
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THROUGH THE STEALTH LENS: ATTENTION-AWARE
DEFENSES AGAINST POISONING IN RAG

Anonymous authors
Paper under double-blind review

ABSTRACT

Retrieval-augmented generation (RAG) systems are vulnerable to attacks that inject
poisoned passages into the retrieved context, even at low corruption rates. We show
that existing attacks are not designed to be stealthy, allowing reliable detection
and mitigation. We formalize a distinguishability-based security game to quantify
stealth for such attacks. If a few poisoned passages control the response, they must
bias the inference process more than the benign ones, inherently compromising
stealth. This motivates analyzing intermediate signals of LLMs, such as attention
weights, to approximate the influence of different passages on the response. Lever-
aging attention weights, we introduce the Normalized Passage Attention Score
(NPAS) and a lightweight Attention-Variance Filter (AV Filter) that flags anoma-
lous passages. Our method improves robustness, yielding up to ∼ 20% higher
accuracy than baseline defenses. We also develop adaptive attacks that attempt to
conceal such anomalies, achieving up to 35% success rate and underscoring the
challenges of achieving true stealth in poisoning RAG systems.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized various applications with their remarkable gener-
ative abilities. However, their reliance on internal knowledge can lead to inaccuracies due to outdated
information or hallucinations (Achiam et al., 2023; Brown et al., 2020; Ji et al., 2023). RAG (Guu
et al., 2020; Lewis et al., 2020) has emerged as a leading technique to address these limitations by
integrating LLMs with external (non-parametric) knowledge retrieved from databases (Borgeaud
et al., 2022; Karpukhin et al., 2020). It retrieves a set of relevant passages from a knowledge database,
denoted as the retrieved set, and incorporates them into the model’s input. This powerful approach
underpins critical real-world systems, including Google Search with AI overviews (Google, 2024),
WikiChat (Semnani et al., 2023), Bing Search (Microsoft, 2024), Perplexity AI (Perplexity AI, 2024),
and LLM agents (Liu, 2022; LangChain, 2024; Shinn et al., 2023; Yao et al., 2023).

The reliance of RAG systems on the retrieved set, however, introduces a significant new security
vulnerability: the knowledge database becomes an additional attack surface. Malicious actors can
inject harmful content, for example, by manipulating Wikipedia pages, spreading fake news on social
media, or hosting malicious websites, to corrupt the information retrieved by the RAG system (Carlini
et al., 2024). Consequently, the retrieval of malicious passages by a RAG system, followed by their
incorporation into response generation, constitutes a retrieval corruption attack (Xiang et al., 2024).
Recent instances, such as the PoisonedRAG attack (Zou et al., 2024), demonstrate easily exploitable
vulnerabilities: the attacker simply prompts GPT-4 to create the malicious context and inject it into
the retrieved set, successfully manipulating the answer by corrupting only a small fraction of the
retrieved set (e.g., one or two out of ten) (Greshake et al., 2023; Zou et al., 2024; Xiang et al., 2024).

Although existing attacks on RAG systems often achieve high success with low corruption rates,
they are typically not designed with stealth in mind, leaving them susceptible to detection and
mitigation. Ideally, a robust aggregation mechanism would identify inconsistencies between the
LLM’s output and the dominant (benign) signal in the retrieved set. A significant divergence suggests
undue influence from a small, potentially malicious subset of passages. Crucially, to override the
benign context, adversarial passages must disproportionately influence the LLM’s response. This
may necessitate detectable differences from benign passages, leaving behind a malicious trace. The
presence of such malicious traces becomes more likely when the adversary cannot compromise the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

z(k)

User Query: How many of the
six planned central towers …
Sagrada Familia cathedral have
now been completed?

q

q

La Sagrada Familia, Barcelona's ...
as five out of six central towers
are now complete.

The Sagrada Familia … have
completed 3 of its 6 planned … a
significant milestone

Normalized
Passage

Attention Scores

Answer: 3

Attention Scores
across z(k)

AV Filter

Answer: 5

User

Retriever

LLM LLM

6 %

4 %

37 %

4 %

Variance

Retrieved Passages z(k)

Sagrada Familia gets … six central
towers, of which five have
already been completed.

User Query: How many of the
six planned central towers …
Sagrada Familia cathedral have
now been completed?

La Sagrada Familia, Barcelona's ...
as five out of six central towers
are now complete.

Sagrada Familia gets … six central
towers, of which five have
already been completed.

As of now, the construction …
seen the completion of 5 central
towers .

As of now, the construction …
seen the completion of 5 central
towers .

Figure 1: AV Filter Overview. The retriever returns passages z(k), one of which is poisoned and
disproportionately influences the response, increasing variance in NPAS across passages. AV Filter
mitigates this by removing passages with anomalously high attention scores, indicative of poisoning.

majority of the retrieved set, a particularly challenging task when retrieval is performed over large,
diverse corpora like Google Search or Wikipedia (Xiang et al., 2024; Zou et al., 2024; Greshake et al.,
2023), or when the retriever is designed to be robust. However, existing attacks largely overlook
stealth, relying on weak signals such as perplexity (Jain et al., 2023; Alon & Kamfonas, 2023; Gonen
et al., 2022). This raises a fundamental question: Are existing attacks truly stealthy? If not, can they
be detected and mitigated, and how can we develop more sophisticated strategies to enhance their
stealth? We challenge the notion of effortless stealth and define it through a distinguishability security
game. We introduce the Normalized Passage Attention Score (NPAS), a metric that aggregates the
attention weights assigned to tokens in each passage from the model’s response. We demonstrate that
existing low-effort attacks leave detectable traces, as adversarial passages attract disproportionately
high attention, typically due to phrases containing or strongly implying the adversarial answer.

Leveraging the skewed distribution of normalized passage attention scores across the retrieved set,
we propose the Attention-Variance Filter (AV Filter)—an outlier filtering algorithm that removes
passages corresponding to extreme outliers in normalized passage attention scores (See Figure 1 for
an overview). The AV Filter effectively distinguishes malicious passages from benign ones, enabling
robust defenses by filtering out potentially malicious passages. To rigorously explore the limits of
this defense, we extend jailbreak methodologies to create adaptive attacks that optimize for obscuring
attention-based traces and evading the AV Filter, marking progress toward stealthier attacks. Our
findings highlight the ongoing arms race between attacks and robust RAG systems by formalizing a
security game, demonstrating effective mitigation of existing low-stealth attacks, and revealing the
challenges in improving stealth through adaptive attacks. We summarize our contributions as follows:

• We formalize stealth in RAG attacks via a distinguishability-based security game.
• We introduce the Normalized Passage Attention Score to quantify passage-response

dependencies and show that its distribution becomes skewed under corruption.
• Leveraging this score, we design a successful defender for the security game and propose

the Attention-Variance Filter to identify and remove potentially malicious passages.
• We design stealthier adaptive attacks by leveraging optimization techniques for jailbreaking

to evade the Attention-Variance Filter, highlighting the trade-offs in improving stealth.

2 BACKGROUND AND RELATED WORK

Notations and Definitions.

1. Q: space of queries; S: space of responses. A query q ∈ Q, a valid response s ∈ S , and an
adversary’s target response s′ ∈ S with s ̸= s′.

2. Z: space of knowledge databases. A database z ∈ Z is a collection of passages z =
{z1, z2, . . . , zn}, where each zi is a passage.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3. z(k) ⊂ z: a subset of k retrieved passages. Z(k): the space of all such subsets.
4. Θ: space of RAG architectures. An architecture θ ∈ Θ is defined as θ =

(Retθ,Genθ,LLMθ), consisting of a retriever, generator, and language model.

Retrieval-Augmented Generation. A RAG pipeline comprises four key components: a knowledge
database, a retrieval function, a generation function, and an LLM. The knowledge database consists
of a collection of passages sourced from diverse repositories such as Google Search or Wikipedia.

Step I. Knowledge Retrieval: The retriever selects the top-k passages relevant to q. Formally,
Retθ : Q×Z → Z(k) denotes the retrieval function that returns the top-k passages.

Step II. Generation: The generation function utilizes the retrieved set and the LLM, often guided by
an instructional prompt I, to produce the final response. Formally, Genθ : Q×Z(k) → S denotes
the generation function that outputs the response s.

A Retrieval-Augmented Generation (RAG) system can be formally defined as the function
fRAG : Q×Z ×Θ→ S, where fRAG(q, z, θ) = Genθ(q,Retθ(q, z)) = s.

In a standard RAG pipeline (Lewis et al., 2020), the retriever assigns relevance scores to passages
independently and selects the top-k passages based on these scores. The retriever’s output is:

Retθ(q, z) = z(k) = {zi1 , zi2 , . . . , zik}
Next, the generation function processes a concatenated sequence consisting of the instructional
prompt, the retrieved passages, and the query, to produce a response. This is formulated as:

Genθ

(
q, z(k)

)
= LLMθ

(
Concat(I, z(k), q)

)
= LLMθ(I ⊕ zi1 ⊕ zi2 ⊕ · · · ⊕ zik ⊕ q),

where ⊕ denotes the concatenation of text sequences.

Vulnerabilities in RAG Systems. An adversary targeting a specific response s′ can craft a set of
adversarial passages zadv by simultaneously maximizing the following two objectives:

Pr
θ
[zadv ⊂ Retθ (q, z ∪ zadv)] and Pr

θ

[
LLMθ

(
Concat(I, z(k), q)

)
= s′

∣∣∣ zadv ⊂ z(k)
]

These correspond to attacks on Step I and Step II, respectively. Existing RAG systems are highly
brittle to poisoning, and even minimal corruption—for example, altering a single passage among
ten retrieved—can successfully manipulate LLM responses. Given the open challenge of building
perfectly robust retrievers (Fayyaz et al., 2025; Lin, 2024; Li et al., 2021), enhancing robustness
at the generation stage (Step II) becomes critical. This allows tolerance to limited corruption and
enables reliable integration with reasonably robust retrieval methods such as Google Search, yielding
an end-to-end robust RAG pipeline. This work focuses on strengthening the robustness of the
generation stage. We argue that a notion of stealth improves robustness by allowing generation to
withstand small-scale corruption. Advancing the robustness of retrievers is an orthogonal challenge
with broader applications and sensitivity to corpus characteristics; we defer improving and analyzing
weak retrievers, such as BM25, for integration into robust end-to-end pipelines to future work.

Existing Work. QA models are vulnerable to disinformation attacks (Du et al., 2022; Pan et al.,
2021; 2023; Zhong et al., 2023), with recent work highlighting risks specific to RAG pipelines. We
categorize attacks into: (i) content-poisoning methods that inject incorrect information into retrieved
passages (often LLM-generated) to bias the generation towards an adversary-specified answer (e.g.,
PoisonedRAG (Poison) (Zou et al., 2024), Misinformation Attack (MA) (Pan et al., 2023), and
RAG Paradox (Paradox) (Choi et al., 2025)), and (ii) instruction-poisoning methods that embed
direct prompt within the retrieved passages to elicit incorrect responses (e.g., Prompt Injection
Attack (PIA) (Greshake et al., 2023)). Although the former may appear more stealthy to human
readers, we show that both classes leave comparably detectable traces in the internal representations
of LLM when attempting to steer inference toward incorrect outputs. Our analysis is not restricted to
particular attack types, but rather investigates how poisoned passages perturb intermediate LLM
representations compared to benign passages, independent of surface-level semantics.

