
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MOBILEIPL: ENHANCING MOBILE AGENTS THINKING
PROCESS VIA ITERATIVE PREFERENCE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The Chain of Action-Planning Thoughts (CoaT) paradigm has been shown to
improve the reasoning performance of VLM-based mobile agents in GUI tasks.
However, the scarcity of diverse CoaT trajectories limits the expressiveness and
generalization ability of such agents. While self-training is commonly employed
to address data scarcity, existing approaches either overlook the correctness of
intermediate reasoning steps or depend on expensive process-level annotations
to construct process reward models (PRM). To address the above problems, we
propose an Iterative Preference Learning (IPL) that constructs a CoaT-tree through
interative sampling, scores leaf nodes using rule-based reward, and backpropagates
feedback to derive Thinking-level Direct Preference Optimization (T-DPO) pairs.
To prevent overfitting during warm-up supervised fine-tuning, we further introduce
a three-stage instruction evolution, which leverages GPT-4o to generate diverse
Q&A pairs based on real mobile UI screenshots, enhancing both generality and lay-
out understanding. Experiments on three standard Mobile GUI-agent benchmarks
demonstrate that our agent MobileIPL outperforms strong baselines, including
continual pretraining models such as OS-ATLAS and UI-TARS. It achieves state-
of-the-art performance across three standard Mobile GUI-Agents benchmarks and
shows strong generalization to out-of-domain scenarios.

1 INTRODUCTION

VLM-based mobile agents (Wang et al., 2023; Ding, 2024) have attracted considerable attention due
to their ability to seamlessly interact with mobile graphical user interfaces (GUIs) and their potential
to autonomously perform daily tasks. Since actions are not directly specified in user instructions,
mobile agents benefit from generating intermediate thoughts aligned with the current GUI context.
Recent work such as AITZ(Zhang et al., 2024b) has demonstrated that the Chain of Action-Planning
Thoughts (CoaT) pattern—resembling the slow-thinking “System 2” process—is particularly effective
in GUI domains.

However, directly applying supervised fine-tuning (SFT) on CoaT trajectories may cause overfitting,
leading the model to be trapped in fixed reasoning patterns. To address this limitation, recent studies
in the general domain have explored self-training strategies. These approaches typically utilize the
correctness of the final answer in output as a reward signal to train the model(Luong et al., 2024).
While effective in some contexts, relying solely on final answers overlooks the quality of intermediate
reasoning steps, which can result in reward hacking and suboptimal reasoning processes. Some
search-based approaches, such as ReST-MCTS (Xie et al., 2024), tackle this problem by learning
a process reward model (PRM) to evaluate individual reasoning steps. However, these approaches
often require large-scale manual annotation of intermediate steps (Guo et al., 2025a). This challenge
is especially severe in the Mobile GUI Agent domain. Unlike text-based tasks in coding or math, GUI
environments rely on real devices or simulators, making step-level reward annotation significantly
more costly and labor-intensive.

To address these limitations, we propose an iterative sampling framework that constructs a CoaT-tree
based on Monte Carlo Tree Search (MCTS). Instead of relying on a PRM, we score each reasoning
step and construct thinking-level DPO (T-DPO) pairs without manual step annotation. Specifically,
we perform multi-turn dialogue with a vision-language model (VLM) to incrementally build a CoaT-
tree, where each node corresponds to a sampled response at a given reasoning step, conditioned

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

on the dialogue history. This hierarchical structure captures diverse reasoning paths and facilitates
fine-grained assessment of intermediate thoughts. We first assign rewards to the leaf node, and then
propagate these signals backward through the CoaT-tree to earlier reasoning steps. Based on the
resulting values, we construct thinking-level DPO pairs to help agents optimize both final actions and
the overall quality of their reasoning.

To mitigate the lack of diversity after warm-up SFT, we adopt an instruction evolution strategy.
Specifically, we generate diverse Q&A pairs grounded in real mobile UI screenshots from downstream
training datasets. These Q&A pairs serve two purposes: (1) prevent agents from overfitting to
static downstream instructions by introducing varied reasoning contexts, and (2) improve agents’
understanding of UI layouts through visually grounded question-answering. We evaluate our approach
on the CoaT dataset AITZ and long-horizon dataset AMEX, where it outperforms state-of-the-
art GUI-agent continual pretraining agents such as OS-ATLAS (Wu et al., 2024) (+4.04%) and
UI-TARS (Qin et al., 2025) (+3.54%). Furthermore, experiments on the AndroidControl dataset
demonstrate the strong generalization capability of our method to unseen apps and instructions
(tasks). Under limited training resources, IPL consistently outperforms naive DPO using only half of
the data for one iterative training round (+4.5%), or one-fifth of the data for two iterative training
rounds (+0.3%). Analytical experiments show instruction evolution simultaneously improves both
the diversity and quality of reasoning.

Overall, our main contributions are summarized as follows:

•We propose an iterative framework to construct a CoaT-tree, and utilize rule-based rewards with
backward credit assignment to form thinking-level DPO pairs for reasoning optimization.

• We introduce an instruction evolution strategy to mitigate overfitting during warm-up SFT, enhanc-
ing the model’s generalization and UI understanding.

• We demonstrate the effectiveness of our method on three GUI-agent benchmarks: AITZ, AMEX,
and AndroidControl. Furthermore, our approach even surpasses SoTA continual pretraining models.

2 RELATED WORK

2.1 MOBILE GUI AGENT

LLMs (Achiam et al., 2023) are increasingly used as autonomous agents for mobile interaction (Li
et al., 2024b; Wen et al., 2023). With the rapid development of vision-language models (VLMs),
researchers build mobile GUI agents (Yang et al., 2023; Zheng et al., 2024; Qin et al., 2025; Team)
and multi-agent frameworks (Ding, 2024; Li et al., 2024c; Wang et al., 2024a) based on closed-source
VLMs. Meanwhile, some researchers focus on training agents with stronger element grounding
(Cheng et al., 2024; Wu et al., 2024), page navigation (Niu et al., 2024; Lu et al., 2024; Gou et al.,
2024; Wang et al., 2025), GUI understanding (You et al., 2024; Baechler et al., 2024) and task
planning capabilities (Zhang et al., 2024c; Nong et al., 2024; Xu et al., 2024; Qinghong Lin et al.,
2024; Dorka et al., 2024) based on open-source VLMs. Our method organizes trajectory data into
multi-turns of dialogues based on the CoaT thinking pattern, preventing the agent becomes an action
model with limited capabilities.

