

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MIRROR MIRROR ON THE WALL, HAVE I FORGOTTEN IT ALL?

A NEW FRAMEWORK FOR EVALUATING MACHINE UNLEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Machine unlearning methods take a model trained on a dataset \mathcal{D} and a forget set \mathcal{D}_f then attempt to produce a model as if it had only been trained on $\mathcal{D} \setminus \mathcal{D}_f$. We empirically show that an adversary is able to distinguish between a mirror model (a control model produced by retraining without the data to forget) and a model produced by an unlearning method across representative unlearning methods (Foster et al., 2023; Graves et al., 2020; Chundawat et al., 2023; Zhang et al., 2024). We build distinguishing algorithms based on evaluation scores in the literature. We contribute a strong formal definition for machine unlearning called *computational unlearning*. Computational unlearning is defined as the inability for an adversary to distinguish between a mirror model and a model produced by an unlearning method. Our computational unlearning definition allows us to prove feasibility results and demonstrate that current methodology in the literature —such as differential privacy — fundamentally falls short of achieving computational unlearning. We leave achieving practical computational unlearning for future work.

1 INTRODUCTION

Machine learning models require massive amounts of training data. Data is collected by scraping publicly available web content (David, 2023; Mehrotra & Coutts, 2024; Weatherbed, 2024), purchasing access to private databases (Knibbs, 2024; OpenAI, 2024b; 2023b; David, 2024; Springer, 2023; OpenAI, 2023a; Atlantic, 2024; OpenAI, 2024a), and collecting data on their own to assemble training datasets (Schuhmann et al., 2022; Touvron et al., 2023; Brown et al., 2020). Due to the massive scale, datasets cannot be thoroughly vetted and may contain data that is copyrighted, inaccurate, protected, or contain otherwise undesirable information.

Legal protections exist for those who wish to protect their privacy, copyrighted content, and financial history in multiple countries. Examples include the EU GDPR (right to be forgotten) (European Parliament & Council of the European Union), US DMCA (copyright infringement takedown) (United States Congress, 1996), US FCRA (corrections to credit history) (United States Congress, 1970), and US HIPAA (corrections to personal health data) (Centers for Medicare and Medicaid Services, 1996). Specific instances of training data may also be illegal on their own: for example, it is illegal to possess child sexual abuse material (CSAM) in the US and in many other jurisdictions. Despite this, popular datasets (Schuhmann et al., 2022) used to train models like Stable Diffusion contained illegal CSAM (Thiel, 2023). Further, prior work has established the threat of data poisoning attacks that create backdoors in models (Goldwasser et al., 2022; Gu et al., 2019; Li et al., 2022). This means that model data may be intentionally corrupted by an adversary.

These threats can be addressed by re-training the model from scratch without the offending data. However, since training large models is capital and computationally intensive, a major area of interest is *machine unlearning*: efficiently removing traces of the offending data, known as the as the *forget set*, without training a new model from scratch (a *control* model) (Cao & Yang, 2015; Abadi et al., 2016; Golatkar et al., 2019; Bourtoule et al., 2020; Graves et al., 2020; Gupta et al., 2021; Ullah et al., 2021; Nguyen et al., 2022; Chundawat et al., 2023; Foster et al., 2023). However, as other

054 authors have noted, there is still work to be done on rigorous evaluations of unlearning (Hayes et al.,
055 2024).

057 1.1 OUR CONTRIBUTIONS 058

059 This work consists of three major contributions: (1) a new formal adversary specification and
060 framework for evaluating unlearning, (2) empirical evaluation of inexact unlearning methods and
061 (3) several feasibility results on achieving computational unlearning. We leave achieving practical
062 computational unlearning to future work.

063 **Computational unlearning framework.** Though unlearning is understood to be the process
064 of removing information learned from specific data points, there is need for rigorous adversarial
065 definitions to evaluate unlearning. Our primary contribution is a new formal definition and framework
066 for evaluating unlearning called *computational unlearning* that we detail in §3. In brief, computational
067 unlearning tests the ability of an adversary to distinguish between a model produced by an unlearning
068 method (an *unlearned* model) and a model trained from scratch with the forget set removed (a *control*
069 or *mirror* model). If the adversary is only able to do so with negligible probability, then we say
070 that the unlearning method achieves computational unlearning. Because the adversary is unable
071 to distinguish between the control and unlearned models, it follows that all information about the
072 forget set has been “deleted” by the unlearning method. The game is defined in both a white-box (i.e.
073 adversary has full access to model parameters) and a black-box (i.e. adversary only has API access to
074 model) setting. This is distinct from and complementary to the the definition posed by Hayes et al.
075 (Hayes et al., 2024), which is focused on privacy leakage and distinguishing between the forget set
076 and the set of data the model has never seen. We pose a stronger adversary that controls the original
077 training set and selects the forget set.

078 **Many unlearning methods do not achieve indistinguishability.** We construct two scoring methods
079 MIA Score and KLDScore in §4.1 which an adversary can use to distinguish between an unlearned
080 model and a model that has never seen the forget set. We study previously proposed unlearning
081 methods (Foster et al., 2023; Graves et al., 2020; Chundawat et al., 2023; Zhang et al., 2024) and
082 show that each fail to achieve computational unlearning for ResNet-18 models (He et al., 2015b)
083 trained on CIFAR-10 (Krizhevsky, 2009) in §4. We also experiment with how distinguishing rates
084 are affected by the forget set size and unlearning method hyperparameters.

085 **Theoretical implications of computational unlearning.** We describe several implications of our
086 computational unlearning framework in §5. We first show that any deterministic computational
087 unlearning algorithms must achieve *perfect unlearning* (i.e. it must produce the exact same model as
088 retraining) and discuss implications for heuristic and certified removal unlearning methods. Second,
089 we show that using differential privacy to achieve black-box computational unlearning leads to utility
090 collapse (i.e. utility must be equivalent to a model that is randomly initialized).

092 2 MOTIVATION

093 2.1 ADDRESSING OVERFORGETTING AND UNDERFORGETTING

094 Many machine unlearning works attempt to justify their approach by optimizing some *unlearning*
095 *score*. Membership inference attack (MIA) scores, formalized by Shokri et al. (Shokri et al., 2017),
096 are a common way to evaluate the performance of machine unlearning algorithms in literature and
097 attempt to predict if a model was trained with a given data point. Applying MIA scores to evaluate
098 unlearning makes intuitive sense: if a model has unlearned data it should have a low MIA scores,
099 similar to a model that never saw the data. As a result, many heuristic machine unlearning proposals
100 are specifically designed to minimize these MIA scores (Graves et al., 2020; Chundawat et al., 2023;
101 Foster et al., 2023).

102 Framing machine unlearning in a score-based manner is attractive: it provides an easy way to facilitate
103 comparison, and it also satisfies intuitive beliefs about how the model should behave after unlearning.
104 However, score-based definitions do not address consequences arising from discrepancies in knowl-
105 edge between an unlearned model and a control model. These discrepancies can be categorized as

108 *overforgetting* and *underforgetting*. Essentially, overforgetting results in losing too much information,
109 while underforgetting results in retaining too much information. Unlearning methods that are prone
110 to overforgetting produce models that perform worse on the retained information than a control
111 model, while unlearning methods prone to underforgetting produce models that perform better on the
112 retained information than a control model.