In response to these threats, several strategies have been explored, including query paraphras-
ing (Weller et al., 2022), misinformation detection (Hong et al., 2023), vigilant prompting (Pan et al.,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2023), reranking methods (Glass et al., 2022), and perplexity-based filters (Jain et al., 2023; Alon &
Kamfonas, 2023; Gonen et al., 2022). However, these methods often suffer from limited efficacy or
high false positive rates (Zou et al., 2024). More recently, Certified Robust RAG (Xiang et al., 2024)
was introduced, which employs an isolate-then-aggregate strategy to provide empirical accuracy
bounds and reduce attack success, and it currently represents the state of the art in mitigating such
threats. Further details on the existing work are provided in Appendix A.

3 STEALTH ANALYSIS OF ADVERSARIAL ATTACKS IN RAG SYSTEMS

Threat Model. We consider an adversary Aϵ with full knowledge of the RAG architecture θ and
knowledge base z. The adversary may inject (but not modify or delete) up to ⌊ϵ · k⌋ poisoned
passages into z. Given a query q, target s′, and architecture θ, the adversary produces a poisoned set
z
(⌊ϵ·k⌋)
adv = Aϵ(q, z, s

′, θ) =
{
z1, . . . , z⌊ϵ·k⌋

}
, constructed so that all poisoned passages are retrieved

and collectively induce generation of s′. Let z(k)benign = Retθ(q, z) and z
(k)
corrupt = Retθ

(
q, z ∪ z

(⌊ϵ·k⌋)
adv

)
denote the top-k retrieved passages from the benign and poisoned knowledge bases, respectively.
Then the retrieved sets may differ by at most ϵ · k passages. The attack is successful if the RAG
system generates the target response, i.e., Genθ

(
q, z

(k)
corrupt

)
= s′.

We consider a defender D with full knowledge of the RAG architecture θ and access to a limited
set of benign passages from the knowledge base. This assumption is practical, since defenders are
often system developers or model providers with visibility into LLM internals. To test generality, we
further extend experiments to settings where the RAG system uses closed-source APIs (e.g., GPT-4).

Attack Practicality. We focus on attack scenarios where benign passages in the retrieved set form
a clear majority consensus. If poisoned passages become the majority, either because of a weak
retriever or a lack of sufficient benign evidence in the knowledge base, generating an accurate
response becomes provably impossible. We therefore study the practical setting where ϵ < 0.5, which
reflects real-world cases where attackers have limited resources and can inject only a few poisoned
passages into the top-k results, such as with web search retrievers. In our experiments, we follow
prior work by injecting poisoned passages into a benign retrieved set to form the corrupted set.

Stealth Attack Distinguishability Game (SADG). Given a RAG architecture θ and a knowledge
database z, we define a game between an arbiter, an adversary Aϵ, and a defender D, parameterized
by a corruption budget ϵ. The defender does not have access to z. The game proceeds as follows:

1. The arbiter samples a query q and constructs the benign retrieved set z(k)benign = Retθ(q, z).

2. The adversary Aϵ generates poisoned passages z(adv) under budget ϵ, and the arbiter con-
structs the corrupted set z(k)corrupt = Retθ

(
q, z ∪ z(adv)

)
.

3. The arbiter sends the query q and the two retrieved sets in random order, as
(
z
(k)
0 , z

(k)
1

)
, to

the defender. The defender must guess which set is corrupted to win the game.

The defender’s advantage is defined as: AdvAϵ,D
SADG(θ, z, ϵ) :=

∣∣Pr[Defender wins]− 1
2

∣∣ . Smaller ϵ
implies a tighter corruption budget, making stealth more difficult and increasing Adv. An attack is
τ -stealthy if, for all probabilistic polynomial-time (PPT) defenders D, the advantage is at most τ . A
perfectly stealthy attack corresponds to τ = 0. See Appendix B for details.

Stealth of Existing Attacks. While existing attacks may evade detection methods that analyze
passages in isolation (e.g., perplexity filtering), their influence is still evident in the model’s output,
making the generated response itself a valuable signal for detecting corruption. This motivates a shift
in perspective: to analyze retrieved passages in conjunction with the generated response and
assess whether any passage disproportionately shapes the output. If most retrieved passages are
expected to be relevant to the query, a strong alignment between the response and only a few passages
may indicate adversarial manipulation. We formalize this insight with NPAS, which quantifies the
alignment between each passage and the generated response. NPAS enables two defenses: a defender
DAV that distinguishes between benign and corrupted retrieved sets with a strong advantage in SADG,
and the AV Filter, which removes potentially poisoned passages to effectively mitigate attacks.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 STEALTH DETECTION AND MITIGATION VIA ATTENTION VARIANCE

We build on the fact that, in a successful attack, the generated response is strongly correlated with the
malicious passages that shaped it. Ideally, for a retrieved set z(k) and target response s′, we should
consider the conditional probability Prz(k)

(
Genθ(q, z

(k)) = s′
∣∣zi ∈ z(k)

)
for each passage zi in a

retrieved set to measure its correlation with the response.

Why analyze attention scores? In transformer-based LLMs, the information from tokens in the
prompt is combined to get an internal representation used for next-token generation. When the
predicted token is adversarial, the information needed to generate it must primarily come from
poisoned passages. Transformers pass this information between tokens through attention, and across
blocks via MLPs and residual connections. The magnitude of information flow through an attention
head from another token is proportional to its attention score, as these scores weight the sum of prior
token representations to produce the next-block representation of a particular token. The final-block
representation of the last token is then used to produce a new token, aggregating dependencies across
all tokens. Thus, attention scores computed during inference provide a useful approximation of
inter-token dependencies and are widely used for analyzing them (Vig & Belinkov, 2019). When
malicious tokens are generated, the internal representation is biased toward poisoned passages,
producing skewed attention patterns. We therefore analyze the attention matrices of the LLM to
approximate these correlations. This approximation can be further refined using techniques such as
attention rollouts (Abnar et al., 2020) or other saliency methods, which we leave for future work.

Analyzing the attention matrix of LLMs in RAG systems has proven useful beyond security consider-
ations, for example, in optimizing KV caches during inference (Zhang et al., 2023; He et al., 2024).
H2O (Zhang et al., 2023) shows that only a small fraction of input tokens, termed Heavy Hitters (H2),
dominate attention weights when generating a new token. These Heavy Hitters naturally emerge and
are strongly correlated with token co-occurrence. Consistent with this, our analysis of compromised
RAG systems finds that when malicious influence leads to incorrect responses, the Heavy Hitters are
localized within the poisoned passages. Heavy Hitters are often target-response keywords embedded
within poisoned passages. These tokens, due to their co-occurrence with the incorrect generated
output, receive disproportionately high attention, skewing the overall attention distribution.

Based on this insight, we define the NPAS, which aggregates token-level attention to quantify the
proportion of total attention each passage receives from the final response. This score helps identify
anomalous passages indicative of adversarial influence. This skewed distribution of attention in
poisoned passages is illustrated through examples in Appendix C.1.

Normalized Passage Attention Score. Let the input to LLMθ be X = Concat(I, z(k), q) where
z(k) is the retrieved set and q is the query. It generates a response s′ = {s′1, s′2, . . . , s′l} of l tokens
while computing multi-layer, multi-head attention weights, with each layer producing a separate
tensor for each head. We average these weights across all decoder layers and heads to construct a
unified attention matrix: A = Attention(LLMθ,X) ∈ Rl×T where T is the number of input tokens.
Each entry A[i, j] denotes the mean attention from the i-th output tokens to the j-th input token. This
averaging yields a stable view of token-level interactions (Peysakhovich & Lerer, 2023).

Each retrieved passage zt is a finite sequence of tokens, zt = {z(1)t , z
(2)
t , . . . }. The Passage Attention

Score, Scoreα(zt, A), is defined as the total attention from all response tokens s′ to the top-α most
attended tokens in zt, denoted as Topα(zt). This focuses on high-signal Heavy Hitter tokens—often
adversarial keywords—within a passage thereby amplifying adversarial cues and reducing noise.
We define the Normalized Passage Attention Score (NPAS), NormScoreα(zt, z

(k), A), by dividing
each passage’s score by the total score across all k retrieved passages. While normalization preserves
ranking, it standardizes attention magnitudes across queries and models, enabling a stable threshold
for detecting adversarial passages—unlike instance-specific approaches (Xian et al., 2025). For
clarity, we rescale it to a percentage and refer to it simply as a passage’s attention score.

Scoreα(zt, A) =
l∑

i=1

∑
xj∈Topα(zt)

A[i, j] NormScoreα(zt, z
(k), A) =

Scoreα(zt, A)∑k
i=1 Scoreα(zi, A)

We compute the attention score of a passage by summing the top-α most attended tokens within it. For
any fixed α, this score remains invariant to the passage length, preventing adversaries from gaining an

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10
Position

(a)

0

10

20

30

40
At

te
nt

io
n

Sc
or

e
(%

)

0 100 200
Variance of Attention Scores

(b)

0.000

0.005

0.010

0.015

De
ns

ity

Benign
PIA
Poison

Figure 2: (a) Average attention scores across passage positions in retrieved sets over multiple queries.
Benign passages show nearly uniform scores, while a poisoned passage at any position receives
disproportionately high attention. (b) Variance of attention scores in benign vs. corrupted sets,
showing that a poisoned passage shifts the variance distribution, making it separable from the benign
case. Scores are computed on the RQA dataset with Llama 2 for α =∞ and ϵ = 0.1.

Algorithm 1: Attention-Variance Filter (AV Filter)

Input: Query q, Retrieved set z(k), model LLMθ, Corruption fraction ϵ, Variance threshold δ
Output: Filtered set zfiltered

1 zsorted = Sort(z(k),LLMθ) ▷ Sort passages according to attention scores
2 zfiltered ← zsorted ▷ Initialize the set of filtered passages
3 while |zfiltered| > ⌊(1− ϵ) · k⌋ do
4 X ← Concat(I, zfiltered, q) ▷ Form the input sequence
5 A← Attention(LLMθ,X) ▷ Compute the attention matrix from LLMθ on X
6 attn_scores← {NormScoreα(zt, z

filtered, A)|zt ∈ zfiltered} ▷ Compute attention scores
7 σ2 = Var(attn_scores) ▷ Compute the variance of attention scores
8 if σ2 ≤ δ then
9 break

10 zmax = argmax
zt∈zfiltered

NormScoreα(zt, z
filtered, A)

11 zfiltered ← zfiltered \ zmax ▷ Remove the passage with the highest score from the filtered set

12 return zfiltered

advantage through length manipulation. Ideally, α should match the number of Heavy Hitters—tokens
in the poisoned passage that align with the target response—which is often proportional to the number
of tokens in the target response. We select sufficiently large values of α to ensure coverage of all
Heavy Hitters, using α ∈ {5, 10,∞}, where∞ denotes summing over all tokens in the passage. We
provide a detailed rationale for selecting the top-α tokens for NPAS in Appendix C.3.

