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Abstract—Current exploration methods struggle to search for
shops or restaurants in unknown open-world environments due
to the lack of prior knowledge. Humans can leverage venue maps
that offer valuable scene priors to aid exploration planning by
correlating the signage in the scene with landmark names on the
map. However, arbitrary shapes and styles of the texts on signage,
along with multi-view inconsistencies, pose significant challenges
for robots to recognize signage accurately. Additionally, discrep-
ancies between real-world environments and venue maps hinder
the integration of text-level information into the planners. This
paper introduces a novel signage-aware exploration system to
address these challenges, enabling robots to utilize venue maps
effectively. We propose a signage understanding method that
accurately detects and recognizes the texts on signage using a
diffusion-based text instance retrieval method combined with a
2D-to-3D semantic fusion strategy. Furthermore, we design a
venue map-guided exploration-exploitation planner that balances
exploration in unknown regions using directional heuristics de-
rived from venue maps and exploitation for perceiving the signage
actively. Experiments in large-scale shopping malls demonstrate
our method’s superior signage recognition performance and
search efficiency, surpassing state-of-the-art text spotting meth-
ods and traditional exploration approaches. Codes and videos
are on our project website: sites.google.com/view/signage-aware-
exploration.

I. INTRODUCTION

Humans can efficiently navigate and explore a mall to search
for shops or restaurants using a 2D venue map provided by
the mall or Google Maps, even if the venue map is non-
metric and only illustrates relative relationships between the
different landmarks. In contrast, robots struggle to search for
landmarks (here we refer to shops or restaurants) in unknown
environments due to a lack of scene priors. However, this
capability is fundamental for various applications, such as
delivery, tour guidance, and inspection. Recently, significant
efforts have been made to improve robots by mimicking
human behaviors by correlating the visual observations with
venue maps for global localization (e.g., Wang et al. [1] and
SNAP [2]), or by discovering non-metric heuristics derived
from maps for kilometer-scale navigation (e.g., ViKiNG [3]
and S2MAT [4]). However, these approaches primarily focus
on using geometric and semantic information from the venue
maps but overlook the landmark names portrayed on the maps
and the corresponding signage displaying the names in the
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Fig. 1: We propose to leverage the textual information in a
venue map to facilitate shop searching in unknown open-world
environments. The robot localizes itself in the environment by
recognizing and matching the texts on a sign to the venue
map. Then the robot plans a direction to the next landmark
‘Briketenia’.

scenes. Moreover, they often neglect online scene understand-
ing and exploration. On the other hand, current exploration
methods generally integrate geometric information [5], [6]
or object-level scene semantics (e.g., Conceptgraphs [7] and
HOV-SG [8]) but rarely incorporate text-level semantics, lim-
iting their effective use of venue maps. Observing that humans
exploit these landmark names on the venue maps by matching
them to the signage in the real-world scene, we argue that
a signage-aware exploration method is essential to improve a
robot’s ability to search for landmarks using 2D (non-metric)
venue maps.

However, implementing such a system poses the following
key challenges. First, recognizing the landmark names on the
signage in an open-world environment is inherently difficult.
Existing works often rely on optical character recognition
(OCR) models trained on closed-set shapes and styles, which
struggle to recognize signage effectively in open-world sce-
narios, where signage can exhibit diverse shapes, styles, and
multi-view inconsistencies. Second, the accuracy of signage
recognition also depends significantly on the robot’s distance
and orientation relative to the signage during movement,
which requires an active perception policy to obtain clear
observations. Third, using venue maps to guide exploration
planning is challenging due to their inconsistent scales and
distortions compared to real-world situations.

This paper presents a robotic exploration approach that
leverages the signage in an unknown environment and the
corresponding (non-metric) venue map to facilitate exploration
and searching for landmarks. We propose a human-like re-
trieval process based on the appearance of signage to allow a
closed-set detector to adapt to open-world situations without
fine-tuning. It detects the texts on the signage and matches
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Fig. 2: Overall framework.

them with a set of pre-generated signage images based on the
landmark names extracted from the given venue map. We also
project multi-view 2D text regions into 3D space and fuse the
corresponding features to enhance recognition performance.
Furthermore, we design a venue map-guided exploration-
exploitation planner that enables the robot to search for the
signage corresponding to the landmarks using a directional
heuristic. Once a sign candidate is detected, the system will
exploit the known space to approach the sign and adjust the
robot’s view to faithfully recognize the sign. By balancing
exploration and exploitation, we achieve both high signage
coverage rates and search efficiency.

