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ABSTRACT

Machine unlearning methods take a model trained on a dataset D and a forget set
D 𝑓 then attempt to produce a model as if it had only been trained on D \ D 𝑓 .
We empirically show that an adversary is able to distinguish between a mirror
model (a control model produced by retraining without the data to forget) and a
model produced by an unlearning method across representative unlearning methods
(Foster et al., 2023; Graves et al., 2020; Chundawat et al., 2023; Zhang et al.,
2024). We build distinguishing algorithms based on evaluation scores in the
literature. We contribute a strong formal definition for machine unlearning called
computational unlearning. Computational unlearning is defined as the inability for
an adversary to distinguish between a mirror model and a model produced by an
unlearning method. Our computational unlearning definition allows us to prove
feasibility results and demonstrate that current methodology in the literature —such
as differential privacy — fundamentally falls short of achieving computational
unlearning. We leave achieving practical computational unlearning for future work.

1 INTRODUCTION

Machine learning models require massive amounts of training data. Data is collected by scraping
publicly available web content (David, 2023; Mehrotra & Couts, 2024; Weatherbed, 2024), purchasing
access to private databases (Knibbs, 2024; OpenAI, 2024b; 2023b; David, 2024; Springer, 2023;
OpenAI, 2023a; Atlantic, 2024; OpenAI, 2024a), and collecting data on their own to assemble training
datasets (Schuhmann et al., 2022; Touvron et al., 2023; Brown et al., 2020). Due to the massive scale,
datasets cannot be thoroughly vetted and may contain data that is copyrighted, inaccurate, protected,
or contain otherwise undesirable information.

Legal protections exist for those who wish to protect their privacy, copyrighted content, and financial
history in multiple countries. Examples include the EU GDPR (right to be forgotten) (European
Parliament & Council of the European Union), US DMCA (copyright infringement takedown) (United
States Congress, 1996), US FCRA (corrections to credit history) (United States Congress, 1970),
and US HIPAA (corrections to personal health data) (Centers for Medicare and Medicaid Services,
1996). Specific instances of training data may also be illegal on their own: for example, it is illegal to
possess child sexual abuse material (CSAM) in the US and in many other jurisdictions. Despite this,
popular datasets (Schuhmann et al., 2022) used to train models like Stable Diffusion contained illegal
CSAM (Thiel, 2023). Further, prior work has established the threat of data poisoning attacks that
create backdoors in models (Goldwasser et al., 2022; Gu et al., 2019; Li et al., 2022). This means
that model data may be intentionally corrupted by an adversary.

These threats can be addressed by re-training the model from scratch without the offending data.
However, since training large models is capitally and computationally intensive, a major area of
interest is machine unlearning: efficiently removing traces of the offending data, known as the as the
forget set, without training a new model from scratch (a control model) (Cao & Yang, 2015; Abadi
et al., 2016; Golatkar et al., 2019; Bourtoule et al., 2020; Graves et al., 2020; Gupta et al., 2021; Ullah
et al., 2021; Nguyen et al., 2022; Chundawat et al., 2023; Foster et al., 2023). However, as other
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authors have noted, there is still work to be done on rigorous evaluations of unlearning (Hayes et al.,
2024).

1.1 OUR CONTRIBUTIONS

This work consists of three major contributions: (1) a new formal adversary specification and
framework for evaluating unlearning, (2) empirical evaluation of inexact unlearning methods and
(3) several feasibility results on achieving computational unlearning. We leave achieving practical
computational unlearning to future work.

Computational unlearning framework. Though unlearning is understood to be the process
of removing information learned from specific data points, there is need for rigorous adversarial
definitions to evaluate unlearning. Our primary contribution is a new formal definition and framework
for evaluating unlearning called computational unlearning that we detail in §3. In brief, computational
unlearning tests the ability of an adversary to distinguish between a model produced by an unlearning
method (an unlearned model) and a model trained from scratch with the forget set removed (a control
or mirror model). If the adversary is only able to do so with negligible probability, then we say
that the unlearning method achieves computational unlearning. Because the adversary is unable
to distinguish between the control and unlearned models, it follows that all information about the
forget set has been “deleted” by the unlearning method. The game is defined in both a white-box (i.e.
adversary has full access to model parameters) and a black-box (i.e. adversary only has API access to
model) setting. This is distinct from and complementary to the the definition posed by Hayes et al.
(Hayes et al., 2024), which is focused on privacy leakage and distinguishing between the forget set
and the set of data the model has never seen. We pose a stronger adversary that controls the original
training set and selects the forget set.

Many unlearning methods do not achieve indistinguishability. We construct two scoring methods
MIAScore and KLDScore in §4.1 which an adversary can use to distinguish between an unlearned
model and a model that has never seen the forget set. We study previously proposed unlearning
methods (Foster et al., 2023; Graves et al., 2020; Chundawat et al., 2023; Zhang et al., 2024) and
show that each fail to achieve computational unlearning for ResNet-18 models (He et al., 2015b)
trained on CIFAR-10 (Krizhevsky, 2009) in §4. We also experiment with how distinguishing rates
are affected by the forget set size and unlearning method hyperparameters.