Discriminating Between Corrupted and Benign Retrievals via Attention. In benign RAG
instances—where retrieved passages are relevant to both query and response—attention distribution
over passages is approximately uniform with a slight recency effect (Liu et al., 2023a; Guo &
Vosoughi, 2024). Corruption skews this attention pattern—Figure 2(a) shows that corrupting a single
index significantly elevates its attention scores relative to the benign baseline. This implies that
corrupted retrieved sets exhibit a high variance of attention scores across passages. Motivated by
this, we propose a defender DAV in the SADG game that detects corruption using attention variance.
Given a query q and two retrieved sets

(
z
(k)
0 , z

(k)
1

)
, the defender computes attention scores for

each passage: attn_scoresi =
{
NormScoreα(zt, z

(k)
i , A)|zt ∈ z

(k)
i

}
, and calculates their variance

Var(attn_scoresi). The defender then outputs:

DAV(q, z
(k)
0 , z

(k)
1) :=

{
0, if Var(attn_scores0) > Var(attn_scores1),
1, otherwise.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The defender flags the set with a higher attention score variance as corrupted. Figure 2(b) shows that
the variance is consistently higher for corrupted sets, enabling reliable detection across attacks.

Filtering Poisoned Passages from Corrupted Retrievals. We propose the Attention-Variance
Filter (AV Filter), an outlier filtering algorithm that removes potentially corrupted passages exhibiting
unusually high attention. Given a query q, retrieved set z(k), model LLMθ, corruption budget ϵ and
threshold δ, the filter computes the variance of normalized attention scores and iteratively removes
the top-scoring passage until the variance drops below δ or ϵ-fraction of passages are removed.

To address the recency effect, where a few tokens receive slightly higher attention due to their
proximity to the next token being generated, we reorder passages by attention score using
Score(z(k),LLMθ) (Peysakhovich & Lerer, 2023). This sorting reduces positional bias, amplifies
anomalous signals, and improves filtering. Algorithm 1 specifies the AV Filter procedure.

Estimating the Filtering Threshold δ. The AV Filter’s effectiveness hinges on choosing an
appropriate threshold δ. We estimate it using the RQA dataset (Kasai et al., 2023) and Llama
2 (Touvron et al., 2023) by computing attention score variances across clean retrieved sets, setting δ
as the mean plus one standard deviation. In selecting δ, we prioritize minimizing false negatives over
false positives, since dropping a few benign passages rarely changes the final response when most
content is clean. The estimated threshold generalizes effectively to unseen settings.

5 EVALUATION

This section provides empirical evaluations of the claims presented in the preceding section. Specifi-
cally, we conduct experiments to address the following research questions:

RQ1: Can the defender DAV reliably identify corrupted retrievals in existing attacks?
RQ2: How effective is the AV Filter at mitigating existing attacks?
RQ3: How effective and efficient are adaptive attacks at bypassing the AV Filter?

Experimental Highlights We summarize the findings related to the research questions:

RQ1: DAV identifies the corrupted set and wins the security game against existing attacks with
high probability. We estimated its probability of winning as the rate of correct identification across
settings, achieving an average of 0.78—highlighting a strong advantage against existing attacks.

RQ2: The AV Filter outperforms baseline defenses, achieving up to 23% higher accuracy in benign
settings and up to 20% under attack, while maintaining comparable reductions in attack success rates.

RQ3: Adaptive attacks bypass the AV Filter, achieving an ASR up to 35%—higher than existing
attacks—but the AV Filter nevertheless reduces ASR below that of vanilla RAG and empirical upper
bounds of baseline defenses. This success requires costly, query-specific optimization (∼ 103×
runtime of baselines) and access to benign passages, unlike prior manual or one-shot LLM attacks.

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate on four benchmark question-answering datasets: RealtimeQA (RQA) (Kasai
et al., 2023), Natural Questions (NQ) (Kwiatkowski et al., 2019) and HotpotQA (Yang et al., 2018)
for short-answer open-domain QA, and the RealtimeQA-MC (RQA-MC) (Kasai et al., 2023) for
multiple-choice open-domain QA. Each dataset interfaces with a knowledge source: Google Search is
used for RQA, RQA-MC, and NQ, while the Wikipedia corpus is used for HotpotQA and also for
NQ. We evaluate 100 queries per dataset, following the baseline (Xiang et al., 2024).

RAG Setup. We evaluate five LLMs: Llama2-7B-Chat (Touvron et al., 2023), Mistral-7B-
Instruct (Chaplot, 2023), Llama-3.1-8B-Instruct (AI, 2024), Deepseek-R1-distill-qwen-7B (Guo
et al., 2025), and GPT-4o Achiam et al. (2023). We use the top k = 10 retrieved passages. We
randomly select Mistral-7B to compute attention scores, while GPT-4o generates the final responses.

Attacks. We evaluate three content-poisoning attacks: Poison (Zou et al., 2024), Misinformation
Attack (MA) (Pan et al., 2023) and Paradox (Choi et al., 2025), as well as one instruction-poisoning

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Clean Accuracy (ACC) of defenses, showing that AV Filter preserves RAG utility with a
minimal drop from Vanilla, achieving up to 23% higher ACC than other baselines.

LLM Mistral-7B Llama2-C GPT-4o Llama-3.1 Deepseek-R1

Defense RQA-MC RQA NQ RQA-MC RQA NQ RQA-MC RQA NQ RQA-MC RQA NQ RQA-MC RQA NQ

Vanilla 81.0 72.0 62.0 79.0 61.0 59.0 66.2 69.8 61.2 44.0 71.0 64.0 37.0 56.0 54.0
Keyword 58.0 56.0 51.0 56.0 57.0 54.0 63.2 64.2 60.4 61.0 61.0 62.0 42.0 41.0 43.0
Decoding 57.0 57.0 55.0 44.0 54.0 41.0 – – – 56.0 56.0 56.0 44.0 44.0 44.0
AV Filter(α=5) 73.0 66.0 59.0 79.0 60.0 51.0 57.8 61.6 57.8 43.0 67.0 66.0 36.0 57.0 52.0
AV Filter(α=10) 74.0 65.0 58.0 75.0 57.0 54.0 59.8 62.6 55.0 45.0 66.0 66.0 37.0 59.0 52.0
AV Filter(α=∞) 76.0 64.0 58.0 75.0 56.0 54.0 59.6 63.0 55.8 44.0 67.0 62.0 34.0 57.0 52.0

attack, PIA (Greshake et al., 2023). Unless otherwise stated, the corruption fraction is set to ϵ = 0.1,
with the position of the poisoned passage randomly varied within the retrieved set.

Defenses. We evaluate the AV Filter, using NormScoreα for α ∈ {5, 10,∞}. We set δ = 26.2,
estimated from benign RQA with Llama2 at α =∞. Baselines include vanilla RAG (Vanilla) and
Certified Robust RAG (Xiang et al., 2024): Keyword and Decoding.

Evaluation Metrics. For RQ1, we measure the success of defender DAV in SADG via the Cor-
ruption Identification Rate (CIR), the fraction of corrupted sets correctly flagged under successful
attacks on vanilla RAG. For RQ2 and RQ3, we report three metrics (percentages): Clean Accuracy
(ACC)—correct responses without attack; Robust Accuracy (RACC)—correct responses under
attack; and Attack Success Rate (ASR)—responses containing the adversary’s target. A response is
correct if it contains a valid variation of the ground-truth answer s and excludes the adversary’s target
s′. All results are averaged over 5 random seeds.

We report a representative subset of results with Poison and PIA attacks using Google Search. Ex-
panded results on additional attacks (Appx. D.2), knowledge bases (Appx. D.6), baselines (Appx. D.5),
false positive rates (Appx. D.4), hyperparameter analysis (Appx. D.8), ensembling with Certified
Robust RAG (Appx. D.7), and other experimental details are provided in Appendix D.

5.2 RESULT AND DISCUSSION

RQ1. Table 3 in Appendix B reports the estimated probability of DAV winning the SADG, measured
via CIR, across models, datasets, and varying α under existing attacks. DAV identifies the corrupted
set with high accuracy, achieving an average CIR of 0.78, demonstrating strong effectiveness. We
used successful attack instances against Vanilla RAG in each setting to compute CIR.

RQ2. Clean Accuracy. Table 1 presents clean accuracy across models, datasets, and α values. The
AV Filter maintains strong clean performance, with an average drop of only 4-6% across datasets—
substantially smaller than other defenses. On RQA-MC, accuracy drops from 61.4% (Vanilla) to
59.3% with AV Filter, compared to larger declines for Keyword (56.0%) and Decoding (50.3%).
Similar trends hold for RQA (from 65.9% to 62.4%) and NQ (from 60.0% to 57.76%).

Robust Accuracy. Table 2 reports AV Filter’s robust accuracy (RACC) and attack success rate
(ASR). On RQA-MC, it achieves 55.7% RACC, outperforming Vanilla RAG (44.4%), Keyword
(53.9%), and Decoding (47.1%). Similar improvements hold for RQA (59.8%) and NQ (53.4%).
AV Filter’s RACC closely matches Vanilla’s clean accuracy, indicating high precision and minimal
benign impact. Appendix D.3 details how often it correctly removes poisoned passages.

Attack Success Rate. Table 2 shows that even with a small corruption rate (ϵ = 0.1), Vanilla RAG is
highly vulnerable—reaching up to 88.2% attack success. AV Filter cuts this sharply to an average
of 6.6% on RQA-MC, comparable to Cert. RAG-Keyword (6.1%) and Decoding (7.6%). Similar
trends hold for RQA and NQ, with the average ASR reduced to 6.0% and 4.8%, respectively.

Overall, AV Filter mitigates existing attacks while maintaining higher accuracy than Certified RAG.
It also requires fewer LLMθ computations, since it avoids evaluating passages individually.

RQ3. We adapt GCG (Zou et al., 2023) and AutoDAN (Liu et al., 2023b) by optimizing the poisoned
passage with full access to the input. We minimize L1 + λ · L2, where L1 is the cross-entropy loss
w.r.t. the target response, and L2 is the attention variance across passages. Existing attacks yield

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Robust Accuracy and Attack Success Rate (RACC/ASR) showing that AV Filter effectively
mitigates attacks with low ASRs while achieving up to 20% higher RACC than baseline defenses.