2.2 REINFORCEMENT LEARNING

The algorithms applied in natural language processing to align with human preferences include
Direct Preference Optimization (DPO) (Rafailov et al., 2023), Identity Preference Optimization
(IPO) (Azar et al., 2024), Kahneman-Tversky Optimization (KTO) (Ethayarajh et al., 2023), and
Proximal Policy Optimization (PPO) (Schulman et al., 2017). Specifically, ReFT (Luong et al.,
2024) adopts reinforcement learning as a fine-tuning paradigm to improve performance on math
problems. ReST-MCTS* (Zhang et al., 2024a) focuses on the higher-quality step reward, where
the process reward model is important. Xie, et al. (Xie et al., 2024) label the preference via MCTS
based on feedback from self-evaluation. For mobile GUI agents, Digirl (Bai et al., 2024) and Distrl
(Wang et al., 2024c) use online trajectory collection to improve the generalization of agents whose
process is very slow. Reachagent (Wu et al., 2025) uses DPO training to compare the quality of
multiple actions. TCPO (Jiao et al., 2025) also optimizes thoughts, but does not explicitly enforce

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

thought–action consistency. TreePO (Li et al., 2025), TreeRL (Hou et al., 2025), and SPO (Guo et al.,
2025b) segment long sequences into many short segments, which leads to high computational cost
and low data efficiency. In contrast, our method models thoughts with a fixed CoaT-tree and uses
T-DPO to optimize the thinking process, while step values are computed directly from rule-based
rewards, without unstable PRMs. This design yields more efficient sampling and training, especially
in GUI-agent settings.

Figure 1: Overview of iterative preference learning framework. The left part presents the process of
warm-up fine-tuning a general VLM to a mobile GUI domain agent with basic capabilities. The mid
and right parts represent the iterative CoaT thinking-level sampling and T-DPO training process.

3 METHODOLOGY

In this section, we first introduce the multi-turn thinking process formulation (§ 3.1) and explain
our method. As shown in Figure 1, our method starts with instruction evolution strategy (§ 3.2) to
enhance output diversity in warm-up SFT stage. Then, a CoaT-tree through iterative sampling (§ 3.3)
is employed for each action. Every leaf node represents a complete action and is scored using a
rule-based reward function. We then backpropagate the rewards along the tree to assign credit to
intermediate reasoning steps. This process yields thinking-level contrastive pairs for DPO, which
further improves the model’s reasoning ability. The detailed process is presented in Algorithm 1.

3.1 MULTI-TURN THINKING PROCESS FORMULATION

Each mobile GUI task contains a trajectory T , several pages u, actions â, and an instruction I , which
can be represented as:

T =
{
I, u0, â0, u1, â1, · · · , un, ân} (1)

We formulate action âi in the CoaT reasoning process as a multi-turn dialogue âi = [s1, s2, s3, s4],
where si represents description, action-thought, action-decision, and grounding, respectively. This
thinking paradigm based on the thinking–decision–grounding triplet, has been widely validated as
effective in previous GUI works (Shen et al., 2024; Zhang et al., 2024b; Qin et al., 2025; Cheng et al.,
2024). So the reasoning process can be formulated as:

s1 = Description(P1, ui) (2)

s2 = Thought(P2, ui, I, â0, · · · , âi−1, s1) (3)

P represents each round of dialogue input prompt, I is the task instruction, u is the current GUI, and
âi is the step i history action. Agents perform poorly when decoding the entire reasoning process
in a single step, which is because image modal u dominates the input tokens, surpassing textual
instructions I and action history âi, and diverting their attention away from the textual details. During
autoregressive training, the agent is unaware that producing a final answer conforming to the required
format is indispensable throughout the reasoning process. Multi-turn thinking process effectively
mitigates this problem, because additional dialogue steps guarantee a final answer is generated:

s3 = Action(P3, ui, I, s1, s2) (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

s4 = Grounding(P4, ui, I, s1, s2, s3) (5)
Previous work either performed RL in GUI-Agent directly on the trajectory without CoaT, missing the
detailed thinking process of each action, or forced the model to bear the heavy burden of outputting
the entire reasoning process at once. In our method, when the reasoning process ends, the final s4 is
recorded as ân+1, step i moves one step forward on the trajectory T and its thinking step reward is
calculated recursively based on final step s4. Dialogue-level textual input helps balance cross-modal
token proportions and steers the agent’s attention toward the current reasoning step.

3.2 INSTRUCTION EVOLUTION

Where can you find the app rating in the image?

Instruction Evolution

Seed : AITZ Annotations

Level I : Core Basic Capabilities

Level II : Widget Functionality & Relationships

Level III : GUI Advanced FAQ

Q: What is the function of the 'Install' button in
the image?

A: The 'Install' button is used to download and
install the DuckDuckGo Privacy Browser app.

Q: Where can you find the app rating in the image?

A: The app rating '4.6*' is located at coordinates
<|box_start|>(62,214),(151,228)<|box_end|>.

“Instruction": “Install app \"DuckDuckGo Privacy
Browser\"",
“Action": "click on the \"Install\" button located
at the left and upper middle part of the screen."

Q : What elements are included in the 'Website Protection' screenshot?

A : The 'Website Protection' screenshot includes an image of a website
and text indicating it blocks hidden trackers.

Q : What is the layout of the 'Tools' and 'Browsers' buttons?

A : The 'Tools' and 'Browsers' buttons are positioned horizontally
next to each other below the 'About this app' section.

Figure 2: We process a three-stage instruction
evolution and knowledge augmentation, enabling
the agent to produce more diverse outputs for
corresponding tasks while effectively mitigating
overfitting.

As discussed in the previous section, the CoaT
patterns in the mobile agent domain are typically
fixed. As a result, agents tend to overfit these
static paradigms and struggle to generate diverse
reasoning paths after the warm-up SFT training
(as detailed in Sec 4.4). To address this issue, we
enhance the original training trajectories, denoted
as T , by appending additional Q&A annotations
to UI screenshots through an instruction evolution
process, thereby creating a new dataset Q with
a broader range of instruction formats. Specifi-
cally, as shown in Figure 2, the evolution process
consists of three levels:

Level I: General GUI Q&A tasks. Grounding,
Reference (Ref), and Page Descriptions are aimed
at enhancing the agent’s foundational capabilities.
These tasks (Liu et al., 2024; Yang et al., 2024) are
proven to be the core capabilities of GUI agents
during the pre-training.