Theoretical implications of computational unlearning. We describe several implications of our
computational unlearning framework in §5. We first show that any deterministic computational
unlearning algorithms must achieve perfect unlearning (i.e. it must produce the exact same model as
retraining) and discuss implications for heuristic and certified removal unlearning methods. Second,
we show that using differential privacy to achieve black-box computational unlearning leads to utility
collapse (i.e. utility must be equivalent to a model that is randomly initialized).

2 MOTIVATION

2.1 ADDRESSING OVERFORGETTING AND UNDERFORGETTING

Many machine unlearning works attempt to justify their approach by optimizing some unlearning
score. Membership inference attack (MIA) scores, formalized by Shokri et al. (Shokri et al., 2017),
are a common way to evaluate the performance of machine unlearning algorithms in literature and
attempt to predict if a model was trained with a given data point. Applying MIA scores to evaluate
unlearning makes intuitive sense: if a model has unlearned data it should have a low MIA scores,
similar to a model that never saw the data. As a result, many heuristic machine unlearning proposals
are specifically designed to minimize these MIA scores (Graves et al., 2020; Chundawat et al., 2023;
Foster et al., 2023).

Framing machine unlearning in a score-based manner is attractive: it provides an easy way to facilitate
comparison, and it also satisfies intuitive beliefs about how the model should behave after unlearning.
However, score-based definitions do not address consequences arising from discrepancies in knowl-
edge between an unlearned model and a control model. These discrepancies can be categorized as
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overforgetting and underforgetting. Essentially, overforgetting results in losing too much information,
while underforgetting results in retaining too much information. Unlearning methods that are prone
to overforgetting produce models that perform worse on the retained information than a control
model, while unlearning methods prone to underforgetting produce models that perform better on the
retained information than a control model.

The consequences of this issue can be seen when applying unlearning to backdoor attacks (Goldwasser
et al., 2022; Li et al., 2022). Unlearning is a possible defense as a good unlearning method should
remove all knowledge of the backdoor from a model. However, prior work has shown that existing
unlearning methods fail to actually remove a backdoor from a model (Pawelczyk et al., 2025). In
other words, these unlearning methods are prone to underforgetting and thus can not be trusted to
fully remove a backdoor from a model.

2.2 MACHINE UNLEARNING IS INDISTINGUISHABILITY

We claim that unlearning needs a new definition that accounts for the aforementioned issues. An
unlearning method should produce a model that is indistinguishable from a control model. This
indistinguishability implies that the unlearned model has not overforgotten or underforgotten.

Additionally, how indistinguishability is measured should be meaningful — better unlearning methods
will produce unlearned models that are harder to distinguish from a control model. This idea is not
new and features in prior work (Zhang et al., 2024; Guo et al., 2023; Foster et al., 2023; Hayes et al.,
2024) but is not measured directly. We propose doing so here. In other words, no efficient (p.p.t., or
probabilistic polynomial time) adversary A should be able to distinguish between a model produced
by an unlearning method and a model trained without the forget set.

Motivation with 𝑘-NN. Observe that our desired functionality is readily apparent in the 𝑘-nearest
neighbors (𝑘-NN) algorithm (Fix & Hodges, 1989). Since 𝑘-NN requires memorizing all training
data it immediately admits an unlearning algorithm: simply delete the training examples you wish to
forget. This produces a model that is indistinguishable from a control.

3 FORMALIZING UNLEARNING

We propose computational machine unlearning as a formal way to capture that machine unlearning is
indistinguishability. Unlike prior machine unlearning scores, our definition is defined as a security
game, inspired by the cryptographic notion of semantic security and indistinguishability under
chosen plaintext attack (IND-CPA) (Boneh & Shoup, 2023). Instead of considering an MIA score,
computational unlearning considers the ability of an adversary to distinguish between an unlearned
model and a control model.

3.1 PRELIMINARIES

LetU be the universe of all possible data, and 𝑑 ∈ U be a particular data point. Let D ⊆ U be our
entire training dataset with D 𝑓 ⊆ D be the forget set. Let H be our hypothesis space of possible
models, with ℎ ∈ H being a particular model.

Definition 1 (Learning scheme). We formally define a learning scheme as a tuple of probabilistic
polynomial time (p.p.t.) algorithms (init,learn,infer):

• init(1𝜆) → ℎ: randomly samples some initial model ℎ. The notation 1𝜆 simply denotes
that there are 𝜆 copies of the symbol 1 written on the input tape of the Turing machine and 0
in every other location. This ensures that init runs in polynomial time with respect to 𝜆, a
cryptographic formality.

• learn(ℎ,D) → ℎ: given some initial model ℎ, performs some model update process with
respect to the training set D.

• infer(ℎ, 𝑑) → R𝑛: performs some inference procedure with the given model ℎ on the
provided data point 𝑑.

3
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Challenger Adversary

sends learn, unlearn

sends training set

sends original model

sends forget set

shuffles and sends
{control, unlearned}

guesses ordering

Figure 1: Overview of the security game for computational unlearning.

Definition 2 (Forgetting learning scheme). We likewise define a forgetting learning scheme as a
tuple of p.p.t algorithms (init,learn,infer,unlearn) such that it is a learning scheme with
an additional unlearn(ℎ,D 𝑓 ) → ℎ algorithm.

Definition 3 (Negligible function). We define negl(𝜆) to be a function that is negligible in terms of a
security parameter 𝜆. We borrow the definition of a negligible function from cryptography — namely,
that a function 𝑓 : Z≥1 → R is negligible if and only if for all 𝑐 > 0 we have lim

𝑛→∞
𝑓 (𝑛)𝑛𝑐 = 0.