Dataset RQA-MC RQA NQ
LLM Attack

Defense
PIA

(racc↑ / asr↓)
Poison

(racc↑ / asr↓)
PIA

(racc↑ / asr↓)
Poison

(racc↑ / asr↓)
PIA

(racc↑ / asr↓)
Poison

(racc↑ / asr↓)

Mistral-7B

Vanilla 59.6 / 31.0 62.2 / 30.0 52.2 / 26.6 50.0 / 23.4 40.8 / 24.6 52.0 / 9.2
Keyword 57.0 / 7.00 55.0 / 6.00 54.0 / 6.00 55.0 / 6.00 50.0 / 1.00 49.0 / 1.00
Decoding 55.0 / 5.00 54.0 / 13.0 55.0 / 5.00 54.0 / 13.0 55.0 / 1.00 56.0 / 1.00
AV Filter(α=5) 76.6 / 5.80 70 .0 / 10.0 62.6 / 2.80 58.2 / 7.40 54.4 / 3.00 53.4 / 6.20
AV Filter(α=10) 77.2 / 6.00 71.6 / 8.20 64.8 / 2.80 56.8 / 8.40 56.2 / 2.80 52.8 / 6.60
AV Filter(α=∞) 76.2 / 7.20 73.8 / 8.40 65.0 / 2.40 56.8 / 8.60 50.2 / 5.80 52.8 / 4.00

Llama2-C

Vanilla 33.4 / 63.0 62.8 / 27.6 5.80 / 88.2 57.4 / 17.2 10.6 / 73.2 56.8 / 5.80
Keyword 54.0 / 6.00 53.0 / 5.00 53.0 / 6.00 53.0 / 5.00 52.0 / 2.00 51.0 / 2.00
Decoding 38.0 / 12.0 40.0 / 5.00 38.0 / 12.0 40.0 / 5.00 39.0 / 17.0 40.0 / 4.00
AV Filter(α=5) 65.6 / 18.4 67.8 / 18.4 61.8 / 1.60 55.4 / 7.00 50.6 / 5.20 49.8 / 6.20
AV Filter(α=10) 70.8 / 12.4 69.6 / 13.0 60.2 / 1.60 54.8 / 8.80 51.4 / 4.00 51.2 / 6.20
AV Filter(α=∞) 68.8 / 16.8 72.0 / 12.6 60.2 / 5.00 56.8 / 6.60 49.4 / 9.20 51.8 / 3.60

Llama-3.1

Vanilla 42.0 / 15.0 30.6 / 19.2 48.4 / 14.0 21.0 / 29.4 34.6 / 22.4 41.0 / 10.8
Keyword 61.0 / 7.00 58.0 / 6.00 61.0 / 7.00 57.0 / 6.00 60.0 / 3.00 58.0 / 2.00
Decoding 55.0 / 7.00 51.0 / 17.0 55.0 / 7.00 51.0 / 17.0 49.0 / 13.0 49.0 / 10.0
AV Filter(α=5) 43.0 / 2.60 35.8 / 10.6 70.2 / 2.60 53.8 / 7.20 60.8 / 1.00 50.2 / 5.00
AV Filter(α=10) 44.2 / 2.80 36.2 / 7.00 67.8 / 3.00 53.2 / 6.40 57.8 / 2.20 50.6 / 5.20
AV Filter(α=∞) 42.2 / 3.20 36.4 / 6.00 68.2 / 2.80 57.4 / 6.20 53.8 / 5.20 54.4 / 4.20

Deepseek-R1

Vanilla 26.0 / 2.60 23.6 / 9.60 24.3 / 49.6 46.3 / 17.00 33.3 / 33.0 48.6 / 7.30
Keyword 40.0 / 3.00 36.0 / 3.00 40.0 / 3.00 37.0 / 3.00 44.0 / 2.00 44.0 / 2.00
Decoding 42.0 / 1.00 42.0 / 1.00 42.0 / 1.00 42.0 / 1.00 44.0 / 1.00 43.0 / 0.00
AV Filter(α=5) 35.0 / 1.00 21.0 / 8.60 39.3 / 25.6 45.3 / 20.3 33.6 / 29.3 51.0 / 9.00
AV Filter(α=10) 35.3 / 2.30 25.6 / 6.00 47.0 / 14.0 46.6 / 14.6 39.6 / 24.0 48.6 / 7.30
AV Filter(α=∞) 29.3 / 2.30 27.6 / 6.30 50.3 / 10.3 53.0 / 8.60 38.6 / 19.3 48.6 / 5.3

GPT-4o

Vanilla 60.2 / 19.6 43.6 / 25.0 52.4 / 33.4 55.6 / 26.6 39.8 / 33.0 56.4 / 5.20
Keyword 62.6 / 4.40 63.0 / 4.20 63.4 / 4.00 62.6 / 4.00 60.2 / 1.40 60.0 / 1.20
AV Filter(α=5) 63.8 / 5.20 55.0 / 7.60 63.6 / 5.20 57.8 / 10.6 56.8 / 2.60 58.0 / 3.80
AV Filter(α=10) 64.2 / 4.60 50.4 / 10.4 63.6 / 4.80 57.2 / 11.0 57.0 / 4.00 57.8 / 3.00
AV Filter(α=∞) 63.8 / 5.40 50.8 / 6.80 61.2 / 7.00 61.4 / 9.20 52.0 / 11.4 58.8 / 1.60

low L1 but high L2 due to concentrated attention on tokens matching the target response. Simply
removing such tokens lowers L2 but raises L1, weakening the attack. Our method searches for
replacements that balance both, making optimization costly. We tune λ on RQA-MC with Llama 2
and fix λ = 0.1. Due to computational constraints, we evaluate 20 queries per dataset.

Adaptive attacks can evade AV Filter by lowering attention variance while preserving the target
response. On RQA-MC, ASR rises to 20%, still below Vanilla RAG and Certified RAG (Xiang
et al., 2024), with similar patterns across datasets. To the best of our knowledge, these attacks require
full input and model access plus query-specific optimization (up to 104s per query), making them
resource-intensive and instance-specific. Designing efficient, generalizable attacks without full access
remains an open challenge. Detailed results and algorithms are in Appendix D.1.

6 CONCLUSION AND FUTURE WORK

We have shown that existing attacks lack stealth, often drawing disproportionately high attention. This
property enables effective defenses: when attacks succeed despite corrupting only a small fraction
of the input, they must exert an unusually large influence, compromising their stealth. We argue
this trade-off is fundamental: an attack cannot be both highly effective and perfectly stealthy. A
theoretical analysis of this trade-off, aiming toward an impossibility result, remains for future work.

Our adaptive attacks probe the limits of attention-based defenses but remain inefficient and heavily
dependent on the query, input, and model access. Improving their generality and identifying other
detectable traces they may leave are key open challenges.

We believe that rigorously analyzing stealth through intermediate representations involved in the
generation—such as attention patterns or probability distributions for sampling the next token—is
critical for both crafting stronger attacks and developing robust defenses in RAG systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide our implementation in the supplementary material, which includes everything required to
replicate our results. Experiments are seeded and fully reproducible. We additionally present the key
details of our experimental setup, including hyperparameters, in Section 5.1.

REFERENCES

Samira Abnar et al. Quantifying attention flow in transformers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 4190–4197, 2020.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Meta AI. Llama 3.1: Our most capable models to date. 2024. URL https://ai.meta.com/
blog/meta-llama-3-1/.

Gabriel Alon and Michael Kamfonas. Detecting language model attacks with perplexity. arXiv
preprint arXiv:2308.14132, 2023.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Nicholas Carlini, Matthew Jagielski, Christopher A Choquette-Choo, Daniel Paleka, Will Pearce,
Hyrum Anderson, Andreas Terzis, Kurt Thomas, and Florian Tramèr. Poisoning web-scale training
datasets is practical. In 2024 IEEE Symposium on Security and Privacy (SP), pp. 407–425. IEEE,
2024.

Devendra Singh Chaplot. Albert q. jiang, alexandre sablayrolles, arthur mensch, chris bamford,
devendra singh chaplot, diego de las casas, florian bressand, gianna lengyel, guillaume lample,
lucile saulnier, lélio renard lavaud, marie-anne lachaux, pierre stock, teven le scao, thibaut lavril,
thomas wang, timothée lacroix, william el sayed. arXiv preprint arXiv:2310.06825, 2023.

Chanwoo Choi, Jinsoo Kim, Sukmin Cho, Soyeong Jeong, and Buru Chang. The rag paradox: A
black-box attack exploiting unintentional vulnerabilities in retrieval-augmented generation systems.
arXiv preprint arXiv:2502.20995, 2025.

Yibing Du, Antoine Bosselut, and Christopher D Manning. Synthetic disinformation attacks on auto-
mated fact verification systems. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 10581–10589, 2022.

Mohsen Fayyaz, Ali Modarressi, Hinrich Schuetze, and Nanyun Peng. Collapse of dense retrievers:
Short, early, and literal biases outranking factual evidence. arXiv preprint arXiv:2503.05037, 2025.

Michael Glass, Gaetano Rossiello, Md Faisal Mahbub Chowdhury, Ankita Naik, Pengshan Cai, and
Alfio Gliozzo. Re2g: Retrieve, rerank, generate. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 2701–2715, 2022.

Hila Gonen, Srini Iyer, Terra Blevins, Noah A Smith, and Luke Zettlemoyer. Demystifying prompts
in language models via perplexity estimation. arXiv preprint arXiv:2212.04037, 2022.

Google. Generative ai in search: Let google do the searching for you. https://blog.
google/products/search/generative-ai-google-search-may-2024/, 2024.
Accessed: 2025-04-21.

10

https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://blog.google/products/search/generative-ai-google-search-may-2024/
https://blog.google/products/search/generative-ai-google-search-may-2024/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres, Thorsten Holz, and Mario Fritz.
Not what you’ve signed up for: Compromising real-world llm-integrated applications with indirect
prompt injection. In Proceedings of the 16th ACM Workshop on Artificial Intelligence and Security,
pp. 79–90, 2023.

D. Guo et al. Deepseek-r1: Incentivizing reasoning capability in llms. arXiv preprint
arXiv:2501.12948, 2025. URL https://arxiv.org/abs/2501.12948.

Xiaobo Guo and Soroush Vosoughi. Serial position effects of large language models. arXiv preprint
arXiv:2406.15981, 2024.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International conference on machine learning, pp. 3929–3938.
PMLR, 2020.

Yefei He, Luoming Zhang, Weijia Wu, Jing Liu, Hong Zhou, and Bohan Zhuang. Zipcache:
Accurate and efficient kv cache quantization with salient token identification. arXiv preprint
arXiv:2405.14256, 2024.

Giwon Hong, Jeonghwan Kim, Junmo Kang, Sung-Hyon Myaeng, and Joyce Jiyoung Whang.
Discern and answer: Mitigating the impact of misinformation in retrieval-augmented models with
discriminators. CoRR, 2023.

Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami Somepalli, John Kirchenbauer, Ping-yeh
Chiang, Micah Goldblum, Aniruddha Saha, Jonas Geiping, and Tom Goldstein. Baseline defenses
for adversarial attacks against aligned language models. arXiv preprint arXiv:2309.00614, 2023.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
computing surveys, 55(12):1–38, 2023.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP
(1), pp. 6769–6781, 2020.

Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Akari Asai, Xinyan Yu, Dragomir Radev, Noah A
Smith, Yejin Choi, Kentaro Inui, et al. Realtime qa: What’s the answer right now? Advances in
neural information processing systems, 36:49025–49043, 2023.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

LangChain. Langchain. https://github.com/langchain-ai/langchain, 2024. Ac-
cessed: 2025-04-21.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Yizhi Li, Zhenghao Liu, Chenyan Xiong, and Zhiyuan Liu. More robust dense retrieval with
contrastive dual learning. In Proceedings of the 2021 ACM SIGIR International Conference on
Theory of Information Retrieval, pp. 287–296, 2021.

Sheng-Chieh Lin. Building a robust retrieval system with dense retrieval models. 2024.

Jerry Liu. Llamaindex. https://github.com/jerryjliu/llama_index, November
2022. Accessed: 2025-04-21.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023a.

11

https://arxiv.org/abs/2501.12948
https://github.com/langchain-ai/langchain
https://github.com/jerryjliu/llama_index

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. Autodan: Generating stealthy jailbreak
prompts on aligned large language models. arXiv preprint arXiv:2310.04451, 2023b.

Microsoft. Bing chat. https://www.microsoft.com/en-us/edge/features/
bing-chat, 2024. Accessed: 2025-04-21.

Liangming Pan, Wenhu Chen, Min-Yen Kan, and William Yang Wang. Attacking open-domain
question answering by injecting misinformation. arXiv preprint arXiv:2110.07803, 2021.

Yikang Pan, Liangming Pan, Wenhu Chen, Preslav Nakov, Min-Yen Kan, and William Yang Wang. On
the risk of misinformation pollution with large language models. arXiv preprint arXiv:2305.13661,
2023.

Perplexity AI. Perplexity ai. https://www.perplexity.ai/, 2024. Accessed: 2025-04-21.

