.18 0.52∗∗ 0.41∗∗
EOS 0.35∗ 0.02 -0.39∗ 0.20 0.10 0.03 -0.13 -0.18
GULP 0.34∗ 0.02 -0.46∗∗ 0.36∗ 0.09 0.03 -0.24 0.06
RSA 0.43∗∗ -0.03 0.44∗∗ 0.46∗∗ 0.38∗ 0.10 0.61∗∗ 0.54∗∗

RSM

RSMDiff -0.14 -0.16 0.23 0.40∗∗ -0.09 -0.02 0.05 0.17

2nd-Cos 0.34∗ -0.04 0.58∗∗ 0.28 -0.04 0.05 0.21 0.06
Jaccard 0.33∗ -0.03 0.59∗∗ 0.33∗ -0.02 0.04 0.36∗ 0.08Neighbors
RankSim 0.15 -0.02 0.65∗∗ 0.30∗ -0.29 0.05 0.41∗∗ 0.11

IMD 0.15 0.13 0.13 0.30∗ -0.04 0.27 0.10 0.05Topology RTD -0.08 -0.18 0.16 0.21 -0.11 -0.02 -0.06 0.11

ConcDiff -0.03 0.24 0.03 0.43∗∗ -0.14 0.25 -0.14 0.19
MagDiff -0.01 -0.06 0.04 -0.09 0.02 0.18 -0.09 -0.09Statistic
UnifDiff -0.02 -0.17 0.25 -0.42∗∗ 0.14 -0.10 -0.14 -0.25

Table 15: Results of Test 3 (Label Randomization) for the language domain.

(a) Results of Test 3 (Label Randomization) using CLS/final to-
ken representations.

Eval. AUPRC Conformity Rate
Dataset MNLI SST2 MNLI SST2
Arch. BERT ALBERT SmolLM2 BERT ALBERT SmolLM2 BERT ALBERT SmolLM2 BERT ALBERT SmolLM2

PWCCA 0.65 0.50 1.00 0.27 nan nan 0.91 0.66 1.00 0.48 nan nanCCA SVCCA 0.69 0.68 1.00 0.64 0.69 0.80 0.86 0.88 1.00 0.80 0.82 0.89

AlignCos 1.00 0.68 1.00 0.99 0.70 1.00 1.00 0.91 1.00 1.00 0.83 1.00
AngShape 0.90 0.97 1.00 0.49 0.70 1.00 0.98 0.99 1.00 0.75 0.86 1.00
HardCorr 0.75 0.68 1.00 0.44 0.67 1.00 0.90 0.86 1.00 0.77 0.86 1.00
LinReg 0.57 0.47 1.00 0.40 0.21 0.54 0.85 0.73 1.00 0.57 0.50 0.73
OrthProc 0.90 0.97 1.00 0.49 0.70 1.00 0.98 0.99 1.00 0.75 0.86 1.00
PermProc 0.44 0.60 1.00 0.45 0.66 1.00 0.68 0.81 1.00 0.73 0.87 1.00
ProcDist 0.98 0.84 1.00 0.86 0.79 1.00 0.99 0.96 1.00 0.95 0.93 1.00

Alignment

SoftCorr 0.75 0.71 1.00 0.48 0.72 1.00 0.92 0.87 1.00 0.80 0.88 1.00
CKA 0.75 0.84 1.00 0.59 0.70 0.99 0.90 0.93 1.00 0.78 0.84 0.99
DistCorr 0.75 0.79 1.00 0.59 0.70 0.99 0.89 0.93 1.00 0.80 0.85 0.99
EOS 0.62 0.70 1.00 0.36 0.39 0.59 0.88 0.88 1.00 0.60 0.52 0.50
GULP 0.61 0.41 1.00 0.28 0.46 nan 0.89 0.77 1.00 0.54 0.68 nan
RSA 0.46 0.62 1.00 0.48 0.72 1.00 0.64 0.79 1.00 0.73 0.87 1.00

RSM

RSMDiff 0.52 1.00 0.91 0.91 1.00 1.00 0.67 1.00 0.93 0.97 1.00 1.00
2nd-Cos nan nan 1.00 0.37 0.40 1.00 nan nan 1.00 0.64 0.61 1.00
Jaccard 0.69 0.56 1.00 0.35 0.55 1.00 0.84 0.70 1.00 0.69 0.84 1.00Neighbors
RankSim 0.63 0.47 1.00 0.34 0.54 1.00 0.82 0.62 1.00 0.63 0.82 1.00
IMD 0.74 0.46 1.00 0.47 0.31 0.58 0.92 0.74 1.00 0.79 0.59 0.70Topology RTD 0.74 0.54 1.00 0.27 0.42 0.96 0.79 0.78 1.00 0.61 0.67 0.97

ConcDiff 1.00 0.81 1.00 0.96 0.61 1.00 1.00 0.89 1.00 0.99 0.80 1.00
MagDiff 0.33 0.56 1.00 0.38 0.70 1.00 0.75 0.76 1.00 0.69 0.88 1.00Statistic
UnifDiff 0.76 0.75 0.84 0.60 0.77 1.00 0.91 0.90 0.83 0.86 0.91 1.00

(b) Results of Test 3 (Label Randomization)
using mean-pooled token representations.

Eval. AUPRC Conformity Rate
Dataset MNLI SST2 MNLI SST2
Arch. BERT ALBERT BERT ALBERT BERT ALBERT BERT ALBERT

PWCCA 0.35 0.58 nan nan 0.67 0.76 nan nanCCA SVCCA 0.66 0.46 0.61 0.73 0.89 0.77 0.77 0.86

AlignCos 0.80 0.65 0.92 0.68 0.94 0.80 0.99 0.83
AngShape 0.71 0.64 0.42 0.58 0.94 0.82 0.70 0.82
HardCorr 0.53 0.55 0.37 0.56 0.82 0.81 0.71 0.85
LinReg 0.38 0.39 0.40 0.25 0.72 0.69 0.56 0.52
OrthProc 0.71 0.64 0.42 0.58 0.94 0.82 0.70 0.82
PermProc 0.40 0.57 0.39 0.60 0.61 0.79 0.67 0.74
ProcDist 0.69 0.62 0.79 0.63 0.87 0.79 0.95 0.78

Alignment

SoftCorr 0.68 0.64 0.37 0.58 0.86 0.89 0.72 0.87

CKA 0.64 0.43 0.56 0.72 0.84 0.68 0.74 0.86
DistCorr 0.66 0.50 0.56 0.70 0.86 0.72 0.75 0.86
EOS 0.57 0.76 0.26 0.29 0.86 0.90 0.57 0.52
GULP 0.49 0.60 0.30 0.48 0.82 0.81 0.60 0.76
RSA 0.48 0.44 0.45 0.60 0.71 0.68 0.65 0.86

RSM

RSMDiff 0.86 0.59 0.93 0.74 0.94 0.83 0.99 0.89

2nd-Cos nan nan 0.31 0.36 nan nan 0.59 0.61
Jaccard 0.66 0.52 0.31 0.44 0.84 0.72 0.73 0.78Neighbors
RankSim 0.58 0.36 0.29 0.42 0.79 0.63 0.70 0.76

IMD 0.58 0.41 0.45 0.21 0.86 0.72 0.75 0.51Topology RTD 0.59 0.59 0.39 0.36 0.79 0.83 0.64 0.61

ConcDiff 0.76 0.52 0.92 0.66 0.90 0.78 0.97 0.81
MagDiff 0.39 0.48 0.65 0.48 0.78 0.81 0.86 0.82Statistic
UnifDiff 0.88 0.65 0.57 0.76 0.94 0.88 0.85 0.92
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Table 16: Results of Test 4 (Shortcut Affinity) for the language domain.

(a) Results of Test 4 (Shortcut Affinity) using CLS/final token
representations.

Eval. AUPRC Conformity Rate
Dataset MNLI SST2 MNLI SST2
Arch. BERT ALBERT SmolLM2 BERT ALBERT SmolLM2 BERT ALBERT SmolLM2 BERT ALBERT SmolLM2

PWCCA 0.56 nan 0.75 0.32 nan nan 0.86 nan 0.94 0.67 nan nanCCA SVCCA 0.42 0.60 0.66 0.36 0.49 0.88 0.78 0.62 0.85 0.66 0.77 0.98
AlignCos 0.58 0.37 1.00 0.54 0.71 0.61 0.89 0.58 1.00 0.82 0.88 0.87
AngShape 0.60 0.48 1.00 0.43 0.72 0.66 0.90 0.64 1.00 0.79 0.90 0.90
HardCorr 0.55 0.36 0.99 0.36 0.64 0.64 0.82 0.60 1.00 0.68 0.88 0.88
LinReg 0.46 0.50 0.71 0.46 0.66 0.59 0.85 0.52 0.91 0.77 0.86 0.78
OrthProc 0.60 0.48 1.00 0.43 0.72 0.66 0.90 0.64 1.00 0.79 0.90 0.90
PermProc 0.52 0.54 0.95 0.55 0.70 0.60 0.82 0.63 0.97 0.80 0.88 0.86
ProcDist 0.54 0.54 1.00 0.52 0.65 0.63 0.87 0.62 1.00 0.79 0.87 0.86