113 The consequences of this issue can be seen when applying unlearning to backdoor attacks (Goldwasser
114 et al., 2022; Li et al., 2022). Unlearning is a possible defense as a good unlearning method should
115 remove all knowledge of the backdoor from a model. However, prior work has shown that existing
116 unlearning methods fail to actually remove a backdoor from a model (Pawelczyk et al., 2025). In
117 other words, these unlearning methods are prone to *underforgetting* and thus can not be trusted to
118 fully remove a backdoor from a model.

120 2.2 MACHINE UNLEARNING IS INDISTINGUISHABILITY

121 We claim that unlearning needs a new definition that accounts for the aforementioned issues. An
122 unlearning method should produce a model that is *indistinguishable* from a control model. This
123 indistinguishability implies that the unlearned model has not overforgotten or underforgotten.

124 Additionally, how indistinguishability is measured should be meaningful — better unlearning methods
125 will produce unlearned models that are *harder* to distinguish from a control model. This idea is not
126 new and features in prior work (Zhang et al., 2024; Guo et al., 2023; Foster et al., 2023; Hayes et al.,
127 2024) but is not measured directly. We propose doing so here. In other words, no efficient (p.p.t., or
128 probabilistic polynomial time) adversary \mathcal{A} should be able to distinguish between a model produced
129 by an unlearning method and a model trained without the forget set.

130 **Motivation with k -NN.** Observe that our desired functionality is readily apparent in the k -nearest
131 neighbors (k -NN) algorithm (Fix & Hodges, 1989). Since k -NN requires memorizing all training
132 data it immediately admits an unlearning algorithm: simply delete the training examples you wish to
133 forget. This produces a model that is indistinguishable from a control.

137 3 FORMALIZING UNLEARNING

138 We propose *computational machine unlearning* as a formal way to capture that machine unlearning is
139 indistinguishability. Unlike prior machine unlearning scores, our definition is defined as a security
140 game, inspired by the cryptographic notion of semantic security and indistinguishability under
141 chosen plaintext attack (IND-CPA) (Boneh & Shoup, 2023). Instead of considering an MIA score,
142 computational unlearning considers the ability of an adversary to distinguish between an unlearned
143 model and a control model.

146 3.1 PRELIMINARIES

147 Let \mathcal{U} be the universe of all possible data, and $d \in \mathcal{U}$ be a particular data point. Let $\mathcal{D} \subseteq \mathcal{U}$ be our
148 entire training dataset with $\mathcal{D}_f \subseteq \mathcal{D}$ be the forget set. Let \mathcal{H} be our hypothesis space of possible
149 models, with $h \in \mathcal{H}$ being a particular model.

150 **Definition 1** (Learning scheme). We formally define a *learning scheme* as a tuple of probabilistic
151 polynomial time (p.p.t.) algorithms (`init`, `learn`, `infer`):

- 152 • `init`(1^λ) $\rightarrow h$: randomly samples some initial model h . The notation 1^λ simply denotes
153 that there are λ copies of the symbol 1 written on the input tape of the Turing machine and 0
154 in every other location. This ensures that `init` runs in polynomial time with respect to λ , a
155 cryptographic formality.
- 156 • `learn`(h, \mathcal{D}) $\rightarrow h$: given some initial model h , performs some model update process with
157 respect to the training set \mathcal{D} .
- 158 • `infer`(h, d) $\rightarrow \mathbb{R}^n$: performs some inference procedure with the given model h on the
159 provided data point d .

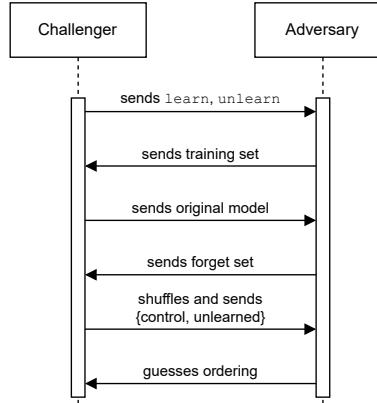


Figure 1: Overview of the security game for computational unlearning.

Definition 2 (Forgetting learning scheme). We likewise define a *forgetting learning scheme* as a tuple of p.p.t algorithms $(\text{init}, \text{learn}, \text{infer}, \text{unlearn})$ such that it is a learning scheme with an additional $\text{unlearn}(h, \mathcal{D}_f) \rightarrow h$ algorithm.

Definition 3 (Negligible function). We define $\text{negl}(\lambda)$ to be a function that is *negligible* in terms of a security parameter λ . We borrow the definition of a negligible function from cryptography — namely, that a function $f : \mathbb{Z}_{\geq 1} \rightarrow \mathbb{R}$ is negligible if and only if for all $c > 0$ we have $\lim_{n \rightarrow \infty} f(n)n^c = 0$.

3.2 COMPUTATIONAL UNLEARNING

We now formally define *computational unlearning* in both white-box and black-box settings.

Definition 4 (White-Box Computational Unlearning). We consider the following experiment:

1. C sends the description of the forgetting learning scheme (i.e. the `learn` and `unlearn` algorithms).
2. \mathcal{A} chooses \mathcal{D} and sends it to C .
3. C computes $M_o \leftarrow \text{learn}(\text{init}(1^\lambda), \mathcal{D})$ and sends $(M_o, \text{learn}, \text{unlearn}, \mathcal{D})$ to \mathcal{A} .
4. \mathcal{A} selects a forget set $\mathcal{D}_f \subset \mathcal{D}$ and sends \mathcal{D}_f to C .
5. C computes $M_u \leftarrow \text{unlearn}(M_o, \mathcal{D}_f)$ and computes $M_c \leftarrow \text{learn}(\text{init}(1^\lambda), \mathcal{D} \setminus \mathcal{D}_f)$.
6. C samples a random bit $b \xleftarrow{\$} \{0, 1\}$. If $b = 0$, C sends $[M_c, M_u]$. If $b = 1$, C sends $[M_u, M_c]$.
7. \mathcal{A} computes a guess b' and sends b' to C . \mathcal{A} wins the game if $b' = b$.

We say that an unlearning algorithm is a *white-box computational machine unlearning algorithm* if

$$\mathbb{P}(b' = b) < \frac{1}{2} + \text{negl}(\lambda)$$

We denote this computational indistinguishability by saying $M_u \stackrel{c}{\approx} M_c$. This game is illustrated in Figure 1.

Definition 5 (Black-Box Computational Unlearning). We consider the white-box computational unlearning experiment from Definition 4, modifying item 6 as follows: C samples a random bit $b \xleftarrow{\$} \{0, 1\}$. If $b = 0$, C sends $[\mathcal{O}_{M_c}, \mathcal{O}_{M_u}]$ where \mathcal{O} is an oracle that allows \mathcal{A} to call `infer` on the underlying model. If $b = 1$, C sends $[\mathcal{O}_{M_u}, \mathcal{O}_{M_c}]$.