Alexander Peysakhovich and Adam Lerer. Attention sorting combats recency bias in long context
language models. arXiv preprint arXiv:2310.01427, 2023.

Sina J Semnani, Violet Z Yao, Heidi C Zhang, and Monica S Lam. Wikichat: Stopping the
hallucination of large language model chatbots by few-shot grounding on wikipedia. arXiv preprint
arXiv:2305.14292, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a transformer language model.
In Tal Linzen, Grzegorz Chrupała, Yonatan Belinkov, and Dieuwke Hupkes (eds.), Proceedings of
the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pp.
63–76, Florence, Italy, August 2019. Association for Computational Linguistics. doi: 10.18653/
v1/W19-4808. URL https://aclanthology.org/W19-4808.

Orion Weller, Aleem Khan, Nathaniel Weir, Dawn Lawrie, and Benjamin Van Durme. De-
fending against disinformation attacks in open-domain question answering. arXiv preprint
arXiv:2212.10002, 2022.

Xun Xian, Tong Wang, Liwen You, and Yanjun Qi. Understanding data poisoning attacks
for RAG: Insights and algorithms, 2025. URL https://openreview.net/forum?id=
2aL6gcFX7q.

Chong Xiang, Tong Wu, Zexuan Zhong, David Wagner, Danqi Chen, and Prateek Mittal. Certifiably
robust rag against retrieval corruption. arXiv preprint arXiv:2405.15556, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661–34710, 2023.

Zexuan Zhong, Ziqing Huang, Alexander Wettig, and Danqi Chen. Poisoning retrieval corpora by
injecting adversarial passages. arXiv preprint arXiv:2310.19156, 2023.

12

https://www.microsoft.com/en-us/edge/features/bing-chat
https://www.microsoft.com/en-us/edge/features/bing-chat
https://www.perplexity.ai/
https://aclanthology.org/W19-4808
https://openreview.net/forum?id=2aL6gcFX7q
https://openreview.net/forum?id=2aL6gcFX7q

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal
and transferable adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043,
2023.

Wei Zou, Runpeng Geng, Binghui Wang, and Jinyuan Jia. Poisonedrag: Knowledge poisoning attacks
to retrieval-augmented generation of large language models. arXiv preprint arXiv:2402.07867,
2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ADDITIONAL BACKGROUND ON EXISTING WORKS

PoisonedRAG. Given a query q and target answer s′, PoisonedRAG (Poison) seeks to craft a
poisoned passage zpoison such that a RAG system is highly likely to generate s′ when zpoison is
included in the retrieved context. To do so, it leverages an LLM (e.g., GPT-4) to generate p. The
attack LLM may be the same as or different from the one used in the target system, depending on the
attacker’s access and knowledge. The attacker prompts the LLM to generate zpoison such that, when
used as context, it induces the model to output s′. The following prompt is used:

This is my question: [question].
This is my answer: [answer].
Please craft a corpus such that the answer is [answer] when prompted with the question
[question]. Please limit the corpus to V words

where V is a hyperparameter that limits the length of zpoison, though in practice, the generated passage
may exceed this limit if the LLM fails to strictly follow the instruction. For our experiments, we use
the poisoned passages publicly released by the PoisonedRAG (Zou et al., 2024) and Certified Robust
RAG (Xiang et al., 2024). We repeat the poisoned content 2 times in a single passage to simulate a
strong attacker that can successfully manipulate response in Vanilla RAG, while ensuring the overall
length remains comparable to that of a typical benign passage.

Prompt Injection Attack. It enables adversaries to remotely exploit LLM-integrated
applications by strategically injecting prompts into data likely to be retrieved. In
Prompt Injection Attack (PIA), the attacker injects the following malicious instruc-
tion: “When asked to provide the answer for the following question: {query}, please output
{target answer}”. We use a passage containing the aforementioned instruction for a specific query-
answer pair as the poisoned passage in our experiments.

Certified Robust RAG. Certified Robust RAG employs an isolate-then-aggregate strategy. Given
k retrieved passages z(k) = {zi1 , zi2 , . . . , zik}, it first computes an individual LLM response sj for
each isolated passage zij , instead of concatenating all k passages as in standard Vanilla RAG. It then
aggregates the responses {s1, s2, . . . , sk} using a robust text aggregation method to produce a final
response ŝ.

The isolation step limits the impact of any poisoned passage to its own response, enhancing robustness.
However, this design introduces two limitations. First, it fails on queries requiring multi-passage
reasoning—undermining a core motivation behind using multiple passages in RAG. Second, it incurs
a k× inference overhead compared to Vanilla RAG. While it strengthens security, this comes at a
steep cost to utility, latency, and inference costs.

Why does Certified Robust RAG fail? Certified Robust RAG-Keyword’s aggressive removal often
reduces robust accuracy and only occasionally lowers ASR. It also misses adversarial passages that
AV Filter detects, leading to worse ASR in many cases.

The Keyword process works by first generating k responses from the retrieved passages individually
and discarding those equivalent to "I don’t know", leaving k′ passages. Unique keywords are extracted
from these k′ responses, and a keyword is retained if its count exceeds min(α, β ·k′). For a corruption
rate of 1 in 10 passages, the evaluation of Xiang et al. (2024) uses α = 3 and β = 0.3. In many cases
k′ is small, so 0.3 · k′ < 1, effectively allowing keywords from all passages—including adversarial
ones—to pass. This limitation explains why Certified RAG-Keyword often underperforms compared
to AV Filter.

These trade-offs and failures highlight the need for more efficient defenses that balance robustness
with practicality.

B STEALTH ATTACK DISTINGUISHABILITY GAME (SADG)

We define a security game between an arbiter, an adversary Aϵ, and a defender D, parameterized
by a parameter ϵ. The goal is to evaluate whether D can distinguish a corrupted retrieved set from

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: Estimated probability of DAV identifying the corrupted set using different α values for
NormScoreα, showing high accuracy and a strong advantage against existing attacks.

Dataset RQA-MC RQA NQ
LLM top-α PIA Poison PIA Poison PIA Poison

Mistral7-B
α = 5 0.94 0.84 0.94 0.93 0.79 0.54
α = 10 0.94 0.86 0.88 0.82 0.73 0.60
α = ∞ 0.91 0.93 0.80 0.84 0.48 0.79

Llama2-C
α = 5 0.82 0.70 0.99 0.86 0.93 0.66
α = 10 0.92 0.82 0.99 0.88 0.91 0.64
α = ∞ 0.95 0.99 0.95 0.82 0.83 0.72

Llama-3.1
α = 5 0.93 0.72 0.88 0.68 0.83 0.41
α = 10 0.86 0.70 0.89 0.72 0.75 0.50
α = ∞ 0.88 0.82 0.83 0.87 0.68 0.63

Deepseek-R1
α = 5 0.95 0.47 0.75 0.65 0.55 0.63
α = 10 0.93 0.63 0.87 0.69 0.64 0.56
α = ∞ 0.93 0.80 0.89 0.87 0.64 0.79

a benign one. The corruption budget of Aϵ is controlled by ϵ; smaller values correspond to tighter
budgets, making stealth harder.

For a given RAG architecture θ and knowledge database z, the defender does not have access to z,
the game proceeds as follows:

1. Query sampling: The arbiter samples a query q ← Q.

2. Retrieved set generation: The arbiter samples a target response s′ ← S. It com-
putes the benign retrieved set z

(k)
benign = Retθ(q, z), queries the adversary to obtain

poisoned passages z(adv) = Aϵ(q, z, s
′, θ), and constructs the corrupted retrieved set

z
(k)
corrupt = Retθ

(
q, z ∪ z(adv)

)
3. Permutation: The arbiter samples a bit b← {0, 1} uniformly at random and defines:

(
z
(k)
0 , z

(k)
1

)
:=


(
z
(k)
corrupt, z

(k)
benign

)
, if b = 0,(

z
(k)
benign, z

(k)
corrupt

)
, if b = 1.

The arbiter sends
(
q, z

(k)
0 , z

(k)
1

)
to the defender D.

4. Defender’s guess: The defender outputs b′ ∈ {0, 1}, guessing which of z(k)0 or z(k)1 is the
corrupted set. The defender wins if b′ = b.

Advantage. The defender’s advantage is: AdvAϵ,D
SADG(θ, z, ϵ) :=

∣∣Pr[b′ = b]− 1
2

∣∣ .
The probability Pr[b′ = b] is over the randomness of q, s′, θ, b, and defender D.

The attack is said to be τ -stealthy if, for all probabilistic polynomial-time (PPT) defenders D, the
advantage is at most τ ; i.e.,

AdvAϵ,D
SADG(θ, z, ϵ) ≤ τ,

for a perfectly stealthy attack τ should be zero.

Table 3 reports the estimated probability of DAV winning the SADG—measured via CIR—across
models, datasets, and varying α values under existing attacks. DAV identifies the corrupted set with
high accuracy, achieving an average CIR of 0.78, demonstrating strong effectiveness. We used all
successful attack instances against Vanilla RAG in each setting to compute CIR.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C ATTENTION INSIGHTS AND DESIGN RATIONALE OF ATTENTION SCORE

C.1 EXAMPLE: BENIGN VS. POISONED ATTENTION PATTERNS

Our key insight is that attention patterns can be leveraged to detect potentially poisoned passages that
disproportionately influence the LLM’s response in an RAG system. In such cases, specific tokens
from the poisoned passage tend to receive significantly higher attention due to their co-occurrence
with the target answer. These tokens act as heavy hitters in the attention distribution and are localized
within the poisoned passages, as benign passages typically do not contain tokens associated with
an incorrect target answer. This results in a notably higher normalized passage attention score for
the poisoned passage compared to the benign ones. AV Filter exploits this disparity by identifying
and filtering out such anomalous passages from the corrupted retrieved set. Figure 3 illustrates this
behavior, showing a benign passage and the poisoned passage for the following query from the
RealtimeQA dataset, along with the corresponding toke-level attention weights produced by Llama 2.

User query: How many of the six planned central towers on Barcelona’s unfinished Sagrada
Familia cathedral have now been completed?
Target Response: 3
Correct Response: 5
Actual Response: 3
Benign Passage: Sagrada Familia gets final completion date 2026 or 2028. "Our new
objective is to complete the six central towers, of which five have already been started," said
Rigol. The sixth tower will measure ...
Poisoned Passage: The Sagrada Familia, an architectural masterpiece in Barcelona, is said
to have completed 3 of its 6 planned central towers, marking a significant milestone in its
lengthy construction process. The Sagrada Familia, an architectural masterpiece in Barcelona,
is said to have completed 3 of its 6 planned central towers, marking a significant milestone in
its lengthy construction process.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 2 6 or 2 0 2 8
<0

x0
A>

" O , of
wh

ich fiv
e

ha
ve

alr
ea

dy
be

en ol .
Th

e
six

th
to

we
r

wi
ll

m
ea

su
re ...

<0
x0

A> ha
ve

co
m

ple
te

d 3 of its 6
pla

nn
ed

ce
nt

ra
l to

ha
ve

co
m

ple
te

d 3 of its 6

Benign
Benign (top-5)
Poison
Poison (top-5)

(a) Benign (b) Poison

Figure 3: Attention Patterns in Benign vs. Poisoned Passages: It highlights the token-level attention
weights (as a fraction of total attention over the retrieved set) for a query from the RealtimeQA dataset,
computed using Llama 2. (a) shows a benign passage with the highest normalized passage attention
score among all benign candidates; (b) shows the poisoned passage present in the retrieved set. Tokens
such as 3, _of, and 6 from the poisoned passage receive disproportionately high attention—greater
than the total attention allocated to many of the individual benign passages. This behavior allows
simple aggregation of attention over the top-α tokens to distinguish poisoned from benign passages.