Level II: Widget caption and relationships. De-
scriptions of widget functions and the nested par-
tition relationships between widgets. These tasks
help agents understand the relationships between
widgets, as previous work (Deng et al., 2024) has
found that agents tend to click on the textview, even in scenarios where the textview and the button
are separate.

Level III: GUI advanced FAQ. Inspired by Shen et al. (2024), we design an advanced FAQ that
features more complex Q&A, including descriptions of the page’s structural framework as well as
expectations and predictions about navigation outcomes triggered by control interactions.

Warm-up Supervised Fine-tuning: To develop agents with standard thinking format and expand
the reasoning space, we mix T and the instruction evolution data Q, then perform warm-up SFT on

D =
{
T ,Q

}
=

{
(u, e)(i)

}|D|

i=1
, where u represents the prior knowledge (instructions, screenshot

and action history) from T or the questions from Q, and e is the reasoning process from T or the
answer from Q which is organized into multi-turn dialogues. To ensure output diversity, we select an
earlier checkpoint with better potential correct space and diverse output to serve as the seed policy
model. More details can be seen in Appendix B.

3.3 ITERATIVE PREFERENCE LEARNING

After the warm-up SFT, the agent acquires basic GUI capabilities. We construct a CoaT-tree by
iteratively sampling each reasoning step and then assign a score to the leaf nodes based on a rule-based
reward function. Using these scores, we generate thinking-level DPO pairs to optimize the agent’s
reasoning process.

Iterative Sampling & Rule-based Reward. We iteratively sample each reasoning step along the
CoaT paradigm (Zhang et al., 2024b). The K sampling results (ŝt|ŝ1:t−1)

K at step t can be expressed

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

as:

ŝt =
{
(ŝ

(k)
t | ŝ0, · · · , ŝt−1)

}K

k=1
(6)

Naturally, the final step in CoaT (the leaf node in the sampling tree) expresses a reward compared
with the ground truth action a∗, which is then propagated back to other intra-nodes. The formula for
the rule-based reward of leaf nodes is as follows:

v(st) =


1, st = a∗
vtype + scorematch, type(st ∼ a∗)

0, others

(7)

scorematch =


vformat + 1 · (1− d(x, y))− (vtype + vformat) · d(x, y), type(a∗) = CLICK

vformat + (1− vtype − vformat) · F1, type(a∗) = INPUT

0, others

(8)

The reward score v(st) ranges from 0 to 1, with a fully correct prediction receiving a score of 1. We
use vtype and vformat to indicate whether the predicted action type and output format match the ground
truth. For click and input actions, we further evaluate their internal structure using smooth rewards
based on spatial distance d(x, y) and text match F1. The final reward is computed from the similarity
between the prediction and the ground truth:

• Click: A distance-based score between the predicted and ground-truth coordinates, normal-
ized to [0, 1]; smaller distances yield higher scores.

• Input: The F1 score between the predicted and ground-truth strings; greater textual overlap
yields higher scores.

The full reward is defined in Equation 7 and discussed further in Section C.

Based on the structure of the CoaT-tree, we recursively compute the value of each intermediate
reasoning step. Specifically, the value of st−1 is computed as the average value of its K sampled
continuations at st:

v(st−1) = c · 1

K

K∑
k=1

v(s
(k)
t) (9)

Here, K denotes the number of sampled continuations for each reasoning step, and c is a discount
factor. The parameter searching experiment for K is described in detail in Section 4.4.

Contrastive Data Filter. After obtaining the sampling tree and node values, we evaluate the quality
of the trees and extract contrastive data. We can divided the sampling trees into three categories
R = {α, β, γ} based on their output quality, and the classification standards of α, β, γ are as follows:

α =

∣∣∣{S(i) | ∀vk ∈ S(i), vk = 1
}∣∣∣∑|T |

i=1 |(u, e)(i)|
(10)

β =

∣∣∣{S(i) | ∃vk, vk′ ∈ S(i), vk = 1, vk′ ̸= 1
}∣∣∣∑|T |

i=1 |(u, e)(i)|
(11)

γ =

∣∣∣{S(i) | ∀vk ∈ S(i), vk ̸= 1
}∣∣∣∑|T |

i=1 |(u, e)(i)|
(12)

S(i) and vk refer to the instruction i sampling tree and the k-th leaf nodes value of K sampled output.
α is considered a perfect sampling tree, which can stably output correct thoughts and actions with
in-domain trajectories, β represents potential correct trees that can be used to construct contrastive
data, and γ denotes sampling trees that require refinement. β + γ is considered a valid sampling
space. In β, actions with a value of 1 and as many diverse action types as possible are extracted

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

as positive samples. In γ, the final ground truth action a∗ is used as a positive sample, but the
intermediate steps of CoaT are not provided, and the pairs can be represented as:

βpairs = ⟨ŝ(k)t ↑, ŝ(k
′)

t ↓| (ŝ1, . . . , ŝt−1),

v(ŝ
(k)
t)− v(ŝ

(k′)
t) > 1/K⟩

(13)

γpairs = ⟨a∗ ↑, ŝ(k)t ↓| ŝ1, . . . , ŝt−1⟩ (14)

Thinking-level Direct Preference Optimizing. After CoaT thinking-level Iterative Sampling, several
positive and negative example pairs are collected. During this stage, the agent policy undergoes
updates through the above data-pairs, SFT loss, and CoaT-DPO loss (Rafailov et al., 2023). Suppose
the agent gets values to pair ⟨+,−⟩ at CoaT step t, which are named s+t and s−t ; we have the agent
performing a comparison for these pairs based on the same thoughts s1:t−1, which can be calculated
as:

LT-DPO = −E(s1:t−1,s
−
t ,s+t)∼Ts

[
log σ(β log

πθ(s
+
t |s1:t−1)

πref (s
+
t |s1:t−1)

−β log
πθ(s

−
t |s1:t−1)

πref (s
−
t |s1:t−1)

)

]
,

(15)

To further refine the agent’s performance post-optimization, we employ the updated agent as the new
base agent to continue collecting contrastive CoaT-action level pairs for additional T-DPO training.
This iterative process is maintained until the agent reaches the performance bottleneck.