Alignment

SoftCorr 0.55 0.36 1.00 0.34 0.62 0.63 0.82 0.60 1.00 0.60 0.86 0.88

CKA 0.59 0.63 0.94 0.38 0.58 0.87 0.88 0.64 0.99 0.70 0.83 0.97
DistCorr 0.58 0.62 0.97 0.39 0.68 0.87 0.88 0.67 0.99 0.71 0.87 0.97
EOS 0.57 0.46 0.54 0.33 0.40 0.22 0.85 0.58 0.82 0.62 0.62 0.48
GULP 0.56 0.46 0.78 0.30 0.68 nan 0.84 0.58 0.94 0.67 0.88 nan
RSA 0.58 0.59 0.96 0.47 0.65 0.74 0.87 0.63 0.99 0.72 0.88 0.94

RSM

RSMDiff 0.28 0.57 0.68 0.37 0.63 0.52 0.66 0.69 0.86 0.69 0.85 0.81

2nd-Cos 0.59 0.56 1.00 0.64 0.68 0.70 0.82 0.60 1.00 0.86 0.85 0.90
Jaccard 0.56 0.58 0.98 0.64 0.75 0.74 0.81 0.63 1.00 0.87 0.89 0.93Neighbors
RankSim 0.58 0.61 0.98 0.64 0.75 0.71 0.82 0.66 1.00 0.88 0.89 0.92

IMD 0.53 0.28 0.57 0.34 0.23 0.20 0.82 0.43 0.76 0.71 0.56 0.52Topology RTD 0.61 0.41 0.80 0.39 0.39 0.62 0.85 0.57 0.91 0.73 0.72 0.83

ConcDiff 0.38 0.42 0.57 0.27 0.65 0.49 0.75 0.45 0.86 0.67 0.87 0.76
MagDiff 0.48 0.56 0.58 0.35 0.55 0.60 0.81 0.77 0.84 0.73 0.83 0.84Statistic
UnifDiff 0.40 0.34 0.68 0.37 0.26 0.30 0.69 0.52 0.84 0.56 0.53 0.61

(b) Results of Test 4 (Shortcut Affinity) using
mean-pooled token representations.

Eval. AUPRC Conformity Rate
Dataset MNLI SST2 MNLI SST2
Arch. BERT ALBERT BERT ALBERT BERT ALBERT BERT ALBERT

PWCCA 0.83 nan 0.36 0.45 0.96 nan 0.72 0.66CCA SVCCA 0.49 0.52 0.25 0.64 0.80 0.61 0.66 0.89
AlignCos 0.53 0.45 0.51 0.61 0.83 0.58 0.81 0.81
AngShape 0.57 0.49 0.38 0.63 0.87 0.64 0.79 0.89
HardCorr 0.32 0.41 0.22 0.62 0.75 0.61 0.60 0.89
LinReg 0.23 0.44 0.29 0.58 0.60 0.59 0.75 0.84
OrthProc 0.57 0.49 0.38 0.63 0.87 0.64 0.79 0.89
PermProc 0.35 0.54 0.38 0.59 0.60 0.58 0.74 0.83
ProcDist 0.53 0.51 0.51 0.61 0.84 0.57 0.81 0.81

Alignment

SoftCorr 0.33 0.41 0.21 0.61 0.75 0.62 0.51 0.89
CKA 0.53 0.50 0.27 0.63 0.84 0.61 0.69 0.89
DistCorr 0.54 0.54 0.29 0.65 0.85 0.63 0.74 0.89
EOS 0.39 0.55 0.21 0.70 0.67 0.64 0.57 0.85
GULP 0.44 0.55 0.22 0.70 0.74 0.64 0.56 0.84
RSA 0.47 0.52 0.38 0.59 0.80 0.61 0.72 0.87

RSM

RSMDiff 0.36 0.44 0.49 0.59 0.68 0.61 0.79 0.78

2nd-Cos 0.58 0.51 0.52 0.60 0.83 0.64 0.81 0.81
Jaccard 0.56 0.59 0.54 0.64 0.82 0.70 0.85 0.87Neighbors
RankSim 0.50 0.45 0.52 0.59 0.73 0.61 0.83 0.82

IMD 0.52 0.29 0.42 0.56 0.81 0.48 0.77 0.79Topology RTD 0.65 0.42 0.38 0.66 0.85 0.53 0.76 0.88

ConcDiff 0.35 0.40 0.50 0.56 0.65 0.48 0.80 0.77
MagDiff 0.30 0.30 0.21 0.55 0.58 0.47 0.58 0.84Statistic
UnifDiff 0.33 0.44 0.37 0.23 0.68 0.52 0.57 0.50

Table 17: Results of Test 5 (Augmentation) for the language domain.

(a) Results of Test 5 (Augmentation) using CLS to-
ken representations.

Eval. AUPRC Conformity Rate
Dataset MNLI SST2 MNLI SST2
Arch. BERT ALBERT BERT ALBERT BERT ALBERT BERT ALBERT

PWCCA 0.18 0.58 0.35 nan 0.49 0.78 0.38 nanCCA SVCCA 0.44 0.60 0.61 0.39 0.77 0.66 0.68 0.48

AlignCos 0.35 0.77 0.45 0.33 0.80 0.80 0.63 0.47
AngShape 0.38 0.91 0.52 0.36 0.84 0.94 0.62 0.46
HardCorr 0.24 0.65 0.34 0.32 0.67 0.76 0.49 0.49
LinReg 0.24 0.73 0.40 0.42 0.66 0.86 0.55 0.59
OrthProc 0.38 0.91 0.52 0.36 0.84 0.94 0.62 0.46
PermProc 0.18 0.49 0.31 0.31 0.49 0.55 0.44 0.51
ProcDist 0.32 0.74 0.43 0.32 0.73 0.85 0.64 0.47

Alignment

SoftCorr 0.28 0.62 0.41 0.33 0.72 0.75 0.52 0.50

CKA 0.48 0.83 0.61 0.40 0.87 0.82 0.68 0.47
DistCorr 0.45 0.86 0.62 0.40 0.85 0.87 0.69 0.46
EOS 0.27 0.78 0.30 0.32 0.71 0.80 0.49 0.46
GULP 0.26 0.75 0.33 0.45 0.69 0.80 0.47 0.52
RSA 0.49 0.86 0.61 0.38 0.86 0.84 0.68 0.47

RSM

RSMDiff 0.35 0.85 0.34 0.30 0.66 0.84 0.58 0.43

2nd-Cos 0.44 0.70 0.40 0.36 0.64 0.74 0.64 0.49
Jaccard 0.35 0.78 0.39 0.34 0.74 0.80 0.61 0.50Neighbors
RankSim 0.33 0.77 0.36 0.38 0.71 0.79 0.57 0.52

IMD 0.43 0.38 0.30 0.36 0.75 0.50 0.47 0.49Topology RTD 0.54 0.72 0.38 0.28 0.83 0.76 0.54 0.44

ConcDiff 0.28 0.55 0.32 0.34 0.61 0.67 0.51 0.43
MagDiff 0.16 0.60 0.31 0.34 0.45 0.79 0.46 0.52Statistic
UnifDiff 0.61 0.44 0.33 0.29 0.84 0.60 0.46 0.40

(b) Results of Test 5 (Augmentation) using mean-
pooled token representations.

Eval. AUPRC Conformity Rate
Dataset MNLI SST2 MNLI SST2
Arch. BERT ALBERT BERT ALBERT BERT ALBERT BERT ALBERT

PWCCA 0.22 nan 0.32 0.71 0.54 nan 0.49 0.73CCA SVCCA 0.31 0.63 0.61 0.29 0.70 0.71 0.66 0.44

AlignCos 0.28 0.55 0.34 0.33 0.63 0.68 0.56 0.48
AngShape 0.29 0.81 0.42 0.28 0.75 0.82 0.56 0.46
HardCorr 0.21 0.63 0.28 0.31 0.57 0.84 0.45 0.47
LinReg 0.27 0.83 0.36 0.43 0.63 0.85 0.51 0.64
OrthProc 0.29 0.81 0.42 0.28 0.75 0.82 0.56 0.46
PermProc 0.17 0.51 0.27 0.33 0.44 0.59 0.42 0.48
ProcDist 0.25 0.49 0.33 0.32 0.60 0.59 0.58 0.47

Alignment

SoftCorr 0.21 0.59 0.28 0.32 0.57 0.81 0.46 0.51

CKA 0.34 0.72 0.60 0.29 0.76 0.77 0.66 0.46
DistCorr 0.35 0.73 0.60 0.33 0.78 0.77 0.66 0.46
EOS 0.24 0.73 0.26 0.30 0.64 0.77 0.40 0.50
GULP 0.23 0.73 0.26 0.32 0.62 0.77 0.41 0.54
RSA 0.34 0.75 0.54 0.33 0.76 0.78 0.64 0.49

RSM

RSMDiff 0.24 0.42 0.29 0.31 0.58 0.52 0.48 0.44

2nd-Cos 0.38 0.58 0.39 0.32 0.66 0.69 0.61 0.50
Jaccard 0.32 0.63 0.34 0.34 0.71 0.73 0.59 0.47Neighbors
RankSim 0.35 0.50 0.32 0.33 0.60 0.66 0.55 0.47

IMD 0.20 0.30 0.33 0.29 0.51 0.46 0.45 0.44Topology RTD 0.29 0.39 0.29 0.29 0.66 0.53 0.46 0.44

ConcDiff 0.27 0.44 0.30 0.27 0.65 0.52 0.48 0.42
MagDiff 0.28 0.68 0.32 0.28 0.65 0.86 0.43 0.44Statistic
UnifDiff 0.42 0.33 0.33 0.30 0.75 0.50 0.47 0.48

Table 18: Results of Test 6 (Layer Monotonicity) for the language domain.