3.2 COMPUTATIONAL UNLEARNING

We now formally define computational unlearning in both white-box and black-box settings.

Definition 4 (White-Box Computational Unlearning). We consider the following experiment:

1. C sends the description of the forgetting learning scheme (i.e. the learn and unlearn
algorithms).

2. A chooses D and sends it to C.
3. C computes 𝑀𝑜 ← learn(init(1𝜆),D) and sends (𝑀𝑜,learn,unlearn,D) to A.
4. A selects a forget set D 𝑓 ⊂ D and sends D 𝑓 to C.
5. C computes 𝑀𝑢 ← unlearn(𝑀𝑜,D 𝑓 ) and computes

𝑀𝑐 ← learn(init(1𝜆),D \ D 𝑓 ).
6. C samples a random bit 𝑏

$← {0, 1}. If 𝑏 = 0, C sends [𝑀𝑐, 𝑀𝑢]. If 𝑏 = 1, C sends
[𝑀𝑢, 𝑀𝑐].

7. A computes a guess 𝑏′ and sends 𝑏′ to C. A wins the game if 𝑏′ = 𝑏.

We say that an unlearning algorithm is a white-box computational machine unlearning algorithm if

P (𝑏′ = 𝑏) < 1
2
+ negl(𝜆)

We denote this computational indistinguishability by saying 𝑀𝑢

𝑐≈ 𝑀𝑐. This game is illustrated
in Figure 1.

Definition 5 (Black-Box Computational Unlearning). We consider the white-box computational
unlearning experiment from Definition 4, modifying item 6 as follows: C samples a random bit

𝑏
$← {0, 1}. If 𝑏 = 0, C sends [O𝑀𝑐

,O𝑀𝑢
] where O is an oracle that allows A to call infer on the

underlying model. If 𝑏 = 1, C sends [O𝑀𝑢
,O𝑀𝑐

].

4
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As with Definition 4, we say that an unlearning algorithm is a black-box computational machine
unlearning algorithm if we have P (𝑏′ = 𝑏) < 1

2 + negl(𝜆).
Remark 6 (Threat Model). This definition intuitively captures a setting inspired by the GDPR process:
we assuming the adversary is a user who can select which data should be deleted (i.e. the set of
items to be deleted is adversarially-controlled) as in (Hu et al., 2024). We also acknowledge that this
game defines a very strong adversary and that a real-world adversary may not have access to the full
training set, the description of the unlearning algorithm, or other information provided in this game.
However, each of these alternatives envisions a strictly weaker adversary than our computational
learning game, meaning that an unlearning method that achieves computational unlearning would
still be indistinguishable from a control model in these scenarios.

4 EMPIRICAL RESULTS

We now present empirical distinguishers for A to evaluate if unlearning methods from literature
achieve computational unlearning. We experimentally demonstrate the effectiveness of these distin-
guishing algorithms on heuristic unlearning and certified removal methods.

4.1 DISTINGUISHER SCORES

Each distinguisher forA uses a scoring function to separate 𝑀𝑐 from 𝑀𝑢. The scoring function takes
in the original model 𝑀𝑜, a candidate model 𝑀 ∈ {𝑀1, 𝑀2}, the training set D, and the forget set
D 𝑓 . The scoring function then outputs a value 𝑠 that is used to determine if the candidate model is
𝑀𝑢 or 𝑀𝑐.

Scoring with membership inference attacks. As described in §2.1, membership inference attacks
(MIA) are a common method for evaluating the performance of a given unlearning algorithm and
several unlearning methods are justified by reducing them as much as possible. However, we are
able to leverage these scores to distinguish an unlearned model from a control model because the
unlearning method will often produce models whose MIA scores are out of distribution. We propose
that an unlearning algorithm should achieve similar MIA scores to a model that never saw the forget
set rather than attempting to absolutely minimize it. In experiments, we use the approach of Shokri et
al. (Shokri et al., 2017) for computing MIA scores using the same implementation as Foster et al.
(Foster et al., 2023). We refer to this scoring algorithm as MIAScore.

Scoring with Kullback-Leibler divergence. We also present a novel scoring method KLDScore.
We drew inspiration from the fact that Certified Removal bounds the KL-Divergence between different
models. To calculate the score,A calculates the KL-Divergence between the inferences of the original
model 𝑀𝑜 and the candidate model 𝑀 (such as on instances in or near the forget set). This provides a
measure of how different the behaviors of 𝑀 and 𝑀𝑜 are. In practice, we find that models produced
by unlearning methods have much lower divergence from the original model than a control.

KLDScore(𝑀𝑜, 𝑀,D,D 𝑓 ) =
∑︁

𝑥𝑖∈D 𝑓

𝐷KL (𝑀 (𝑥𝑖 + N(0, 0.1)) ∥ 𝑀𝑜 (𝑥𝑖 + N(0, 0.1))) (1)

where N(0, 0.1) represents Gaussian noise with mean 0 and variance 0.1.