II. METHODOLOGY

We aim to design a signage-aware exploration method that
leverages the venue map for searching for all the landmarks in
unknown, large-scale, human-populated environments, such as
shopping malls, thereby demonstrating our method’s capability
of navigating to any destination quickly. The environment
contains [V static landmarks (shops or restaurants), with corre-
sponding signs displaying their landmark names7 . The venue
map M (see Fig. 1) portrays all the landmarks. Our method
first constructs a topological graph on a given venue map (Sec.
II-A). Then, given the RGB-D image, the proposed signage
understanding method recognizes the texts on the signage and
correlates them with the text set of the venue map (Sec. II-B).
Once localized on the venue map, the next landmark goal
is inferred to guide the selection of frontiers. Our system
balances exploration and exploitation to improve both signage
coverage rates and search efficiency during the process (Sec.
II-C). The overall framework is illustrated in Fig. 2.

A. Topological Planning on Venue Maps

We first pre-build a topological graph G based on the given
venue map, whose nodes are the landmark names detected by
an OCR model and whose edges connect two nodes. As such,
we solve a travel salesman problem (TSP) to obtain a landmark
route gi.5 . During online exploration, our method searches for
the remaining landmarks sequentially on the topological graph
to handle long-horizon planning [9].

B. Signage Understanding

We online detect and recognize the signage during explo-
ration, which enables the robot to globally localize itself on
the venue maps. However, current OCR or STS models are
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Fig. 3: The pipeline of signage understanding.

(b) Online stage

limited by their closed-set training that cannot handle signage
recognition with arbitrary shapes, styles, and multi-view in-
consistency issues in the open world. To address the open-set
recognition issue, we leverage the text set of the venue maps to
perform visual similarity matching that enables the closed-set
detectors to adapt to the open world without fine-tuning. To
mitigate the inconsistency issue of text recognition results from
different views, we propose adopting a 2D-to-3D instance
fusion strategy [10] to enhance recognition robustness using
multiple observations. Using these fused features helps the
robot to localize itself with the landmark names on the venue
map. During exploration, we also construct a real-time signage
map M for downstream querying and planning, which stores
the recognized landmark names 7 and the located regions. The
signage understanding module is illustrated in Fig. 3.

C. Exploration-Exploitation Planning

During navigation to the next landmark g¢;, the candidate
next poses ¢ € V are sampled among the set of unvisited
frontiers F and unvisited viewpoints V. The frontiers f € F
bias the exploration to unknown regions, while the viewpoints
v € )V allow the robot to approach and face the signage for
better recognition. In the initial stage, we induce the robot
to explore its surroundings by selecting the frontiers that
maximize the information gain ) G within the camera’s FOV.
After at least two landmarks are found, we align the online
map with the venue map and estimate all the landmark poses
Dy, at the world coordinate using random sample consensus
(RANSACQC) [11]. Therefore, we perform the frontier-based in-
formed search using the relative directions between landmarks
on the venue maps. A directional heuristic i(f;) is calculated
to favor selecting the frontiers closest to the direction towards
the subgoal g;. Therefore, the frontier utility Uf(f;,p:) is
computed as:

Us(fispe) = Mulpe, fi)h(fi) — nd(pe, fi), fi€e F.o o (1)

On the other hand, the viewpoint utility U, (v;, p;) is defined
to favor the exploitation in known spaces whenever a text
instance with a certain confidence is detected:

Uv(vj7pt) = /BSU(U]) - nd(ptavj)7 ’Uj ev. (2)

A factor 3 that determines to what extent of scores we should
highlight the viewpoint candidates than frontiers is employed
to handle the exploration-exploitation dilemma. Intuitively, the
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Fig. 4: Position estimation of the next landmark by calculating
the coordinate transformation between the online map and the
venue map for guiding the frontier selection.

priority of exploiting signage originates from the fact that it
can help localize the robot on the venue maps and facilitate the
decision on the next best pose. Finally, we obtain the optimal
next pose c;+; among unvisited frontiers and viewpoints that
maximizes the overall utility U(c;, p;):

Ulejspe) = Ip(¢;)Us(¢jope) + (1= Ip(¢;))Un(cs5 pr)- (3)
where ¢; € FUV and If(c;) = 1if ¢; € F else 0.

III. EXPERIMENTAL RESULTS
A. Experimental Setup

We evaluate the proposed system in two large-scale shop-
ping malls with 4 and 9 landmarks, respectively. We imple-
ment the system on a Scout-mini mobile robot platform shown
in Fig. 2. We obtain the venue maps of the two scenarios via
Google Maps, and we only showcase the landmarks of interest.
We prompt AnyText [12] model to generate the text images
by: a sign of a store with [TEXT] written on it, which means:
— N EHIRR, 5E&E“[TEXT]” in Chinese, where [TEXT]
is a place name extracted from the venue map using CnOCR.