(a) Results of Test 6 (Layer Monotonicity) using CLS/final token
representations.

Eval. Conformity Rate Spearman
Dataset MNLI SST2 MNLI SST2
Arch. BERT ALBERT SmolLM2 BERT ALBERT SmolLM2 BERT ALBERT SmolLM2 BERT ALBERT SmolLM2

PWCCA 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 0.93 1.00 nan nanCCA SVCCA 0.91 0.85 0.85 0.88 0.92 0.87 0.91 0.78 0.72 0.64 0.84 0.69

AlignCos 1.00 0.95 0.86 0.99 0.98 0.92 1.00 0.95 0.81 0.99 0.99 0.89
AngShape 0.99 0.99 0.98 0.98 0.99 0.95 1.00 0.99 0.99 0.99 1.00 0.97
HardCorr 1.00 0.99 0.97 0.99 0.99 0.98 1.00 1.00 0.98 0.99 0.99 0.99
LinReg 0.83 0.88 0.96 0.93 0.96 0.74 0.66 0.76 0.91 0.90 0.95 0.21
OrthProc 0.98 0.97 0.97 0.98 0.97 0.95 0.99 0.98 0.98 0.99 0.99 0.97
PermProc 0.80 0.95 0.89 0.83 0.98 0.89 0.73 0.96 0.85 0.75 0.98 0.85
ProcDist 0.96 0.94 0.90 0.97 0.98 0.91 0.92 0.94 0.86 0.89 0.97 0.85

Alignment

SoftCorr 0.98 0.98 0.94 0.96 0.97 0.98 0.99 0.99 0.93 0.95 0.98 0.98

CKA 0.98 0.98 0.95 0.98 0.96 0.93 0.99 0.99 0.94 0.96 0.98 0.91
DistCorr 0.96 0.99 0.96 0.97 0.98 0.96 0.97 0.99 0.94 0.98 0.99 0.91
EOS 0.98 0.96 0.93 0.91 0.88 0.59 0.99 0.96 0.88 0.92 0.86 0.16
GULP 0.84 0.83 0.86 0.78 0.76 1.00 0.51 0.49 0.63 0.45 0.44 nan
RSA 0.99 0.94 0.94 0.95 0.97 0.96 1.00 0.96 0.90 0.96 0.97 0.97

RSM

RSMDiff 0.94 0.90 0.91 0.95 0.95 0.91 0.84 0.89 0.86 0.84 0.94 0.85

2nd-Cos 0.94 0.93 0.98 0.96 0.97 0.93 0.94 0.92 0.98 0.97 0.96 0.92
Jaccard 0.95 0.94 0.96 0.94 0.93 0.95 0.96 0.95 0.98 0.96 0.95 0.97Neighbors
RankSim 0.93 0.94 0.93 0.94 0.94 0.95 0.90 0.94 0.87 0.96 0.96 0.97

IMD 0.68 0.84 nan 0.64 nan 0.61 0.44 0.79 nan 0.54 nan 0.43Topology RTD 0.76 0.80 0.73 0.73 0.66 0.71 0.42 0.43 0.48 0.39 0.09 0.42

ConcDiff 0.99 0.90 0.73 0.96 0.96 0.83 0.99 0.87 0.55 0.96 0.90 0.71
MagDiff 0.64 0.93 0.89 0.62 0.92 0.89 0.52 0.90 0.86 0.48 0.84 0.86Statistic
UnifDiff 0.94 0.91 0.97 0.85 0.76 0.98 0.81 0.87 0.82 0.77 0.48 0.78

(b) Results of Test 6 (Layer Monotonicity)
using mean-pooled token representations.

Eval. Conformity Rate Spearman
Dataset MNLI SST2 MNLI SST2
Arch. BERT ALBERT BERT ALBERT BERT ALBERT BERT ALBERT

PWCCA 1.00 1.00 1.00 1.00 1.00 nan 1.00 1.00CCA SVCCA 0.85 0.87 0.95 0.98 0.78 0.83 0.93 0.99

AlignCos 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
AngShape 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
HardCorr 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LinReg 0.86 0.75 0.97 0.85 0.73 0.42 0.98 0.57
OrthProc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PermProc 0.90 0.93 0.94 1.00 0.90 0.95 0.94 1.00
ProcDist 0.99 0.99 1.00 1.00 0.99 0.99 1.00 1.00

Alignment

SoftCorr 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
CKA 0.99 0.99 1.00 1.00 1.00 0.99 1.00 1.00
DistCorr 0.99 0.99 1.00 1.00 1.00 0.99 1.00 1.00
EOS 1.00 1.00 0.98 1.00 1.00 1.00 0.99 1.00
GULP 1.00 0.93 0.97 0.93 1.00 0.89 0.98 0.91
RSA 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RSM

RSMDiff 0.91 0.94 0.95 0.99 0.85 0.88 0.89 0.98

2nd-Cos 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Jaccard 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00Neighbors
RankSim 0.79 0.87 1.00 1.00 0.52 0.64 1.00 1.00
IMD 0.74 0.89 0.85 0.80 0.71 0.74 0.65 0.65Topology RTD 0.93 0.88 0.95 0.91 0.95 0.89 0.94 0.89

ConcDiff 0.62 0.62 0.64 0.98 0.50 0.34 0.53 0.96
MagDiff 0.81 0.88 0.82 0.92 0.66 0.60 0.67 0.77Statistic
UnifDiff 0.95 0.98 0.86 0.75 0.83 0.91 0.70 0.43
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C.3 VISION RESULTS

We present the results of the vision domain in Tables 19-30. Results are presented in test order, with
each test featuring one table. Some entries in the result tables feature NaN values. This was caused
by various reasons: (i) Numerical instability due to operations like Singular Value Decompositions
or negative values in square roots and (ii) identical similarity values, leading to failure of correlation
values. Whenever such failure occurred for an entire group of models, the entire measure was
excluded for this case, as, for instance, removing the model group of Gaussian noise M may simplify
the overall task of distinguishing models.

Table 19: Results of Test 1 (Correlation to Accuracy Difference) for the vision domain on ImageNet-
100.

Eval. Spearman
Dataset IN100
Arch. RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32

PWCCA -0.02 -0.20 -0.09 -0.18 0.11 -0.08 0.09CCA SVCCA 0.29∗ 0.27 -0.00 -0.04 -0.30∗ -0.01 -0.17

AlignCos -0.08 -0.35∗ -0.01 -0.13 -0.12 0.07 0.05
AngShape 0.21 -0.16 0.15 -0.02 0.03 0.07 0.06
HardCorr 0.21 0.13 -0.01 -0.01 -0.03 0.35∗ -0.17
LinReg 0.19 -0.11 0.09 -0.04 0.09 0.15 0.05
OrthProc 0.21 -0.16 0.15 -0.02 0.03 0.07 0.06
PermProc 0.07 0.09 0.08 0.14 -0.02 -0.06 -0.33∗
ProcDist 0.08 0.00 0.14 0.13 0.08 0.16 0.05

Alignment

SoftCorr 0.27 0.08 0.04 -0.03 -0.10 0.36∗ -0.19

CKA 0.36∗ -0.07 0.16 0.03 -0.20 -0.26 0.05
DistCorr 0.31∗ -0.08 0.08 0.03 -0.21 -0.26 0.03
EOS 0.05 -0.17 0.11 -0.22 0.08 0.47∗∗ 0.03
GULP 0.02 -0.18 0.12 -0.17 0.10 0.18 0.04
RSA 0.06 -0.17 0.09 0.24 -0.35∗ -0.12 -0.11

RSM

RSMDiff 0.09 -0.10 0.11 -0.04 -0.08 0.01 -0.06

2nd-Cos -0.08 -0.15 0.05 -0.20 -0.18 -0.22 0.17
Jaccard -0.11 -0.13 -0.04 -0.22 0.07 -0.01 0.25Neighbors
RankSim 0.07 0.04 0.13 -0.01 0.03 0.17 0.35∗

IMD 0.17 -0.20 0.12 0.08 -0.17 -0.23 -0.19Topology RTD 0.09 0.12 -0.20 -0.19 0.05 -0.11 0.10

ConcDiff -0.11 0.34∗ -0.04 -0.11 -0.13 0.00 0.18
MagDiff -0.16 0.02 -0.06 -0.07 -0.12 0.07 0.15Statistic
UnifDiff -0.18 nan nan 0.17 -0.04 nan nan

Table 20: Results of Test 1 (Correlation to Accuracy Difference) for the vision domain on CIFAR-
100.

