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ABSTRACT

Retrieval-augmented generation (RAG) systems are vulnerable to attacks that inject
poisoned passages into the retrieved context, even at low corruption rates. We show
that existing attacks are not designed to be stealthy, allowing reliable detection
and mitigation. We formalize a distinguishability-based security game to quantify
stealth for such attacks. If a few poisoned passages control the response, they must
bias the inference process more than the benign ones, inherently compromising
stealth. This motivates analyzing intermediate signals of LLMs, such as attention
weights, to approximate the influence of different passages on the response. Lever-
aging attention weights, we introduce the Normalized Passage Attention Score
(NPAS) and a lightweight Attention-Variance Filter (AV Filter) that flags anoma-
lous passages. Our method improves robustness, yielding up to ~ 20% higher
accuracy than baseline defenses. We also develop adaptive attacks that attempt to
conceal such anomalies, achieving up to 35% success rate and underscoring the
challenges of achieving true stealth in poisoning RAG systems.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized various applications with their remarkable gener-
ative abilities. However, their reliance on internal knowledge can lead to inaccuracies due to outdated
information or hallucinations (Achiam et al.l[2023; Brown et al., 2020; Ji et al.,[2023). RAG (Guu
et al., 2020; Lewis et al., 2020) has emerged as a leading technique to address these limitations by
integrating LL.Ms with external (non-parametric) knowledge retrieved from databases (Borgeaud
et al.,2022; [Karpukhin et al.| [2020). It retrieves a set of relevant passages from a knowledge database,
denoted as the retrieved set, and incorporates them into the model’s input. This powerful approach
underpins critical real-world systems, including Google Search with Al overviews (Googlel |[2024)),
WikiChat (Semnani et al.|, [2023)), Bing Search (Microsoft, 2024), Perplexity Al (Perplexity Al [2024)),
and LLM agents (Liu, [2022} [LangChainl, 2024} [Shinn et al.} [2023};|Yao et al.| 2023)).

The reliance of RAG systems on the retrieved set, however, introduces a significant new security
vulnerability: the knowledge database becomes an additional attack surface. Malicious actors can
inject harmful content, for example, by manipulating Wikipedia pages, spreading fake news on social
media, or hosting malicious websites, to corrupt the information retrieved by the RAG system (Carlini
et al.| 2024)). Consequently, the retrieval of malicious passages by a RAG system, followed by their
incorporation into response generation, constitutes a retrieval corruption attack (Xiang et al.| 2024).
Recent instances, such as the PoisonedRAG attack (Zou et al.| 2024), demonstrate easily exploitable
vulnerabilities: the attacker simply prompts GPT-4 to create the malicious context and inject it into
the retrieved set, successfully manipulating the answer by corrupting only a small fraction of the
retrieved set (e.g., one or two out of ten) (Greshake et al., 2023} |Zou et al., 2024; Xiang et al., 2024).

Although existing attacks on RAG systems often achieve high success with low corruption rates,
they are typically not designed with stealth in mind, leaving them susceptible to detection and
mitigation. Ideally, a robust aggregation mechanism would identify inconsistencies between the
LLM’s output and the dominant (benign) signal in the retrieved set. A significant divergence suggests
undue influence from a small, potentially malicious subset of passages. Crucially, to override the
benign context, adversarial passages must disproportionately influence the LLM’s response. This
may necessitate detectable differences from benign passages, leaving behind a malicious trace. The
presence of such malicious traces becomes more likely when the adversary cannot compromise the
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Figure 1: AV Filter Overview. The retriever returns passages z(*), one of which is poisoned and
disproportionately influences the response, increasing variance in NPAS across passages. AV Filter
mitigates this by removing passages with anomalously high attention scores, indicative of poisoning.

majority of the retrieved set, a particularly challenging task when retrieval is performed over large,
diverse corpora like Google Search or Wikipedia (Xiang et al.,|2024} Zou et al.| [2024; |Greshake et al.|
2023)), or when the retriever is designed to be robust. However, existing attacks largely overlook
stealth, relying on weak signals such as perplexity (Jain et al.||2023;|Alon & Kamfonas|, 2023} Gonen
et al.| 2022). This raises a fundamental question: Are existing attacks truly stealthy? If not, can they
be detected and mitigated, and how can we develop more sophisticated strategies to enhance their
stealth? We challenge the notion of effortless stealth and define it through a distinguishability security
game. We introduce the Normalized Passage Attention Score (NPAS), a metric that aggregates the
attention weights assigned to tokens in each passage from the model’s response. We demonstrate that
existing low-effort attacks leave detectable traces, as adversarial passages attract disproportionately
high attention, typically due to phrases containing or strongly implying the adversarial answer.

Leveraging the skewed distribution of normalized passage attention scores across the retrieved set,
we propose the Attention-Variance Filter (AV Filter)—an outlier filtering algorithm that removes
passages corresponding to extreme outliers in normalized passage attention scores (See Figure [T] for
an overview). The AV Filter effectively distinguishes malicious passages from benign ones, enabling
robust defenses by filtering out potentially malicious passages. To rigorously explore the limits of
this defense, we extend jailbreak methodologies to create adaptive attacks that optimize for obscuring
attention-based traces and evading the AV Filter, marking progress toward stealthier attacks. Our
findings highlight the ongoing arms race between attacks and robust RAG systems by formalizing a
security game, demonstrating effective mitigation of existing low-stealth attacks, and revealing the
challenges in improving stealth through adaptive attacks. We summarize our contributions as follows:

» We formalize stealth in RAG attacks via a distinguishability-based security game.

* We introduce the Normalized Passage Attention Score to quantify passage-response
dependencies and show that its distribution becomes skewed under corruption.

» Leveraging this score, we design a successful defender for the security game and propose
the Attention-Variance Filter to identify and remove potentially malicious passages.

» We design stealthier adaptive attacks by leveraging optimization techniques for jailbreaking
to evade the Attention-Variance Filter, highlighting the trade-offs in improving stealth.

2 BACKGROUND AND RELATED WORK

Notations and Definitions.

1. Q: space of queries; S: space of responses. A query ¢ € Q, a valid response s € S, and an
adversary’s target response s’ € S with s # 5.

2. Z: space of knowledge databases. A database z € Z is a collection of passages z =
{#z1,22,...,2n}, where each z; is a passage.
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3. 2(¥) C 2: a subset of k retrieved passages. Z(¥): the space of all such subsets.

4. ©: space of RAG architectures. An architecture § € © is defined as § =
(Retg, Geng, LLMy), consisting of a retriever, generator, and language model.

Retrieval-Augmented Generation. A RAG pipeline comprises four key components: a knowledge
database, a retrieval function, a generation function, and an LLM. The knowledge database consists
of a collection of passages sourced from diverse repositories such as Google Search or Wikipedia.

Step 1. Knowledge Retrieval: The retriever selects the top-k passages relevant to g. Formally,
Rety : Q x Z — Z*) denotes the retrieval function that returns the top-k passages.

Step 1. Generation: The generation function utilizes the retrieved set and the LLM, often guided by
an instructional prompt Z, to produce the final response. Formally, Geny : Q x Z(*) — S denotes
the generation function that outputs the response s.

A Retrieval-Augmented Generation (RAG) system can be formally defined as the function
frag 1 @ X Z x © — 8, where frac(q, z,0) = Geng(q,Rety(q, 2)) = s.

In a standard RAG pipeline (Lewis et al., 2020), the retriever assigns relevance scores to passages
independently and selects the top-k passages based on these scores. The retriever’s output is:

Rety(q, z) = 2k = {Ziys Zigy -5 Zip }

Next, the generation function processes a concatenated sequence consisting of the instructional
prompt, the retrieved passages, and the query, to produce a response. This is formulated as:

Geng (q, z(k)) = LLMy (Concat(I7 2 q)) =LLMy(Z D 2y D 2iy B+ D 2ip, B Q),
where @ denotes the concatenation of text sequences.

Vulnerabilities in RAG Systems. An adversary targeting a specific response s’ can craft a set of
adversarial passages 2,4y by simultaneously maximizing the following two objectives:

Par [2ady C Retg (¢, 2 U 2za0y)]  and P;r {LLM(; (Concat(I7 2F) q)) =3

Zady C z(’“)]

These correspond to attacks on Step I and Step II, respectively. Existing RAG systems are highly
brittle to poisoning, and even minimal corruption—for example, altering a single passage among
ten retrieved—can successfully manipulate LLM responses. Given the open challenge of building
perfectly robust retrievers (Fayyaz et al.l [2025; [Lin| [2024; [Li et al.| [2021)), enhancing robustness
at the generation stage (Step II) becomes critical. This allows tolerance to limited corruption and
enables reliable integration with reasonably robust retrieval methods such as Google Search, yielding
an end-to-end robust RAG pipeline. This work focuses on strengthening the robustness of the
generation stage. We argue that a notion of stealth improves robustness by allowing generation to
withstand small-scale corruption. Advancing the robustness of retrievers is an orthogonal challenge
with broader applications and sensitivity to corpus characteristics; we defer improving and analyzing
weak retrievers, such as BM25, for integration into robust end-to-end pipelines to future work.