B. Signage Recognition Performance

We evaluate our signage recognition method based on
signage recognition recall rates on a signage image dataset
collected in two scenarios, comparing it against four alternative
methods: 1) using CLIP [13] to perform text-to-image similar-
ity matching between landmark names and detected images,
2) using Chinese-CLIP [14], fine-tuned on Chinese dataset,
3) using recognition results of an OCR model, ESTextSpotter
[15], with Levenshtein distance as the text-level measurement,
and 4) font-based rendering retrieval (FontRR): leveraging the
latent features extracted from ESTextSpotter and performing
image-level retrieval with font-rendered text images [16]. Our
method (DiffusionRR) utilizes a text-diffusion model for text-
to-image generation. We collect the signage images of 18
shops and restaurants with 5 different views. The results are
reported in Table I. It turns out that the signage recognition
capabilities of both CLIP and Chinese-CLIP (ViT-B/16) are
poor, achieving only 28.9% of recall@l. We attribute this
to the inability of CLIP models to extract text features from
signage images effectively. Moreover, the state-of-the-art STS
method [15] still struggles with signage recognition, achieving
only 52.2% recall rates due to the noisy recognition results.
By converting texts to images using font (e.g., Arial) and

calculating cosine similarity with signage images [16], the
recall rates are improved by 10%. Furthermore, our diffusion-
based approach yields an additional 15.6% improvement over
the font-rending method. Notably, our method’s recall@2 is
10% higher than recall@1, demonstrating better recognition
capability when the matching scope is narrowed to neighboring
landmarks. By adopting the 2D-to-3D fusion strategy, our
method achieves more robust results with higher similarity
scores.

Methods Recall@1 Recall@2
CLIP [13] 28.9% 35.6%
Chinese-CLIP [14] 28.9% 45.6%
ESTextSpotter [15] 52.2% 52.2%
FontRR [16] 62.2% 73.3%
DiffusionRR (Ours) 77.8% 87.8%

TABLE I: Recall rates of signage recognition ()

C. Signage Coverage Efficiency

This experiment is to evaluate the improvement in the
efficiency of covering all the landmarks by using venue
maps and exploitation method, comparing with RRTs-based
exploration [S]. We also equip RRTs-based exploration with
the proposed signage understanding module. We consider
a landmark to be successfully covered if its corresponding
signage is accurately recognized, thus here we use signage
to represent landmarks. We choose two starting points in each
scenario and conduct three trials at each point for two methods,
respectively. We evaluate the signage coverage efficiency by
both signage coverage rates and exploration time per sign with
the standard variance. The former refers to the average number
of recognized signs of all the signs in the scene, and the latter
is calculated as + 3" T(i)/S(i), where n is the number of
trials, 7'(¢) and S(i) are the total exploration time until no
detected frontiers and signage coverage number of the i-th
trial, respectively.

Scenario 1 Starting point 1 Starting point 2
(4 landmarks) Coverage rates T  Average time (s) | Coverage rates T Average time (s) |
[51 1.50 £ 0.71 / 4 167.55 £ 25.51 1.67 £ 0.58 / 4 162.21 £ 70.67
Ours 3.00 £+ 0.00 / 4 67.89 + 10.78 3.67 £ 0.58 /4 74.94 + 8.70
Scenario 2 Starting point 1 Starting point 2
(9 landmarks) Coverage rates T Average time (s) | Coverage rates T Average time (s) |
[51 333 +£0.58/9 186.67 + 67.79 4.00 = 1.00/9 171.55 + 47.73
Ours 7.00 + 1.00 /9 93.40 + 14.23 6.67 = 0.58 /9 120.58 + 30.22

TABLE II: Coverage rates and exploration time per sign.

The experiment results for comparing our entire system
with the baseline are reported in Table II, and the qualitative
examples of the trajectories are illustrated in Fig. 5. We see
that the RRTs-based method covers around 1 and 1.67 of 4
signs at two starting points in scenario 1, respectively. For the
larger scenario 2, it can only find 3 and 4 of 9 signs. This
is because the RRTs-based method can only recognize the
signs when the robot faces them with proper orientations while
missing recognizing some signs. Our method successfully
covers more signs (3 and 3.67 of 4 signs in scenario 1 and 7
and 6.67 of 9 signs in scenario 2) thanks to the exploitation
behavior, enabling the robot to approach the signs and adjust
the orientation for better recognition. On the other hand, in
Fig. 5, the RRTs-based method shown in green trajectories
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Fig. 5: Qualitative examples of the exploration trajectories in
four scenario settings. Our method produces more efficient and
reasonable exploration paths by using venue maps.

blindly explores unknown regions with many redundant steps,
yielding inefficient paths and spending about 168s and 162s in
scenario 1 and 187s and 172s in scenario 2, respectively, for
searching for each sign. By using venue maps, our method
in red trajectories localizes the robots on the venue maps
after recognizing the sign, thereby knowing the approximate
locations of the next signs by calculating the directional
heuristic. Therefore, our method navigates to the signs quickly
within the narrowed regions, which results in a reduction
of nearly 1x the exploration time per sign compared to the
baseline and produces more efficient exploration paths to cover
the signs (see Fig. 6).