Eval. Spearman
Dataset CIFAR100
Arch. RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32

PWCCA -0.30∗∗ 0.07 0.23∗ nan nan nan nanCCA SVCCA -0.13 0.23 -0.21 -0.16 -0.07 -0.03 0.82∗∗

AlignCos -0.26 0.09 0.37∗ 0.21 0.41∗∗ -0.12 0.62∗∗

AngShape -0.31∗ 0.14 0.44∗∗ -0.01 0.40∗∗ -0.12 0.88∗∗

HardCorr 0.08 0.09 0.24 0.06 0.50∗∗ 0.15 0.77∗∗

LinReg -0.34∗∗ 0.12 0.42∗∗ nan nan -0.09 -0.24∗
OrthProc -0.31∗ 0.14 0.44∗∗ -0.01 0.40∗∗ -0.12 0.88∗∗

PermProc -0.06 -0.04 0.06 -0.08 0.27 0.14 0.93∗∗

ProcDist -0.37∗ -0.05 0.33∗ -0.05 0.44∗∗ -0.16 0.83∗∗

Alignment

SoftCorr -0.06 0.05 0.37∗ 0.07 0.48∗∗ 0.13 0.81∗∗

CKA -0.20 0.02 0.35∗ 0.23 0.40∗∗ -0.17 0.90∗∗

DistCorr -0.23 0.06 0.33∗ 0.24 0.40∗∗ -0.17 0.90∗∗

EOS -0.38∗ 0.04 -0.01 0.13 0.46∗∗ 0.06 0.90∗∗

GULP -0.36∗ 0.03 0.43∗∗ -0.12 -0.24 -0.31∗ 0.62∗∗

RSA -0.16 -0.09 0.21 0.04 0.36∗ -0.18 0.89∗∗

RSM

RSMDiff -0.15 0.18 0.08 0.07 0.17 0.04 0.65∗∗

2nd-Cos -0.33∗ -0.11 0.32∗ 0.19 -0.07 -0.21 0.88∗∗

Jaccard -0.46∗∗ 0.06 0.26 0.24 0.14 -0.19 0.88∗∗Neighbors
RankSim -0.15 -0.20 0.10 0.08 0.09 -0.14 0.88∗∗

IMD -0.12 0.06 -0.00 -0.18 0.40∗ -0.11 0.69∗∗
Topology RTD 0.13 0.12 0.12 -0.03 0.31∗ 0.13 0.93∗∗

ConcDiff -0.04 0.37∗ -0.21 0.23 0.25 -0.05 0.53∗∗

MagDiff -0.17 0.24 0.01 -0.03 0.31∗ -0.02 0.33∗Statistic
UnifDiff -0.00 -0.15 -0.12 -0.01 0.03 nan -0.08
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Table 21: Results of Test 2 (Correlation to Output Difference) for the vision domain on ImageNet-
100.

Type Grounding by Prediction
Test JSD Corr. Disagr. Corr.
Eval. Spearman Spearman
Dataset IN100 IN100
Arch. RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32 RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32

PWCCA 0.13 0.15 0.15 -0.13 0.15 0.21 -0.24∗ 0.27∗∗ 0.33∗∗ 0.06 -0.12 -0.36∗∗ 0.02 -0.18CCA SVCCA 0.21 -0.00 0.25 -0.11 0.16 0.05 0.18 0.39∗∗ 0.07 0.14 0.03 0.01 -0.06 0.07

AlignCos 0.08 0.05 0.38∗ 0.10 -0.20 -0.22 -0.06 0.19 0.50∗∗ 0.17 0.16 -0.13 -0.08 0.00
AngShape 0.24 0.22 0.34∗ -0.01 0.19 -0.26 -0.15 0.24 0.40∗∗ 0.19 -0.14 -0.33∗ -0.11 -0.06
HardCorr 0.28 0.31∗ 0.02 -0.22 -0.05 0.03 -0.26 0.28 -0.06 -0.09 -0.15 -0.18 0.27 -0.16
LinReg 0.21∗ 0.21∗ 0.41∗∗ -0.01 0.25∗ -0.13 -0.14 0.19 0.25∗ 0.29∗∗ -0.17 -0.24∗ 0.04 -0.07
OrthProc 0.24 0.22 0.34∗ -0.02 0.19 -0.26 -0.15 0.24 0.40∗∗ 0.19 -0.14 -0.33∗ -0.11 -0.06
PermProc 0.18 0.18 0.27 -0.18 0.06 0.36∗ -0.06 0.13 -0.25 -0.04 0.02 0.20 0.37∗ 0.10
ProcDist 0.10 0.14 0.39∗ -0.05 0.27 -0.05 0.02 0.08 -0.08 0.11 -0.10 -0.07 -0.07 0.08

Alignment

SoftCorr 0.45∗∗ 0.27 0.11 -0.04 -0.16 0.01 -0.31∗ 0.47∗∗ -0.13 -0.07 -0.03 -0.29 0.27 -0.16

CKA 0.30∗ 0.08 0.30∗ -0.13 -0.06 0.04 -0.07 0.37∗ 0.08 0.22 0.01 -0.24 0.00 -0.02
DistCorr 0.26 0.05 0.31∗ -0.10 0.04 0.05 -0.12 0.36∗ 0.01 0.28 -0.00 -0.25 0.02 -0.05
EOS 0.09 0.49∗∗ 0.33∗ -0.11 0.15 -0.18 -0.28 0.11 0.25 0.14 -0.31∗ -0.41∗∗ 0.01 -0.15
GULP 0.07 0.49∗∗ 0.35∗ -0.05 0.15 -0.05 -0.28 0.10 0.26 0.13 -0.27 -0.41∗∗ 0.19 -0.15
RSA 0.12 0.18 0.09 -0.18 -0.19 -0.11 -0.20 0.19 0.33∗ 0.10 -0.05 0.04 0.00 -0.04

RSM

RSMDiff -0.41∗∗ -0.22 0.30∗ -0.27 0.07 0.02 -0.28 -0.17 -0.20 0.18 -0.01 -0.03 -0.21 -0.17

2nd-Cos -0.13 0.16 0.29 0.07 -0.29 0.43∗∗ -0.35∗ -0.21 0.45∗∗ 0.10 0.11 -0.07 0.19 -0.27
Jaccard 0.36∗ 0.26 0.32∗ 0.05 0.33∗ 0.47∗∗ -0.30∗ 0.25 0.47∗∗ 0.23 0.14 -0.11 0.34∗ -0.18Neighbors
RankSim -0.15 -0.00 0.22 0.01 0.05 0.25 -0.09 -0.10 -0.05 0.02 0.01 -0.32∗ 0.14 -0.33∗

IMD -0.11 0.08 0.21 0.20 0.11 0.41∗∗ 0.07 -0.07 0.00 0.26 0.26 0.02 0.23 0.07Topology RTD -0.18 0.02 0.17 -0.02 -0.21 0.20 -0.27 -0.08 -0.06 0.33∗ 0.27 -0.29 0.36∗ -0.23

ConcDiff -0.29∗ 0.24 -0.11 -0.17 -0.13 -0.11 -0.37∗ -0.09 0.00 -0.21 -0.11 -0.06 -0.08 -0.29
MagDiff -0.38∗ -0.20 0.02 -0.16 -0.28 0.02 -0.32∗ -0.17 -0.22 -0.05 -0.09 0.04 -0.01 -0.22Statistic
UnifDiff -0.34∗ nan nan 0.04 -0.17 nan nan -0.02 nan nan 0.17 0.39∗∗ nan nan

Table 22: Results of Test 2 (Correlation to Output Difference) for the vision domain on CIFAR-100.

Type Grounding by Prediction
Test JSD Corr. Disagr. Corr.
Eval. Spearman Spearman
Dataset CIFAR100 CIFAR100
Arch. RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32 RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32

PWCCA -0.02 0.31∗∗ 0.32∗∗ nan nan nan nan -0.08 0.27∗∗ 0.19 nan nan nan nanCCA SVCCA 0.18 -0.28 -0.43∗∗ -0.24 0.23 0.39∗∗ 0.81∗∗ -0.01 -0.22 -0.25 -0.23 0.17 0.07 0.78∗∗

AlignCos 0.03 0.47∗∗ 0.62∗∗ 0.53∗∗ 0.71∗∗ 0.86∗∗ 0.58∗∗ -0.25 0.31∗ 0.29 0.53∗∗ 0.44∗∗ 0.56∗∗ 0.55∗∗

AngShape 0.12 0.41∗∗ 0.64∗∗ 0.24 0.69∗∗ 0.86∗∗ 0.88∗∗ -0.36∗ 0.19 0.30∗ 0.05 0.38∗ 0.57∗∗ 0.79∗∗

HardCorr -0.09 0.11 0.11 0.01 0.28 0.44∗∗ 0.74∗∗ -0.24 0.13 -0.10 0.23 -0.22 0.39∗ 0.66∗∗

LinReg 0.03 0.34∗∗ 0.64∗∗ nan nan 0.00 -0.31∗∗ -0.32∗∗ 0.19 0.30∗∗ nan nan 0.11 -0.36∗∗

OrthProc 0.12 0.41∗∗ 0.64∗∗ 0.23 0.69∗∗ 0.86∗∗ 0.88∗∗ -0.36∗ 0.19 0.30 0.05 0.38∗ 0.57∗∗ 0.79∗∗

PermProc 0.06 0.11 0.10 -0.35∗ 0.42∗∗ 0.51∗∗ 0.95∗∗ 0.08 0.15 -0.03 -0.05 0.23 0.37∗ 0.90∗∗

ProcDist 0.18 0.23 0.61∗∗ 0.06 0.64∗∗ 0.87∗∗ 0.85∗∗ -0.02 0.20 0.32∗ 0.01 0.33∗ 0.60∗∗ 0.79∗∗

Alignment

SoftCorr -0.06 0.15 0.43∗∗ 0.13 0.20 0.41∗∗ 0.77∗∗ -0.21 0.15 0.16 0.32∗ -0.27 0.37∗ 0.69∗∗