Choice of decision rule. A will compute 𝑏′ using the results from one of the aforementioned
scoring algorithms. By Definitions 4 and 5,A is free to use prior knowledge of learn,unlearn,D,
and D 𝑓 in the decision rule.1

4.2 EXPERIMENTAL RESULTS

We evaluate the distinguishers via their success rates in differentiating between 𝑀𝑢 and 𝑀𝑐. For this,
we present our findings from two experiments: one varying the size of the forget set D 𝑓 and the
other varying the 𝜎 parameter from Certified Deep Unlearning. We also show that unlearned models

1See Kerckhoffs’s principle in cryptography.
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which obtain closer scores to a control model are less prone to underforgetting. All experiments were
run using an Intel Xeon Gold 6330 and a NVIDIA A40. All results are statistically significant (i.e.
a 95% confidence interval under a Beta distribution with the Jeffries prior does not contain 50%).
Implementation details for these experiments can be found in Appendix B.

Forget set size. We evaluated the effect of the forget set size on four different unlearning techniques.
We used three heuristic methods and the approximate technique Certified Deep Unlearning (CDU),
all discussed in Appendix A. For each method, a random subset of D was chosen as the forget set.
We varied the forget set size to evaluate its effect on the ability of A to distinguish between 𝑀𝑢

and 𝑀𝑐 and correctly guess 𝑏′ using the distinguishing algorithms discussed above. We ran 128
trials, each with a different randomly selected forget set. We found that with increased forget set size
the adversary was able to correctly guess 𝑏′ with higher frequency, but always maintained above a
60% success rate at every forget set size. As we hypothesized, many heuristic unlearning techniques
over-minimized MIAScore during their process of unlearning: for all heuristic unlearning methods
the decision rule assigns a lower MIAScore score to 𝑀𝑢 (except for SSD (Foster et al., 2023) with
greater than 30 forget set examples).

10 100 1,000

0.6

0.8

1

Size of Forget Set
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(a) KLDScore

10 100 1,000
Size of Forget Set

Amnesiac
Bad Teacher

SSD
CDU

(b) MIAScore

Figure 2: Forget set size against adversary success rate using KLDScore and MIAScore distin-
guishers.

We also explored classwise unlearning, where an entire class in D is chosen as the forget set. We
found it always possible to distinguish in this setting (i.e. 100% adversary success rate under both
distinguishers). This is unsurprising given our results on the impact of forget set size. Recall that
CIFAR-10 has 50,000 images in the training set, distributed evenly across 10 classes; forgetting an
entire class amounts to a forget set size of 5,000 (Krizhevsky, 2009).

Dependence on 𝜎. We additionally explored the relationship between computational unlearning
and certified removal’s privacy parameters. For this we examined A’s KLDScore for certified deep
unlearning (CDU) from Zhang et al. (Zhang et al., 2024) with different hyperparameters. The CDU
method is based on a single hyperparameter 𝜎, derived from 𝜖 and 𝛿 values, that represents the
magnitude of noise used. We follow the hyperparameters from the CDU published experiments
(Zhang et al., 2024), including a random forget set of 1000 data points. We then varied 𝜎 from 10−5

to 10−1 in powers of 10 running 128 trials at each value.

In our experiments we found that the adversary was able to distinguish using KLDScore with
100% accuracy for all choices of 𝜎. We found as 𝜎 increases the unlearned model’s KLDScore
also increases (see Figure 3). Since the control model has no dependency on 𝜎, an adversary can
distinguish with extremely high success rate by choosing a decision rule appropriate for the chosen
value of 𝜎. This relationship does imply there is a point of intersection (between 0.001 and 0.01)
where the KLDScore score for 𝑀𝑢 and 𝑀𝑐 should be very close, making it harder to distinguish
using KLDScore. We believe understanding the intersection constitutes an interesting topic for
future work.
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Figure 3: Certified Deep Removal against KLDScore for different values of 𝜎.

Closer scores are better. While perfect indistinguishability remains out of reach, progress can be
made by producing unlearned models that are closer to a control. We show that unlearning methods
which achieve distinguisher scores closer to that of the control model are less prone to the negative
consequences described in §2.1. We use the BadNets attack (Gu et al., 2019) with a fixed poison rate
of 10% on CIFAR-10 (Krizhevsky, 2009). We tested the unlearning methods specified in Appendix
A, comparing the closeness of 𝑀𝑢, 𝑀𝑐 to the accuracy of 𝑀𝑢 on poisoned data. This closeness was
measured via the absolute value of the difference between the KLDScore scores of 𝑀𝑢 and 𝑀𝑐. As
we see in Figure 4, larger deviations are directly correlated with higher performance on poisoned
data.
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��KLDScore(𝑀𝑜, 𝑀𝑢,D,D 𝑓 ) − KLDScore(𝑀𝑜, 𝑀𝑐,D,D 𝑓 )
��
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SSD
Overall Trendline

Figure 4: Absolute difference in KLDScore against accuracy of data on poisoned samples. The
trendline (black) was computed with ordinary least-squares and has a 𝑡-value of 9.864, indicating that
there is over a 95% probability that unlearned models with closer KLDScore scores to the control
have better forgotten the backdoor.

5 THEORETICAL ANALYSIS

We now show several interesting consequences of our computational unlearning definition. or proofs
of all the following theorems and corollaries, see Appendix C.

We begin by showing that 𝑘-NN admits a white-box computational unlearning algorithm in line with
the technical intuition from §2.2.
Theorem 7 (𝑘-NN admits white-box computational unlearning). There is an efficient white-box
computational unlearning algorithm for 𝑘-NN models.