216 As with Definition 4, we say that an unlearning algorithm is a *black-box computational machine*
 217 *unlearning algorithm* if we have $\mathbb{P}(b' = b) < \frac{1}{2} + \text{negl}(\lambda)$.
 218

219 *Remark 6* (Threat Model). This definition intuitively captures a setting inspired by the GDPR process:
 220 we assuming the adversary is a user who can select which data should be deleted (i.e. the set of
 221 items to be deleted is adversarially-controlled) as in (Hu et al., 2024). We also acknowledge that this
 222 game defines a very strong adversary and that a real-world adversary may not have access to the full
 223 training set, the description of the unlearning algorithm, or other information provided in this game.
 224 However, each of these alternatives envisions a strictly *weaker* adversary than our computational
 225 learning game, meaning that an unlearning method that achieves computational unlearning would
 226 still be indistinguishable from a control model in these scenarios.
 227

228 4 EMPIRICAL RESULTS

229 We now present empirical distinguishers for \mathcal{A} to evaluate if unlearning methods from literature
 230 achieve computational unlearning. We experimentally demonstrate the effectiveness of these distin-
 231 guishing algorithms on heuristic unlearning and certified removal methods.
 232

233 4.1 DISTINGUISHER SCORES

235 Each distinguisher for \mathcal{A} uses a *scoring function* to separate M_c from M_u . The scoring function takes
 236 in the original model M_o , a candidate model $M \in \{M_1, M_2\}$, the training set \mathcal{D} , and the forget set
 237 \mathcal{D}_f . The scoring function then outputs a value s that is used to determine if the candidate model is
 238 M_u or M_c .
 239

240 **Scoring with membership inference attacks.** As described in §2.1, membership inference attacks
 241 (MIA) are a common method for evaluating the performance of a given unlearning algorithm and
 242 several unlearning methods are justified by reducing them as much as possible. However, we are
 243 able to leverage these scores to distinguish an unlearned model from a control model *because the*
 244 *unlearning method will often produce models whose MIA scores are out of distribution*. We propose
 245 that an unlearning algorithm should achieve similar MIA scores to a model that never saw the forget
 246 set rather than attempting to absolutely minimize it. In experiments, we use the approach of Shokri et
 247 al. (Shokri et al., 2017) for computing MIA scores using the same implementation as Foster et al.
 248 (Foster et al., 2023). We refer to this scoring algorithm as **MIAScore**.
 249

250 **Scoring with Kullback-Leibler divergence.** We also present a novel scoring method **KLDScore**.
 251 We drew inspiration from the fact that Certified Removal bounds the KL-Divergence between different
 252 models. To calculate the score, \mathcal{A} calculates the KL-Divergence between the inferences of the original
 253 model M_o and the candidate model M (such as on instances in or near the forget set). This provides a
 254 measure of how different the behaviors of M and M_o are. In practice, we find that models produced
 255 by unlearning methods have much lower divergence from the original model than a control.
 256

$$256 \text{KLDScore}(M_o, M, \mathcal{D}, \mathcal{D}_f) = \sum_{x_i \in \mathcal{D}_f} D_{\text{KL}}(M(x_i + \mathcal{N}(0, 0.1)) \parallel M_o(x_i + \mathcal{N}(0, 0.1))) \quad (1)$$

257 where $\mathcal{N}(0, 0.1)$ represents Gaussian noise with mean 0 and variance 0.1.
 258

260 **Choice of decision rule.** \mathcal{A} will compute b' using the results from one of the aforementioned
 261 scoring algorithms. By Definitions 4 and 5, \mathcal{A} is free to use prior knowledge of `learn`, `unlearn`, \mathcal{D} ,
 262 and \mathcal{D}_f in the decision rule.¹
 263

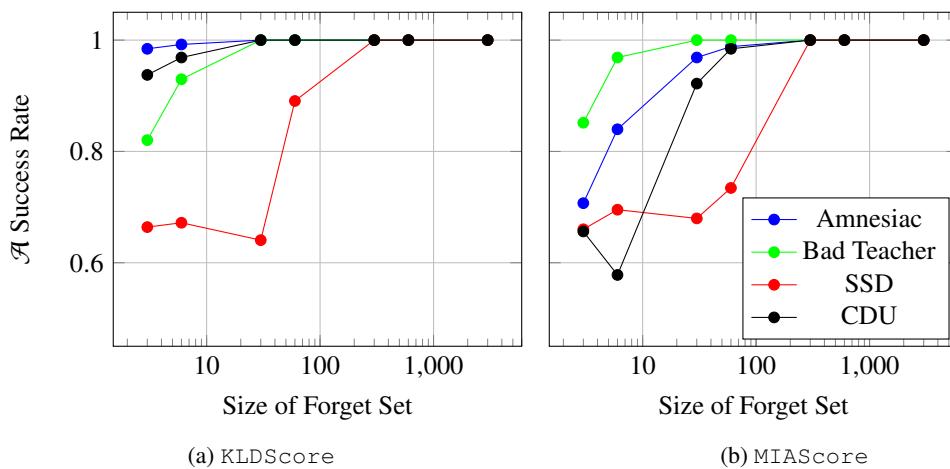
264 4.2 EXPERIMENTAL RESULTS

266 We evaluate the distinguishers via their success rates in differentiating between M_u and M_c . For this,
 267 we present our findings from two experiments: one varying the size of the forget set \mathcal{D}_f and the
 268 other varying the σ parameter from Certified Deep Unlearning. We also show that unlearned models
 269

¹See Kerckhoffs's principle in cryptography.

270 which obtain closer scores to a control model are less prone to underforgetting. All experiments were
 271 run using an Intel Xeon Gold 6330 and a NVIDIA A40. All results are statistically significant (i.e.
 272 a 95% confidence interval under a Beta distribution with the Jeffries prior does not contain 50%).
 273 Implementation details for these experiments can be found in Appendix B.
 274

275 **Forget set size.** We evaluated the effect of the forget set size on four different unlearning techniques.
 276 We used three heuristic methods and the approximate technique Certified Deep Unlearning (CDU),
 277 all discussed in Appendix A. For each method, a random subset of \mathcal{D} was chosen as the forget set.
 278 We varied the forget set size to evaluate its effect on the ability of \mathcal{A} to distinguish between M_u
 279 and M_c and correctly guess b' using the distinguishing algorithms discussed above. We ran 128
 280 trials, each with a different randomly selected forget set. We found that with increased forget set size
 281 the adversary was able to correctly guess b' with higher frequency, but always maintained above a
 282 60% success rate at every forget set size. As we hypothesized, many heuristic unlearning techniques
 283 over-minimized MIAScore during their process of unlearning: for all heuristic unlearning methods
 284 the decision rule assigns a lower MIAScore score to M_u (except for SSD (Foster et al., 2023) with
 285 greater than 30 forget set examples).
 286

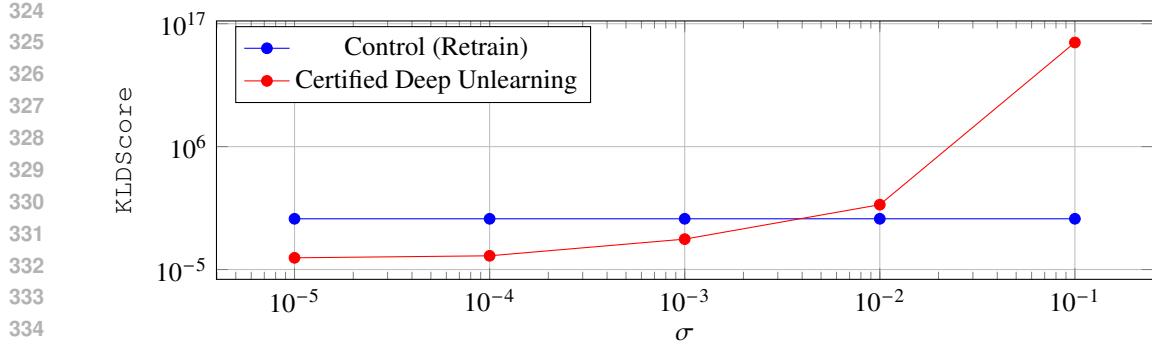


300 Figure 2: Forget set size against adversary success rate using KLDScore and MIAScore distin-
 301 guishers.
 302

303 We also explored *classwise* unlearning, where an entire class in \mathcal{D} is chosen as the forget set. We
 304 found it always possible to distinguish in this setting (i.e. 100% adversary success rate under both
 305 distinguishers). This is unsurprising given our results on the impact of forget set size. Recall that
 306 CIFAR-10 has 50,000 images in the training set, distributed evenly across 10 classes; forgetting an
 307 entire class amounts to a forget set size of 5,000 (Krizhevsky, 2009).
 308