Algorithm 1: Iterative CoaT thinking-level sampling and DPO self-training.
Input: base VLM π, advanced annotated model RSoTA, step-level trajectory data T , instruction evolution

Q&A setQ, number of sampling K, golden action a∗, value function v, the sampled CoaT data D, number
of iterationsN .

1: for i = 1 to N0 do
2: Q∗ ← instruction_evolution(RSoTA, T) // instruction evolution by GPT-4o
3: Q ← human_evaluation(h,Q∗) // human filter
4: end for
5: πS0 ←Warm-up_SFT(π, T ,Q) // fine-tune seed model
6: for n = 1 toN do
7: for i = 1 to |T | do
8: Di ← generate_sampling_thought(πSn−1 , Ti, K) // CoaT Sampling

9: V leaf
i ← v(Di, a

∗
i) // match and calculate leaf values using Eq(7)

10: V intra
i ← recursive_calculate(Di, V

leaf
i) // recursive intra node values using Eq(9)

11: D+
i , D

−
i ← contrastive_data_filter(Di, Vi) // filter positive and negative data using

Eq(13, 14)
12: end for
13: πSn ← DPO(πSk−1 , D

+, D−) // DPO self-training reference model
14: end for
Output: πS , DG,Q

4 EXPERIMENTS

4.1 EXPERIMENTS SETUPS

Dataset. AITZ (Zhang et al., 2024b) is a high-quality trajectory set filtered and re-annotated from
AITW (Rawles et al., 2023), containing four subsets , which also includes five types of actions
AMEX (Chai et al., 2024) uses the same apps and action space as AITZ, but its task instructions are
more complex and detailed, with an average trajectory length of 15+. AndroidControl (Li et al.,
2024a) includes OOD datasets, such as app unseen and task unseen.

Metrics. For evaluation, we use Step.Acc as metrics, consistent with Auto-GUI(Zhang & Zhang,
2023), measures the agent’s performance and uses Action Type to assess the degree of action type
matching. This metric effectively evaluates the model’s planning ability.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Main results of AITZ dataset. ZS, FT, PF, and IPL are short for zero-shot, fine-tuning,
specific domain pre-training, and iterative preference learning, respectively. ‘-’ represents that the
agent or evaluation prompt is not open-sourced. Seed means the seed model for sampling and T-DPO
training. Ri refers to the number of iterations during training.

Model Mode
Atomic

SCROLL CLICK TYPE PRESS STOP Total

type match type match type match

CogAgent (CoaT) ZS 70.22 88.23 66.15 45.80 21.80 45.95 24.60 72.59 53.28
AUTO-GUI (CoaT) FT 61.40 74.56 32.20 87.20 81.40 57.70 74.40 82.98 47.69

AriaUI-MoE FT 53.73 85.51 60.20 84.20 80.80 63.70 76.38 78.53 63.56
Seeclick-7B PF 11.14 69.92 52.96 53.80 53.00 67.88 55.36 62.93 49.11
UGround-7B PF 58.22 80.94 58.48 82.56 73.85 58.22 68.78 74.54 60.19
OS-Atlas-7B PF 76.12 75.82 54.83 87.80 81.60 68.67 81.75 77.83 65.11
UI-Tars-7B PF 52.50 83.03 64.27 89.97 82.76 61.87 74.35 77.59 65.61

Falcon-UI-7B PF - - - - - - - 84.70 69.10

Qwen2-VL-7B (CoaT) FT 47.50 81.53 59.72 81.96 73.85 58.22 67.39 74.26 60.36

AITZ-Seed FT 42.83 82.48 53.16 82.56 75.29 56.65 61.82 73.14 55.40
MobileIPL IPL 51.08 91.73 71.45 88.20 83.40 51.69 78.17 81.90 69.15

Table 2: Main results on AMEX. Seed means the seed model for sampling.

Model Training Data Gmail Booking Music SHEIN News CM ToDo Signal Yelp Overall

SeeClick-7B AITW+External 28.2 29.4 18.1 20.0 30.0 53.1 30.7 37.1 27.4 30.44
SphAgent-7B AITW 32.1 45.9 46.1 35.1 48.3 61.1 55.9 43.3 42.9 45.63
SphAgent-7B AMEX 61.7 68.2 77.7 72.0 71.9 64.6 79.6 71.3 69.6 70.71
AriaUI-MoE AMEX 63.1 62.3 68.5 58.9 83.0 54.7 62.5 83.3 66.9 64.10
UGround-7B AMEX 70.9 68.8 72.7 63.7 77.7 67.7 63.7 80.1 67.6 69.12
SphAgent-7B AITW + AMEX 62.4 68.1 76.3 71.9 68.6 67.3 77.6 66.0 64.1 69.14
OS-Atlas-7B AMEX 61.1 73.5 77.9 61.6 75.2 66.4 71.0 75.9 72.0 70.33
UI-Tars-7B AMEX 67.7 70.0 71.8 63.8 71.5 67.7 77.0 86.4 72.8 70.33

Qwen2-VL-7B
AMEX 58.0 70.1 76.6 63.8 79.4 66.8 67.8 80.2 76.6 69.01
+ CoaT 75.9 68.1 77.7 66.2 76.8 66.4 77.5 79.6 65.6 70.93

MobileIPL-7B
AMEX (Seed) 57.0 60.2 68.8 63.1 75.0 50.2 65.6 77.7 62.6 62.19

MobileIPL 77.3 71.8 80.0 68.4 85.3 71.3 73.5 82.1 71.8 74.29

Baselines. Following prior work(Wu et al., 2024)(Qin et al., 2025), we use Qwen2-VL-7B (Wang
et al., 2024b) as the backbone of our model. We select CogAgent (Hong et al., 2024), AUTO-GUI,
Shpagent, OS-Atlas, UGround, UI-Tars and FedMobileAgent as baseline agents. GUI continuous
pre-training agents can be further divided into two categories: (1) training the model as a GUI
grounding agent, such as OS-Atlas-7B. (2) training the model as a general GUI agent, such as UI-Tars.
More details are provided in Appendix D.