C.2 DISTRIBUTION OF ATTENTION WEIGHTS ACROSS TOKENS IN PASSAGE

We observe the Heavy Hitters phenomenon in adversarial passages: in successful attacks against
vanilla RAG, a few tokens receive disproportionately high attention, and these tokens are concentrated
in adversarial passages. To illustrate this, we provide a representative example from our evaluation in
Figure 3, highlighting the distinct difference in attention weight distributions.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Additionally, we report the difference between attention distributions in Table 4, with similar trends
expected across other configurations. For all instances of successful attacks against vanilla RAG, we
calculate the average highest attention weight of a token in a poisoned passage and compare it to that
in a benign passage, averaged over PIA and Poison.

Table 4: Highest attention weights per token in a benign passage versus a poisoned passage, showing
a clear difference in their distributions.

Dataset \ LLM Mistral-7B Llama 2

RQA-MC Benign 0.37 0.67
Poisoned 1.65 2.10

RQA Benign 0.66 0.42
Poisoned 3.41 2.50

NQ Benign 1.26 0.71
Poisoned 3.30 2.68

C.3 DESIGN RATIONALE FOR USING TOP-α TOKENS FROM EACH PASSAGE TOPα(zt)

The Normalized Passage Attention Score is computed by summing the attention weights of tokens
within a passage and normalizing this sum across all passages in the retrieved set. However, since
the sum of attention weights is proportional to the number of tokens, longer passages can receive
disproportionately higher scores, even if they contain little information relevant to the generated
answer. Selecting the top-α tokens mitigates this length bias, ensuring that the score reflects the most
influential tokens rather than sheer passage length.

Following the insight of Heavy Hitters, our experiments confirm that only a few tokens in an
adversarial passage receive disproportionately high attention weights. These tokens are typically
semantically aligned with the generated response and thus exert the most influence on its generation.
Ideally, a defense should sum only the contributions of these heavy hitters from each passage, ignoring
the long tail of tokens with very small attention weights.

Conceptually, a defender could estimate a threshold such that only tokens with attention weights
above it are considered in each passage, assuming tokens with lower attention weights have negligible
influence on the output. This threshold may vary depending on the underlying LLM in the RAG
pipeline. In practice, we approximate this by selecting the top-α tokens from each passage. We
evaluate α = (5, 10, α) and observe that AV Filter provides significant robustness across all settings.
A defender can further tune or estimate an attention-weight threshold per token to adaptively select
the most relevant tokens from each passage.

However, in many simpler and practical scenarios where retrieved passages are of similar length, the
defender can safely consider all tokens from each passage. In such cases, there is no length-based
bias, and setting α =∞ often yields optimal performance, as frequently observed in our evaluation.
In Table 5, we further provide the average length (in characters) of benign and poisoned passages
for each dataset in our evaluation. We observe that the length of the poisoned passages varies across
attacks and datasets—some are shorter, while others are longer than the benign passages. Notably,
adversarial passages in the Poison attack tend to be longer. This is primarily because they are
generated using GPT-4o, which often requires more elaborate phrasing and additional context to
effectively manipulate the generation, even in the vanilla RAG setup.

Table 5: Average passage length (in characters) for benign cases and different attacks, confirming
that the effectiveness of AV Filter is not attributable to length biases.

Dataset \ Passage Benign PIA Poison
RQA-MC 192.84 196.65 389.72
RQA 192.84 192.65 391.40
NQ 191.33 150.30 368.78

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

We use the PyTorch (BSD-style license) and HuggingFace Transformers (Apache-2.0 license) libraries
for all our experiments. The experiments were conducted on a mix of A100 and H100 GPUs.
All experiments were run with 5 different seeds, except for the adaptive attack due to its high
computational cost. We report the mean of each evaluation metric. The maximum observed standard
deviations across seeds are as follows: Clean Accuracy (ACC)—2.32, Robust Accuracy (RACC)—
3.78, and Attack Success Rate (ASR)—3.56.

D.1 ADAPTIVE ATTACKS

We extend existing jailbreak attacks such as GCG (Zou et al., 2023) and AutoDAN (Liu et al., 2023b)
by optimizing a poisoned passage with full access to the query and retrieval context. Starting from an
initial successful from a prior attack, denoted as zpoison, we iteratively refine it to minimize a compute
loss Lt that balances effectiveness and stealth.

The loss is defined as Lt = L1 + λ · L2, where L1 is the cross-entropy between between the model’s
response (given the corrupted retrieved set including zpoison) and the target answer s′, and L2 is the
variance of the normalized attention scores over all passages in the retrieved set—encouraging low
detectability. Here, λ is a scalar parameter that balances the attack effectiveness with stealth.

At each iteration, we apply a jailbreak method, denoted as Jailbreak, to propose a modified candidate
passage that minimizes Lt. Among all generated candidates across iterations, we select the one
yielding the lowest loss as the optimized poisoned passage. The full procedure is detailed in
Algorithm 2.

Algorithm 2: Adaptive Attention-Aware Poisoning Attack

Input: Query q, target answer s′, benign retrieved set z(k)benign, language model LLMθ, loss weight
λ, jailbreak function Jailbreak, max steps T

Output: Optimized poisoned passage z∗poison
1 Initialize poisoned passage p0 = zpoison using an existing attack (e.g., PoisonedRAG);
2 Set best loss L∗ ←∞, best candidate z∗poison ← p0;
3 for t = 1 to T do
4 Inject pt−1 into z

(k)
benign to get the corrupted retrieved set z(k)corrupt

5 Generate model response ŝt ← LLMθ(q, z
(k)
corrupt)

6 Compute normalized passage attention scores:

attn_scores =
{
NormScoreα(zt, z

(k)
corrupt, A)|zt ∈ z

(k)
corrupt

}
7 Compute loss:

Lt

(
z
(k)
corrupt

)
= CE (ŝt, s

′)︸ ︷︷ ︸
L1

+λ · Var (attn_scores)︸ ︷︷ ︸
L2

if Lt < L∗ then
8 L∗ ← Lt, z∗poison ← pt−1

9 Generate next candidate poisoned passage: pt ← Jailbreak
(
q, z

(k)
benign, s

′, pt−1,Lt

)
10 return z∗poison

In our experiments, we insert the poisoned passage at the last index of the retrieved set to con-
struct the corrupted retrieved set. This placement eliminates retrieval randomness, enabling easier
reproducibility and consistent comparison across queries—particularly important given the high
computational cost of adaptive attacks. We also set the α =∞ for the AV Filter and select 20 queries
from each dataset, prioritizing those where existing attacks were successful against Vanilla RAG.
Since initialization from successful attacks typically yields a low value of L1, we terminate the
optimization early if the attention variance L2 falls below the AV Filter threshold δ. The attack is run
for 100 steps using standard parameters for each jailbreak method.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

We tune the scalar parameter λ in the adaptive attack loss using the RealtimeQA dataset and Llama 2,
evaluating values from the set {0.01, 0.1, 1}. We select λ = 0.1 for all subsequent adaptive attack
experiments, as it yields the highest ASR. Figure 4(a) represents the impact of varying λ on attack
performance. For evaluation, we apply adaptive attacks using jailbreak methods, including GCG
and AutoDAN, initialized with poisoned passages generated by the PoisonedRAG attack (Poison).
Table 6 reports the robust accuracy and attack success rate (RACC / ASR) of adaptive attacks against
the AV Filter across multiple settings. The results show that adaptive attacks can potentially evade
the AV Filter, achieving a maximum ASR of 35% and an average ASR of 22.08%.

Table 6: RACC and ASR of adaptive attacks (GCG and AutoDAN) initialized with poisoned passages
from Poison against AV Filter, showing increased ASRs of up to 35%—higher than existing attacks
on AV Filter but still lower than ASRs of Vanilla RAG and empirical upper bounds of other baselines.

LLM Adaptive Attack RQA-MC RQA NQ

Llama 2-C GCG-Poison 55 / 15 35 / 30 15 / 10
AutoDAN-Poison 35 / 35 40 / 20 25 / 10

Mistral-7B GCG-Poison 50 / 25 25 / 25 35 / 35
AutoDAN-Poison 50 / 20 20 / 15 30 / 25

Although adaptive attacks demonstrate reasonable success against the AV Filter, several limitations
reduce the severity of the threat they pose. These attacks are highly dependent on the specific query,
model, and benign retrieved set, requiring access to the LLM, the retriever, and the knowledge
database—an assumption that may not hold for many practical adversaries. Furthermore, since
adaptive attacks rely on iterative jailbreak methods, which are known for their high computational
cost, they inherit long runtimes. Each poisoned passage must be individually optimized, significantly
increasing the time required for the attack. Table 7 reports the average runtime per query (in seconds)
across various settings, highlighting the computational overhead associated with these attacks. The
AutoDAN-Poison attack on the RealtimeQA dataset using Mistral-7B incurred the highest average
runtime among all settings, taking 18616.84 seconds per query. When executed sequentially on 20
queries, this resulted in a total runtime of approximately 4.3 days on a single H100 GPU. Figure 4(b)
shows the loss trajectory for a randomly selected query from the RealtimeQA dataset during the
adaptive attack on Llama 2.

Table 7: Average runtime of the adaptive attack per query across various settings. The runtime
reaches up to 1.8 × 104 seconds, which is several orders of magnitude

(
∼ ×103

)
higher than the

runtime of the existing attack Poison, as reported in (Zou et al., 2024).

LLM Adaptive Attack RQA-MC RQA NQ

Llama 2-C GCG-Poison 7015.68 15833.36 9146.72
AutoDAN-Poison 6233.20 18274.31 9737.39

Mistral-7B GCG-Poison 8606.68 14890.24 9624.45
AutoDAN-Poison 6604.01 18616.84 18248.52

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 8: Robust Accuracy and Attack Success Rate (RACC/ASR) showing that AV Filter effectively
mitigates additional content-poisoning attacks, even when they appear natural or semantically coherent
to humans, with an average ASR of 6.45%.