We first show that for entropic machine learning algorithms (e.g. stochastic gradient descent) there
are no deterministic algorithms that can achieve computational unlearning. This result means that
many heuristic unlearning methods can never admit computational unlearning algorithms. Secondly,
we show that differentially private algorithms can achieve computational unlearning at the cost of
collapsing model utility.

7
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5.1 DETERMINISTIC COMPUTATIONAL UNLEARNING DOES NOT EXIST

We now show that a forgetting learning scheme that is entropic must have a randomized unlearning
algorithm. Additionally, we show that a forgetting learning scheme that is deterministic must
achieve perfect unlearning. Because forgetting learning schemes that are entropic must must be
randomized and because forgetting learning schemes that are deterministic must be perfect, we say
that deterministic computational learning does not exist.

Before beginning, we define entropic learning schemes and perfect unlearning.

Definition 8 (Deterministic learning scheme). A learning scheme is deterministic if the distribution
of models produced by learn

(
init

(
1𝜆

)
,D

)
has Shannon entropy of 0.

Definition 9 (Entropic learning scheme). A learning scheme is ℎ-entropic if the distribution of
models produced by learn

(
init

(
1𝜆

)
,D

)
has Shannon entropy greater than or equal to ℎ. In the

absence of a particular value specified for ℎ, we take ℎ to be 1 bit.

Remark 10. If a learning scheme is entropic, it cannot be deterministic. For all practical purposes,
learning schemes are either deterministic (i.e. 𝑘-nearest neighbors) or entropic (i.e. randomly initial-
ized neural nets trained under stochastic gradient descent).

Definition 11 (Perfect unlearning). We say a forgetting learning scheme achieves perfect unlearning
algorithm if, for all 𝑀 = learn(init(1𝜆),D), the following always holds:

learn(init(1𝜆),D \ D 𝑓 ) = unlearn(𝑀,D 𝑓 )

This is to say, unlearn is perfect if it produces exactly the same model as retraining on the retain
set.

Recall that in our definition, A is given the description of the unlearning method (unlearn) and
also has access to the original model 𝑀𝑜. Intuitively, this means that an adversary can simply run the
unlearning method on its own.

Because the unlearning algorithm is deterministic and the learning scheme is entropic, this means
that only one of the two models will exactly match the adversary’s own computed result with high
probability and allow the adversary distinguish with non-negligible probability.

Theorem 12. There are no deterministic computational unlearning algorithms for entropic learning
schemes.

We now show that a forgetting learning scheme that is deterministic and achieves computational
unlearning must be perfect. The intuition for this result is similar: the adversary has access to learn,
the description of the learning algorithm, and has access to theD\D 𝑓 . This means that the adversary
can compute the control model on their own, use its own control model to identify the control model
provided by the challenger, and distinguish with non-negligible probability.

Theorem 13. Let L be a forgetting learning scheme that is deterministic. Then if it satisfies the
computational unlearning notion of Definitions 4 and 5 it must perfectly unlearn under Definition 11.

Remark 14 (Viability of computational unlearning methods). These results constrain the space of
learning algorithms that are compatible with unlearning. To reiterate: Theorem 12 shows that entropic
learning schemes that are forgetting and achieve computational unlearning must have a randomized
unlearning method. In the opposite direction, no deterministic learning algorithms can support
entropic unlearning algorithms. Any deterministic learning scheme that is forgetting and achieves
computational unlearning must implicitly realize a perfect unlearning scheme, as noted in Theorem
13. As a consequence of these findings, any forgetting learning schemes that achieves computational
unlearning must either be perfect, or both the learning and unlearning process must inherently be
randomized. Note that Certified Deep Unlearning (Zhang et al., 2024) and many heuristic unlearning
methods we studied in §4 are not randomized and are not perfect. Thus, they can never achieve
computational unlearning.

5.2 COMPUTATIONAL UNLEARNING FROM DIFFERENTIAL PRIVACY COLLAPSES UTILITY

One natural approach to constructing computational unlearning uses techniques from differential
privacy (Dwork & Roth, 2014).
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While differentially private learning algorithms imply the existence of black-box computational
unlearning, the parameters choices required to achieve computational unlearning will lead to utility
collapse for the resulting models. We show that the 𝜖 and 𝛿 parameters must be phrased in terms of 𝜆
and that values needed to obtain security imply unacceptably high utility loss.

We now show how to construct black-box computational unlearning (Definition 5) from differential
privacy. There are two main ways to accomplish this: to use differential privacy directly or to
aggregate the outputs of models in a differentially private way. The theorem below captures both of
these cases.
Theorem 15 (Differentially private computational unlearning). Let L be a forgetting learning scheme
that achieves black-box computational unlearning. Let unlearn simply output the original model
(with fresh randomness for the differentially private mechanism). Then learn and unlearn satisfy
the definition of black-box computational unlearning (Definition 5) if and only if 𝛿 ≤ negl (𝜆) and let
𝜖 ≤ ln (1 + negl (𝜆)).

Unfortunately this approach also has the following undesirable result:
Corollary 16. Let L be a forgetting learning scheme that achieves black-box computational unlearn-
ing, with learn implemented as described in Theorem 15. Then 𝑀𝑢 and 𝑀𝑜 are also computationally
indistinguishable. This implies that the utility of 𝑀𝑜 is equivalent to the utility of 𝑀𝑢.