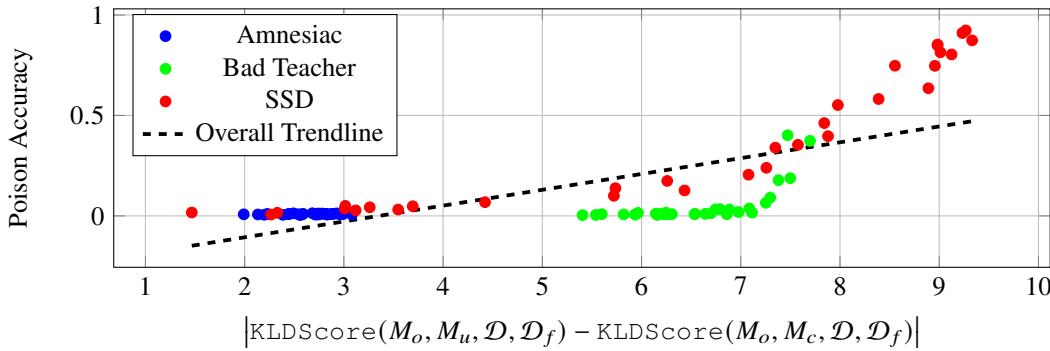
309 **Dependence on σ .** We additionally explored the relationship between computational unlearning
 310 and certified removal’s privacy parameters. For this we examined \mathcal{A} ’s KLDScore for certified deep
 311 unlearning (CDU) from Zhang et al. (Zhang et al., 2024) with different hyperparameters. The CDU
 312 method is based on a single hyperparameter σ , derived from ϵ and δ values, that represents the
 313 magnitude of noise used. We follow the hyperparameters from the CDU published experiments
 314 (Zhang et al., 2024), including a random forget set of 1000 data points. We then varied σ from 10^{-5}
 315 to 10^{-1} in powers of 10 running 128 trials at each value.
 316

317 In our experiments we found that the adversary was able to distinguish using KLDScore with
 318 100% accuracy for all choices of σ . We found as σ increases the unlearned model’s KLDScore
 319 also increases (see Figure 3). Since the control model has no dependency on σ , an adversary can
 320 distinguish with extremely high success rate by choosing a decision rule appropriate for the chosen
 321 value of σ . This relationship does imply there is a point of intersection (between 0.001 and 0.01)
 322 where the KLDScore score for M_u and M_c should be very close, making it harder to distinguish
 323 using KLDScore. We believe understanding the intersection constitutes an interesting topic for
 future work.
 324



324
325
326
327
328
329
330
331
332
333
334
335
336 Figure 3: Certified Deep Removal against KLDScore for different values of σ .
337

338 **Closer scores are better.** While perfect indistinguishability remains out of reach, progress can be
339 made by producing unlearned models that are *closer* to a control. We show that unlearning methods
340 which achieve distinguisher scores closer to that of the control model are less prone to the negative
341 consequences described in §2.1. We use the BadNets attack (Gu et al., 2019) with a fixed poison rate
342 of 10% on CIFAR-10 (Krizhevsky, 2009). We tested the unlearning methods specified in Appendix
343 A, comparing the closeness of M_u, M_c to the accuracy of M_u on poisoned data. This closeness was
344 measured via the absolute value of the difference between the KLDScore scores of M_u and M_c . As
345 we see in Figure 4, larger deviations are directly correlated with higher performance on poisoned
346 data.



347
348
349
350
351
352
353
354
355
356
357
358 Figure 4: Absolute difference in KLDScore against accuracy of data on poisoned samples. The
359 trendline (black) was computed with ordinary least-squares and has a t -value of 9.864, indicating that
360 there is over a 95% probability that unlearned models with closer KLDScore scores to the control
361 have better forgotten the backdoor.
362

365 5 THEORETICAL ANALYSIS

366 We now show several interesting consequences of our computational unlearning definition. or proofs
367 of all the following theorems and corollaries, see Appendix C.

368 We begin by showing that k -NN admits a white-box computational unlearning algorithm in line with
369 the technical intuition from §2.2.

370 **Theorem 7** (k -NN admits white-box computational unlearning). *There is an efficient white-box*
371 *computational unlearning algorithm for k -NN models.*

372 We first show that for entropic machine learning algorithms (e.g. stochastic gradient descent) there
373 are no deterministic algorithms that can achieve computational unlearning. This result means that
374 many heuristic unlearning methods can *never* admit computational unlearning algorithms. Secondly,
375 we show that differentially private algorithms can achieve computational unlearning at the cost of
376 collapsing model utility.

378 5.1 DETERMINISTIC COMPUTATIONAL UNLEARNING DOES NOT EXIST
 379

380 We now show that a forgetting learning scheme that is entropic must have a randomized unlearning
 381 algorithm. Additionally, we show that a forgetting learning scheme that is deterministic must
 382 achieve perfect unlearning. Because forgetting learning schemes that are entropic must be
 383 randomized and because forgetting learning schemes that are deterministic must be perfect, we say
 384 that *deterministic computational learning does not exist*.

385 Before beginning, we define *entropic learning schemes* and *perfect unlearning*.

386 **Definition 8** (Deterministic learning scheme). A learning scheme is deterministic if the distribution
 387 of models produced by $\text{learn}(\text{init}(1^\lambda), \mathcal{D})$ has Shannon entropy of 0.

388 **Definition 9** (Entropic learning scheme). A learning scheme is *h-entropic* if the distribution of
 389 models produced by $\text{learn}(\text{init}(1^\lambda), \mathcal{D})$ has Shannon entropy greater than or equal to h . In the
 390 absence of a particular value specified for h , we take h to be 1 bit.

391 *Remark 10.* If a learning scheme is entropic, it cannot be deterministic. For all practical purposes,
 392 learning schemes are either deterministic (i.e. k -nearest neighbors) or entropic (i.e. randomly initialized
 393 neural nets trained under stochastic gradient descent).

394 **Definition 11** (Perfect unlearning). We say a forgetting learning scheme achieves *perfect unlearning*
 395 algorithm if, for all $M = \text{learn}(\text{init}(1^\lambda), \mathcal{D})$, the following always holds:

$$396 \text{learn}(\text{init}(1^\lambda), \mathcal{D} \setminus \mathcal{D}_f) = \text{unlearn}(M, \mathcal{D}_f)$$

397 This is to say, *unlearn* is perfect if it produces *exactly the same* model as retraining on the retain
 398 set.

401 Recall that in our definition, \mathcal{A} is given the description of the unlearning method (*unlearn*) and
 402 also has access to the original model M_o . Intuitively, this means that an adversary can simply *run the*
 403 *unlearning method on its own*.