CKA 0.16 0.47∗∗ 0.47∗∗ 0.13 0.68∗∗ 0.81∗∗ 0.89∗∗ -0.31∗ 0.17 0.15 0.14 0.37∗ 0.52∗∗ 0.80∗∗

DistCorr 0.17 0.48∗∗ 0.52∗∗ 0.15 0.69∗∗ 0.82∗∗ 0.89∗∗ -0.27 0.18 0.21 0.13 0.38∗ 0.54∗∗ 0.80∗∗

EOS 0.22 0.27 0.00 0.21 0.25 0.57∗∗ 0.94∗∗ -0.20 0.20 -0.09 0.38∗∗ -0.24 0.21 0.91∗∗

GULP 0.20 0.28 0.57∗∗ 0.19 0.22 0.73∗∗ 0.53∗∗ -0.21 0.20 0.26 0.09 0.53∗∗ 0.47∗∗ 0.38∗

RSA 0.02 0.48∗∗ 0.02 -0.29 0.65∗∗ 0.79∗∗ 0.87∗∗ -0.16 0.22 -0.19 -0.16 0.35∗ 0.50∗∗ 0.79∗∗

RSM

RSMDiff 0.38∗∗ 0.24 0.13 0.20 0.28 0.22 0.69∗∗ 0.34∗ 0.06 -0.08 0.15 -0.02 0.17 0.68∗∗

2nd-Cos 0.23 0.38∗ 0.52∗∗ 0.28 0.18 0.86∗∗ 0.93∗∗ 0.10 0.28 0.17 0.42∗∗ 0.34∗ 0.60∗∗ 0.92∗∗

Jaccard 0.22 0.48∗∗ 0.47∗∗ 0.35∗ 0.54∗∗ 0.82∗∗ 0.92∗∗ 0.02 0.26 0.17 0.43∗∗ 0.49∗∗ 0.53∗∗ 0.90∗∗Neighbors
RankSim 0.23 0.32∗ 0.16 0.33∗ 0.37∗ 0.73∗∗ 0.92∗∗ -0.03 0.17 -0.07 0.37∗ 0.40∗∗ 0.61∗∗ 0.92∗∗

IMD 0.25 0.01 0.09 0.06 0.42∗∗ 0.01 0.60∗∗ 0.36∗ -0.03 0.03 -0.09 0.12 -0.02 0.50∗∗
Topology RTD 0.09 0.53∗∗ 0.01 0.05 0.54∗∗ 0.24 0.96∗∗ -0.03 0.30∗ -0.05 0.11 0.20 0.09 0.92∗∗

ConcDiff 0.04 0.18 -0.13 0.16 0.47∗∗ 0.24 0.51∗∗ -0.06 0.32∗ -0.19 0.30∗ 0.21 0.13 0.49∗∗

MagDiff 0.15 0.20 0.26 0.36∗ 0.47∗∗ 0.20 0.30∗ -0.05 0.10 0.08 0.43∗∗ 0.14 0.07 0.29Statistic
UnifDiff -0.18 -0.13 0.13 0.13 0.19 nan -0.13 0.05 -0.16 0.17 0.26 -0.07 nan -0.16

Table 23: Results of Test 3 (Label Randomization) for the vision domain on ImageNet-100.

Eval. AUPRC Conformity Rate
Dataset IN100 IN100
Arch. RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32 RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32

PWCCA 0.81 0.71 0.55 nan 0.74 1.00 0.89 0.93 0.83 0.82 nan 0.90 1.00 0.89CCA SVCCA 1.00 0.98 1.00 0.98 1.00 0.42 0.46 1.00 0.99 1.00 0.99 1.00 0.50 0.71

AlignCos 0.45 0.43 0.84 0.46 0.72 0.42 0.89 0.67 0.59 0.92 0.69 0.83 0.50 0.89
AngShape 0.72 0.70 1.00 1.00 1.00 0.42 0.89 0.83 0.83 1.00 1.00 1.00 0.50 0.89
HardCorr 0.72 0.69 0.71 0.98 0.75 0.71 0.79 0.83 0.82 0.74 1.00 0.86 0.83 0.84
LinReg 0.91 0.63 0.72 nan 1.00 0.65 0.89 0.96 0.80 0.83 nan 1.00 0.78 0.89
OrthProc 0.72 0.70 1.00 1.00 1.00 0.42 0.89 0.83 0.83 1.00 1.00 1.00 0.50 0.89
PermProc 0.70 0.42 0.42 0.73 0.70 0.45 0.94 0.67 0.50 0.51 0.84 0.67 0.66 0.98
ProcDist 0.70 0.43 0.71 0.79 0.70 0.44 0.91 0.68 0.55 0.79 0.94 0.67 0.65 0.95

Alignment

SoftCorr 0.72 0.45 0.70 0.83 0.70 0.72 0.79 0.83 0.68 0.73 0.95 0.73 0.83 0.82

CKA 1.00 1.00 1.00 1.00 1.00 0.42 0.89 1.00 1.00 1.00 1.00 1.00 0.50 0.89
DistCorr 1.00 1.00 1.00 1.00 1.00 0.42 0.89 1.00 1.00 1.00 1.00 1.00 0.50 0.89
EOS 0.84 0.71 0.96 0.70 0.76 0.73 0.89 0.95 0.83 0.99 0.89 0.89 0.91 0.89
GULP 0.89 0.71 0.96 0.85 0.77 1.00 0.89 0.97 0.83 0.99 0.95 0.90 1.00 0.89
RSA 0.75 0.63 0.95 0.97 0.98 0.42 0.89 0.89 0.79 0.98 0.99 0.99 0.50 0.89

RSM

RSMDiff 1.00 1.00 1.00 0.96 1.00 1.00 0.85 1.00 1.00 1.00 0.99 1.00 1.00 0.93

2nd-Cos 1.00 1.00 1.00 0.98 1.00 0.72 0.89 1.00 1.00 1.00 1.00 1.00 0.83 0.89
Jaccard 1.00 0.73 1.00 0.84 0.99 0.47 0.89 1.00 0.87 1.00 0.95 1.00 0.73 0.89Neighbors
RankSim 1.00 0.89 1.00 0.80 0.98 0.73 0.89 1.00 0.96 1.00 0.93 1.00 0.84 0.89

IMD 1.00 1.00 0.77 0.99 1.00 1.00 0.57 1.00 1.00 0.94 1.00 1.00 1.00 0.87Topology RTD 1.00 1.00 1.00 1.00 1.00 0.96 0.87 1.00 1.00 1.00 1.00 1.00 0.99 0.91

ConcDiff 0.81 0.96 1.00 0.93 0.29 0.99 0.77 0.96 0.99 1.00 0.98 0.62 1.00 0.88
MagDiff 1.00 0.73 0.53 0.97 1.00 1.00 0.86 1.00 0.94 0.81 0.99 1.00 1.00 0.93Statistic
UnifDiff 0.21 0.18 0.17 0.45 0.29 0.17 0.17 0.38 0.21 0.00 0.67 0.62 0.00 0.00
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Table 24: Results of Test 3 (Label Randomization) for the vision domain on CIFAR-100.

Eval. AUPRC Conformity Rate
Dataset CIFAR100 CIFAR100
Arch. RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32 RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32

PWCCA 0.52 0.53 nan nan nan nan nan 0.73 0.67 nan nan nan nan nanCCA SVCCA 0.97 0.72 0.82 1.00 0.70 0.63 0.33 0.99 0.84 0.94 1.00 0.88 0.73 0.70

AlignCos 0.45 0.42 0.77 0.72 0.99 0.73 0.49 0.66 0.52 0.87 0.82 1.00 0.85 0.69
AngShape 0.42 0.43 0.72 0.47 1.00 0.73 0.51 0.50 0.61 0.83 0.70 1.00 0.85 0.74
HardCorr 0.45 0.44 0.70 0.44 0.61 0.81 0.41 0.66 0.63 0.67 0.63 0.76 0.95 0.68
LinReg 0.30 0.31 nan nan nan 0.36 0.20 0.59 0.52 nan nan nan 0.48 0.49
OrthProc 0.42 0.43 0.72 0.47 1.00 0.73 0.51 0.50 0.61 0.83 0.70 1.00 0.85 0.74
PermProc 0.55 0.64 0.83 0.74 0.76 0.72 0.48 0.61 0.65 0.94 0.88 0.91 0.83 0.64
ProcDist 0.43 0.53 0.72 0.70 1.00 0.72 0.52 0.52 0.59 0.83 0.67 1.00 0.84 0.74

Alignment

SoftCorr 0.44 0.44 0.70 0.43 0.59 0.78 0.38 0.65 0.63 0.67 0.60 0.77 0.93 0.65

CKA 0.45 0.44 0.69 0.87 1.00 0.71 0.42 0.66 0.62 0.66 0.96 1.00 0.80 0.69
DistCorr 0.45 0.44 0.70 0.94 1.00 0.72 0.43 0.67 0.63 0.67 0.98 1.00 0.83 0.71
EOS 0.72 0.53 0.51 0.43 0.74 0.63 0.42 0.83 0.66 0.58 0.55 0.82 0.78 0.68
GULP 0.72 0.58 1.00 0.37 0.41 0.74 0.34 0.83 0.66 1.00 0.61 0.79 0.88 0.63
RSA 0.45 0.44 0.72 0.47 0.81 0.71 0.52 0.66 0.63 0.80 0.71 0.93 0.79 0.73