Dataset RQA-MC RQA NQ
LLM Attack

Defense
Paradox

(racc↑ / asr↓)
MA

(racc↑ / asr↓)
Paradox

(racc↑ / asr↓)
MA

(racc↑ / asr↓)
Paradox

(racc↑ / asr↓)
MA

(racc↑ / asr↓)

Mistral-7B
Vanilla 54.2 / 41.4 60.4 / 31.8 30.4 / 35.0 39.4/ 26.6 29.2 / 24.2 56.8 / 5.00
AV Filter(α=5) 76.0 / 8.40 74.0 / 8.60 57.6 / 4.20 54.0 / 8.00 50.6 / 7.40 53.2 / 4.40
AV Filter(α=10) 77.4 / 6.80 73.6 / 9.00 59.4 / 4.80 54.0 / 7.80 52.0 / 7.60 54.8 / 3.8
AV Filter(α=∞) 80.0 / 3.40 77.2 / 5.20 65.2 / 3.80 65.6 / 2.80 56.4 / 4.00 56.2 / 2.00

Llama2-C
Vanilla 50.0 / 42.8 57.0 / 34.2 37.2 / 39.8 50.2 / 22.0 32.0 / 28.6 59.6 / 4.80
AV Filter(α=5) 59.0 / 25.4 71.0 / 12.8 58.0 / 6.60 54.4 / 5.8 46.2 / 10.6 52.0 / 4.6
AV Filter(α=10) 64.2 / 20.8 71.2 / 13.8 58.4 / 6.20 55.0 / 7.20 48.4 / 10.6 52.2 / 4.40
AV Filter(α=∞) 77.6 / 8.20 77.2 / 6.80 59.8 / 1.80 59.2 / 2.40 51.8 / 1.60 54.6 / 0.20

GPT-4o
Vanilla 31.6 / 37.2 41.0 / 25.0 41.2 / 45.0 48.4 / 33.0 37.4 / 22.4 59.4 / 2.80
AV Filter(α=5) 56.8 / 5.60 50.4 / 11.0 63.2 / 7.60 57.4 / 9.40 54.0 / 6.80 57.0 / 2.40
AV Filter(α=10) 58.0 / 3.80 51.0 / 10.2 65.2 / 6.00 58.0 / 8.60 54.6 / 6.60 58.0 / 2.00
AV Filter(α=∞) 62.8 / 2.40 59.6 / 4.20 66.4 / 4.60 68.2 / 2.40 57.8 / 3.20 60.8 / 0.00

0.01 0.1 1.0
0

20

40

60

80

100

AS
R

(%
)

(a)

0 25 50 75 100
steps

4

6

8

t

(b)

GCG-Poison
AutoDAN-Poison

Figure 4: (a) Attack Success Rate (ASR) of the GCG-Poison adaptive attack on the RealtimeQA
dataset using Llama 2 across varying values of λ, illustrating that λ = 0.1 achieves the highest ASR
and is therefore selected for the rest of the evaluation. (b) Loss trajectory for a randomly selected
query from RealtimeQA on Llama 2, demonstrates how the adaptive attack consistently reduces the
target loss by lowering the variance of the corrupted retrieved set, thereby improving stealth.

D.2 ADDITIONAL ATTACKS

We also evaluate AV Filter on two additional content-poisoning attacks, Misinformation Attack (MA)
and Paradox, as reported in Table 8. Results on other configurations are expected to follow similar
trends.

AV Filter remains effective against these attacks. On the RQA-MC dataset, it reduces the average
attack success rate from 27.8% with vanilla RAG to 6.45%, with comparable robustness across
other datasets. Although content-poisoning attacks such as Poison, Paradox, and MA often appear
natural and semantically coherent to humans, AV Filter detects them by analyzing LLM attention
patterns rather than surface-level semantics. This shows that AV Filter does not rely on attack-specific
semantic cues.

D.3 AV FILTER DETECTION RATE: IDENTIFYING POISONED PASSAGE

AV Filter is designed to identify and remove the potentially poisoned passages from a corrupted
retrieved set, allowing the remaining (presumably benign) passages to be used for response generation.
When the AV Filter successfully eliminates the actual poisoned passages, it is expected to improve

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 9: Detection Accuracy (DACC) of AV Filter against existing attacks, showing that AV Filter
accurately removes the actual poisoned passage from the corrupted retrieved set, achieving the DACC
up to 1.00 (perfect detection).

Dataset RQA-MC RQA NQ
LLM top-α PIA Poison PIA Poison PIA Poison

Mistral-7B
α = 5 1.00 0.88 0.99 0.97 1.00 0.67
α = 10 0.99 0.89 1.00 0.93 0.99 0.69
α = ∞ 0.92 0.95 0.97 0.92 0.83 0.71

Llama2-C
α = 5 0.81 0.47 0.98 0.82 0.94 0.64
α = 10 0.90 0.68 0.98 0.85 0.96 0.67
α = ∞ 0.88 0.77 0.94 0.79 0.88 0.70

the robust accuracy (RACC) and reduce the attack success rate (ASR)—a trend confirmed in our
evaluation.

The consistent improvement in robustness over Vanilla RAG indicates that AV Filter reliably removes
the correct poisoned passages. To explicitly quantify this behavior, we report the Detection Accuracy
(DACC)—the fraction of successful attacks against Vanilla RAG in which AV Filter removes
the actual poisoned passage. Table 9 presents the DACC across different α values used in the
computation of NormScoreα and ϵ = 0.1, demonstrating that AV Filter achieves high precision in
removing the poisoned passage with an average detection accuracy of 0.86. This reinforces AV
Filter’s effectiveness in accurately identifying and filtering poisoned passages from the retrieved set.

D.4 AV FILTER FALSE POSITIVE RATE

AV Filter estimates the influence of each passage in the retrieved set on the generated answer and, like
other robust aggregators, assumes majority consensus: benign passages should agree on the correct
answer and outnumber adversarial ones.

Even when the RAG pipeline returns the correct answer, some benign passages may receive dispro-
portionately high attention scores and be removed. This is generally not a concern, as dropping a few
benign passages from a largely benign set rarely affects the output. As shown in Table 1 and 12, the
accuracy drop for benign retrievals is limited to 4–6%, substantially smaller than for other baselines.

We also report the False Positive Rate (FPR) of AV Filter (α = ∞) for δ ∈ {10, 26.2, 30, 40} on
benign retrievals (Table 10), with similar trends expected across other configurations. Any removal
of a passage from a benign set is counted as a false positive. For corrupted sets, ASR provides a
reasonable upper bound for FPR. For RQ2 and RQ3, we adopt δ = 26.2 as the evaluation setting.

Table 10: False Positive Rate (FPR) of AV Filter on benign retrievals. The average FPR is 0.24. We
allow a slightly higher rate, as removing a few benign passages is less harmful than retaining an
adversarial one, which could compromise the output.

LLM Dataset δ = 40 δ = 30 δ = 26.2 δ = 10

Mistral-7B
RQA-MC 0.09 0.11 0.11 0.18
RQA 0.22 0.26 0.26 0.33
NQ 0.27 0.33 0.36 0.41

Llama2-C
RQA-MC 0.05 0.06 0.09 0.21
RQA 0.15 0.20 0.24 0.38
NQ 0.24 0.29 0.36 0.45

D.5 ADDITIONAL BASELINE DEFENSE STRATEGIES

We compare AV Filter with several baseline defenses, which often suffer from high false positive
rates:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 11: ASR shows that AV Filter outperforms other defenses in 6/9 Poison cases, 9/9 Paradox
cases, and 1/9 PIA cases. Performance on PIA is lower because PIA embeds verbatim query in
poisoned passages, which makes them especially easy for reranking methods to detect.

Dataset RQA-MC RQA NQ
LLM Attack

Defense
PIA Poison Paradox PIA Poison Paradox PIA Poison Paradox

Mistral-7B

Perplexity Filter 17.6 31.6 55.2 14.4 25.0 31.8 3.60 11.4 27.6
Vigilant Prompt 32.2 28.6 54.2 27.4 21.0 27.8 21.6 9.20 20.2
Reranking (ColBERTv2) 3.00 10.0 14.0 2.00 5.00 8.00 2.00 5.00 12.0
Reranking (t5) 5.00 15.0 12.0 2.40 8.60 7.00 6.00 7.00 13.0
AV Filter(α=∞) 7.20 8.40 3.40 2.40 8.60 3.80 5.80 4.00 4.00

Llama2-C

Perplexity Filter 34.8 28.8 43.8 42.0 17.6 41.6 6.40 7.40 33.0
Vigilant Prompt 64.0 29.4 49.8 89.6 16.4 36.2 76.0 7.20 28.6
Reranking (ColBERTv2) 6.00 13.0 15.0 4.00 9.00 15.0 14.0 4.00 13.0
Reranking (t5) 18.0 17.0 16.0 21.0 10.0 14.0 31.0 6.00 19.0
AV Filter(α=∞) 16.8 12.6 8.20 5.00 6.60 1.80 9.20 3.60 1.60

GPT-4o

Perplexity Filter 7.60 23.2 37.0 15.0 28.4 47.2 1.80 7.20 24.4
Vigilant Prompt 16.2 23.6 34.6 15.0 23.8 38.2 10.8 5.60 14.8
Reranking (ColBERTv2) 0.40 6.00 4.80 1.00 10.6 10.0 5.20 1.00 8.00
Reranking (t5) 2.00 7.20 4.60 7.00 11.2 10.6 10.6 2.00 9.00
AV Filter(α=∞) 5.40 6.80 2.40 7.00 9.20 4.60 11.4 1.60 3.20

(i) Perplexity Filtering: The same model as the RAG LLM computes the perplexity of each passage
(Mistral-7B is used for GPT-4o). The passage with the highest perplexity is removed, under the
heuristic that it may be maliciously generated.

(ii) Vigilant Prompting: A defensive prompting strategy that warns the LLM about possible
misinformation. For example, QA prompts include cautions such as: "Be aware that some passages
may be designed to mislead you."

(iii) Reranking Methods: Separate models rerank retrieved passages by relevance to the query. For
comparison, we use transformer-based models (ColBERTv2 and T5 seq2seq). The passage ranked
highest in relevance is removed, based on the heuristic that it may have been adversarially crafted.

Table 11 reports the attack success rates of these baselines against Poison, PIA, and Paradox,
compared with AV Filter (α =∞) under the RQ2 setup, with similar trends expected across other
configurations.

D.6 WIKIPEDIA CORPUS

We evaluate AV Filter against existing attacks using the Wikipedia Corpus as the Knowledge database,
demonstrating its effectiveness across varying knowledge distributions. Specifically, we use 100
queries each from the HotpotQA and NQ datasets, retrieving top 10 passages from the Wikipedia
corpus using the Contriver retriever. We utilize the Wikipedia corpus and retrieval results publicly
released by PoisonedRAG (Zou et al., 2024).

Similar to our evaluation with Google Search as the knowledge database, we report the Clean
Accuracy (ACC), Robust Accuracy (RACC), and Attack Success Rate (ASR) on the HotpotQA and
NQ datasets using the Wikipedia corpus as the underlying knowledge base.

Table 12 reports the clean accuracy across different models, datasets, and values of α. The AV Filter
preserves high clean performance, with only a modest average drop of 4− 6% across datasets, with
similar trends expected across other configurations.

Table 13 presents the Robust Accuracy (RACC) and Attack Success Rate (ASR) achieved by AV
Filter for varying values of α used in computing NormScoreα. The results demonstrate that the AV
Filter often outperforms baseline defenses in robustness, achieving up to 9.8% higher RACC, with
similar trends expected across other configurations. Furthermore, even at a low corruption rate of
ϵ = 0.1, Vanilla RAG remains highly vulnerable, with ASR reaching up to 90.2%. In contrast, AV
Filter significantly reduces this vulnerability—bringing the average ASR down to 15.36% on the
HotpotQA and 14.71% on the NQ dataset.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 12: Clean Accuracy (ACC) of defenses, showing that AV Filter preserves RAG utility with a
minimal drop from Vanilla, achieving up to 10% higher ACC than other baseline defenses.

LLM Mistral-7B Llama2-C GPT-4o
Defense HotpotQA NQ HotpotQA NQ HotpotQA NQ
Vanilla 51.0 59.0 36.0 46.0 45.6 47.4
Keyword 59.0 49.0 43.0 37.0 44.6 55.0
Decoding 41.0 50.0 26.0 28.0 – –
AV Filter(α=5) 40.0 43.0 27.0 34.0 45.0 48.2
AV Filter(α=10) 46.0 44.0 27.0 36.0 44.8 47.4
AV Filter(α=∞) 51.0 59.0 36.0 46.0 44.2 47.6

Table 13: Robust Accuracy and Attack Success Rate (RACC/ASR) showing that AV Filter effectively
mitigates attacks with low ASRs while achieving up to 9.8% higher RACC than baselined defenses.