Existing Work. QA models are vulnerable to disinformation attacks (Du et al., 2022} Pan et al.,
202152023} [Zhong et al., [2023)), with recent work highlighting risks specific to RAG pipelines. We
categorize attacks into: (i) content-poisoning methods that inject incorrect information into retrieved
passages (often LLM-generated) to bias the generation towards an adversary-specified answer (e.g.,
PoisonedRAG (Poison) (Zou et al., 2024), Misinformation Attack (MA) (Pan et al.| 2023), and
RAG Paradox (Paradox) (Choi et al.}[2025))), and (ii) instruction-poisoning methods that embed
direct prompt within the retrieved passages to elicit incorrect responses (e.g., Prompt Injection
Attack (PIA) (Greshake et al., 2023)). Although the former may appear more stealthy to human
readers, we show that both classes leave comparably detectable traces in the internal representations
of LLM when attempting to steer inference toward incorrect outputs. Our analysis is not restricted to
particular attack types, but rather investigates how poisoned passages perturb intermediate LLM
representations compared to benign passages, independent of surface-level semantics.

In response to these threats, several strategies have been explored, including query paraphras-
ing (Weller et al.| 2022)), misinformation detection (Hong et al., 2023)), vigilant prompting (Pan et al.,



Under review as a conference paper at ICLR 2026

2023)), reranking methods (Glass et al., 2022)), and perplexity-based filters (Jain et al.| 2023} Alon &
Kamfonas} 2023; /Gonen et al., [2022)). However, these methods often suffer from limited efficacy or
high false positive rates (Zou et al., [2024). More recently, Certified Robust RAG (Xiang et al., [2024)
was introduced, which employs an isolate-then-aggregate strategy to provide empirical accuracy
bounds and reduce attack success, and it currently represents the state of the art in mitigating such
threats. Further details on the existing work are provided in Appendix[A]

3 STEALTH ANALYSIS OF ADVERSARIAL ATTACKS IN RAG SYSTEMS

Threat Model. We consider an adversary .4, with full knowledge of the RAG architecture 6 and
knowledge base z. The adversary may inject (but not modify or delete) up to |e - k| poisoned
passages into z. Given a query g, target s’, and architecture 6, the adversary produces a poisoned set

zﬁj'k” =Aq,2,5,0) = {zl, o 2Lk }, constructed so that all poisoned passages are retrieved
(k) (Le-kJ)>

. . . ,
and collectively induce generation of s". Let 2., e

= Rety(q, z) and zc((’fr)mpt = Rety (q, zUz

denote the top-k retrieved passages from the benign and poisoned knowledge bases, respectively.
Then the retrieved sets may differ by at most € - k passages. The attack is successful if the RAG

system generates the target response, i.e., Geny (q, zc(fr)mpt> =35

We consider a defender D with full knowledge of the RAG architecture 6 and access to a limited
set of benign passages from the knowledge base. This assumption is practical, since defenders are
often system developers or model providers with visibility into LLM internals. To test generality, we
further extend experiments to settings where the RAG system uses closed-source APIs (e.g., GPT-4).

Attack Practicality. We focus on attack scenarios where benign passages in the retrieved set form
a clear majority consensus. If poisoned passages become the majority, either because of a weak
retriever or a lack of sufficient benign evidence in the knowledge base, generating an accurate
response becomes provably impossible. We therefore study the practical setting where € < 0.5, which
reflects real-world cases where attackers have limited resources and can inject only a few poisoned
passages into the top-k results, such as with web search retrievers. In our experiments, we follow
prior work by injecting poisoned passages into a benign retrieved set to form the corrupted set.

Stealth Attack Distinguishability Game (SADG). Given a RAG architecture 6§ and a knowledge
database z, we define a game between an arbiter, an adversary A, and a defender D, parameterized
by a corruption budget e. The defender does not have access to z. The game proceeds as follows:

1. The arbiter samples a query ¢ and constructs the benign retrieved set zéfgign = Rety(q, 2).

2. The adversary A, generates poisoned passages 24" under budget €, and the arbiter con-
structs the corrupted set Zc(é;)rupt = Rety (q, zU z(adv)).

3. The arbiter sends the query g and the two retrieved sets in random order, as (zék), ng))’ to

the defender. The defender must guess which set is corrupted to win the game.

The defender’s advantage is defined as: Advé;]’;é(e, Z,€) == ‘Pr[Defender wins] — 2| . Smaller €
implies a tighter corruption budget, making stealth more difficult and increasing Adv. An attack is
T-stealthy if, for all probabilistic polynomial-time (PPT) defenders D, the advantage is at most 7. A

perfectly stealthy attack corresponds to 7 = 0. See Appendix [B for details.

Stealth of Existing Attacks. While existing attacks may evade detection methods that analyze
passages in isolation (e.g., perplexity filtering), their influence is still evident in the model’s output,
making the generated response itself a valuable signal for detecting corruption. This motivates a shift
in perspective: to analyze retrieved passages in conjunction with the generated response and
assess whether any passage disproportionately shapes the output. If most retrieved passages are
expected to be relevant to the query, a strong alignment between the response and only a few passages
may indicate adversarial manipulation. We formalize this insight with NPAS, which quantifies the
alignment between each passage and the generated response. NPAS enables two defenses: a defender
D 4y that distinguishes between benign and corrupted retrieved sets with a strong advantage in SADG,
and the AV Filter, which removes potentially poisoned passages to effectively mitigate attacks.
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4 STEALTH DETECTION AND MITIGATION VIA ATTENTION VARIANCE

We build on the fact that, in a successful attack, the generated response is strongly correlated with the
malicious passages that shaped it. Ideally, for a retrieved set z(*) and target response s’, we should
consider the conditional probability Pr_ ) (Geng(g, 2(¥)) = s'|z; € 2(*)) for each passage z; ina
retrieved set to measure its correlation with the response.

Why analyze attention scores? In transformer-based LLMs, the information from tokens in the
prompt is combined to get an internal representation used for next-token generation. When the
predicted token is adversarial, the information needed to generate it must primarily come from
poisoned passages. Transformers pass this information between tokens through attention, and across
blocks via MLPs and residual connections. The magnitude of information flow through an attention
head from another token is proportional to its attention score, as these scores weight the sum of prior
token representations to produce the next-block representation of a particular token. The final-block
representation of the last token is then used to produce a new token, aggregating dependencies across
all tokens. Thus, attention scores computed during inference provide a useful approximation of
inter-token dependencies and are widely used for analyzing them (Vig & Belinkov, 2019). When
malicious tokens are generated, the internal representation is biased toward poisoned passages,
producing skewed attention patterns. We therefore analyze the attention matrices of the LLM to
approximate these correlations. This approximation can be further refined using techniques such as
attention rollouts (Abnar et al., [2020) or other saliency methods, which we leave for future work.

Analyzing the attention matrix of LLMs in RAG systems has proven useful beyond security consider-
ations, for example, in optimizing KV caches during inference (Zhang et al.,|2023; |He et al., 2024)).
H5O (Zhang et al.,[2023)) shows that only a small fraction of input tokens, termed Heavy Hitters (Hs),
dominate attention weights when generating a new token. These Heavy Hitters naturally emerge and
are strongly correlated with token co-occurrence. Consistent with this, our analysis of compromised
RAG systems finds that when malicious influence leads to incorrect responses, the Heavy Hitters are
localized within the poisoned passages. Heavy Hitters are often target-response keywords embedded
within poisoned passages. These tokens, due to their co-occurrence with the incorrect generated
output, receive disproportionately high attention, skewing the overall attention distribution.

Based on this insight, we define the NPAS, which aggregates token-level attention to quantify the
proportion of total attention each passage receives from the final response. This score helps identify
anomalous passages indicative of adversarial influence. This skewed distribution of attention in
poisoned passages is illustrated through examples in Appendix [C.1]

Normalized Passage Attention Score. Let the input to LLMy be X = Concat(Z, 2(*), ¢) where
2(*) is the retrieved set and g is the query. It generates a response s’ = {s}, s}, ..., s} of [ tokens
while computing multi-layer, multi-head attention weights, with each layer producing a separate
tensor for each head. We average these weights across all decoder layers and heads to construct a
unified attention matrix: A = Attention(LLMg, X') € R'*T where T is the number of input tokens.
Each entry A[i, j] denotes the mean attention from the i-th output tokens to the j-th input token. This
averaging yields a stable view of token-level interactions (Peysakhovich & Lerer, 2023).

Each retrieved passage z; is a finite sequence of tokens, z; = {zgl), zt(Q), ... }. The Passage Attention
Score, Score, (z:, A), is defined as the total attention from all response tokens s’ to the top-a most
attended tokens in z;, denoted as Top,, (z;). This focuses on high-signal Heavy Hitter tokens—often
adversarial keywords—within a passage thereby amplifying adversarial cues and reducing noise.
We define the Normalized Passage Attention Score (NPAS), NormScore,, (2, 2(¥), A), by dividing
each passage’s score by the total score across all k retrieved passages. While normalization preserves
ranking, it standardizes attention magnitudes across queries and models, enabling a stable threshold
for detecting adversarial passages—unlike instance-specific approaches (Xian et al.| [2025). For
clarity, we rescale it to a percentage and refer to it simply as a passage’s attention score.

Scoreq (2, A)
Zle Scorey(z;, A)

1
Scoreq (2, A) = Z Z Ali, j] NormScore, (2, 2%, A) =

1t=1 x;€Top,, (z¢)

We compute the attention score of a passage by summing the top-a most attended tokens within it. For
any fixed o, this score remains invariant to the passage length, preventing adversaries from gaining an
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Figure 2: (a) Average attention scores across passage positions in retrieved sets over multiple queries.
Benign passages show nearly uniform scores, while a poisoned passage at any position receives
disproportionately high attention. (b) Variance of attention scores in benign vs. corrupted sets,
showing that a poisoned passage shifts the variance distribution, making it separable from the benign
case. Scores are computed on the RQA dataset with Llama 2 for « = oo and ¢ = 0.1.