RSM

RSMDiff 0.96 0.86 1.00 0.99 1.00 0.95 0.72 0.98 0.93 1.00 1.00 1.00 0.99 0.89
2nd-Cos 0.72 0.72 0.75 0.71 0.45 0.66 0.51 0.83 0.83 0.90 0.78 0.57 0.85 0.64
Jaccard 0.42 0.43 0.72 0.73 0.58 0.88 0.51 0.50 0.59 0.83 0.84 0.78 0.98 0.69Neighbors
RankSim 0.43 0.43 0.72 0.72 0.60 0.92 0.53 0.54 0.60 0.83 0.84 0.79 0.97 0.68

IMD 0.58 0.83 0.98 0.76 0.83 0.61 0.46 0.83 0.92 1.00 0.85 0.95 0.87 0.68Topology RTD 1.00 0.93 1.00 0.97 0.81 0.88 0.47 1.00 0.98 1.00 0.99 0.93 0.94 0.70

ConcDiff 0.52 0.67 0.61 0.82 0.23 0.53 0.26 0.82 0.92 0.89 0.90 0.51 0.76 0.58
MagDiff 1.00 0.58 0.59 0.78 1.00 0.97 0.66 1.00 0.84 0.84 0.93 1.00 0.99 0.85Statistic
UnifDiff 0.50 0.54 0.55 0.47 0.51 0.27 0.48 0.81 0.77 0.76 0.68 0.77 0.60 0.71

Table 25: Results of Test 4 (Shortcut Affinity) for the vision domain on ImageNet-100.

Eval. AUPRC Conformity Rate
Dataset IN100 IN100
Arch. RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32 RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32

PWCCA 0.99 1.00 0.65 0.99 0.75 0.82 0.93 1.00 1.00 0.71 1.00 0.90 0.97 0.97CCA SVCCA 0.55 0.68 0.51 0.68 0.29 0.60 0.28 0.81 0.84 0.81 0.91 0.62 0.82 0.57

AlignCos 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AngShape 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
HardCorr 0.97 1.00 0.99 0.92 0.91 0.97 0.90 0.99 1.00 1.00 0.97 0.98 0.99 0.98
LinReg 0.99 1.00 1.00 1.00 0.98 0.57 0.92 0.99 1.00 1.00 1.00 0.99 0.92 0.98
OrthProc 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PermProc 0.72 0.80 0.94 0.66 0.82 0.97 0.77 0.89 0.94 0.99 0.87 0.93 0.98 0.89
ProcDist 1.00 1.00 1.00 1.00 1.00 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 0.95

Alignment

SoftCorr 0.97 0.98 0.99 0.90 0.84 0.98 0.94 0.99 1.00 1.00 0.97 0.96 1.00 0.99

CKA 1.00 1.00 1.00 1.00 1.00 1.00 0.87 1.00 1.00 1.00 1.00 1.00 1.00 0.96
DistCorr 1.00 1.00 1.00 1.00 1.00 1.00 0.88 1.00 1.00 1.00 1.00 1.00 1.00 0.96
EOS 1.00 1.00 0.99 0.95 0.88 0.93 0.93 1.00 1.00 1.00 0.98 0.96 0.98 0.97
GULP 1.00 1.00 1.00 0.96 0.88 1.00 0.93 1.00 1.00 1.00 0.98 0.96 1.00 0.97
RSA 1.00 1.00 1.00 1.00 1.00 1.00 0.72 1.00 1.00 1.00 1.00 1.00 1.00 0.91

RSM

RSMDiff 0.57 0.42 0.59 0.87 0.59 0.50 0.47 0.81 0.71 0.82 0.97 0.80 0.82 0.69

2nd-Cos 1.00 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.00 1.00 1.00 0.97
Jaccard 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 0.98Neighbors
RankSim 0.99 0.99 1.00 1.00 1.00 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00 0.97

IMD 0.67 0.75 0.55 0.78 0.65 0.38 0.34 0.87 0.88 0.73 0.93 0.77 0.74 0.66Topology RTD 1.00 0.98 1.00 1.00 1.00 0.75 0.88 1.00 1.00 1.00 1.00 1.00 0.93 0.96

ConcDiff 0.53 0.70 0.50 0.78 0.27 0.28 0.25 0.83 0.86 0.81 0.95 0.67 0.58 0.64
MagDiff 0.37 0.37 0.44 0.53 0.23 0.23 0.47 0.62 0.75 0.79 0.85 0.51 0.57 0.79Statistic
UnifDiff 0.75 0.73 0.87 0.60 0.55 0.61 0.17 0.90 0.91 0.96 0.83 0.83 0.84 0.00

Table 26: Results of Test 4 (Shortcut Affinity) for the vision domain on CIFAR-100.

Eval. AUPRC Conformity Rate
Dataset CIFAR100 CIFAR100
Arch. RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32 RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32

PWCCA 1.00 1.00 1.00 nan nan nan nan 1.00 1.00 1.00 nan nan nan nanCCA SVCCA 0.66 0.91 0.91 0.87 0.50 0.79 0.53 0.80 0.97 0.97 0.93 0.78 0.90 0.65

AlignCos 1.00 1.00 1.00 1.00 1.00 0.99 0.71 1.00 1.00 1.00 1.00 1.00 1.00 0.74
AngShape 1.00 1.00 1.00 1.00 1.00 0.99 0.77 1.00 1.00 1.00 1.00 1.00 1.00 0.76
HardCorr 1.00 1.00 1.00 0.85 0.76 0.82 0.78 1.00 1.00 1.00 0.92 0.91 0.87 0.77
LinReg 1.00 1.00 1.00 nan nan 0.20 0.38 1.00 1.00 1.00 nan nan 0.43 0.50
OrthProc 1.00 1.00 1.00 1.00 1.00 0.99 0.77 1.00 1.00 1.00 1.00 1.00 1.00 0.76
PermProc 0.92 0.84 1.00 0.84 0.87 0.91 0.66 0.98 0.95 1.00 0.93 0.97 0.95 0.72
ProcDist 1.00 1.00 1.00 1.00 1.00 0.92 0.70 1.00 1.00 1.00 1.00 1.00 0.97 0.72

Alignment

SoftCorr 1.00 1.00 1.00 0.71 0.79 0.91 0.78 1.00 1.00 1.00 0.89 0.92 0.95 0.76

CKA 1.00 1.00 1.00 1.00 1.00 0.91 0.74 1.00 1.00 1.00 1.00 1.00 0.96 0.75
DistCorr 1.00 1.00 1.00 1.00 1.00 0.92 0.72 1.00 1.00 1.00 1.00 1.00 0.96 0.75
EOS 1.00 1.00 0.42 0.94 0.95 1.00 0.78 1.00 1.00 0.50 0.98 0.98 1.00 0.79
GULP 1.00 1.00 1.00 0.71 0.65 0.64 0.46 1.00 1.00 1.00 0.93 0.89 0.91 0.71
RSA 1.00 1.00 1.00 1.00 1.00 0.91 0.69 1.00 1.00 1.00 1.00 1.00 0.95 0.74

RSM

RSMDiff 1.00 0.96 1.00 0.93 0.93 0.66 0.41 1.00 0.98 1.00 0.97 0.98 0.86 0.65

2nd-Cos 1.00 1.00 1.00 1.00 0.88 1.00 0.79 1.00 1.00 1.00 1.00 0.97 1.00 0.82
Jaccard 1.00 1.00 1.00 1.00 1.00 1.00 0.79 1.00 1.00 1.00 1.00 1.00 1.00 0.81Neighbors
RankSim 1.00 1.00 1.00 1.00 1.00 1.00 0.79 1.00 1.00 1.00 1.00 1.00 1.00 0.81

IMD 0.95 0.94 0.83 0.99 0.60 0.95 0.50 0.99 0.98 0.91 1.00 0.84 0.98 0.78Topology RTD 1.00 1.00 1.00 1.00 0.99 0.99 0.79 1.00 1.00 1.00 1.00 1.00 1.00 0.81

ConcDiff 0.56 0.70 1.00 0.99 0.15 0.36 0.50 0.84 0.94 1.00 1.00 0.42 0.65 0.67
MagDiff 0.99 0.65 0.89 1.00 0.51 0.22 0.42 1.00 0.91 0.97 1.00 0.81 0.52 0.71Statistic
UnifDiff 0.47 0.47 0.30 0.21 0.50 0.17 0.18 0.70 0.80 0.68 0.41 0.71 0.00 0.20
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Table 27: Results of Test 5 (Augmentation) for the vision domain on ImageNet-100.