Remark 17 (Black-box infeasibilty implies white-box infeasibility.). The security notion of white-
box computational unlearning in Definition 4 is strictly stronger than the black-box computational
unlearning of Definition 5. Thus, the an infeasibility result for black-box computational unlearning
immediately implies an infeasibility result for white-box computational unlearning.

We note that most use cases of differentially private infer algorithms are designed to support a
number of queries bounded by a constant. One possible interpretation of our result is that we assume
an adversary is able to query the model some polynomial number of times.

We additionally stress that Theorem 15 and Corollary 16 only consider applying differential privacy
to the infer algorithm of a learning scheme. Our result does not necessarily imply a utility collapse
for a forgetting learning scheme that achieves computational unlearning with a differentially private
learn algorithm.

6 CONCLUSION

In summary, we have proposed computational unlearning, a new framework for evaluating machine
unlearning. Computational unlearning is satisfied by an unlearning method if the output of the
unlearning method is indistinguishable from a mirror (control) model. We rigorously define indis-
tinguishability in terms of a novel two-party cryptographic protocol which captures an adversary’s
ability to distinguish between two models. Computational unlearning provides both empirical and
theoretical contributions to the field of unlearning by improves upon prior evaluation methods, such
as membership inference attack (MIA) scores.

We empirically showed that several machine unlearning methods from literature (Foster et al., 2023;
Graves et al., 2020; Chundawat et al., 2023; Zhang et al., 2024) do not achieve computational
unlearning by presenting multiple algorithms that allow an adversary to distinguish between the
model produced by an unlearning method and a control model.

We have identified several theoretical implications that naturally follow from our formal definition
of computational unlearning. For example, all unlearning methods that meet our definition of
computational unlearning must be randomized; there are no deterministic computational unlearning
methods despite there being several deterministic unlearning methods proposed in prior work. We
also proved that building computational machine unlearning using differential privacy techniques
leads to utility collapse.

We believe there are several directions for future work. For example, relaxations of our computational
unlearning framework — such as letting the challenger delete additional information beyond what is
selected by the adversary — may be worth exploring. Additionally, we believe future work should
consider how to apply unlearning methods to align generative models and explore how to incorporate
notions of foundation models into computational unlearning.
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A TAXONOMY OF UNLEARNING METHODS

We categorize machine unlearning methods in one of three ways: as heuristic unlearning, approximate
unlearning, or exact unlearning as applied to classification models.

Heuristic unlearning. Unlike exact and approximate unlearning methods, heuristic unlearning
methods do not have any formal guarantees. However, they are typically much less expensive than
applying differential privacy or retraining the model (Foster et al., 2023; Golatkar et al., 2019;
Chundawat et al., 2023; Kodge et al., 2023; Tarun et al., 2021). These rely on various heuristics that
aim to minimize an unlearning “score” that that attempts to capture how well a machine learning
model has forgotten. Membership inference attacks (MIA) (Shokri et al., 2017) are a popular scoring
method used in the literature.

We now describe three heuristic unlearning methods: bad teacher unlearning (Chundawat et al.,
2023), amnesiac unlearning (Graves et al., 2020), and selective synaptic dampening (SSD) (Foster
et al., 2023). Each of these heuristic unlearning methods are evaluated on membership inference
attack (MIA) scores; this is representative of many heuristic unlearning methods.

• Bad teacher unlearning. Bad teacher unlearning rests on the assumption that, after forgetting
a data point, a model’s behavior on that data point should be similar to that of a randomly
initialized model. To forget D 𝑓 the model is “taught” to reflect the behavior of a randomly
initialized model (i.e. a bad teacher).

• Amnesiac unlearning. Amnesiac unlearning tries to reverse the changes to the model
incurred by training on D 𝑓 by keeping track of all batches containing elements from D 𝑓 ;
gradient ascent is performed on these training batches at forget time. This attempts to
“backtrack” towards a model that never had those gradient updates applied. We note that this
approximates the approaches taken by many exact unlearning methods.

• Selective synaptic dampening (SSD). SSD measures the D 𝑓 -related information in each neu-
ron by using the Fisher information matrix (FIM). Neurons that contain lots of information
about examples in D 𝑓 are “zeroed out” by scaling down their weights. One can think of
SSD as a pruning algorithm where “branches” of the network are “removed” based on their
“knowledge” of D 𝑓 .

Approximate unlearning. An approximate machine unlearning method attempts to output a model
that is approximately equal to a model trained without the forget set with high probability. Approxi-
mate machine unlearning methods are typically based on the notions of differential privacy (Dwork
& Roth, 2014) and certified removal (Guo et al., 2023).

Differential privacy. Differential privacy (Dwork & Roth, 2014) bounds the difference between
outputs of a randomized algorithm on similar data sets. In the context of machine learning, this can
be implemented as either (1) producing model parameters that are similar to the model parameters
produced by training on a similar dataset or (2) producing an inference that is similar to the inference
produced by a model trained on a similar dataset.