4.2 MAIN RESULT

AITZ. As shown in Table 1, MobileIPL achieves SoTA performance on most metrics. The reason
for the lower PRESS Acc. is discussed in Section 4.4 and Appendix H. Multiple rounds of T-DPO
improve MobileIPL by more than 10% (55.40% -> 69.15%) compared to the seed model MobileIPL
and Qwen2-VL-7B (60.36% -> 69.15%). Compared to continuous pre-training agents such as Falcon-
UI, which is pre-trained on three million GUIs, MobileIPL still surpasses a performance difference of
0.05%. The amount of training data required by our method is substantially smaller than that used by
these pre-training approaches.

AMEX. As shown in Table 2, MobileIPL surpasses the previous SOTA model, SphAgent-7B, by
3.58%. It also outperforms the baseline model (Qwen2-vl+CoaT) by 3.36%. Additionally, MobileIPL
surpasses OS-Atlas (+3.69%) and UI-Tars (+3.69%), both of which also use Qwen2-vl as the
backbone. With the incorporation of CoaT, the baseline model Qwen2-vl shows an increase of 1.92%,
demonstrating the effectiveness of CoaT patterns. In summary, these results confirm that MobileIPL
delivers significant improvements over existing models in long trajectory scenarios.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: High-level instruction experiment re-
sults on AndroidControl.

Mode Model Grounding Step.Acc

FT
Aria-UI-7B 43.2 10.2

InternVL-2-4B 72.7 66.7
Qwen2-VL-7B (SFT) 68.5 69.1

PF
OS-Atlas-7B 78.5 71.2
Falcon-UI-7B - 72.7

UI-Tars-7B 80.5 72.5

RL Qwen2-VL-7B(GRPO) 70.7 69.8

Ours MobileIPL 77.0 72.7

Table 4: High-level instruction results on An-
droidControl in-domain and OOD subsets.

Mode Model IDD app-UN task-UN

FT
PaLM 2S(full) 65.5 58.7 59.7

PaLM 2S(LoRA) 70.8 58.5 59.6
Qwen2-VL-7B(SFT) 69.1 61.4 64.1

PF
FedMobileAgent 54.7 52.3 51.2

SphAgent-7B 69.4 57.1 62.9
OS-Atlas-7B 71.2 60.7 66.2

RL Qwen2-VL-7B(GRPO) 70.2 68.1 69.7

IPL MobileIPL-7B 73.6 70.0 72.2

AndroidControl. As shown in Table 3, MobileIPL achieves SOTA performance in Step.Acc (72.7%),
reaching the SOTA model Falcon-UI with fewer data. MobileIPL also outperforms continual pre-
training agents in the GUI domain, such as OS-Atlas (+1.5%) and UI-Tars (+0.2%). Compared to
the baseline model Qwen2-VL(SFT), MobileIPL not only improves Mobile Agent performance but
also enhances grounding by 8.5%. As shown in Table 4, MobileIPL continues to achieve SOTA
performance in unseen OOD settings, demonstrating strong generalization. In contrast, compared to
performance in the IDD domain, the pre-trained model OS-Atlas shows a significant drop. MobileIPL
exhibits less performance degradation in out-of-domain settings. We also ran GRPO with Qwen2-VL
under the same computational resources, and found OOD performance similar to MobileIPL, because
both are self-training. However, MobileIPL still outperforms GRPO in all subsets.

4.3 ABLATION STUDY

To test the effectiveness of IPL and instruction evolution, we conducted ablation experiments. First,
removing IPL and using only SFT caused performance to drop from 65.4% to 60.4%, compared to
the first round of MobileIPL, highlighting the crucial role that IPL plays. Next, removing instruction
evolution led to a 2.5% drop in IPL performance in the first round. This occurs because, without
evolution, the model generates fewer training samples (156,418 -> 113,239). And as shown in
Figure 3 (a), without instruction evolution, the diversity of model outputs decreased, causing a drop
in IPL performance. This further confirms that instruction evolution is crucial for improving IPL.

Table 5: Ablation study results on AITZ.

Model Scroll Click Type Press Total

MobileIPL-R1 45.8 71.1 81.2 23.5 65.4
- IPL 46.9 59.4 78.6 55.4 60.4 (-5.0)
- Evo (R1) 44.8 67.7 78.8 24.0 62.9 (-2.5)
- IPL Negative (R1) 46.9 61.1 74.2 56.6 61.4 (-4.0)
- IPL + Naive DPO (R1) 47.5 59.7 73.8 58.2 60.3 (-5.1)
- 1/2 training data (R1) 42.9 68.3 79.0 43.8 64.8 (-0.6)
- 4/5 training data (R2) 30.8 67.1 77.6 33.2 60.6 (-4.8)

Standard Self Training. Addition-
ally, we remove negative samples
from IPL-R1, training the model
using only fully correct samples.
This results in a 4.0% performance
drop, suggesting that negative sam-
ples help the model learn how to
reason rather than merely memo-
rize (SFT). Furthermore, training
on the entire trajectory with navie DPO reduces performance from 65.4% to 60.3%. Compared with
SFT trained on CoaT tree positive data (–IPL Negative), naive DPO is still 1.1 % lower, confirming
the effectiveness of CoaT-tree sampling and the thinking-process optimization.

Low Resource. We also perform low-resource on AITZ, sampling 1/2 and 1/5 of the training data.
As shown in table 5, using only half of the data, the first round of IPL training already outperformed
the best results achieved by the original CoAT-SFT (-IPL) and naive DPO training. Furthermore,
when using only one-fifth of the data, the second round of IPL training surpassed the performance of
CoAT-SFT (-IPL), demonstrating the effectiveness of our method even in low-resource scenarios.