Eval. AUPRC Conformity Rate
Dataset IN100 IN100
Arch. RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32 RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32

PWCCA 0.90 0.57 0.51 0.96 0.73 nan 0.69 0.97 0.86 0.79 0.99 0.92 nan 0.89CCA SVCCA 0.40 0.58 0.47 0.78 0.47 0.21 0.29 0.71 0.78 0.68 0.92 0.71 0.52 0.61

AlignCos 0.71 0.84 0.90 1.00 0.81 0.76 0.75 0.94 0.96 0.97 1.00 0.95 0.92 0.94
AngShape 0.71 0.52 0.56 0.99 0.74 0.74 0.80 0.90 0.81 0.83 1.00 0.94 0.91 0.96
HardCorr 0.46 0.44 0.50 0.59 0.43 0.42 0.64 0.71 0.68 0.76 0.84 0.82 0.78 0.86
LinReg 0.94 0.64 0.75 1.00 0.73 0.37 0.85 0.98 0.90 0.92 1.00 0.94 0.65 0.94
OrthProc 0.71 0.52 0.56 0.99 0.74 0.74 0.80 0.90 0.81 0.83 1.00 0.94 0.91 0.96
PermProc 0.41 0.33 0.54 0.63 0.55 0.28 0.61 0.64 0.57 0.85 0.87 0.79 0.65 0.86
ProcDist 0.58 0.45 0.67 0.96 0.79 0.81 0.91 0.82 0.65 0.89 0.99 0.93 0.92 0.97

Alignment

SoftCorr 0.45 0.45 0.50 0.53 0.47 0.43 0.64 0.69 0.65 0.75 0.81 0.85 0.79 0.86

CKA 0.90 0.73 0.67 0.99 0.75 0.37 0.71 0.97 0.92 0.89 1.00 0.95 0.73 0.94
DistCorr 0.83 0.68 0.62 0.99 0.78 0.39 0.70 0.96 0.90 0.87 1.00 0.96 0.74 0.94
EOS 0.93 0.59 0.69 0.98 0.88 0.60 0.72 0.98 0.86 0.89 1.00 0.96 0.85 0.88
GULP 0.92 0.60 0.69 0.98 0.88 0.45 0.72 0.98 0.86 0.89 1.00 0.96 0.85 0.88
RSA 0.98 0.82 0.78 0.75 0.46 0.34 0.59 1.00 0.95 0.92 0.93 0.81 0.71 0.88

RSM

RSMDiff 0.45 0.47 0.55 0.57 0.58 0.24 0.32 0.79 0.79 0.78 0.85 0.87 0.57 0.70

2nd-Cos 0.78 0.88 0.91 0.76 0.80 0.58 0.84 0.95 0.98 0.98 0.93 0.94 0.85 0.94
Jaccard 0.79 0.72 0.86 0.95 0.81 0.72 0.81 0.95 0.93 0.95 0.99 0.94 0.91 0.93Neighbors
RankSim 0.71 0.57 0.89 0.83 0.80 0.51 0.65 0.92 0.87 0.96 0.95 0.92 0.82 0.87

IMD 0.56 0.65 0.64 0.78 0.75 0.23 0.21 0.82 0.90 0.89 0.94 0.92 0.52 0.50Topology RTD 0.57 0.59 0.76 0.89 0.75 0.30 0.39 0.86 0.88 0.92 0.98 0.91 0.66 0.74

ConcDiff 0.43 0.96 0.66 1.00 0.30 0.41 0.28 0.75 0.99 0.91 1.00 0.67 0.74 0.51
MagDiff 0.37 0.81 0.46 0.99 0.22 0.43 0.18 0.74 0.95 0.79 1.00 0.54 0.75 0.46Statistic
UnifDiff 0.17 0.18 0.22 0.18 0.21 0.17 0.17 0.00 0.45 0.51 0.27 0.42 0.00 0.00

Table 28: Results of Test 5 (Augmentation) for the vision domain on CIFAR-100.

Eval. AUPRC Conformity Rate
Dataset CIFAR100 CIFAR100
Arch. RNet18 RNet34 RNet101 VGG11 VGG19 RNet18 RNet34 RNet101 VGG11 VGG19

PWCCA 0.43 0.47 0.94 nan nan 0.60 0.73 0.98 nan nanCCA SVCCA 0.41 0.55 0.61 0.42 0.25 0.62 0.81 0.80 0.65 0.49

AlignCos 0.98 1.00 1.00 0.98 0.50 0.99 1.00 1.00 0.99 0.82
AngShape 0.43 0.54 0.98 0.43 0.49 0.58 0.77 1.00 0.57 0.81
HardCorr 0.49 0.54 0.99 0.41 0.38 0.73 0.82 1.00 0.57 0.71
LinReg 0.45 0.50 0.98 nan nan 0.67 0.76 0.99 nan nan
OrthProc 0.43 0.54 0.98 0.43 0.49 0.58 0.77 0.99 0.57 0.81
PermProc 0.51 0.66 0.52 0.44 0.36 0.74 0.83 0.77 0.71 0.69
ProcDist 0.42 0.76 1.00 0.43 0.43 0.50 0.92 1.00 0.58 0.78

Alignment

SoftCorr 0.51 0.53 1.00 0.41 0.42 0.74 0.81 1.00 0.56 0.73

CKA 0.45 0.73 1.00 0.69 0.49 0.68 0.86 1.00 0.92 0.83
DistCorr 0.63 0.74 1.00 0.79 0.52 0.83 0.88 1.00 0.94 0.84
EOS 0.45 0.46 0.84 0.52 0.54 0.66 0.71 0.94 0.81 0.80
GULP 0.45 0.46 1.00 0.34 0.33 0.66 0.72 1.00 0.68 0.70
RSA 0.66 0.71 1.00 0.66 0.42 0.91 0.88 1.00 0.88 0.77

RSM

RSMDiff 0.92 0.89 1.00 0.63 0.28 0.98 0.97 1.00 0.83 0.52

2nd-Cos 0.46 0.45 0.63 0.47 0.55 0.70 0.69 0.89 0.75 0.82
Jaccard 0.81 0.91 1.00 1.00 0.74 0.94 0.98 1.00 1.00 0.92Neighbors
RankSim 0.96 0.99 1.00 0.89 0.69 0.99 1.00 1.00 0.96 0.92

IMD 1.00 0.87 0.89 1.00 0.29 1.00 0.96 0.97 1.00 0.56Topology RTD 1.00 1.00 1.00 1.00 0.88 1.00 1.00 1.00 1.00 0.95
ConcDiff 1.00 1.00 1.00 1.00 0.39 1.00 1.00 1.00 1.00 0.78
MagDiff 1.00 0.81 0.63 1.00 0.25 1.00 0.96 0.89 1.00 0.64Statistic
UnifDiff 0.89 0.98 1.00 0.20 0.63 0.97 1.00 1.00 0.57 0.84
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Table 29: Results of Test 6 (Layer Monotonicity) for the vision domain on ImageNet-100.

Eval. Conformity Rate Spearman
Dataset IN100 IN100
Arch. RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32 RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32

PWCCA 0.82 0.89 0.95 0.75 0.83 1.00 1.00 0.11 0.30 1.00 0.32 0.55 1.00 1.00CCA SVCCA 0.72 0.58 0.72 0.75 0.69 0.86 0.78 0.20 0.27 0.43 0.42 0.40 0.87 0.61

AlignCos 0.84 0.86 0.80 0.90 0.68 1.00 1.00 0.52 0.63 0.52 0.93 0.11 1.00 1.00
AngShape 0.85 0.90 0.90 0.97 0.98 1.00 1.00 0.55 0.65 0.65 0.96 0.99 1.00 1.00
HardCorr 0.61 0.85 0.89 0.92 0.93 1.00 1.00 0.01 0.53 0.76 0.91 0.73 1.00 1.00
LinReg 0.85 0.94 0.89 0.82 0.91 0.99 1.00 0.55 0.95 0.90 0.48 0.77 1.00 1.00
OrthProc 0.85 0.90 0.90 0.97 0.98 1.00 1.00 0.55 0.65 0.65 0.96 0.99 1.00 1.00
PermProc 0.63 0.70 0.61 0.71 0.59 0.70 1.00 0.20 0.60 0.39 0.69 0.14 0.71 1.00
ProcDist 0.85 0.80 0.79 0.80 0.81 0.70 1.00 0.55 0.42 0.39 0.48 0.67 0.71 1.00

Alignment

SoftCorr 0.71 0.85 0.88 0.80 0.89 1.00 1.00 0.11 0.50 0.70 0.52 0.64 1.00 1.00
CKA 0.93 0.97 0.99 0.90 0.92 1.00 1.00 0.87 0.82 0.97 0.88 0.93 1.00 1.00
DistCorr 0.95 0.98 0.99 0.90 0.92 1.00 1.00 0.97 0.79 0.97 0.88 0.93 1.00 1.00
EOS 0.90 0.95 0.96 1.00 1.00 1.00 1.00 0.88 0.96 0.97 1.00 1.00 1.00 1.00
GULP 0.70 0.70 0.80 1.00 1.00 1.00 1.00 0.53 0.47 0.64 1.00 1.00 1.00 1.00
RSA 0.95 0.94 0.97 0.81 0.91 1.00 1.00 0.97 0.72 0.88 0.58 0.66 1.00 1.00

RSM

RSMDiff 0.45 0.50 0.48 0.85 0.69 0.75 1.00 -0.33 -0.09 -0.21 0.85 0.65 0.75 1.00
2nd-Cos 0.85 0.91 0.95 1.00 1.00 1.00 1.00 0.55 0.77 0.92 1.00 1.00 1.00 1.00
Jaccard 0.85 0.90 0.91 1.00 1.00 1.00 1.00 0.55 0.65 0.75 1.00 1.00 1.00 1.00Neighbors
RankSim 0.85 0.90 0.90 1.00 1.00 1.00 1.00 0.55 0.65 0.67 1.00 1.00 1.00 1.00
IMD 0.52 0.66 0.61 0.48 0.51 0.86 0.54 -0.00 0.23 0.07 -0.03 0.09 0.59 0.38Topology RTD 0.99 0.92 0.82 0.83 0.95 0.93 1.00 0.97 0.79 0.43 0.52 0.82 0.90 1.00
ConcDiff 0.20 0.46 0.46 0.32 0.43 0.90 1.00 -0.78 -0.05 -0.14 -0.25 -0.27 0.65 1.00
MagDiff 0.35 0.45 0.55 0.65 0.65 0.86 1.00 -0.37 0.13 0.14 0.21 0.29 0.84 1.00Statistic
UnifDiff 0.65 0.68 0.81 0.39 0.49 1.00 1.00 0.18 0.20 0.55 -0.30 -0.06 nan nan

Table 30: Results of Test 6 (Layer Monotonicity) for the vision domain on CIFAR-100.