Certified removal. Certified removal draws inspiration from the aforementioned notion of dif-
ferential privacy, extending a white box privacy guarantee to hold for a learning and unlearning
method. Their aim is to bound the difference in model’s produced by the unlearning method and
the model’s produced by the learning method without a particular data point in the training set. We
refer the reader to Guo et al. for the formal definition (Guo et al., 2023). Zhang et al. (Zhang et al.,
2024) extend certified removal to non-linear models with non-convex objectives via certified deep
unlearning (CDU) in order apply a certified removal technique to deep neural networks. We evaluate
CDU in §4.

Exact unlearning. An exact unlearning method modifies the original model such that its outputs
exactly match a model trained without the forget set. We are unaware of any exact unlearning method
for neural networks that does not involve some degree of retraining. The most common approaches
rely on saving checkpoints of model state at train time (Bourtoule et al., 2020; Ullah et al., 2021).
Unlearning then consists of rewinding to a checkpoint that has not been influenced by the forget set
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and then resuming training from that point without the forgotten data. This technique is essentially
a time-space tradeoff; multiple checkpoints of the model must be saved out during training. The
worst-case retraining cost may be equivalent to retraining the model from scratch (for example, if the
forget set contains an element from the first batch). We do not study exact unlearning in this work.

B IMPLEMENTATION DETAILS

All models used the ResNet-18 (He et al., 2015a) architecture. The original and control models were
trained using stochastic gradient descent with momentum and weight decay. The hyperparameters
used are as follows:

• Number of epochs: 50
• Batch size: 512
• Learning rate: 10−2

• Weight decay: 5 × 10−4

For SSD (Foster et al., 2023), we used a dampening constant of 1 and a selection weighting of 100.
For all other methods (Chundawat et al., 2023; Graves et al., 2020; Zhang et al., 2024), we used the
parameters specified in their original papers (with the exception of 𝜎 for CDU (Zhang et al., 2024),
which we varied in §4).

C PROOFS

Proof of Theorem 7. Let learn be defined as normal for 𝑘-NN models. Let unlearn be defined
as deleting the specified D 𝑓 from the 𝑘-NN database. Observe that this produces the same database
as learn on D \ D 𝑓 . Therefore, an adversary cannot distinguish between 𝑀𝑢 and 𝑀𝑐 with
non-negligible advantage because they are exactly the same model. □

C.1 DETERMINISTIC COMPUTATIONAL UNLEARNING DOES NOT EXIST

Proof of Theorem 12. Suppose that a forgetting learning scheme is entropic. Therefore,
learn

(
init

(
1𝜆

)
,D

)
is a randomized algorithm that samples some ℎ ∈ H with minimum entropy

greater than 1 bit. Let P(ℎ) be the probability that learn samples a particular ℎ ∈ H and let

𝑝max = max
∀ℎ∈H

P(ℎ)

Now suppose that the challenger uses a deterministic unlearn algorithm. Then the adversary can
also run unlearn on 𝑀𝑜 and will win the game if 𝑀𝑐 ≠ 𝑀𝑢. Because the probability learn
will output a particular model is bounded by 𝑝max, the probability that 𝑀𝑐 = 𝑀𝑢 is also bounded
by 𝑝max and the probability 𝑀𝑐 ≠ 𝑀𝑢 is at least 1 − 𝑝max. Because unlearn is a computational
unlearning algorithm, we must have that 1 − 𝑝max < 1

2 + negl(𝜆). We can rearrange symbols to get
that negl(𝜆) > 1

2 − 𝑝max. But we have a contradiction because 𝑝max does not asymptotically approach
1
2 as 𝜆 approaches infinity. □

Proof of 13. Suppose that L is a deterministic learning scheme. Therefore, it must output a single
model for a given training setD. Suppose L is also forgetting and achieves computational unlearning.
We now consider two possible cases: that unlearn is randomized and that it is deterministic.

• Randomized case: Suppose that unlearn is a randomized algorithm that samples some
ℎ ∈ H . Let P(ℎ) be the probability that unlearn selects a particular ℎ ∈ H and let

𝑝max = max
∀ℎ∈H

P(ℎ)

Recall that in this scenario, the challenger uses a deterministic learn algorithm to produce
𝑀𝑐. Then the adversary can also run learn to produce 𝑀𝑐 and will win the game if

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

𝑀𝑐 ≠ 𝑀𝑢. Because the probability unlearn will output a particular model is bounded by
𝑝max, the probability that 𝑀𝑐 = 𝑀𝑢 is also bounded by 𝑝max and the probability 𝑀𝑐 ≠ 𝑀𝑢 is
at least 1− 𝑝max. Because unlearn is a computational unlearning algorithm, we must have
that 1 − 𝑝max < 1

2 + negl(𝜆). We can rearrange symbols to get that negl(𝜆) > 1
2 − 𝑝max. But

we have a contradiction because 𝑝max does not asymptotically approach 1
2 as 𝜆 approaches

infinity.

• Deterministic case: Now suppose that unlearn is a deterministic algorithm. Then the
adversary can also run learn and unlearn on 𝑀𝑜 and will win the game if 𝑀𝑐 ≠ 𝑀𝑢.
Because learn and unlearn are deterministic and will each output a particular model for
a given dataset, we must have that 𝑀𝑐 = 𝑀𝑢. Thus, unlearn must be a perfect unlearning
algorithm.