Dataset HotpotQA NQ
LLM Attack

Defense
PIA

(racc↑ / asr↓)
Poison

(racc↑ / asr↓)
PIA

(racc↑ / asr↓)
Poison

(racc↑ / asr↓)

Mistral-7B

Vanilla 18.6 / 69.0 14.6 / 75.0 22.2 / 55.8 23.0 / 50.4
Keyword 48.0 / 21.0 43.0 / 25.0 40.0 / 7.0 42.0 / 10.0
Decoding 38.0 / 28.0 30.0 / 51.0 47.0 / 7.0 43.0 / 20.0
AV Filter(α=5) 53.0 / 8.0 47.4 / 14.8 49.8 / 11.0 43.0 / 14.6
AV Filter(α=10) 52.6 / 8.4 47.8 / 15.0 48.6 / 11.2 44.0 / 13.2
AV Filter(α=∞) 47.2 / 13.4 48.8 / 13.6 36.6 / 26.8 42.2 / 12.4

Llama 2-C

Vanilla 3.6 / 90.2 14.6 / 65.6 6.4 / 85.6 26.2 / 48.0
Keyword 36.0 / 25.0 41.0 / 20.0 36.0 / 8.0 37.0 / 9.0
Decoding 23.0 / 33.0 25.0 / 16.0 24.0 / 30.0 26.0 / 23.0
AV Filter(α=5) 34.0 / 11.4 27.0 / 17.0 42.6 / 6.4 37.2 / 17.6
AV Filter(α=10) 34.4 / 10.4 26.8 / 17.0 44.2 / 6.2 36.4 / 15.6
AV Filter(α=∞) 17.8 / 44.0 21.4 / 28.6 22.4 / 45.6 32.4 / 25.8

GPT-4o
Vanilla 10.6 / 78.8 20.4 / 58.4 16.8 / 69.4 28.6 / 34.6
Keyword 43.6 / 17.4 43.4 / 15.8 53.2 / 6.2 53.0 / 4.8
AV Filter(α=5) 42.6 / 9.8 37.2 / 12.6 40.2 / 5.8 36.8 / 6.8
AV Filter(α=10) 40.0 / 11.2 37.6 / 12.0 41.6 / 6.8 35.8 / 4.0
AV Filter(α=∞) 35.6 / 17.8 41.2 / 11.4 28.0 / 29.6 38.6 / 5.4

Notably, the ASR for the Keyword and Decoding defenses is anomalously high on the HotpotQA
dataset. This is attributed to the multi-hop nature of many HotpotQA queries, which often require
reasoning across multiple passages. Since both variants of Certified Robust RAG evaluate each
passage in isolation, they fail to aggregate information across passages to answer correctly. As a
result, they are more susceptible to a single poisoned passage that contains complete information
aligned with the adversarial target answer.

D.7 COMBINING AV FILTER WITH OTHER DEFENSES

As a detection-based pruning defense, AV Filter can be used as a preprocessing step alongside other
strategies, such as Certified Robust RAG, to further reduce attack success rates. However, the robust
accuracy of the ensemble may still be limited by the underlying defense.

We combine AV Filter (α =∞) with Certified Robust RAG-Keyword by first removing potentially
poisoned passages using AV Filter and then applying Keyword for robust generation. Table 14 reports
the robust accuracy and attack success rates, with similar trends expected across other configurations.
The combined defense consistently achieves lower attack success rates than either method alone, with
an average of just 1.22% across all cases.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 14: Robust accuracy and attack success rates for the combined defense. The combination
consistently outperforms individual defenses, reducing attack success rates to an average of 1.22%
across all cases.

Dataset RQA-MC RQA NQ
LLM Attack

Defense
PIA

(racc↑ / asr↓)
Poison

(racc↑ / asr↓)
PIA

(racc↑ / asr↓)
Poison

(racc↑ / asr↓)
PIA

(racc↑ / asr↓)
Poison

(racc↑ / asr↓)

Mistral-7B
Keyword 57 / 7 56 / 6 54 / 6 55 / 6 50 / 1 53 / 5
AV Filter(α=∞) 79 / 6 73 / 8 62 / 6 54 / 6 53 / 7 52 / 4
Keyword + AV Filter(α=∞) 58 / 3 58 / 3 60 / 3 60 / 3 53 / 0 53 / 0

Llama2-C
Keyword 53 / 6 55 / 6 53 / 6 55 / 6 52 / 2 53 / 4
AV Filter(α=∞) 70 / 18 71 / 13 61 / 2 56 / 6 54 / 4 54 / 5
Keyword + AV Filter(α=∞) 58 / 0 58 / 0 58 / 0 58 / 0 53 / 1 53 / 1

GPT-4o
Keyword 62 / 13 60 / 17 63 / 15 63 / 15 58 / 8 61 / 6
AV Filter(α=∞) 59 / 4 50 / 5 69 / 2 59 / 9 59 / 1 62 / 1
Keyword + AV Filter(α=∞) 64 / 2 63 / 2 63 / 2 63 / 2 62 / 0 62 / 0

D.8 HYPERPARAMETER ANALYSIS

Corruption Fraction ϵ. We evaluate the AV Filter under varying corruption fractions to its ro-
bustness as the rate of corruption increases. Specifically, we measure Robust Accuracy (RACC)
and Attack Success Rate (ASR) on the RealtimeQA-MC dataset across multiple models, using a
fixed α =∞ and a single random seed. Figure 5(a) and (b) present the average RACC and ASR for
corruption rates ϵ ∈ {0.1, 0.2, 0.3, 0.4}, with the total retrieved set size fixed at k = 10. As expected,
increasing the corruption fraction leads to higher ASR and lower RACC. Nevertheless, the AV Filter
remains reasonably effective even under high corruption—reducing ASR to 32.67% at ϵ = 0.4 for
Poison. We expect a similar trend for other datasets and α values.

Filtering Threshold δ. The effectiveness of the AV Filter depends on the filtering threshold δ,
which governs the acceptable variance in attention score across the retrieved set. We set δ = 26.2
for our main experiments, estimated from clean retrievals on the RealtimeQA dataset using Llama 2.
This estimated threshold generalizes well, as it yields strong performance across different datasets
and models. To further assess the robustness of the AV Filter to this hyperparameter, we evaluate
its performance across a range of thresholds δ ∈ {10, 20, 30, 40}. Specifically, we report Robust
Accuracy (RACC) and Attack Success Rate (ASR) on the RealtimeQA-MC dataset, averaged over
multiple models using a fixed α =∞ and a single random seed. Figure 5(c) and (d) show that both
RACC and ASR remain relatively stable across this range, indicating that AV Filter is not overly
sensitive to δ and can generalize well to unseen data without requiring fine-tuning. We expect a
similar trend for other datasets, attacks, and α values.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0.1 0.2 0.3 0.4
0

25

50

75

100
AS

R
(%

)

(a)

0.1 0.2 0.3 0.4
0

25

50

75

100

RA
CC

 (%
)

(b)

10 20 30 40
0

25

50

75

100

AS
R

(%
)

(c)

10 20 30 40
0

25

50

75

100

RA
CC

 (%
)

(d)

PIA Poison

Figure 5: Effect of Corruption Rate and Filtering Threshold: This figure shows the impact
of varying the corruption rate ϵ and the filtering threshold δ on the performance of the AV Filter.
Subfigures (a) and (b) present the Attack Success Rate (ASR) and Robust Accuracy (RACC) on the
RealtimeQA-MC dataset with α =∞, averaged over all models. As expected, ASR increases and
RACC decreases with higher corruption rates. Subfigures (c) and (d) report ASR and RACC for
varying δ values, again averaged over all models, demonstrating that AV Filter’s performance is not
overly sensitive to the threshold. This indicates that AV Filter can generalize well to unseen data
without requiring fine-tuning of δ.

E LIMITATIONS

We have shown that existing attacks against RAG systems are not designed for stealth—they often
craft poisoned passages that attract anomalously high attention scores, enabling reliable detection and
mitigation. This stems from the co-occurrence of the adversary’s target answer within the poisoned
passage, which causes certain tokens to receive significantly more attention weight than others. When
normalized across the retrieved set, these poisoned passages exhibit disproportionately high attention
scores, resulting in a high-variance signal that AV Filter leverages for detection.

However, this detection strategy assumes that the poisoned content is concentrated in a small subset
of passages while the majority support the correct answer. This reliance leads to certain limitations.
To the best of our knowledge, using attention patterns to improve the robustness of RAG systems has
the following constraints:

1. Susceptibility to majority corruption. If the adversary manages to corrupt a majority of
the retrieved set, then multiple passages will contain tokens that draw high attention weight.
This the contrast of normalized attention scores among passages, reducing the variance and
potentially allowing the attack to evade detection by AV Filter. This highlights the need for
robustness at the retrieval stage (Step I) of the RAG pipeline as well. However, AV Filter’s
improvements are orthogonal to retrieval robustness—it can be integrated with more robust
retrievers that make majority corruption harder.

2. Dependence on redundancy of correct knowledge. If only a very few benign passages
contain the correct answer, these may individually attract high attention and be mistakenly
filtered out. Thus, AV Filter assumes that the knowledge corpus includes multiple passages
supporting the correct answer, which is necessary for any filtering mechanism based on
outlier detection to succeed.

3. Task specificity and generalization. The AV Filter relies on the poisoned passage receiving
high normalized attention scores due to the co-occurrence of the target response. While
this is well-suited for question-answering tasks—where the goal is to inject or alter the
response—we have not yet evaluated its effectiveness against attacks that aim to exploit other
behaviors of the RAG system (e.g., manipulating style, eliciting private data, or controlling
downstream decisions) without directly changing the response content. Broader evaluations
will be necessary to understand the generalization of this defense mechanism.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

F LLM USAGE

We did not make use of LLMs in the writing or research process beyond minor revisions to the text.

G BROADER IMPACTS

We propose a filtering technique capable of identifying and mitigating existing poisoning attacks,
thereby reducing potential harm. In parallel, we introduce more stealthy poisoning attacks that evade
existing defenses. While we believe this dual contribution will drive the development of more robust
RAG systems, it may also increase the risk to vulnerable deployments in the short term.

26

	Introduction
	Background and Related Work
	Stealth Analysis of Adversarial Attacks in RAG Systems
	Stealth Detection and Mitigation via Attention Variance
	Evaluation
	Experimental Setup
	Result and Discussion

	Conclusion and Future Work
	Additional Background on Existing Works
	Stealth Attack Distinguishability Game (SADG)
	Attention Insights and Design Rationale of Attention Score
	Example: Benign vs. Poisoned Attention Patterns
	Distribution of Attention Weights across tokens in Passage
	Design Rationale for using top- tokens from each passage Top(zt)

	Additional Experimental Details and Results
	Adaptive Attacks
	Additional Attacks
	AV Filter Detection Rate: Identifying Poisoned Passage
	AV Filter False Positive Rate
	Additional Baseline Defense Strategies
	Wikipedia Corpus
	Combining AV Filter with Other Defenses
	Hyperparameter Analysis

	Limitations
	LLM Usage
	Broader Impacts