Algorithm 1: Attention-Variance Filter (AV Filter)

Input: Query ¢, Retrieved set z(k), model LLMy, Corruption fraction ¢, Variance threshold ¢
Output: Filtered set zfiered
zored — Sort(2(F) LLMj) > Sort passages according to attention scores

ltered -, sorted > Initialize the set of filtered passages
while |7 > |(1 =€) - k| do
X < Concat(Z, 2lered_¢) > Form the input sequence
A < Attention(LLMjy, X) > Compute the attention matrix from LLM, on X
attn_scores <— {NormScore,, (z;, 2114, A)|z, € zfiltered} > Compute attention scores
0% = Var(attn_scores) > Compute the variance of attention scores
if 02 < ¢ then
| break
Zmax = argmax NormScore,, (z;, zi1€rd. A)
2, € FHiltered
| pfitered  pfilered \ x> Remove the passage with the highest score from the filtered set

return z/ered

advantage through length manipulation. Ideally, o should match the number of Heavy Hitters—tokens
in the poisoned passage that align with the target response—which is often proportional to the number
of tokens in the target response. We select sufficiently large values of « to ensure coverage of all
Heavy Hitters, using « € {5, 10, oo}, where oo denotes summing over all tokens in the passage. We
provide a detailed rationale for selecting the top-« tokens for NPAS in Appendix [C.3]

Discriminating Between Corrupted and Benign Retrievals via Attention. In benign RAG
instances—where retrieved passages are relevant to both query and response—attention distribution
over passages is approximately uniform with a slight recency effect (Liu et al., [2023a; |Guo &
Vosoughil, [2024). Corruption skews this attention pattern—Figure [2)(a) shows that corrupting a single
index significantly elevates its attention scores relative to the benign baseline. This implies that
corrupted retrieved sets exhibit a high variance of attention scores across passages. Motivated by
this, we propose a defender Dy in the SADG game that detects corruption using attention variance.
Given a query g and two retrieved sets (zék), z§’“>), the defender computes attention scores for

each passage: attn_scores;, = {NormScorea(zt, z(k), A)lz € sz) }, and calculates their variance

%

Var(attn_scores; ). The defender then outputs:

) (k 0, if Var(attn_scoresy) > Var(attn_scores; ),
DAV(q’Zé )’ZE )) = {1 otherwise.
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The defender flags the set with a higher attention score variance as corrupted. Figure Jb) shows that
the variance is consistently higher for corrupted sets, enabling reliable detection across attacks.

Filtering Poisoned Passages from Corrupted Retrievals. We propose the Attention-Variance
Filter (AV Filter), an outlier filtering algorithm that removes potentially corrupted passages exhibiting
unusually high attention. Given a query g, retrieved set z(*), model LLMjy, corruption budget € and
threshold 9, the filter computes the variance of normalized attention scores and iteratively removes
the top-scoring passage until the variance drops below § or e-fraction of passages are removed.

To address the recency effect, where a few tokens receive slightly higher attention due to their
proximity to the next token being generated, we reorder passages by attention score using
Score(z(k),LLMg) (Peysakhovich & Lerer, |2023)). This sorting reduces positional bias, amplifies
anomalous signals, and improves filtering. Algorithm [T|specifies the AV Filter procedure.

Estimating the Filtering Threshold §. The AV Filter’s effectiveness hinges on choosing an
appropriate threshold 6. We estimate it using the RQA dataset (Kasai et al 2023 and Llama
2 (Touvron et al.l |2023)) by computing attention score variances across clean retrieved sets, setting &
as the mean plus one standard deviation. In selecting §, we prioritize minimizing false negatives over
false positives, since dropping a few benign passages rarely changes the final response when most
content is clean. The estimated threshold generalizes effectively to unseen settings.

5 EVALUATION

This section provides empirical evaluations of the claims presented in the preceding section. Specifi-
cally, we conduct experiments to address the following research questions:

RQ1: Can the defender Day reliably identify corrupted retrievals in existing attacks?
RQ2: How effective is the AV Filter at mitigating existing attacks?
RQ3: How effective and efficient are adaptive attacks at bypassing the AV Filter?

Experimental Highlights We summarize the findings related to the research questions:

RQ1: D,y identifies the corrupted set and wins the security game against existing attacks with
high probability. We estimated its probability of winning as the rate of correct identification across
settings, achieving an average of 0.78—highlighting a strong advantage against existing attacks.

RQ2: The AV Filter outperforms baseline defenses, achieving up to 23% higher accuracy in benign
settings and up to 20% under attack, while maintaining comparable reductions in attack success rates.

RQ3: Adaptive attacks bypass the AV Filter, achieving an ASR up to 35%—higher than existing
attacks—but the AV Filter nevertheless reduces ASR below that of vanilla RAG and empirical upper
bounds of baseline defenses. This success requires costly, query-specific optimization (~ 10°x
runtime of baselines) and access to benign passages, unlike prior manual or one-shot LLM attacks.

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate on four benchmark question-answering datasets: RealtimeQA (RQA) (Kasai
et al.,|2023)), Natural Questions (NQ) (Kwiatkowski et al.|[2019) and HotpotQA (Yang et al., 2018)
for short-answer open-domain QA, and the RealtimeQA-MC (RQA-MC) (Kasai et al., 2023) for
multiple-choice open-domain QA. Each dataset interfaces with a knowledge source: Google Search is
used for RQA, RQA-MC, and NQ, while the Wikipedia corpus is used for HotpotQA and also for
NQ. We evaluate 100 queries per dataset, following the baseline (Xiang et al.| 2024).

RAG Setup. We evaluate five LLMs: Llama2-7B-Chat (Touvron et al., 2023)), Mistral-7B-
Instruct (Chaplot, [2023)), Llama-3.1-8B-Instruct (All |2024), Deepseek-R1-distill-qwen-7B (Guo
et al.l [2025), and GPT-40 |Achiam et al.[(2023). We use the top k£ = 10 retrieved passages. We
randomly select Mistral-7B to compute attention scores, while GPT-40 generates the final responses.

Attacks. We evaluate three content-poisoning attacks: Poison (Zou et al.| [2024), Misinformation
Attack (MA) (Pan et al.,2023) and Paradox (Choi et al.,|2025)), as well as one instruction-poisoning
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Table 1: Clean Accuracy (ACC) of defenses, showing that AV Filter preserves RAG utility with a
minimal drop from Vanilla, achieving up to 23% higher ACC than other baselines.

LLM Mistral-7B Llama2-C GPT-4o Llama-3.1 Deepseek-R1

Defense RQA-MC RQA NQ RQA-MC RQA NQ RQA-MC RQA NQ RQA-MC RQA NQ RQA-MC RQA NQ
Vanilla_ 810 720 620 79.0 610 590 662 698 612 440 710 640 370 560 540
Keyword 580 560 51.0 560 57.0 540 632 642 604 61.0 61.0 620 420 41.0 43.0
Decoding 570 570 550 440 540 41.0 - 56.0 56.0 56.0 44.0 44.0 44.0

AV Filter(,—s) 73.0 66.0 59.0 79.0 60.0 51.0 57.8 61.6 57.8 43.0 67.0 66.0 36.0 57.0 52.0
AV Filter(,—109)  74.0 65.0 58.0 75.0 57.0 540 5938 62.6 55.0 45.0 66.0 66.0 37.0 59.0 52.0
AV Filter(o—o.)  76.0 64.0 58.0 75.0 56.0 540 59.6 63.0 558 44.0 67.0 62.0 34.0 57.0 52.0

attack, PIA (Greshake et al., 2023). Unless otherwise stated, the corruption fraction is set to e = 0.1,
with the position of the poisoned passage randomly varied within the retrieved set.

Defenses. We evaluate the AV Filter, using NormScore,, for a € {5,10,00}. We set § = 26.2,
estimated from benign RQA with Llama?2 at « = co. Baselines include vanilla RAG (Vanilla) and
Certified Robust RAG (Xiang et al., [2024): Keyword and Decoding.

Evaluation Metrics. For RQ1, we measure the success of defender Dy in SADG via the Cor-
ruption Identification Rate (CIR), the fraction of corrupted sets correctly flagged under successful
attacks on vanilla RAG. For RQ2 and RQ3, we report three metrics (percentages): Clean Accuracy
(ACC)—correct responses without attack; Robust Accuracy (RACC)—correct responses under
attack; and Attack Success Rate (ASR)—responses containing the adversary’s target. A response is
correct if it contains a valid variation of the ground-truth answer s and excludes the adversary’s target
s’. All results are averaged over 5 random seeds.

We report a representative subset of results with Poison and PIA attacks using Google Search. Ex-
panded results on additional attacks (Appx.[D.2), knowledge bases (Appx.[D.6)), baselines (Appx.[D.3)),
false positive rates (Appx. [D.4), hyperparameter analysis (Appx. [D.8), ensembling with Certified
Robust RAG (Appx.[D.7), and other experimental details are provided in Appendix

5.2 RESULT AND DISCUSSION

RQ1. Table[3]in Appendix [B]reports the estimated probability of D ay winning the SADG, measured
via CIR, across models, datasets, and varying « under existing attacks. D 4y identifies the corrupted
set with high accuracy, achieving an average CIR of 0.78, demonstrating strong effectiveness. We
used successful attack instances against Vanilla RAG in each setting to compute CIR.