D. Impact of Balance Weight

An important design choice is the weighting parameter [3,
which balances venue map-guided exploration and exploita-
tion. To investigate the impact of venue maps and exploitation,
we evaluate 5 with values {3,9,15}. A higher weight assigns
greater importance to exploitation. The experimental results
tested in scenario 2 starting from point 1. When the weight is
too low (5 = 3), the planner is approximately degraded to the
RRT-based exploration with only venue maps. While inclining
to frontier exploration, it often fails to recognize certain signs
due to poor observations. Although it can eventually revisit
part of the missed signs using venue maps, it often requires
more time for the robot to localize itself in the venue maps,
which significantly decreases the utility of venue maps and
the overall path efficiency. On the other hand, as the weight
is too high (8 = 15), the planner is approximately degraded
to the RRT-based exploration with only exploitation that it
prioritizes selecting viewpoints for perceiving the potential
signage. While this enables the robot to cover more signage
and frequently localizes itself in the venue maps, excessive
exploitation constrains the robot from exploring beyond the
surroundings, hindering discovering the distant signs. A mod-
erate balance of exploration and exploitation (8 = 9 by
default) can achieve both higher signage coverage rates and
search efficiency.

Scene 1, starting point 1 Scene 1, starting point 2
a.0 980 a.0 9 e

— ours
§35 —— RRTs
£
E3.0

H
©2.5
-

g
g 2.0
s
3
Sas
@
g
£1.0
2>
@ 0.5

.0
© 25 50 75 100 125 150 175 200 225 250

0.0
0 25 50 75 100125150175200225250275300
Time (s) i

Scene 2, starting point 1 Scene 2, starting point 2
—— Ours
—— RRTs

—— Ours
—— RRTs

Signage coverage number

ORNWAMUGN®DO
Signage coverage number

ORNWAMUON®O

o 100 200 400 500 600

°

100 200 300 400 500 600 700
Time (s)

Fig. 6: The exploration progresses in four scenarios. The
curves stop when the last new sign is covered, after which
the exploration may continue but no more sign is covered.

300
Time (s)

IV. DISCUSSION

1) Computational overhead. Our system relies on
lightweight algorithms optimized for real-time applications.
The text detection and retrieval processes run asynchronously,
consuming approximately SGB of GPU memory and achieving
a speed of ~2fps on our edge device (157 TOPS). This ensures
high performance in signage understanding with minimal
delay. 2) Scalability. Our approach may be less effective
in large scenes with sparse signage since the lack of signs
can hinder localization. While our approach emphasizes the
effectiveness of leveraging textual information in the scene,
one can always integrate our approach into conventional ones
to leverage the spatial structures for global localization. In
scenes with dense signage, while false positives may increase,
our system includes a RANSAC step to eliminate spatially
distant matches. Additionally, dense signage can benefit text-
absent issues, aiding in initial localization and exploration. 3)
Multilingualism. In our scenes, some signs display texts in
multiple languages (e.g., Japanese and Korean), which may
interfere with accurately recognizing target texts in Chinese
and English. We find our method can handle this through
appearance-based similarity matching, even though our text
detector has not been trained on these additional languages.
Fine-tuning the text detectors on multilingual datasets can
further enhance multilingual recognition, as AnyText [12]
supports rendering multilingual text on generative images.

V. CONCLUSION

We present the first signage-aware exploration method that
leverages signage in the scenes and the 2D non-metric venue
maps to incorporate text-level information for searching for
landmarks in unknown open-world environments. To over-
come the challenge of signage recognition, we proposed a
diffusion-based text instance retrieval method that detects and
recognizes signage with arbitrary shapes and styles in the
scene effectively. A 2D-to-3D semantic fusion strategy is em-
ployed to enhance recognition performance. Furthermore, we
design a venue map-guided exploration-exploitation planner to
achieve both high signage coverage rates and search efficiency.
Real-world experiments demonstrate that our method is more
efficient and robust compared to the baselines.
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