404 Because the unlearning algorithm is deterministic and the learning scheme is entropic, this means
 405 that only one of the two models will exactly match the adversary's own computed result with high
 406 probability and allow the adversary distinguish with non-negligible probability.

407 **Theorem 12.** *There are no deterministic computational unlearning algorithms for entropic learning
 408 schemes.*

410 We now show that a forgetting learning scheme that is deterministic and achieves computational
 411 unlearning must be perfect. The intuition for this result is similar: the adversary has access to *learn*,
 412 the description of the learning algorithm, and has access to the $\mathcal{D} \setminus \mathcal{D}_f$. This means that the adversary
 413 can compute the control model on their own, use its own control model to identify the control model
 414 provided by the challenger, and distinguish with non-negligible probability.

415 **Theorem 13.** *Let \mathcal{L} be a forgetting learning scheme that is deterministic. Then if it satisfies the
 416 computational unlearning notion of Definitions 4 and 5 it must perfectly unlearn under Definition 11.*

417 **Remark 14** (Viability of computational unlearning methods). These results constrain the space of
 418 learning algorithms that are compatible with unlearning. To reiterate: Theorem 12 shows that entropic
 419 learning schemes that are forgetting and achieve computational unlearning must have a randomized
 420 unlearning method. In the opposite direction, no deterministic learning algorithms can support
 421 entropic unlearning algorithms. Any deterministic learning scheme that is forgetting and achieves
 422 computational unlearning must implicitly realize a *perfect* unlearning scheme, as noted in Theorem
 423 13. As a consequence of these findings, any forgetting learning schemes that achieves computational
 424 unlearning must either be perfect, or both the learning and unlearning process must inherently be
 425 randomized. Note that Certified Deep Unlearning (Zhang et al., 2024) and many heuristic unlearning
 426 methods we studied in §4 are not randomized and are not perfect. Thus, they can never achieve
 427 computational unlearning.

428
 429 5.2 COMPUTATIONAL UNLEARNING FROM DIFFERENTIAL PRIVACY COLLAPSES UTILITY
 430

431 One natural approach to constructing computational unlearning uses techniques from differential
 432 privacy (Dwork & Roth, 2014).

432 While differentially private learning algorithms imply the existence of black-box computational
433 unlearning, the parameters choices required to achieve computational unlearning will lead to utility
434 collapse for the resulting models. We show that the ϵ and δ parameters must be phrased in terms of λ
435 and that values needed to obtain security imply unacceptably high utility loss.

436 We now show how to construct black-box computational unlearning (Definition 5) from differential
437 privacy. There are two main ways to accomplish this: to use differential privacy directly or to
438 aggregate the outputs of models in a differentially private way. The theorem below captures both of
439 these cases.

440 **Theorem 15** (Differentially private computational unlearning). *Let \mathcal{L} be a forgetting learning scheme
441 that achieves black-box computational unlearning. Let unlearn simply output the original model
442 (with fresh randomness for the differentially private mechanism). Then learn and unlearn satisfy
443 the definition of black-box computational unlearning (Definition 5) if and only if $\delta \leq \text{negl}(\lambda)$ and let
444 $\epsilon \leq \ln(1 + \text{negl}(\lambda))$.*

445 Unfortunately this approach also has the following undesirable result:

446 **Corollary 16.** *Let \mathcal{L} be a forgetting learning scheme that achieves black-box computational unlearn-
447 ing, with learn implemented as described in Theorem 15. Then M_u and M_o are also computationally
448 indistinguishable. This implies that the utility of M_o is equivalent to the utility of M_u .*

449 **Remark 17** (Black-box infeasibility implies white-box infeasibility.). The security notion of white-
450 box computational unlearning in Definition 4 is strictly stronger than the black-box computational
451 unlearning of Definition 5. Thus, the an infeasibility result for black-box computational unlearning
452 immediately implies an infeasibility result for white-box computational unlearning.

453 We note that most use cases of differentially private `infer` algorithms are designed to support a
454 number of queries bounded by a constant. One possible interpretation of our result is that we assume
455 an adversary is able to query the model some polynomial number of times.

456 We additionally stress that Theorem 15 and Corollary 16 only consider applying differential privacy
457 to the `infer` algorithm of a learning scheme. Our result does not necessarily imply a utility collapse
458 for a forgetting learning scheme that achieves computational unlearning with a differentially private
459 `learn` algorithm.

462 6 CONCLUSION

463 In summary, we have proposed computational unlearning, a new framework for evaluating machine
464 unlearning. Computational unlearning is satisfied by an unlearning method if the output of the
465 unlearning method is indistinguishable from a mirror (control) model. We rigorously define indis-
466 tinguishability in terms of a novel two-party cryptographic protocol which captures an adversary’s
467 ability to distinguish between two models. Computational unlearning provides both empirical and
468 theoretical contributions to the field of unlearning by improves upon prior evaluation methods, such
469 as membership inference attack (MIA) scores.

470 We empirically showed that several machine unlearning methods from literature (Foster et al., 2023;
471 Graves et al., 2020; Chundawat et al., 2023; Zhang et al., 2024) do not achieve computational
472 unlearning by presenting multiple algorithms that allow an adversary to distinguish between the
473 model produced by an unlearning method and a control model.

474 We have identified several theoretical implications that naturally follow from our formal definition
475 of computational unlearning. For example, all unlearning methods that meet our definition of
476 computational unlearning must be randomized; there are no deterministic computational unlearning
477 methods despite there being several deterministic unlearning methods proposed in prior work. We
478 also proved that building computational machine unlearning using differential privacy techniques
479 leads to utility collapse.

480 We believe there are several directions for future work. For example, relaxations of our computational
481 unlearning framework — such as letting the challenger delete additional information beyond what is
482 selected by the adversary — may be worth exploring. Additionally, we believe future work should
483 consider how to apply unlearning methods to align generative models and explore how to incorporate
484 notions of foundation models into computational unlearning.

486 REFERENCES
487

488 Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and
489 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC*
490 *Conference on Computer and Communications Security*, CCS'16. ACM, 2016. doi: 10.1145/2976749.2978318. URL <http://dx.doi.org/10.1145/2976749.2978318>.

492 The Atlantic. The atlantic announces product and content partnership with openai,
493 2024. URL <https://www.theatlantic.com/press-releases/archive/2024/05/atlantic-product-content-partnership-openai/678529/>.

495 Dan Boneh and Victor Shoup. A graduate course in applied cryptography, 2023. URL <http://toc.cryptobook.us/book.pdf>.

498 Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin
499 Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning, 2020.

500 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
501 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
502 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
503 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
504 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
505 Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL <https://arxiv.org/abs/2005.14165>.

508 Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In *2015*
509 *IEEE Symposium on Security and Privacy*, pp. 463–480, 2015. doi: 10.1109/SP.2015.35.

510 Centers for Medicare and Medicaid Services. The Health Insurance Portability and Accountability
511 Act of 1996 (HIPAA), 1996. URL <http://www.cms.hhs.gov/hipaa/>.

513 Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Can bad teaching
514 induce forgetting? unlearning in deep networks using an incompetent teacher, 2023. URL
515 <https://arxiv.org/abs/2205.08096>.

516 Emilia David. Now you can block openai’s web crawler, 2023. URL <https://www.theverge.com/2023/8/7/23823046/openai-data-scrape-block-ai>.

519 Emilia David. Vox media and the atlantic sign content deals with openai,
520 2024. URL <https://www.theverge.com/2024/5/29/24167072/openai-content-copyright-vox-media-the-atlantic>.