RQ2. Clean Accuracy. Tablepresents clean accuracy across models, datasets, and « values. The
AV Filter maintains strong clean performance, with an average drop of only 4-6% across datasets—
substantially smaller than other defenses. On RQA-MC, accuracy drops from 61.4% (Vanilla) to
59.3% with AV Filter, compared to larger declines for Keyword (56.0%) and Decoding (50.3%).
Similar trends hold for RQA (from 65.9% to 62.4%) and NQ (from 60.0% to 57.76%).

Robust Accuracy. Table 2] reports AV Filter’s robust accuracy (RACC) and attack success rate
(ASR). On RQA-MC, it achieves 55.7% RACC, outperforming Vanilla RAG (44.4%), Keyword
(53.9%), and Decoding (47.1%). Similar improvements hold for RQA (59.8%) and NQ (53.4%).
AV Filter’s RACC closely matches Vanilla’s clean accuracy, indicating high precision and minimal
benign impact. Appendix [D.3]details how often it correctly removes poisoned passages.

Attack Success Rate. Table [Z] shows that even with a small corruption rate (¢ = 0.1), Vanilla RAG is
highly vulnerable—reaching up to 88.2% attack success. AV Filter cuts this sharply to an average
of 6.6% on RQA-MC, comparable to Cert. RAG-Keyword (6.1%) and Decoding (7.6%). Similar
trends hold for RQA and NQ, with the average ASR reduced to 6.0% and 4.8%, respectively.

Overall, AV Filter mitigates existing attacks while maintaining higher accuracy than Certified RAG.
It also requires fewer LLMy computations, since it avoids evaluating passages individually.

RQ3. We adapt GCG (Zou et al.,[2023)) and AutoDAN (Liu et al.,2023b)) by optimizing the poisoned
passage with full access to the input. We minimize £1 + A - Lo, where £; is the cross-entropy loss
w.r.t. the target response, and L, is the attention variance across passages. Existing attacks yield
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Table 2: Robust Accuracy and Attack Success Rate (RACC/ASR) showing that AV Filter effectively
mitigates attacks with low ASRs while achieving up to 20% higher RACC than baseline defenses.

Dataset RQA-MC RQA NQ
LLM Attack PIA Poison PIA Poison PIA Poison
Defense (racct / asr)) (racc?/asr)) (racct/asrl) (racct/asrl) (racct/ asr)) (racc?/asrl)
Vanilla 59.6/31.0 62.2/30.0 522/266 50.0/234 40.8/246 52.0/9.2
Keyword 57.0/7.00 55.0/6.00 54.0/6.00 55.0/6.00 50.0/1.00 49.0/1.00
Mistral-7B  Decoding 55.0/5.00 54.0/13.0 550/500 54.0/13.0 55.0/1.00 56.0/1.00

AV Filter(,_5y 76.6/5.80 70.0/100 62.6/2.80 582/7.40 54.4/3.00 53.4/6.20
AV Filter(,—0y 77.2/6.00 71.6/820 64.8/2.80 56.8/8.40 56.2/2.80 52.8/6.60
AV Filter(,—.,) 762/720 738/840 650/240 56.8/8.60 50.2/5.80 52.8/4.00

Vanilla 334/63.0 628/27.6 580/882 574/172 10.6/73.2 56.8/5.80
Keyword 54.0/6.00 53.0/5.00 53.0/6.00 53.0/5.00 52.0/2.00 51.0/2.00
Llama2-C  Decoding 38.0/12.0 40.0/5.00 38.0/12.0 40.0/5.00 39.0/17.0 40.0/4.00

AV Filter(,—5y 65.6/184 67.8/184 61.8/1.60 554/7.00 50.6/520 49.8/6.20
AV Filter(,—,py 708/124 69.6/13.0 60.2/1.60 54.8/880 51.4/4.00 51.2/6.20
AV Filter(,—.,) 68.8/168 72.0/12.6 60.2/5.00 56.8/6.60 49.4/9.20 51.8/3.60

Vanilla 420/150 30.6/192 484/140 21.0/294 34.6/224 41.0/108
Keyword 61.0/7.00 58.0/6.00 61.0/7.00 57.0/6.00 60.0/3.00 58.0/2.00
Llama-3.1 Decoding 55.0/7.00 51.0/17.0 550/7.00 51.0/17.0 49.0/13.0 49.0/10.0

AV Filter,—5y 43.0/2.60 358/10.6 70.2/2.60 53.8/720 60.8/1.00 50.2/5.00
AV Filter(,_,q) 442/2.80 362/7.00 67.8/3.00 53.2/640 57.8/2.20 50.6/5.20
AV Filter(,—.) 422/320 36.4/6.00 682/280 57.4/620 53.8/520 54.4/4.20

Vanilla 26.0/2.60 23.6/9.60 243/49.6 46.3/17.00 33.3/33.0 48.6/7.30
Keyword 40.0/3.00 36.0/3.00 40.0/3.00 37.0/3.00 44.0/2.00 44.0/2.00
Deepseek-R1 Decoding 42.0/1.00 42.0/1.00 42.0/1.00 42.0/1.00 44.0/1.00 43.0/0.00

AV Filter(,—5y 35.0/1.00 21.0/8.60 393/25.6 453/203 33.6/29.3 51.0/9.00
AV Filter(,_py 353/230 256/6.00 47.0/14.0 46.6/14.6 39.6/240 48.6/7.30
AV Filter(o—.) 29.3/230 27.6/630 50.3/103 53.0/8.60 38.6/19.3 48.6/5.3

Vanilla 60.2/19.6 43.6/25.0 524/334 55.6/266 39.8/33.0 56.4/5.20
Keyword 62.6/440 63.0/4.20 63.4/4.00 62.6/4.00 60.2/1.40 60.0/1.20
GPT-40 AV Filter(,—5y 63.8/520 55.0/7.60 63.6/520 57.8/10.6 56.8/2.60 58.0/3.80
AV Filter(,_,py 64.2/4.60 50.4/104 63.6/480 57.2/11.0 57.0/4.00 57.8/3.00
AV Filter(,—.,) 63.8/540 508/6.80 61.2/7.00 61.4/920 52.0/11.4 58.8/1.60

low £ but high L5 due to concentrated attention on tokens matching the target response. Simply
removing such tokens lowers Lo but raises £1, weakening the attack. Our method searches for
replacements that balance both, making optimization costly. We tune A on RQA-MC with Llama 2
and fix A = 0.1. Due to computational constraints, we evaluate 20 queries per dataset.

Adaptive attacks can evade AV Filter by lowering attention variance while preserving the target
response. On RQA-MC, ASR rises to 20%), still below Vanilla RAG and Certified RAG (Xiang
et al.| 2024)), with similar patterns across datasets. To the best of our knowledge, these attacks require
full input and model access plus query-specific optimization (up to 10%s per query), making them
resource-intensive and instance-specific. Designing efficient, generalizable attacks without full access
remains an open challenge. Detailed results and algorithms are in Appendix [D.T]

6 CONCLUSION AND FUTURE WORK

We have shown that existing attacks lack stealth, often drawing disproportionately high attention. This
property enables effective defenses: when attacks succeed despite corrupting only a small fraction
of the input, they must exert an unusually large influence, compromising their stealth. We argue
this trade-off is fundamental: an attack cannot be both highly effective and perfectly stealthy. A
theoretical analysis of this trade-off, aiming toward an impossibility result, remains for future work.

Our adaptive attacks probe the limits of attention-based defenses but remain inefficient and heavily
dependent on the query, input, and model access. Improving their generality and identifying other
detectable traces they may leave are key open challenges.

We believe that rigorously analyzing stealth through intermediate representations involved in the
generation—such as attention patterns or probability distributions for sampling the next token—is
critical for both crafting stronger attacks and developing robust defenses in RAG systems.
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REPRODUCIBILITY STATEMENT

We provide our implementation in the supplementary material, which includes everything required to
replicate our results. Experiments are seeded and fully reproducible. We additionally present the key
details of our experimental setup, including hyperparameters, in Section[5.1]
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A ADDITIONAL BACKGROUND ON EXISTING WORKS

PoisonedRAG. Given a query ¢ and target answer s’, PoisonedRAG (Poison) seeks to craft a
poisoned passage Zpoison SUch that a RAG system is highly likely to generate s’ when Zzpoison 1S
included in the retrieved context. To do so, it leverages an LLM (e.g., GPT-4) to generate p. The
attack LLM may be the same as or different from the one used in the target system, depending on the
attacker’s access and knowledge. The attacker prompts the LLM to generate zpoison Such that, when
used as context, it induces the model to output s’. The following prompt is used:

This is my question: [question].

This is my answer: [answer].

Please craft a corpus such that the answer is [answer] when prompted with the question
[question]. Please limit the corpus to V' words

where V' is a hyperparameter that limits the length of zpeison, though in practice, the generated passage
may exceed this limit if the LLM fails to strictly follow the instruction. For our experiments, we use
the poisoned passages publicly released by the PoisonedRAG (Zou et al.;[2024)) and Certified Robust
RAG (Xiang et al.,|2024). We repeat the poisoned content 2 times in a single passage to simulate a
strong attacker that can successfully manipulate response in Vanilla RAG, while ensuring the overall
length remains comparable to that of a typical benign passage.