4.4 DISCUSSION AND ANALYSIS

Reasoning Space Sampling. To evaluate the instruction evolution, we analyze the diversity of
the sampling space for Random 1000 steps, the standard deviation of encoded embeddings, the
dimensionality-reduced distribution, and the distribution of S(i) mentioned in Section 3.3. As shown

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Reasoning Space Sampling (c) IPL on Pre-training Agents

(b) IPL Scaling

Figure 3: (a) Reasoning diversity before and after instruction evolution (left top) and the distribution
of standard deviation and accuracy (left bottom). (b) Step.Acc changes for action types in AITZ
across IPL iterations (right top). (c) The performance of UI-Tars-7B and Qwen2-VL-7B on AITZ as
the seed model with 4-round IPL training (right bottom).

in Figure 3 (a), the thoughts after instruction evolution exhibit a broader space than direct SFT.
Additionally, the embedding standard deviation within each tree increases significantly compared to
the original data (+ 0.158). The diversified outputs do not negatively impact the agent’s reasoning
process, while the proportion of action sampling that includes the correct answer improves from
72.7% to 77.9%. The bottom-right subplot reflects the distribution of output accuracy. Consistently
Correct indicates that all samples for the current step match the golden answer, while Consistently
Error is the opposite. Both represents cases where some samples are correct while others are
incorrect, which serves as an ideal source for constructing T-DPO pairs. Compared to 47% on
the evolved data, the agent achieves 68.7% convergence on the original data but exhibits a strong
polarization(4%). Three-stage instruction evolution significantly expands the sampling space (from
4% to 31%), proving that it simultaneously improves both the diversity and quality of reasoning.
More details are in Appendix F.

Table 6: Parameters Searching on AITZ for the first round. K is
the sampling number and R is the round of T-DPO learning.

Parameter TYPE CLICK SCROLL PRESS STOP Total

K = 2 79.2 68.9 35.1 38.3 76.1 64.0
K = 3 81.2 71.1 45.8 23.4 73.5 65.3 (+1.3)
K = 4 81.2 70.4 51.2 35.5 66.8 65.9 (+0.6)

R = 0 75.7 53.3 43.7 58.2 63.2 57.5
R = 1 77.5 71.1 43.3 23.5 67.0 61.2 (+3.7)
R = 2 80.5 71.1 47.0 31.1 67.6 64.1 (+2.9)
R = 3 82.0 71.5 47.2 47.8 79.1 68.4 (+4.3)
R = 4 82.6 71.5 51.1 51.7 78.2 69.2 (+0.8)

Parameters Searching. We
conducted an ablation study on
the impact of the sampling num-
ber (K) per stage and iterative
round number (R). As shown in
the table 6, increasing the num-
ber of samples generally leads
to better model performance.
However, since our framework
adopts a tree structure, increas-
ing the sampling number from 3
to 4 causes the minimum num-
ber of tree nodes to grow significantly from 33 = 27 to 43 = 64. Despite this sharp increase, the
performance improvement is limited (less than 1%). Therefore, we adopt a sampling number of 3
for the final experiments. Regarding the number of rounds, we observe that both IPL performance
and the size of the self-training dataset converge after several iterations. We therefore select the
convergence round as our default setting. Additional details on computational cost are provided in
Appendix G.

IPL Scaling. Although overall Step.Acc increases across IPL iterations, not all action types follow
this trend. As shown in Figure 3(b), from the seed model to the first IPL round, PRESS accuracy
drops sharply (58.22% → 23.49%), whereas CLICK rises (53.26% → 71.12%). In the second round,
however, PRESS accuracy rebounds. This stems from the severe underrepresentation of PRESS
actions early on: the proportion of PRESS samples in the preference data grows from 1.6% (1 round)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

to 10.9% (2 round) as training progresses. With greater reasoning diversity and more PRESS-related
examples, the model gradually learns PRESS behaviors and recovers accuracy in later rounds.

Iterative Preference Learning On GUI Continuous Pre-training Agent. As discussed in the
previous experimental analysis, continuous pre-training in the GUI domain provides the agents with
a stronger base model. However, we still need to explore the compatibility between post-training
IPL, instruction evolution, and pre-training. As shown in Figure 3 (c), UI-Tars outperforms Qwen2-
VL-7B in all training stages, demonstrating better performance during the instruction evolution
phase (62.7% > 55.4%). After four rounds of IPL, UI-Tars Step.Acc improves by 1.4% compared
to MobileIPL (69.2% -> 70.6%). More importantly, UI-Tars nearly converges after the first round
of IPL, significantly reducing the number of sampling and preference learning iterations, thereby
keeping the computational cost of post-training within an acceptable range.

5 CONCLUSION

In this paper, we propose Mobile Iterative Preference Learning (MobileIPL), a self-training GUI
agent framework that incorporates instruction evolution, iterative sampling in the CoaT-tree, and a
rule-based reward. We extensively evaluate MobileIPL on the AITZ, AMEX, and AndroidControl
benchmarks, demonstrating its effectiveness. Furthermore, MobileIPL exhibits strong generalization
capabilities on the OOD subsets of AndroidControl. Experiments show that instruction evolution
increases output diversity, generates more training data in IPL, and thereby improves IPL performance.
Finally, Continuous Pre-training experiments confirm the mutual reinforcement between MobileIPL
and pre-training, leading to enhanced performance.

6 ETHICS STATEMENT

We have rigorously refined our dataset to remove any elements that could compromise personal
privacy, thereby guaranteeing the highest level of protection for individual data. Instruction evolution
was completed by AI SoTA close-sourced VLM, to whom we paid the necessary compensation to
ensure that the training data was not leaked. The human evaluation of our work was carried out
through a meticulously randomized selection of IT professionals. This process ensured a gender-
balanced and educationally diverse panel, reflecting a wide spectrum of perspectives and expertise.

7 REPRODUCIBILITY STATEMENT

All models and datasets used in this paper are open-source. The full experimental setup is detailed in
Appendix D. Unless noted, all experiments use the same settings. We describe compute resources in
Appendix G. Overall, these practices make our results reproducible.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
ArXiv preprint, abs/2303.08774, 2023. URL https://arxiv.org/abs/2303.08774.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Rémi Munos, Mark Rowland, Michal
Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
human preferences. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li (eds.), International
Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia,
Spain, volume 238 of Proceedings of Machine Learning Research, pp. 4447–4455. PMLR, 2024.
URL https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html.

Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir Zubach, Hassan Mansoor, Vincent Etter,
Victor Carbune, Jason Lin, Jindong Chen, and Abhanshu Sharma. Screenai: A vision-language
model for UI and infographics understanding. In Proceedings of the Thirty-Third International
Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9, 2024, pp.
3058–3068. ijcai.org, 2024. URL https://www.ijcai.org/proceedings/2024/339.

10

https://arxiv.org/abs/2303.08774
https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html
https://www.ijcai.org/proceedings/2024/339

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning. In Amir
Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and
Cheng Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference
on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, De-
cember 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
1704ddd0bb89f159dfe609b32c889995-Abstract-Conference.html.

Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Peng Gao, Shuai
Ren, and Hongsheng Li. AMEX: Android multi-annotation expo dataset for mobile gui agents.
ArXiv preprint, abs/2407.17490, 2024. URL https://arxiv.org/abs/2407.17490.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
ong Wu. SeeClick: Harnessing gui grounding for advanced visual gui agents. ArXiv preprint,
abs/2401.10935, 2024. URL https://arxiv.org/abs/2401.10935.

Shihan Deng, Weikai Xu, Hongda Sun, Wei Liu, Tao Tan, Jianfeng Liu, Ang Li, Jian Luan, Bin Wang,
Rui Yan, et al. Mobile-Bench: An evaluation benchmark for llm-based mobile agents. ArXiv
preprint, abs/2407.00993, 2024. URL https://arxiv.org/abs/2407.00993.

Tinghe Ding. MobileAgent: enhancing mobile control via human-machine interaction and sop
integration. ArXiv preprint, abs/2401.04124, 2024. URL https://arxiv.org/abs/2401.04124.

Nicolai Dorka, Janusz Marecki, and Ammar Anwar. Training a vision language model as smartphone
assistant. ArXiv preprint, abs/2404.08755, 2024. URL https://arxiv.org/abs/2404.08755.

Kawin Ethayarajh, Winnie Xu, Dan Jurafsky, and Douwe Kiela. Human-centered loss functions
(halos). Technical report, Technical report, Contextual AI, 2023.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents.
ArXiv preprint, abs/2410.05243, 2024. URL https://arxiv.org/abs/2410.05243.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. ArXiv preprint, abs/2501.12948, 2025a. URL https://arxiv.org/
abs/2501.12948.

Yiran Guo, Lijie Xu, Jie Liu, Dan Ye, and Shuang Qiu. Segment policy optimization: Effective
segment-level credit assignment in rl for large language models. arXiv preprint arXiv:2505.23564,
2025b.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A visual language model for GUI agents.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA,
USA, June 16-22, 2024, pp. 14281–14290. IEEE, 2024. doi: 10.1109/CVPR52733.2024.01354.
URL https://doi.org/10.1109/CVPR52733.2024.01354.

Zhenyu Hou, Ziniu Hu, Yujiang Li, Rui Lu, Jie Tang, and Yuxiao Dong. Treerl: Llm reinforcement
learning with on-policy tree search. arXiv preprint arXiv:2506.11902, 2025.

Kechen Jiao, Zhirui Fang, Jiahao Liu, Bei Li, Qifan Wang, Xinyu Liu, Junhao Ruan, Zhongjian
Qiao, Yifan Zhu, Yaxin Xu, et al. Tcpo: Thought-centric preference optimization for effective
embodied decision-making. In Proceedings of the 2025 Conference on Empirical Methods in
Natural Language Processing, pp. 9585–9599, 2025.

Wei Li, William E. Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyama-
gundlu, and Oriana Riva. On the effects of data scale on UI control agents. In Amir Globersons,
Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference on
Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-
ber 10 - 15, 2024, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/
a79f3ef3b445fd4659f44648f7ea8ffd-Abstract-Datasets_and_Benchmarks_Track.html.

11

http://papers.nips.cc/paper_files/paper/2024/hash/1704ddd0bb89f159dfe609b32c889995-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/1704ddd0bb89f159dfe609b32c889995-Abstract-Conference.html
https://arxiv.org/abs/2407.17490
https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2407.00993
https://arxiv.org/abs/2401.04124
https://arxiv.org/abs/2404.08755
https://arxiv.org/abs/2410.05243
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.1109/CVPR52733.2024.01354
http://papers.nips.cc/paper_files/paper/2024/hash/a79f3ef3b445fd4659f44648f7ea8ffd-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/a79f3ef3b445fd4659f44648f7ea8ffd-Abstract-Datasets_and_Benchmarks_Track.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wei Li, William E. Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyama-
gundlu, and Oriana Riva. On the effects of data scale on UI control agents. In Amir Globersons,
Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference on
Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-
ber 10 - 15, 2024, 2024b. URL http://papers.nips.cc/paper_files/paper/2024/hash/
a79f3ef3b445fd4659f44648f7ea8ffd-Abstract-Datasets_and_Benchmarks_Track.html.

Yanda Li, Chi Zhang, Wanqi Yang, Bin Fu, Pei Cheng, Xin Chen, Ling Chen, and Yunchao Wei.
AppAgent-V2: Advanced agent for flexible mobile interactions. ArXiv preprint, abs/2408.11824,
2024c. URL https://arxiv.org/abs/2408.11824.

Yizhi Li, Qingshui Gu, Zhoufutu Wen, Ziniu Li, Tianshun Xing, Shuyue Guo, Tianyu Zheng, Xin
Zhou, Xingwei Qu, Wangchunshu Zhou, et al. Treepo: Bridging the gap of policy optimiza-
tion and efficacy and inference efficiency with heuristic tree-based modeling. arXiv preprint
arXiv:2508.17445, 2025.

Xiao Liu, Bo Qin, Dongzhu Liang, Guang Dong, Hanyu Lai, Hanchen Zhang, Hanlin Zhao, Iat Long
Iong, Jiadai Sun, Jiaqi Wang, et al. AutoGLM: Autonomous foundation agents for guis. ArXiv
preprint, abs/2411.00820, 2024. URL https://arxiv.org/abs/2411.00820.

Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. GUI Odyssey: A comprehensive dataset for cross-
app gui navigation on mobile devices. ArXiv preprint, abs/2406.08451, 2024. URL https:
//arxiv.org/abs/2406.08451.

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. ReFT:
Reasoning with reinforced fine-tuning. ArXiv preprint, abs/2401.08967, 2024. URL https:
//arxiv.org/abs/2401.08967.

Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang, and
Qi Wang. Screenagent: A vision language model-driven computer control agent. In Proceedings
of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju,
South Korea, August 3-9, 2024, pp. 6433–6441. ijcai.org, 2024. URL https://www.ijcai.org/
proceedings/2024/711.