523 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. *Found. Trends*
524 *Theor. Comput. Sci.*, 9(3–4):211–407, aug 2014. ISSN 1551-305X. doi: 10.1561/0400000042.
525 URL <https://doi.org/10.1561/0400000042>.

526 European Parliament and Council of the European Union. Regulation (EU) 2016/679 of the European
527 Parliament and of the Council. URL <https://data.europa.eu/eli/reg/2016/679/oj>.

530 Evelyn Fix and J. L. Hodges. Discriminatory analysis. nonparametric discrimination: Consistency
531 properties. *International Statistical Review / Revue Internationale de Statistique*, 57(3):238–247,
532 1989. ISSN 03067734, 17515823. URL <http://www.jstor.org/stable/1403797>.

533 Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without retraining
534 through selective synaptic dampening. *ArXiv*, abs/2308.07707, 2023. URL <https://api.semanticscholar.org/CorpusID:260900355>.

536 Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
537 Selective forgetting in deep networks. *2020 IEEE/CVF Conference on Computer Vision and Pattern*
538 *Recognition (CVPR)*, pp. 9301–9309, 2019. URL <https://api.semanticscholar.org/CorpusID:207863297>.

540 Shafi Goldwasser, Michael P. Kim, Vinod Vaikuntanathan, and Or Zamir. Planting undetectable
 541 backdoors in machine learning models, 2022.

542

543 Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning, 2020. URL
 544 <https://arxiv.org/abs/2010.10981>.

545 Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in
 546 the machine learning model supply chain, 2019. URL <https://arxiv.org/abs/1708.06733>.

547

548 Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens van der Maaten. Certified data removal from
 549 machine learning models, 2023. URL <https://arxiv.org/abs/1911.03030>.

550

551 Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and
 552 Chris Waites. Adaptive machine unlearning. In M. Ranzato, A. Beygelzimer,
 553 Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural In-*
 554 *formation Processing Systems*, volume 34, pp. 16319–16330. Curran Associates, Inc.,
 555 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/87f7ee4fdb57bdfd52179947211b7ebb-Paper.pdf.

556

557 Jamie Hayes, Ilia Shumailov, Eleni Triantafillou, Amr Khalifa, and Nicolas Papernot. Inexact
 558 unlearning needs more careful evaluations to avoid a false sense of privacy. *arXiv [cs.LG]*, March
 559 2024.

560

561 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 562 recognition, 2015a. URL <https://arxiv.org/abs/1512.03385>.

563

564 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 565 recognition, 2015b. URL <https://arxiv.org/abs/1512.03385>.

566

567 Hongsheng Hu, Shuo Wang, Jiamin Chang, Haonan Zhong, Ruoxi Sun, Shuang Hao, Haojin Zhu,
 568 and Minhui Xue. A duty to forget, a right to be assured? exposing vulnerabilities in machine
 569 unlearning services, 2024. URL <https://arxiv.org/abs/2309.08230>.

570

571 Kate Knibbs. Condé nast signs deal with openai, 2024. URL <https://www.wired.com/story/conde-nast-openai-deal/>.

572

573 Sangamesh Kodge, Gobinda Saha, and Kaushik Roy. Deep unlearning: Fast and efficient
 574 gradient-free class forgetting. *Trans. Mach. Learn. Res.*, 2024, 2023. URL <https://api.semanticscholar.org/CorpusID:271596242>.

575

576 Alex Krizhevsky. Learning multiple layers of features from tiny images. In *Learning Multiple*
 577 *Layers of Features from Tiny Images*, 2009. URL <https://api.semanticscholar.org/CorpusID:18268744>.

578

579 S. Kullback and R. A. Leibler. On Information and Sufficiency. *The Annals of Mathematical Statistics*,
 580 22(1):79 – 86, 1951. doi: 10.1214/aoms/1177729694. URL <https://doi.org/10.1214/aoms/1177729694>.

581

582 Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey, 2022. URL
 583 <https://arxiv.org/abs/2007.08745>.

584

585 Dhruv Mehrotra and Andrew Couts. Amazon is investigating perplexity over
 586 claims of scraping abuse, 2024. URL <https://www.wired.com/story/aws-perplexity-bot-scraping-investigation/>.

587

588 Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin, and
 589 Quoc Viet Hung Nguyen. A survey of machine unlearning, 2022.

590

591 OpenAI. Partnership with axel springer to deepen beneficial use of ai in journalism, 2023a. URL
 592 <https://openai.com/index/axel-springer-partnership/>.

593

OpenAI. A content and product partnership with vox media, 2023b. URL <https://openai.com/index/a-content-and-product-partnership-with-vox-media/>.

594 OpenAI. A content and product partnership with the atlantic, 2024a. URL <https://openai.com/index/enhancing-news-in-chatgpt-with-the-atlantic/>.

595

596

597 OpenAI. Openai partners with condé nast, 2024b. URL <https://openai.com/index/conde-nast/>.

598

599 Martin Pawelczyk, Jimmy Z. Di, Yiwei Lu, Ayush Sekhari, Gautam Kamath, and Seth Neel. Machine

600 unlearning fails to remove data poisoning attacks, 2025. URL <https://arxiv.org/abs/2406.17216>.

601

602 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi

603 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski,

604 Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev.

605 Laion-5b: An open large-scale dataset for training next generation image-text models, 2022.

606

607 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks

608 against machine learning models, 2017.

609

610 Axel Springer. Axel springer and openai partner to deepen beneficial use of ai in jour-

611 nalism, 2023. URL <https://www.axelspringer.com/en/ax-press-release/axel-springer-and-openai-partner-to-deepen-beneficial-use-of-ai-in-journalism>.

612

613 Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan S. Kankanhalli. Fast yet effective

614 machine unlearning. *IEEE Transactions on Neural Networks and Learning Systems*, 35:13046–

615 13055, 2021. URL <https://api.semanticscholar.org/CorpusID:244270535>.

616

617 David Thiel. Identifying and eliminating csam in generative ml training data and models, 2023. URL

618 <https://doi.org/10.25740/kh752sm9123>.

619

620 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée

621 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand

622 Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language

623 models, 2023.

624

625 Enayat Ullah, Tung Mai, Anup Rao, Ryan Rossi, and Raman Arora. Machine unlearning via

626 algorithmic stability, 2021. URL <https://arxiv.org/abs/2102.13179>.

627

628 United States Congress. Fair Credit Reporting Act of 1970 (FCRA), 1970. URL <https://www.govinfo.gov/content/pkg/STATUTE-84/pdf/STATUTE-84-Pg1114-2.pdf>.

629

630 United States Congress. Digital Millennium Copyright Act of 1998 (DMCA), 1996.

631 URL <https://www.govinfo.gov/content/pkg/PLAW-105publ304/pdf/PLAW-105publ304.pdf>.

632

633 Jess Weatherbed. Anthropic’s crawler is ignoring websites’ anti-ai scraping poli-

634 cies, 2024. URL <https://www.theverge.com/2024/7/25/24205943/anthropic-ai-web-crawler-claudebot-ifixit-scraping-training-data>.

635

636 Binchi Zhang, Yushun Dong, Tianhao Wang, and Jundong Li. Towards certified unlearning for deep

637 neural networks, 2024. URL <https://arxiv.org/abs/2408.00920>.