Prompt Injection Attack. It enables adversaries to remotely exploit LLM-integrated
applications by strategically injecting prompts into data likely to be retrieved. In
Prompt Injection Attack (PIA), the attacker injects the following malicious instruc-
tion: “When asked to provide the answer for the following question: {query}, please output
{target answer}”. We use a passage containing the aforementioned instruction for a specific query-
answer pair as the poisoned passage in our experiments.

Certified Robust RAG. Certified Robust RAG employs an isolate-then-aggregate strategy. Given
k retrieved passages z(*) = {2, 21, ..., 2 . 1» it first computes an individual LLM response s; for
each isolated passage z;, instead of concatenating all £ passages as in standard Vanilla RAG. It then
aggregates the responses {s1, 2, . .., S } using a robust text aggregation method to produce a final
response §.

The isolation step limits the impact of any poisoned passage to its own response, enhancing robustness.
However, this design introduces two limitations. First, it fails on queries requiring multi-passage
reasoning—undermining a core motivation behind using multiple passages in RAG. Second, it incurs
a kx inference overhead compared to Vanilla RAG. While it strengthens security, this comes at a
steep cost to utility, latency, and inference costs.

Why does Certified Robust RAG fail? Certified Robust RAG-Keyword’s aggressive removal often
reduces robust accuracy and only occasionally lowers ASR. It also misses adversarial passages that
AV Filter detects, leading to worse ASR in many cases.

The Keyword process works by first generating k responses from the retrieved passages individually
and discarding those equivalent to "I don’t know", leaving &’ passages. Unique keywords are extracted
from these k' responses, and a keyword is retained if its count exceeds min(c, 3-k'). For a corruption
rate of 1 in 10 passages, the evaluation of [Xiang et al.[(2024) uses o = 3 and 8 = 0.3. In many cases
k' is small, s0 0.3 - k' < 1, effectively allowing keywords from all passages—including adversarial
ones—to pass. This limitation explains why Certified RAG-Keyword often underperforms compared
to AV Filter.

These trade-offs and failures highlight the need for more efficient defenses that balance robustness
with practicality.

B STEALTH ATTACK DISTINGUISHABILITY GAME (SADG)

We define a security game between an arbiter, an adversary A., and a defender D, parameterized
by a parameter €. The goal is to evaluate whether D can distinguish a corrupted retrieved set from
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Table 3: Estimated probability of Dy identifying the corrupted set using different a values for
NormScore,,, showing high accuracy and a strong advantage against existing attacks.

Dataset RQA-MC RQA NQ

LLM top-« PIA Poison PIA Poison PIA Poison

. a=5 094 084 094 093 0.79 054

Mistral7-B o =10 094 0.86 088 082 0.73 0.60

a=oc0 091 093 080 0.84 048 0.79

a=5 082 070 099 086 093 0.66

Llama2-C a=10 092 082 099 088 091 0.64

a=oco0 095 099 095 082 083 0.72

=5 093 072 088 068 083 041

Llama-3.1 a=10 086 0.70 089 0.72 0.75 0.50

a=occ 088 082 083 087 068 0.63

=5 095 047 075 065 055 0.63

Deepseek-R1 o =10 093 063 0.87 069 0.64 0.6

a=occ 093 080 089 087 064 0.79

a benign one. The corruption budget of A, is controlled by ¢; smaller values correspond to tighter
budgets, making stealth harder.

For a given RAG architecture 6 and knowledge database z, the defender does not have access to z,
the game proceeds as follows:

1. Query sampling: The arbiter samples a query ¢ < Q.

2. Retrieved set generation: The arbiter samples a target response s’ + S. It com-

(k)

putes the benign retrieved set z, = Rety(q, z), queries the adversary to obtain

benign
poisoned passages 2z = A.(q,z,s’,0), and constructs the corrupted retrieved set
Zc(frz‘upt = Rety (L], zU Z(adv))

3. Permutation: The arbiter samples a bit b < {0, 1} uniformly at random and defines:

k k .
(Z(k) z(k)> o ZC(OT)"UP“ Zéer?ign , if b= 0,
0 k k .
Zlgen)ignv Z(Sor)rupt , ifb=1.

The arbiter sends (q, z(()k), z%k)> to the defender D.

4. Defender’s guess: The defender outputs b’ € {0, 1}, guessing which of z(()k) or z§k) is the
corrupted set. The defender wins if b’ = b.

Advantage. The defender’s advantage is: Adv?A‘bg(O, z,€) = |Pr[t/ =] — 1|.

The probability Pr[b’ = b] is over the randomness of ¢, s, 6, b, and defender D.

The attack is said to be 7-stealthy if, for all probabilistic polynomial-time (PPT) defenders D, the
advantage is at most 7; i.e.,

Advé;b%(&, z,€) <7,

for a perfectly stealthy attack 7 should be zero.

Table reports the estimated probability of Dy winning the SADG—measured via CIR—across
models, datasets, and varying « values under existing attacks. D 4y identifies the corrupted set with
high accuracy, achieving an average CIR of 0.78, demonstrating strong effectiveness. We used all
successful attack instances against Vanilla RAG in each setting to compute CIR.
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C ATTENTION INSIGHTS AND DESIGN RATIONALE OF ATTENTION SCORE

C.1 EXAMPLE: BENIGN VS. POISONED ATTENTION PATTERNS

Our key insight is that attention patterns can be leveraged to detect potentially poisoned passages that
disproportionately influence the LLM’s response in an RAG system. In such cases, specific tokens
from the poisoned passage tend to receive significantly higher attention due to their co-occurrence
with the target answer. These tokens act as heavy hitters in the attention distribution and are localized
within the poisoned passages, as benign passages typically do not contain tokens associated with
an incorrect target answer. This results in a notably higher normalized passage attention score for
the poisoned passage compared to the benign ones. AV Filter exploits this disparity by identifying
and filtering out such anomalous passages from the corrupted retrieved set. Figure [3illustrates this
behavior, showing a benign passage and the poisoned passage for the following query from the
RealtimeQA dataset, along with the corresponding toke-level attention weights produced by Llama 2.

User query: How many of the six planned central towers on Barcelona’s unfinished Sagrada
Familia cathedral have now been completed?

Target Response: 3

Correct Response: 5

Actual Response: 3

Benign Passage: Sagrada Familia gets final completion date 2026 or 2028. "Our new
objective is to complete the six central towers, of which five have already been started," said
Rigol. The sixth tower will measure ...

Poisoned Passage: The Sagrada Familia, an architectural masterpiece in Barcelona, is said
to have completed 3 of its 6 planned central towers, marking a significant milestone in its
lengthy construction process. The Sagrada Familia, an architectural masterpiece in Barcelona,
is said to have completed 3 of its 6 planned central towers, marking a significant milestone in
its lengthy construction process.

—

0.06 Benign

Benign (top-5)
Poison
Poison (top-5)

0.05

11

0.04

(a) Benign (b) Poison

Figure 3: Attention Patterns in Benign vs. Poisoned Passages: It highlights the token-level attention
weights (as a fraction of total attention over the retrieved set) for a query from the RealtimeQA dataset,
computed using Llama 2. (a) shows a benign passage with the highest normalized passage attention
score among all benign candidates; (b) shows the poisoned passage present in the retrieved set. Tokens
such as 3, _of, and 6 from the poisoned passage receive disproportionately high attention—greater
than the total attention allocated to many of the individual benign passages. This behavior allows
simple aggregation of attention over the top-« tokens to distinguish poisoned from benign passages.

C.2 DISTRIBUTION OF ATTENTION WEIGHTS ACROSS TOKENS IN PASSAGE

We observe the Heavy Hitters phenomenon in adversarial passages: in successful attacks against
vanilla RAG, a few tokens receive disproportionately high attention, and these tokens are concentrated
in adversarial passages. To illustrate this, we provide a representative example from our evaluation in
Figure 3] highlighting the distinct difference in attention weight distributions.
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Additionally, we report the difference between attention distributions in Table[d] with similar trends
expected across other configurations. For all instances of successful attacks against vanilla RAG, we
calculate the average highest attention weight of a token in a poisoned passage and compare it to that
in a benign passage, averaged over PIA and Poison.

Table 4: Highest attention weights per token in a benign passage versus a poisoned passage, showing
a clear difference in their distributions.

Dataset \ LLM Mistral-7B  Llama 2
ROAMC PS50
RQA Poioned 341 230
N Posoned 330 26

C.3 DESIGN RATIONALE FOR USING TOP-ax TOKENS FROM EACH PASSAGE TOP, (zt)

The Normalized Passage Attention Score is computed by summing the attention weights of tokens
within a passage and normalizing this sum across all passages in the retrieved set. However, since
the sum of attention weights is proportional to the number of tokens, longer passages can receive
disproportionately higher scores, even if they contain little information relevant to the generated
answer. Selecting the top-« tokens mitigates this length bias, ensuring that the score reflects the most
influential tokens rather than sheer passage length.

Following the insight of Heavy Hitters, our experiments confirm that only a few tokens in an
adversarial passage receive disproportionately high attention weights. These tokens are typically
semantically aligned with the generated response and thus exert the most influence on its generation.
Ideally, a defense should sum only the contributions of these heavy hitters from each passage, ignoring
the long tail of tokens with very small attention weights.

Conceptually, a defender could estimate a threshold such that only tokens with attention weights
above it are considered in each passage, assuming tokens with lower attention weights have negligible
influence on the output. This threshold may vary depending on the underlying LLLM in the RAG
pipeline. In practice, we approximate this by selecting the top-« tokens from each passage. We
evaluate o = (5, 10, «) and observe that AV Filter provides significant robustness across all settings.
A defender can further tune or estimate an attention-weight threshold per token to adaptively select
the most relevant tokens from each passage.