□

C.2 BLACK-BOX COMPUTATIONAL UNLEARNING FROM DIFFERENTIAL PRIVACY COLLAPSES
UTILITY

We begin by recalling the definition of privacy loss and differential privacy.

Definition 18 (Privacy Loss, (Dwork & Roth, 2014)). The privacy loss L over neighboring databases
𝑥, 𝑦 after observing 𝜉 is given by:

L ( 𝜉 )M(𝑥 ) ∥M(𝑦) = ln
(
P(M(𝑥) = 𝜉)
P(M(𝑦) = 𝜉)

)
Definition 19 (Differential Privacy, (Dwork & Roth, 2014)). A randomized algorithm M with
domain N |X | is (𝜖, 𝛿)-differentially private if for all S ⊆ Range(M) and for all 𝑥, 𝑦 ∈ N |X | such that
∥𝑥 − 𝑦∥1 ≤ 1:

P(M(𝑥) ∈ S) ≤ 𝑒𝜖 · P(M(𝑦) ∈ S) + 𝛿

If 𝛿 = 0, we say thatM is 𝜖-differentially private.

Differential privacy’s definition bounds the privacy loss from any query, which we discuss below.
Remark 20 (Privacy Loss Bounded for Differentially Private Algorithms, (Dwork & Roth, 2014)).
Suppose thatM is a (𝜖, 𝛿)-differentially private algorithm. Then by definition, the absolute value of
the privacy loss L ( 𝜉 )M(𝑥 ) ∥ M(𝑦) is bounded by 𝜖 with probability at least 1 − 𝛿.

Remark 21 (Differential Privacy is Immune to Post-Processing, (Dwork & Roth, 2014)). Additionally,
one of the most useful properties of differential privacy is that it is “immune” to post-processing.
This means that there exists no algorithm that, given the output of a differentially-private function,
can “undo” the differential privacy. We refer the reader to (Dwork & Roth, 2014, Proposition 2.1) for
the proof of this claim.

We will use this property to show that differential privacy can be used to satisfy the definition of
black-box computational unlearning (Definition 5).

Lemma 22. Privacy Loss is an upper bound on relative entropy.

Proof of Lemma 22. Recall the definition of relative entropy (Kullback-Leibler divergence) of proba-
bility distribution 𝑄 with respect to 𝑃 (Kullback & Leibler, 1951):

𝐷KL (𝑃 ∥ 𝑄) =
∑︁
𝑥∈X

𝑃(𝑥) ln
(
𝑃(𝑥)
𝑄(𝑥)

)
(2)

Now, suppose we have some randomized algorithmM with inputs 𝑎, 𝑏. Let 𝑃,𝑄 represent the output
distributions ofM(𝑎),M(𝑏) respectively. Let Lmax refer to the maximum privacy loss observed for
any element 𝑥.
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(2) =
∑︁
𝑥∈X

𝑃(𝑥) ln
(
P(M(𝑎) = 𝑥)
P(M(𝑏) = 𝑥)

)
=
∑︁
𝑥∈X

𝑃(𝑥)L (𝑥 )M(𝑎) ∥ M(𝑏)

≤
∑︁
𝑥∈X
Lmax

Because 𝑃 is a probability distribution, we have that 𝑃(𝑥) ∈ [0, 1]. Then privacy loss is an upper
bound because the relative entropy is equal to the privacy loss multiplied by 𝑃(𝑥) by definition. □

Proof of Theorem 15. Observe that the privacy loss is negligible in 𝜆 with overwhelming probability.
This means that the relative entropy between the outputs of 𝑀𝑢 and 𝑀𝑐 is negligible by Lemma 22.
By Remark 21, there is no algorithm an adversary can use to increase the relative entropy. So then
𝑀𝑢 and 𝑀𝑐 are computationally indistinguishable.

We now show that our bounds are tight. Suppose that 𝛿 > negl(𝜆). Then the privacy loss guarantee
does not hold with overwhelming probability and an adversary could obtain a query result with
non-negligible privacy loss after a polynomial number of queries.

Alternatively, suppose that 𝜖 > ln (1 + negl (𝜆)). Then the privacy loss guarantee is at least polyno-
mial in 𝜆 and an adversary could obtain query results that lead to a non-negligible privacy loss after a
polynomial number of queries. □

Proof of Corollary 16. We follow the proof of Theorem 15. Observe that the privacy loss is negligible
in 𝜆 with overwhelming probability. This means that the relative entropy between the outputs of 𝑀𝑢

and 𝑀𝑐 is negligible. But 𝑀𝑢 is the same model as 𝑀𝑜, with fresh randomness for the differential
privacy mechanism. So 𝑀𝑢 and 𝑀𝑜 are also computationally indistinguishable.

In other words, this means that util (𝑀𝑜)
𝑐≈ util (𝑀𝑢). Since C does not know a priori the choice

of A, unlearn must be indistinguishable for all possible choices. So then 𝑀𝑢

𝑐≈ 𝑀𝑐 for D 𝑓 = D.
That is to say that 𝑀𝑢

𝑐≈ learn
(
init

(
1𝜆

)
, ∅
)
. But we because util(𝑀𝑜)

𝑐≈ util(𝑀𝑢) we also
have util (𝑀𝑜)

𝑐≈ util
(
learn

(
init

(
1𝜆

)
, ∅
) )

, which is bounded by a small 𝜖 and thus not
meaningful. □
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