638

639

640

641

642

643

644

645

646

647

648 **A TAXONOMY OF UNLEARNING METHODS**
649

650 We categorize machine unlearning methods in one of three ways: as *heuristic unlearning*, *approximate*
651 *unlearning*, or *exact unlearning* as applied to classification models.
652

653 **Heuristic unlearning.** Unlike exact and approximate unlearning methods, *heuristic unlearning*
654 *methods* do not have any formal guarantees. However, they are typically much less expensive than
655 applying differential privacy or retraining the model (Foster et al., 2023; Golatkar et al., 2019;
656 Chundawat et al., 2023; Kodge et al., 2023; Tarun et al., 2021). These rely on various heuristics that
657 aim to minimize an unlearning “score” that attempts to capture how well a machine learning
658 model has forgotten. Membership inference attacks (MIA) (Shokri et al., 2017) are a popular scoring
659 method used in the literature.

660 We now describe three heuristic unlearning methods: *bad teacher unlearning* (Chundawat et al.,
661 2023), *amnesiac unlearning* (Graves et al., 2020), and *selective synaptic dampening (SSD)* (Foster
662 et al., 2023). Each of these heuristic unlearning methods are evaluated on membership inference
663 attack (MIA) scores; this is representative of many heuristic unlearning methods.

- 664 • *Bad teacher unlearning.* Bad teacher unlearning rests on the assumption that, after forgetting
665 a data point, a model’s behavior on that data point should be similar to that of a randomly
666 initialized model. To forget \mathcal{D}_f the model is “taught” to reflect the behavior of a randomly
667 initialized model (i.e. a *bad teacher*).
- 668 • *Amnesiac unlearning.* Amnesiac unlearning tries to reverse the changes to the model
669 incurred by training on \mathcal{D}_f by keeping track of all batches containing elements from \mathcal{D}_f ;
670 gradient *ascent* is performed on these training batches at forget time. This attempts to
671 “backtrack” towards a model that never had those gradient updates applied. We note that this
672 approximates the approaches taken by many exact unlearning methods.
- 673 • *Selective synaptic dampening (SSD).* SSD measures the \mathcal{D}_f -related information in each neu-
674 ron by using the Fisher information matrix (FIM). Neurons that contain lots of information
675 about examples in \mathcal{D}_f are “zeroed out” by scaling down their weights. One can think of
676 SSD as a pruning algorithm where “branches” of the network are “removed” based on their
677 “knowledge” of \mathcal{D}_f .
678

679 **Approximate unlearning.** An *approximate machine unlearning method* attempts to output a model
680 that is approximately equal to a model trained without the forget set with high probability. Approx-
681 imate machine unlearning methods are typically based on the notions of *differential privacy* (Dwork
682 & Roth, 2014) and *certified removal* (Guo et al., 2023).
683

684 **Differential privacy.** Differential privacy (Dwork & Roth, 2014) bounds the difference between
685 outputs of a randomized algorithm on similar data sets. In the context of machine learning, this can
686 be implemented as either (1) producing model parameters that are similar to the model parameters
687 produced by training on a similar dataset or (2) producing an inference that is similar to the inference
688 produced by a model trained on a similar dataset.

689 **Certified removal.** Certified removal draws inspiration from the aforementioned notion of dif-
690 ferential privacy, extending a white box privacy guarantee to hold for a learning and unlearning
691 method. Their aim is to bound the difference in model’s produced by the unlearning method and
692 the model’s produced by the learning method without a particular data point in the training set. We
693 refer the reader to Guo et al. for the formal definition (Guo et al., 2023). Zhang et al. (Zhang et al.,
694 2024) extend certified removal to non-linear models with non-convex objectives via *certified deep*
695 *unlearning (CDU)* in order apply a certified removal technique to deep neural networks. We evaluate
696 CDU in §4.
697

698 **Exact unlearning.** An *exact unlearning method* modifies the original model such that its outputs
699 exactly match a model trained without the forget set. We are unaware of any exact unlearning method
700 for neural networks that does not involve some degree of retraining. The most common approaches
701 rely on saving checkpoints of model state at train time (Bourtoule et al., 2020; Ullah et al., 2021).
Unlearning then consists of rewinding to a checkpoint that has not been influenced by the forget set

702 and then resuming training from that point without the forgotten data. This technique is essentially
 703 a time-space tradeoff; multiple checkpoints of the model must be saved out during training. The
 704 worst-case retraining cost may be equivalent to retraining the model from scratch (for example, if the
 705 forget set contains an element from the first batch). We do not study exact unlearning in this work.
 706

707 B IMPLEMENTATION DETAILS

709 All models used the ResNet-18 (He et al., 2015a) architecture. The original and control models were
 710 trained using stochastic gradient descent with momentum and weight decay. The hyperparameters
 711 used are as follows:

- 713 • Number of epochs: 50
- 714 • Batch size: 512
- 715 • Learning rate: 10^{-2}
- 716 • Weight decay: 5×10^{-4}

718 For SSD (Foster et al., 2023), we used a dampening constant of 1 and a selection weighting of 100.
 719 For all other methods (Chundawat et al., 2023; Graves et al., 2020; Zhang et al., 2024), we used the
 720 parameters specified in their original papers (with the exception of σ for CDU (Zhang et al., 2024),
 721 which we varied in §4).

723 C PROOFS

725 *Proof of Theorem 7.* Let `learn` be defined as normal for k -NN models. Let `unlearn` be defined
 726 as deleting the specified \mathcal{D}_f from the k -NN database. Observe that this produces the same database
 727 as `learn` on $\mathcal{D} \setminus \mathcal{D}_f$. Therefore, an adversary cannot distinguish between M_u and M_c with
 728 non-negligible advantage because they are exactly the same model. \square

730 C.1 DETERMINISTIC COMPUTATIONAL UNLEARNING DOES NOT EXIST

732 *Proof of Theorem 12.* Suppose that a forgetting learning scheme is entropic. Therefore,
 733 `learn`(`init`(1^λ), \mathcal{D}) is a randomized algorithm that samples some $h \in \mathcal{H}$ with minimum entropy
 734 greater than 1 bit. Let $\mathbb{P}(h)$ be the probability that `learn` samples a particular $h \in \mathcal{H}$ and let

$$735 \quad p_{\max} = \max_{\forall h \in \mathcal{H}} \mathbb{P}(h)$$

737 Now suppose that the challenger uses a deterministic `unlearn` algorithm. Then the adversary can
 738 also run `unlearn` on M_o and will win the game if $M_c \neq M_u$. Because the probability `learn`
 739 will output a particular model is bounded by p_{\max} , the probability that $M_c = M_u$ is also bounded
 740 by p_{\max} and the probability $M_c \neq M_u$ is at least $1 - p_{\max}$. Because `unlearn` is a computational
 741 unlearning algorithm, we must have that $1 - p_{\max} < \frac{1}{2} + \text{negl}(\lambda)$. We can rearrange symbols to get
 742 that $\text{negl}(\lambda) > \frac{1}{2} - p_{\max}$. But we have a contradiction because p_{\max} does not asymptotically approach
 743 $\frac{1}{2}$ as λ approaches infinity. \square

745 *Proof of 13.* Suppose that \mathcal{L} is a deterministic learning scheme. Therefore, it must output a single
 746 model for a given training set \mathcal{D} . Suppose \mathcal{L} is also forgetting and achieves computational unlearning.
 747 We now consider two possible cases: that `unlearn` is randomized and that it is deterministic.
 748