However, in many simpler and practical scenarios where retrieved passages are of similar length, the
defender can safely consider all tokens from each passage. In such cases, there is no length-based
bias, and setting & = oo often yields optimal performance, as frequently observed in our evaluation.
In Table[5] we further provide the average length (in characters) of benign and poisoned passages
for each dataset in our evaluation. We observe that the length of the poisoned passages varies across
attacks and datasets—some are shorter, while others are longer than the benign passages. Notably,
adversarial passages in the Poison attack tend to be longer. This is primarily because they are
generated using GPT-40, which often requires more elaborate phrasing and additional context to
effectively manipulate the generation, even in the vanilla RAG setup.

Table 5: Average passage length (in characters) for benign cases and different attacks, confirming
that the effectiveness of AV Filter is not attributable to length biases.

Dataset \ Passage Benign PIA  Poison

RQA-MC 192.84 196.65 389.72
RQA 192.84 192.65 391.40
NQ 191.33  150.30 368.78
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D ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

We use the PyTorch (BSD-style license) and HuggingFace Transformers (Apache-2.0 license) libraries
for all our experiments. The experiments were conducted on a mix of A100 and H100 GPUs.
All experiments were run with 5 different seeds, except for the adaptive attack due to its high
computational cost. We report the mean of each evaluation metric. The maximum observed standard
deviations across seeds are as follows: Clean Accuracy (ACC)—2.32, Robust Accuracy (RACC)—
3.78, and Attack Success Rate (ASR)—3.56.

D.1 ADAPTIVE ATTACKS

We extend existing jailbreak attacks such as GCG (Zou et al.| |2023)) and AutoDAN (Liu et al.,2023b)
by optimizing a poisoned passage with full access to the query and retrieval context. Starting from an
initial successful from a prior attack, denoted as 2poison, W€ iteratively refine it to minimize a compute
loss £; that balances effectiveness and stealth.

The loss is defined as £, = £1 + X - Lo, where L is the cross-entropy between between the model’s
response (given the corrupted retrieved set including zpeison) and the target answer s, and L is the
variance of the normalized attention scores over all passages in the retrieved set—encouraging low
detectability. Here, X is a scalar parameter that balances the attack effectiveness with stealth.

At each iteration, we apply a jailbreak method, denoted as Jailbreak, to propose a modified candidate
passage that minimizes £;. Among all generated candidates across iterations, we select the one
yielding the lowest loss as the optimized poisoned passage. The full procedure is detailed in
Algorithm 2]

Algorithm 2: Adaptive Attention-Aware Poisoning Attack

Input: Query ¢, target answer s’, benign retrieved set z,gfn)ign,
A, jailbreak function Jailbreak, max steps 7'

Output: Optimized poisoned passage z ;o

Initialize poisoned passage po = Zpoison USing an existing attack (e.g., PoisonedRAG);

Set best loss L* <~ 00, best candidate 2., <= Po;

fort =1to T do

Inject p;—; into z

language model LLMjy, loss weight

(k)

benign

to get the corrupted retrieved set zc(fr)rupl

Generate model response §; < LLMjy(q, zc(f;)rupt)
Compute normalized passage attention scores:
attn_scores = {NormScorea(zt, zc(f,lupt, Az € Z(Sr]fr)mpt}
Compute loss:
Ly (zc(fr)mpt> = CE (8¢, ") +\ - Var (attn_scores)
—— —_———
L1 »62

if £, < L£* then
L L* +— Ly, Z;()ison — Pt—1

Generate next candidate poisoned passage: p; < Jailbreak (q, z}gfgign, s’ pi_1, Et)

*
return Zpoison

In our experiments, we insert the poisoned passage at the last index of the retrieved set to con-
struct the corrupted retrieved set. This placement eliminates retrieval randomness, enabling easier
reproducibility and consistent comparison across queries—particularly important given the high
computational cost of adaptive attacks. We also set the o = oo for the AV Filter and select 20 queries
from each dataset, prioritizing those where existing attacks were successful against Vanilla RAG.
Since initialization from successful attacks typically yields a low value of £;, we terminate the
optimization early if the attention variance £, falls below the AV Filter threshold . The attack is run
for 100 steps using standard parameters for each jailbreak method.
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We tune the scalar parameter \ in the adaptive attack loss using the RealtimeQA dataset and Llama 2,
evaluating values from the set {0.01,0.1,1}. We select A = 0.1 for all subsequent adaptive attack
experiments, as it yields the highest ASR. Figuredfa) represents the impact of varying A on attack
performance. For evaluation, we apply adaptive attacks using jailbreak methods, including GCG
and AutoDAN, initialized with poisoned passages generated by the PoisonedRAG attack (Poison).
Table [6]reports the robust accuracy and attack success rate (RACC / ASR) of adaptive attacks against
the AV Filter across multiple settings. The results show that adaptive attacks can potentially evade
the AV Filter, achieving a maximum ASR of 35% and an average ASR of 22.08%.

Table 6: RACC and ASR of adaptive attacks (GCG and AutoDAN) initialized with poisoned passages
from Poison against AV Filter, showing increased ASRs of up to 35%—higher than existing attacks
on AV Filter but still lower than ASRs of Vanilla RAG and empirical upper bounds of other baselines.

LLM Adaptive Attack RQA-MC RQA NQ
GCG-Poison 55/15  35/30 15/10

Llama2-C A (CDAN-Poison ~ 35/35  40/20 25/10

Mistral.7p  GCG-Poison 50/25 25/25 35/35

AutoDAN-Poison 50/20 20/15 30/25

Although adaptive attacks demonstrate reasonable success against the AV Filter, several limitations
reduce the severity of the threat they pose. These attacks are highly dependent on the specific query,
model, and benign retrieved set, requiring access to the LLM, the retriever, and the knowledge
database—an assumption that may not hold for many practical adversaries. Furthermore, since
adaptive attacks rely on iterative jailbreak methods, which are known for their high computational
cost, they inherit long runtimes. Each poisoned passage must be individually optimized, significantly
increasing the time required for the attack. Table[/|reports the average runtime per query (in seconds)
across various settings, highlighting the computational overhead associated with these attacks. The
AutoDAN-Poison attack on the RealtimeQA dataset using Mistral-7B incurred the highest average
runtime among all settings, taking 18616.84 seconds per query. When executed sequentially on 20
queries, this resulted in a total runtime of approximately 4.3 days on a single H100 GPU. Figure [4(b)
shows the loss trajectory for a randomly selected query from the RealtimeQA dataset during the
adaptive attack on Llama 2.

Table 7: Average runtime of the adaptive attack per query across various settings. The runtime
reaches up to 1.8 x 10* seconds, which is several orders of magnitude (~ X 103) higher than the
runtime of the existing attack Poison, as reported in (Zou et al., 2024).

LLM Adaptive Attack RQA-MC RQA NQ
GCG-Poison 701568 1583336 9146.72

Llama 2-C 4 [(CDAN-Poison 623320 1827431 9737.39

Mistral.78  GCG-Poison 8606.68 1489024  9624.45

AutoDAN-Poison ~ 6604.01 18616.84 18248.52
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Table 8: Robust Accuracy and Attack Success Rate (RACC/ASR) showing that AV Filter effectively
mitigates additional content-poisoning attacks, even when they appear natural or semantically coherent
to humans, with an average ASR of 6.45%.

Dataset RQA-MC RQA NQ
LLM Attack Paradox MA Paradox MA Paradox MA
Defense (racct / asr)) (racct/ asr)) (racct/asrl) (racct/asrl)) (racct/asrl) (racct/ asrl)
Vanilla 542/414 604/31.8 304/350 39.4/26.6 292/242 56.8/5.00

Mistral-78 AV Filter,_5)  76.0/840 74.0/8.60 57.6/420 54.0/8.00 50.6/7.40 53.2/4.40
AV Filter,—0) 77.4/6.80 73.6/9.00 59.4/4.80 54.0/7.80 52.0/7.60 54.8/3.8
AV Filter,—.,) 80.0/3.40 77.2/520 652/3.80 656/280 56.4/4.00 56.2/2.00

Vanilla 50.0/42.8  57.0/342 372/398 502/220 32.0/286 59.6/4.80
Llama2.C AVFilter,_5 59.0/254 71.0/128 58.0/660 544/58 462/106 52.0/4.6
AV Filter,_10) 642/208 712/138 584/620 550/720 484/106 52.2/4.40
AV Filter(,_.) 77.6/820 77.2/680 59.8/1.80 59.2/2.40 51.8/1.60 54.6/0.20

Vanilla 31.6/37.2 41.0/250 41.2/450 48.4/33.0 374/224 59.4/2.80
GPT-40 AV Filter,_5 56.8/5.60 504/11.0 632/7.60 574/940 54.0/6.80 57.0/2.40
AV Filter,—;q) 58.0/3.80 51.0/10.2 652/6.00 58.0/8.60 54.6/6.60 58.0/2.00
AV Filter(,—.,) 62.8/2.40 59.6/4.20 66.4/4.60 68.2/2.40 57.8/3.20 60.8/0.00

100
—— GCG-Poison
80 A 81 AutoDAN-Poison
L 60+
S <61
o
2L 40
20 1 41
0.01 0.1 1.0 0 25 50 75 100
A # steps
(a) (b)

Figure 4: (a) Attack Success Rate (ASR) of the GCG-Poison adaptive attack on the RealtimeQA
dataset using LLlama 2 across varying values of J, illustrating that A = 0.1 achieves the highest ASR
and is therefore selected for the rest of the evaluation. (b) Loss trajectory for a randomly selected
query from RealtimeQA on Llama 2, demonstrates how the adaptive attack consistently reduces the
target loss by lowering the variance of the corrupted retrieved set, thereby improving stealth.