Eval. Conformity Rate Spearman
Dataset CIFAR100 CIFAR100
Arch. RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32 RNet18 RNet34 RNet101 VGG11 VGG19 ViT B32 ViT L32

PWCCA 0.88 0.88 0.90 1.00 1.00 0.96 1.00 0.02 0.65 1.00 1.00 nan 0.10 nanCCA SVCCA 0.53 0.68 0.58 0.66 0.70 0.80 0.93 -0.28 0.27 -0.06 0.40 0.31 0.66 0.87

AlignCos 0.77 0.76 0.68 0.82 0.77 0.96 1.00 0.19 0.41 0.18 0.53 0.41 0.82 1.00
AngShape 0.80 0.87 0.69 1.00 0.93 0.97 0.97 0.22 0.51 0.18 1.00 0.94 0.98 0.90
HardCorr 0.75 0.77 0.59 0.85 0.89 1.00 0.95 0.13 0.25 -0.11 0.55 0.65 1.00 0.81
LinReg 0.95 0.88 0.75 0.98 0.60 0.42 0.47 0.92 0.82 0.50 0.98 -0.05 -0.27 -0.13
OrthProc 0.80 0.87 0.69 1.00 0.93 0.97 0.96 0.22 0.51 0.18 1.00 0.94 0.98 0.88
PermProc 0.75 0.86 0.92 0.74 0.61 0.99 1.00 0.32 0.68 0.69 0.61 0.18 0.99 1.00
ProcDist 0.70 0.92 0.84 0.70 0.76 0.97 0.97 0.10 0.76 0.33 0.60 0.66 0.98 0.92

Alignment

SoftCorr 0.76 0.80 0.59 0.81 0.91 1.00 0.97 0.14 0.31 -0.10 0.52 0.66 1.00 0.86

CKA 0.65 0.77 0.87 0.95 0.99 0.97 0.97 0.07 0.28 0.62 0.94 0.99 0.98 0.87
DistCorr 0.65 0.80 0.88 0.99 0.98 0.97 0.97 0.07 0.30 0.64 0.99 0.99 0.98 0.88
EOS 1.00 0.95 0.85 1.00 0.51 0.91 0.95 1.00 0.96 0.78 1.00 0.06 0.89 0.92
GULP 0.80 0.80 0.82 0.99 0.72 0.80 0.78 0.65 0.66 0.67 0.99 0.52 0.60 0.61
RSA 0.65 0.92 0.92 1.00 0.83 0.99 1.00 0.07 0.56 0.70 1.00 0.68 0.99 1.00

RSM

RSMDiff 0.45 0.52 0.56 0.50 0.69 0.84 0.97 -0.26 0.34 0.30 0.25 0.67 0.82 0.93

2nd-Cos 0.90 0.89 0.74 1.00 0.88 1.00 1.00 0.58 0.62 0.20 1.00 0.74 1.00 1.00
Jaccard 0.85 0.83 0.65 0.95 0.89 1.00 1.00 0.55 0.52 0.02 0.97 0.72 1.00 1.00Neighbors
RankSim 0.85 0.85 0.64 0.95 0.90 1.00 1.00 0.55 0.57 0.02 0.97 0.75 1.00 1.00
IMD 0.51 0.42 0.67 0.62 0.68 0.67 0.70 0.28 -0.02 0.36 0.25 0.37 0.53 0.42Topology RTD 0.95 0.92 0.72 1.00 0.96 0.91 0.95 0.67 0.93 0.59 1.00 0.95 0.93 0.93

ConcDiff 0.36 0.47 0.62 0.30 0.44 0.80 0.78 -0.40 0.00 0.22 -0.28 -0.35 0.56 0.72
MagDiff 0.48 0.55 0.56 0.39 0.58 0.61 1.00 -0.12 0.21 0.31 -0.30 0.42 0.16 1.00Statistic
UnifDiff 0.78 0.74 0.76 0.40 0.63 0.98 1.00 0.48 0.16 0.16 -0.41 0.50 0.79 0.96
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D RUNTIME EXPERIMENTS

While running our experiments, we have also recorded computational runtimes of all comparisons
per measure. In Table 31, we provide an overview of runtimes averaged across all experiments, sep-
arated by architecture. We note that these similarities were not all computed on the same machine,
and also, there may be variations over different datasets that were aggregated here, given that these
often varied in size.

Yet, one can identify clear differences in the runtimes of different measures, which even span differ-
ent orders of magnitudes. Specifically, the topology-based IMD and RTD scores were consistently
among the slowest measures, and further, RSM-based measures such as RSA, EOS and in particular
RSMDiff are also significantly slower than, for instance, most alignment-based measures. Given
that the computational cost of RSMs is generally quadratic in the number of inputs, it is also no
surprise that these algorithms do not scale that well.

Table 31: Runtimes of the similarity measures in seconds, averaged over all comparisons. Since
embedding dimensions and the number of inputs vary for different datasets, and we aggregate across
experiments and datasets within each domain, the runtime should be interpreted as a broad estimate
of the runtime to be expected.

Modality Graphs NLP Vision
Architecture GCN SAGE GAT PGNN BERT ALBERT SmolLM2 RNet18 RNet34 RNet101 VGG11 VGG19 ViT-B/32 ViT-L/32

2nd-Cos 3.935 3.984 4.142 0.073 1.991 2.237 3.984 2.635 2.382 5.202 3.635 3.807 3.748 5.224
AlignCos 0.060 0.060 0.061 0.014 0.833 0.296 2.405 0.325 0.275 6.140 0.409 0.424 0.998 2.604
AngShape 0.041 0.042 0.043 0.001 0.794 0.224 2.409 0.330 0.292 6.580 0.431 0.386 1.062 2.686
CKA 0.035 0.032 0.034 0.001 0.114 0.155 0.415 5.196 6.301 110.376 7.235 10.264 0.333 0.743
ConcDiff 0.010 0.010 0.011 0.002 0.083 0.055 0.125 0.111 0.083 1.230 0.218 0.268 0.034 0.055
DistCorr 2.272 2.141 2.281 0.018 1.182 1.202 2.945 6.038 6.256 82.490 10.742 10.871 3.215 4.783
EOS 23.954 22.028 24.517 0.029 5.210 4.963 14.802 11.148 12.435 32.257 23.746 16.018 20.656 30.714
GULP 0.042 0.043 0.044 0.001 0.990 0.393 3.527 0.400 0.361 9.583 0.512 0.538 0.754 1.945
HardCorr 0.025 0.023 0.025 0.001 0.251 0.120 1.427 0.170 0.168 2.906 0.254 0.258 0.185 0.393
IMD 248.439 250.130 261.883 34.068 163.663 184.229 113.272 742.055 920.261 4231.700 549.456 582.878 517.934 587.420
Jaccard 3.236 3.248 3.376 0.060 1.715 1.851 3.893 1.871 1.731 3.822 2.475 2.557 2.434 3.302
LinReg 0.084 0.043 0.050 0.002 0.709 0.546 14.355 1.048 0.440 15.250 0.627 0.603 2.666 6.028
MagDiff 0.001 0.001 0.001 0.000 0.005 0.005 0.012 0.009 0.007 0.096 0.018 0.023 0.005 0.007
OrthProc 0.022 0.023 0.024 0.001 0.792 0.218 2.207 0.251 0.222 5.486 0.324 0.280 0.839 2.196
PWCCA 0.182 0.265 0.272 0.003 3.875 1.532 19.657 1.155 1.154 26.363 1.898 3.031 2.474 6.806
PermProc 0.028 0.031 0.029 0.000 0.341 0.240 4.177 0.213 0.195 5.224 0.319 0.302 0.305 0.599
ProcDist 0.020 0.021 0.021 0.001 0.771 0.211 2.215 0.229 0.208 5.421 0.301 0.262 0.852 2.163
RSA 19.815 21.201 21.294 0.146 8.518 10.629 16.143 12.629 13.931 60.452 17.195 17.672 12.687 16.993
RSMDiff 240.992 228.653 239.948 0.177 56.854 59.778 69.778 82.993 126.385 403.597 140.079 117.119 113.932 153.379
RTD 15.165 91.340 672.182 113.033 287.200 304.870 293.158 14.159 21.799 29.058 171.138 198.786 33.374 214.915
RankSim 3.362 3.290 3.499 0.063 1.770 1.915 3.554 2.078 1.942 3.969 2.782 2.762 2.693 3.739
SVCCA 0.585 0.544 0.611 0.003 3.087 1.861 9.654 2.340 1.696 23.019 3.484 3.168 3.456 9.398
SoftCorr 0.022 0.020 0.022 0.001 0.059 0.043 0.477 0.147 0.150 2.472 0.229 0.222 0.151 0.285
UnifDiff 11.056 10.420 12.626 0.045 19.209 20.578 53.692 9.283 8.139 28.615 17.543 14.930 19.779 33.224
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