- 749 • *Randomized case:* Suppose that `unlearn` is a randomized algorithm that samples some
 750 $h \in \mathcal{H}$. Let $\mathbb{P}(h)$ be the probability that `unlearn` selects a particular $h \in \mathcal{H}$ and let

$$752 \quad p_{\max} = \max_{\forall h \in \mathcal{H}} \mathbb{P}(h)$$

755 Recall that in this scenario, the challenger uses a deterministic `learn` algorithm to produce
 M_c . Then the adversary can also run `learn` to produce M_c and will win the game if

756 $M_c \neq M_u$. Because the probability `unlearn` will output a particular model is bounded by
 757 p_{\max} , the probability that $M_c = M_u$ is also bounded by p_{\max} and the probability $M_c \neq M_u$ is
 758 at least $1 - p_{\max}$. Because `unlearn` is a computational unlearning algorithm, we must have
 759 that $1 - p_{\max} < \frac{1}{2} + \text{negl}(\lambda)$. We can rearrange symbols to get that $\text{negl}(\lambda) > \frac{1}{2} - p_{\max}$. But
 760 we have a contradiction because p_{\max} does not asymptotically approach $\frac{1}{2}$ as λ approaches
 761 infinity.

762

- 763 • *Deterministic case:* Now suppose that `unlearn` is a deterministic algorithm. Then the
 764 adversary can also run `learn` and `unlearn` on M_o and will win the game if $M_c \neq M_u$.
 765 Because `learn` and `unlearn` are deterministic and will each output a particular model for
 766 a given dataset, we must have that $M_c = M_u$. Thus, `unlearn` must be a *perfect* unlearning
 767 algorithm.

768 □

770 C.2 BLACK-BOX COMPUTATIONAL UNLEARNING FROM DIFFERENTIAL PRIVACY COLLAPSES
 771 UTILITY

773 We begin by recalling the definition of privacy loss and differential privacy.

774 **Definition 18** (Privacy Loss, (Dwork & Roth, 2014)). The privacy loss \mathcal{L} over neighboring databases
 775 x, y after observing ξ is given by:

$$778 \quad \mathcal{L}_{\mathcal{M}(x) \parallel \mathcal{M}(y)}^{(\xi)} = \ln \left(\frac{\mathbb{P}(\mathcal{M}(x) = \xi)}{\mathbb{P}(\mathcal{M}(y) = \xi)} \right)$$

779 **Definition 19** (Differential Privacy, (Dwork & Roth, 2014)). A randomized algorithm \mathcal{M} with
 780 domain $\mathbb{N}^{|X|}$ is (ϵ, δ) -differentially private if for all $\mathcal{S} \subseteq \text{Range}(\mathcal{M})$ and for all $x, y \in \mathbb{N}^{|X|}$ such that
 781 $\|x - y\|_1 \leq 1$:

$$784 \quad \mathbb{P}(\mathcal{M}(x) \in \mathcal{S}) \leq e^\epsilon \cdot \mathbb{P}(\mathcal{M}(y) \in \mathcal{S}) + \delta$$

785 If $\delta = 0$, we say that \mathcal{M} is ϵ -differentially private.

786 Differential privacy's definition bounds the privacy loss from any query, which we discuss below.

787 **Remark 20** (Privacy Loss Bounded for Differentially Private Algorithms, (Dwork & Roth, 2014)).
 788 Suppose that \mathcal{M} is a (ϵ, δ) -differentially private algorithm. Then by definition, the absolute value of
 789 the privacy loss $\mathcal{L}_{\mathcal{M}(x) \parallel \mathcal{M}(y)}^{(\xi)}$ is bounded by ϵ with probability at least $1 - \delta$.

790 **Remark 21** (Differential Privacy is Immune to Post-Processing, (Dwork & Roth, 2014)). Additionally,
 791 one of the most useful properties of differential privacy is that it is “immune” to post-processing.
 792 This means that there exists no algorithm that, given the output of a differentially-private function,
 793 can “undo” the differential privacy. We refer the reader to (Dwork & Roth, 2014, Proposition 2.1) for
 794 the proof of this claim.

795 We will use this property to show that differential privacy can be used to satisfy the definition of
 796 black-box computational unlearning (Definition 5).

797 **Lemma 22.** *Privacy Loss is an upper bound on relative entropy.*

801 *Proof of Lemma 22.* Recall the definition of relative entropy (Kullback-Leibler divergence) of probability
 802 distribution Q with respect to P (Kullback & Leibler, 1951):

$$804 \quad D_{\text{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \ln \left(\frac{P(x)}{Q(x)} \right) \quad (2)$$

805 Now, suppose we have some randomized algorithm \mathcal{M} with inputs a, b . Let P, Q represent the output
 806 distributions of $\mathcal{M}(a), \mathcal{M}(b)$ respectively. Let \mathcal{L}_{\max} refer to the maximum privacy loss observed for
 807 any element x .

$$\begin{aligned}
(2) &= \sum_{x \in \mathcal{X}} P(x) \ln \left(\frac{\mathbb{P}(\mathcal{M}(a) = x)}{\mathbb{P}(\mathcal{M}(b) = x)} \right) \\
&= \sum_{x \in \mathcal{X}} P(x) \mathcal{L}_{\mathcal{M}(a) \parallel \mathcal{M}(b)}^{(x)} \\
&\leq \sum_{x \in \mathcal{X}} \mathcal{L}_{\max}
\end{aligned}$$

Because P is a probability distribution, we have that $P(x) \in [0, 1]$. Then privacy loss is an upper bound because the relative entropy is equal to the privacy loss multiplied by $P(x)$ by definition. \square

Proof of Theorem 15. Observe that the privacy loss is negligible in λ with overwhelming probability. This means that the relative entropy between the outputs of M_u and M_c is negligible by Lemma 22. By Remark 21, there is no algorithm an adversary can use to increase the relative entropy. So then M_u and M_c are computationally indistinguishable.

We now show that our bounds are tight. Suppose that $\delta > \text{negl}(\lambda)$. Then the privacy loss guarantee does not hold with overwhelming probability and an adversary could obtain a query result with non-negligible privacy loss after a polynomial number of queries.

Alternatively, suppose that $\epsilon > \ln(1 + \text{negl}(\lambda))$. Then the privacy loss guarantee is at least polynomial in λ and an adversary could obtain query results that lead to a non-negligible privacy loss after a polynomial number of queries. \square

Proof of Corollary 16. We follow the proof of Theorem 15. Observe that the privacy loss is negligible in λ with overwhelming probability. This means that the relative entropy between the outputs of M_u and M_c is negligible. But M_u is the same model as M_o , with fresh randomness for the differential privacy mechanism. So M_u and M_o are also computationally indistinguishable.

In other words, this means that $\text{util}(M_o) \stackrel{c}{\approx} \text{util}(M_u)$. Since C does not know *a priori* the choice of \mathcal{A} , unlearn must be indistinguishable for all possible choices. So then $M_u \stackrel{c}{\approx} M_c$ for $\mathcal{D}_f = \mathcal{D}$. That is to say that $M_u \stackrel{c}{\approx} \text{learn}(\text{init}(1^\lambda), \emptyset)$. But we because $\text{util}(M_o) \stackrel{c}{\approx} \text{util}(M_u)$ we also have $\text{util}(M_o) \stackrel{c}{\approx} \text{util}(\text{learn}(\text{init}(1^\lambda), \emptyset))$, which is bounded by a small ϵ and thus not meaningful. \square