D.2 ADDITIONAL ATTACKS

We also evaluate AV Filter on two additional content-poisoning attacks, Misinformation Attack (MA)
and Paradox, as reported in Table[8] Results on other configurations are expected to follow similar
trends.

AV Filter remains effective against these attacks. On the RQA-MC dataset, it reduces the average
attack success rate from 27.8% with vanilla RAG to 6.45%, with comparable robustness across
other datasets. Although content-poisoning attacks such as Poison, Paradox, and MA often appear
natural and semantically coherent to humans, AV Filter detects them by analyzing LLM attention
patterns rather than surface-level semantics. This shows that AV Filter does not rely on attack-specific
semantic cues.

D.3 AV FILTER DETECTION RATE: IDENTIFYING POISONED PASSAGE
AV Filter is designed to identify and remove the potentially poisoned passages from a corrupted

retrieved set, allowing the remaining (presumably benign) passages to be used for response generation.
When the AV Filter successfully eliminates the actual poisoned passages, it is expected to improve
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Table 9: Detection Accuracy (DACC) of AV Filter against existing attacks, showing that AV Filter
accurately removes the actual poisoned passage from the corrupted retrieved set, achieving the DACC
up to 1.00 (perfect detection).

Dataset RQA-MC RQA NQ
LLM top-o PIA Poison PIA Poison PIA Poison
a= 1.00 0.88 0.99 0.97 1.00 0.67

Mistral- 7B o« =10 0.9 0.89 1.00 0.93 0.99 0.69
=oo 092 0.95 0.97 0.92 0.83 0.71

o

a=>5 0.81 0.47 0.98 0.82 0.94 0.64
Llama2-C o =10 0.90 0.68 0.98 0.85 0.96 0.67

a=o00 0.88 0.77 0.94 0.79 0.88 0.70

the robust accuracy (RACC) and reduce the attack success rate (ASR)—a trend confirmed in our
evaluation.

The consistent improvement in robustness over Vanilla RAG indicates that AV Filter reliably removes
the correct poisoned passages. To explicitly quantify this behavior, we report the Detection Accuracy
(DACC)—the fraction of successful attacks against Vanilla RAG in which AV Filter removes
the actual poisoned passage. Table [9] presents the DACC across different o values used in the
computation of NormScore,, and € = 0.1, demonstrating that AV Filter achieves high precision in
removing the poisoned passage with an average detection accuracy of 0.86. This reinforces AV
Filter’s effectiveness in accurately identifying and filtering poisoned passages from the retrieved set.

D.4 AV FILTER FALSE POSITIVE RATE

AV Filter estimates the influence of each passage in the retrieved set on the generated answer and, like
other robust aggregators, assumes majority consensus: benign passages should agree on the correct
answer and outnumber adversarial ones.

Even when the RAG pipeline returns the correct answer, some benign passages may receive dispro-
portionately high attention scores and be removed. This is generally not a concern, as dropping a few
benign passages from a largely benign set rarely affects the output. As shown in Table[T]and [2} the
accuracy drop for benign retrievals is limited to 4—6 %, substantially smaller than for other baselines.

We also report the False Positive Rate (FPR) of AV Filter (o« = oo) for § € {10,26.2,30,40} on
benign retrievals (Table[I0), with similar trends expected across other configurations. Any removal
of a passage from a benign set is counted as a false positive. For corrupted sets, ASR provides a
reasonable upper bound for FPR. For RQ2 and RQ3, we adopt § = 26.2 as the evaluation setting.

Table 10: False Positive Rate (FPR) of AV Filter on benign retrievals. The average FPR is 0.24. We
allow a slightly higher rate, as removing a few benign passages is less harmful than retaining an
adversarial one, which could compromise the output.

LLM Dataset 0=40 6=30 6=26.2 H=10
RQA-MC 0.09 0.11 0.11 0.18

Mistral-7B.  RQA 0.22 0.26 0.26 0.33
NQ 0.27 0.33 0.36 0.41
RQA-MC 0.05 0.06 0.09 0.21

Llama2-C RQA 0.15 0.20 0.24 0.38
NQ 0.24 0.29 0.36 0.45

D.5 ADDITIONAL BASELINE DEFENSE STRATEGIES

We compare AV Filter with several baseline defenses, which often suffer from high false positive
rates:
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Table 11: ASR shows that AV Filter outperforms other defenses in 6/9 Poison cases, 9/9 Paradox
cases, and 1/9 PIA cases. Performance on PIA is lower because PIA embeds verbatim query in
poisoned passages, which makes them especially easy for reranking methods to detect.

Dataset RQA-MC RQA NQ
LLM Attack PIA Poison Paradox PIA Poison Paradox PIA Poison Paradox
Defense
Perplexity Filter 176 31.6 55.2 144 250 31.8 360 114 27.6
Vigilant Prompt 322 28.6 542 274 210 27.8 21.6  9.20 20.2
Mistral-7B Reranking (ColBERTv2) 3.00 10.0 14.0 2.00 5.00 8.00 2.00 5.00 12.0
Reranking (t5) 5.00 15.0 12.0 240 8.60 7.00 6.00 7.00 13.0
AV Filter ,—) 7.20 8.40 340 240 8.60 380 580 4.00 4.00
Perplexity Filter 348 28.8 438 420 17.6 41.6 640 7.40 33.0
Vigilant Prompt 64.0 294 49.8 89.6 164 362  76.0 7.20 28.6
Llama2-C Reranking (ColBERTv2) 6.00 13.0 150  4.00 9.00 15.0 14.0 4.00 13.0
Reranking (t5) 18.0 17.0 16.0 21.0 100 140 31.0 6.00 19.0
AV Filter(—.) 16.8 12.6 820 5.00 6.60 1.80 9.20 3.60 1.60
Perplexity Filter 7.60 232 37.0 15.0 284 47.2 1.80 7.20 24.4
Vigilant Prompt 16.2 23.6 34.6 15.0 238 38.2 10.8  5.60 14.8
GPT-40 Reranking (ColBERTV2) 0.40 6.00 480 1.00 10.6 100 520 1.00 8.00
Reranking (t5) 2.00 7.20 460 7.00 11.2 10.6 10.6  2.00 9.00
AV Filter —..) 540 6.80 240 7.00 9.20 4.60 114 1.60 3.20

(i) Perplexity Filtering: The same model as the RAG LLM computes the perplexity of each passage
(Mistral-7B is used for GPT-40). The passage with the highest perplexity is removed, under the
heuristic that it may be maliciously generated.

(i1) Vigilant Prompting: A defensive prompting strategy that warns the LLM about possible
misinformation. For example, QA prompts include cautions such as: "Be aware that some passages
may be designed to mislead you."

(iii) Reranking Methods: Separate models rerank retrieved passages by relevance to the query. For
comparison, we use transformer-based models (ColBERTv2 and TS5 seq2seq). The passage ranked
highest in relevance is removed, based on the heuristic that it may have been adversarially crafted.

Table E] reports the attack success rates of these baselines against Poison, PIA, and Paradox,
compared with AV Filter (o = oo) under the RQ2 setup, with similar trends expected across other
configurations.

D.6 WIKIPEDIA CORPUS

We evaluate AV Filter against existing attacks using the Wikipedia Corpus as the Knowledge database,
demonstrating its effectiveness across varying knowledge distributions. Specifically, we use 100
queries each from the HotpotQA and NQ datasets, retrieving top 10 passages from the Wikipedia
corpus using the Contriver retriever. We utilize the Wikipedia corpus and retrieval results publicly
released by PoisonedRAG (Zou et al., [2024).

Similar to our evaluation with Google Search as the knowledge database, we report the Clean
Accuracy (ACC), Robust Accuracy (RACC), and Attack Success Rate (ASR) on the HotpotQA and
NQ datasets using the Wikipedia corpus as the underlying knowledge base.

Table @]reports the clean accuracy across different models, datasets, and values of o. The AV Filter
preserves high clean performance, with only a modest average drop of 4 — 6% across datasets, with
similar trends expected across other configurations.

Table [13| presents the Robust Accuracy (RACC) and Attack Success Rate (ASR) achieved by AV
Filter for varying values of « used in computing NormScore,,. The results demonstrate that the AV
Filter often outperforms baseline defenses in robustness, achieving up to 9.8% higher RACC, with
similar trends expected across other configurations. Furthermore, even at a low corruption rate of
€ = 0.1, Vanilla RAG remains highly vulnerable, with ASR reaching up to 90.2%. In contrast, AV
Filter significantly reduces this vulnerability—bringing the average ASR down to 15.36% on the
HotpotQA and 14.71% on the NQ dataset.
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Table 12: Clean Accuracy (ACC) of defenses, showing that AV Filter preserves RAG utility with a
minimal drop from Vanilla, achieving up to 10% higher ACC than other baseline defenses.

LLM Mistral-7B Llama2-C GPT-4o0
Defense HotpotQA NQ HotpotQA NQ HotpotQA NQ
Vanilla_ 510 590 _ 360 __ 460 _ 456 474
Keyword 59.0 49.0 43.0 37.0 44.6 55.0
Decoding 41.0 50.0 26.0 28.0 — —

AV Filter s 40.0 43.0 27.0 34.0 45.0 48.2
AV Filter ) 46.0 44.0 27.0 36.0 44.8 47.4
AV Filter ,—.) 51.0 59.0 36.0 46.0 44.2 47.6

Table 13: Robust Accuracy and Attack Success Rate (RACC/ASR) showing that AV Filter effectively
mitigates attacks with low ASRs while achieving up to 9.8% higher RACC than baselined defenses.

Dataset HotpotQA NQ
LLM Attack PIA Poison PIA Poison
Defense (racc? / asrl) (racct/asrl]) (racct/asrl]) (racct/asrl)
Vanilla 18.6/69.0 14.6/750 222/558 23.0/50.4
Keyword 48.0/21.0 43.0/25.0 40.0/7.0 42.0/10.0
Mistral-7B Decoding 38.0/28.0 30.0/51.0 47.0/7.0 43.0/20.0

AV Filter,—5y 53.0/80 47.4/148 49.8/11.0 43.0/14.6
AV Filter(,—,0y 52.6/84 478/15.0 48.6/11.2 44.0/13.2
AV Filter(,—.,) 47.2/134 488/13.6 36.6/268 422/12.4

Vanilla 36/90.2 146/656 64/856 26.2/48.0
Keyword 36.0/25.0 41.0/20.0 36.0/8.0 37.0/9.0
Llama 2-C Decoding 23.0/33.0 25.0/16.0 24.0/30.0 26.0/23.0
AV Filter(,_5y 34.0/114 27.0/17.0 42.6/64 37.2/17.6
AV Filter(,—,0) 34.4/104 268/17.0 442/6.2 36.4/15.6
AV Filter(,—.) 17.8/440 21.4/28.6 224/456 32.4/25.38
Vanilla 10.6/78.8 20.4/584 16.8/69.4 28.6/34.6
Keyword 43.6/174 43.4/158 53.2/6.2 53.0/4.8

GPT-4o  AVFilter,_; 42.6/98 37.2/12.6 402/58 36.8/68
AV Filter(,—10) 40.0/11.2 37.6/120 41.6/68  35.8/4.0
AV Filter(,—.,, 35.6/17.8 412/114 28.0/29.6 38.6/5.4

Notably, the ASR for the Keyword and Decoding defenses is anomalously high on the HotpotQA
dataset. This is attributed to the multi-hop nature of many HotpotQA queries, which often require
reasoning across multiple passages. Since both variants of Certified Robust RAG evaluate each
passage in isolation, they fail to aggregate information across passages to answer correctly. As a
result, they are more susceptible to a single poisoned passage that contains complete information
aligned with the adversarial target answer.

D.7 COMBINING AV FILTER WITH OTHER DEFENSES

As a detection-based pruning defense, AV Filter can be used as a preprocessing step alongside other
strategies, such as Certified Robust RAG, to further reduce attack success rates. However, the robust
accuracy of the ensemble may still be limited by the underlying defense.

We combine AV Filter (o« = oo) with Certified Robust RAG-Keyword by first removing potentially
poisoned passages using AV Filter and then applying Keyword for robust generation. Table[T4]reports
the robust accuracy and attack success rates, with similar trends expected across other configurations.
The combined defense consistently achieves lower attack success rates than either method alone, with
an average of just 1.22% across all cases.
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Table 14: Robust accuracy and attack success rates for the combined defense. The combination
consistently outperforms individual defenses, reducing attack success rates to an average of 1.22%
across all cases.

Dataset RQA-MC RQA NQ
LLM Attack PIA Poison PIA Poison PIA Poison
Defense (racct / asrl)) (racct/asr)) (racc?/asr)) (racc? /asrl) (racct/asrl) (racc? / asrl)
Keyword 57117 56/6 54716 55/6 50/1 53/5
Mistral-7B AV Filter ,—) 79/6 73/8 62/6 54/6 53/7 52/4
Keyword + AV Filter,—.) 58/3 58/3 60/3 60/3 53/0 53/0
Keyword 53/6 55/6 53/6 55/6 52/2 53/4
Llama2-C AV Filter,— ) 70/ 18 71/13 61/2 56/6 54/4 54/5
Keyword + AV Filter,—.) 5870 58/0 5870 58/0 53/1 53/1
Keyword 62/13 60/17 63/15 63/15 58/8 61/6
GPT-40 AV Filter,_, 59/4 50/5 69/2 59/9 59/1 62/1
Keyword + AV Filter,—) 64/2 63/2 63/2 63/2 62/0 62/0

D.8 HYPERPARAMETER ANALYSIS

Corruption Fraction e. We evaluate the AV Filter under varying corruption fractions to its ro-
bustness as the rate of corruption increases. Specifically, we measure Robust Accuracy (RACC)
and Attack Success Rate (ASR) on the RealtimeQA-MC dataset across multiple models, using a
fixed @ = oo and a single random seed. Figure [5[a) and (b) present the average RACC and ASR for
corruption rates € € {0.1,0.2,0.3,0.4}, with the total retrieved set size fixed at k = 10. As expected,
increasing the corruption fraction leads to higher ASR and lower RACC. Nevertheless, the AV Filter
remains reasonably effective even under high corruption—reducing ASR to 32.67% at ¢ = 0.4 for
Poison. We expect a similar trend for other datasets and « values.

Filtering Threshold 6. The effectiveness of the AV Filter depends on the filtering threshold 9,
which governs the acceptable variance in attention score across the retrieved set. We set § = 26.2
for our main experiments, estimated from clean retrievals on the RealtimeQA dataset using Llama 2.
This estimated threshold generalizes well, as it yields strong performance across different datasets
and models. To further assess the robustness of the AV Filter to this hyperparameter, we evaluate
its performance across a range of thresholds § € {10, 20, 30,40}. Specifically, we report Robust
Accuracy (RACC) and Attack Success Rate (ASR) on the RealtimeQA-MC dataset, averaged over
multiple models using a fixed @ = oo and a single random seed. Figure Ekc) and (d) show that both
RACC and ASR remain relatively stable across this range, indicating that AV Filter is not overly
sensitive to 6 and can generalize well to unseen data without requiring fine-tuning. We expect a
similar trend for other datasets, attacks, and « values.
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Figure 5: Effect of Corruption Rate and Filtering Threshold: This figure shows the impact
of varying the corruption rate € and the filtering threshold § on the performance of the AV Filter.
Subfigures (a) and (b) present the Attack Success Rate (ASR) and Robust Accuracy (RACC) on the
RealtimeQA-MC dataset with o = o0, averaged over all models. As expected, ASR increases and
RACC decreases with higher corruption rates. Subfigures (c) and (d) report ASR and RACC for
varying d values, again averaged over all models, demonstrating that AV Filter’s performance is not
overly sensitive to the threshold. This indicates that AV Filter can generalize well to unseen data
without requiring fine-tuning of 4.

E LIMITATIONS

We have shown that existing attacks against RAG systems are not designed for stealth—they often
craft poisoned passages that attract anomalously high attention scores, enabling reliable detection and
mitigation. This stems from the co-occurrence of the adversary’s target answer within the poisoned
passage, which causes certain tokens to receive significantly more attention weight than others. When
normalized across the retrieved set, these poisoned passages exhibit disproportionately high attention
scores, resulting in a high-variance signal that AV Filter leverages for detection.

However, this detection strategy assumes that the poisoned content is concentrated in a small subset
of passages while the majority support the correct answer. This reliance leads to certain limitations.
To the best of our knowledge, using attention patterns to improve the robustness of RAG systems has
the following constraints:

1. Susceptibility to majority corruption. If the adversary manages to corrupt a majority of
the retrieved set, then multiple passages will contain tokens that draw high attention weight.
This the contrast of normalized attention scores among passages, reducing the variance and
potentially allowing the attack to evade detection by AV Filter. This highlights the need for
robustness at the retrieval stage (Step I) of the RAG pipeline as well. However, AV Filter’s
improvements are orthogonal to retrieval robustness—it can be integrated with more robust
retrievers that make majority corruption harder.

2. Dependence on redundancy of correct knowledge. If only a very few benign passages
contain the correct answer, these may individually attract high attention and be mistakenly
filtered out. Thus, AV Filter assumes that the knowledge corpus includes multiple passages
supporting the correct answer, which is necessary for any filtering mechanism based on
outlier detection to succeed.

3. Task specificity and generalization. The AV Filter relies on the poisoned passage receiving
high normalized attention scores due to the co-occurrence of the target response. While
this is well-suited for question-answering tasks—where the goal is to inject or alter the
response—we have not yet evaluated its effectiveness against attacks that aim to exploit other
behaviors of the RAG system (e.g., manipulating style, eliciting private data, or controlling
downstream decisions) without directly changing the response content. Broader evaluations
will be necessary to understand the generalization of this defense mechanism.
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F LLM USAGE

We did not make use of LLMs in the writing or research process beyond minor revisions to the text.

G BROADER IMPACTS

We propose a filtering technique capable of identifying and mitigating existing poisoning attacks,
thereby reducing potential harm. In parallel, we introduce more stealthy poisoning attacks that evade
existing defenses. While we believe this dual contribution will drive the development of more robust
RAG systems, it may also increase the risk to vulnerable deployments in the short term.
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