Songqin Nong, Jiali Zhu, Rui Wu, Jiongchao Jin, Shuo Shan, Xiutian Huang, and Wenhao Xu.
MobileFlow: A multimodal llm for mobile gui agent. ArXiv preprint, abs/2407.04346, 2024. URL
https://arxiv.org/abs/2407.04346.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. UI-TARS: Pioneering automated gui interaction with native
agents. ArXiv preprint, abs/2501.12326, 2025. URL https://arxiv.org/abs/2501.12326.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian Lei,
Lijuan Wang, and Mike Zheng Shou. ShowUI: One vision-language-action model for gui visual
agent. arXiv e-prints, pp. arXiv–2411, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, Decem-
ber 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy P. Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. In Alice Oh, Tristan
Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
bbbb6308b402fe909c39dd29950c32e0-Abstract-Datasets_and_Benchmarks.html.

12

http://papers.nips.cc/paper_files/paper/2024/hash/a79f3ef3b445fd4659f44648f7ea8ffd-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/a79f3ef3b445fd4659f44648f7ea8ffd-Abstract-Datasets_and_Benchmarks_Track.html
https://arxiv.org/abs/2408.11824
https://arxiv.org/abs/2411.00820
https://arxiv.org/abs/2406.08451
https://arxiv.org/abs/2406.08451
https://arxiv.org/abs/2401.08967
https://arxiv.org/abs/2401.08967
https://www.ijcai.org/proceedings/2024/711
https://www.ijcai.org/proceedings/2024/711
https://arxiv.org/abs/2407.04346
https://arxiv.org/abs/2501.12326
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/bbbb6308b402fe909c39dd29950c32e0-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/bbbb6308b402fe909c39dd29950c32e0-Abstract-Datasets_and_Benchmarks.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv preprint, abs/1707.06347, 2017. URL https://arxiv.org/abs/
1707.06347.

Huawen Shen, Chang Liu, Gengluo Li, Xinlong Wang, Yu Zhou, Can Ma, and Xiangyang Ji. Falcon-
UI: Understanding gui before following user instructions. ArXiv preprint, abs/2412.09362, 2024.
URL https://arxiv.org/abs/2412.09362.

Q Team. Qwen2. 5-vl, january 2025. URL https://qwenlm. github. io/blog/qwen2.

Bryan Wang, Gang Li, and Yang Li. Enabling conversational interaction with mobile UI using
large language models. In Albrecht Schmidt, Kaisa Väänänen, Tesh Goyal, Per Ola Kristensson,
Anicia Peters, Stefanie Mueller, Julie R. Williamson, and Max L. Wilson (eds.), Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems, CHI 2023, Hamburg,
Germany, April 23-28, 2023, pp. 432:1–432:17. ACM, 2023. doi: 10.1145/3544548.3580895.
URL https://doi.org/10.1145/3544548.3580895.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei
Huang, and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effec-
tive navigation via multi-agent collaboration. In Amir Globersons, Lester Mackey, Danielle
Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Ad-
vances in Neural Information Processing Systems 38: Annual Conference on Neural In-
formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/
0520537ba799d375b8ff5523295c337a-Abstract-Conference.html.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. ArXiv preprint, abs/2409.12191, 2024b. URL https://arxiv.org/abs/
2409.12191.

Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye Hao, Jun Wang, and Kun Shao. DistRL: An asyn-
chronous distributed reinforcement learning framework for on-device control agents. ArXiv
preprint, abs/2410.14803, 2024c. URL https://arxiv.org/abs/2410.14803.

Wenhao Wang, Zijie Yu, William Liu, Rui Ye, Tian Jin, Siheng Chen, and Yanfeng Wang. FedMo-
bileAgent: Training mobile agents using decentralized self-sourced data from diverse users. ArXiv
preprint, abs/2502.02982, 2025. URL https://arxiv.org/abs/2502.02982.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao
Liu, Yaqin Zhang, and Yunxin Liu. Empowering llm to use smartphone for intelligent task
automation. ArXiv preprint, abs/2308.15272, 2023. URL https://arxiv.org/abs/2308.15272.

Qinzhuo Wu, Wei Liu, Jian Luan, and Bin Wang. ReachAgent: Enhancing mobile agent via page
reaching and operation. ArXiv preprint, abs/2502.02955, 2025. URL https://arxiv.org/abs/
2502.02955.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
Ding, Liheng Chen, Paul Pu Liang, et al. Os-Atlas: A foundation action model for generalist gui
agents. ArXiv preprint, abs/2410.23218, 2024. URL https://arxiv.org/abs/2410.23218.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P. Lillicrap, Kenji Kawaguchi, and
Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. ArXiv
preprint, abs/2405.00451, 2024. URL https://arxiv.org/abs/2405.00451.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. ArXiv
preprint, abs/2412.04454, 2024. URL https://arxiv.org/abs/2412.04454.

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-
UI: Visual grounding for gui instructions. ArXiv preprint, abs/2412.16256, 2024. URL https:
//arxiv.org/abs/2412.16256.

13

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2412.09362
https://doi.org/10.1145/3544548.3580895
http://papers.nips.cc/paper_files/paper/2024/hash/0520537ba799d375b8ff5523295c337a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/0520537ba799d375b8ff5523295c337a-Abstract-Conference.html
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2410.14803
https://arxiv.org/abs/2502.02982
https://arxiv.org/abs/2308.15272
https://arxiv.org/abs/2502.02955
https://arxiv.org/abs/2502.02955
https://arxiv.org/abs/2410.23218
https://arxiv.org/abs/2405.00451
https://arxiv.org/abs/2412.04454
https://arxiv.org/abs/2412.16256
https://arxiv.org/abs/2412.16256

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. AppAgent:
Multimodal agents as smartphone users. ArXiv preprint, abs/2312.13771, 2023. URL https:
//arxiv.org/abs/2312.13771.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei
Yang, and Zhe Gan. Ferret-UI: Grounded mobile ui understanding with multimodal llms. ArXiv
preprint, abs/2404.05719, 2024. URL https://arxiv.org/abs/2404.05719.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-
mcts*: LLM self-training via process reward guided tree search. In Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
(eds.), Advances in Neural Information Processing Systems 38: Annual Conference on Neu-
ral Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-
ber 10 - 15, 2024, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/
76ec4dc30e9faaf0e4b6093eaa377218-Abstract-Conference.html.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu
Tang. Android in the Zoo: Chain-of-action-thought for gui agents. ArXiv preprint, abs/2403.02713,
2024b. URL https://arxiv.org/abs/2403.02713.

Li Zhang, Shihe Wang, Xianqing Jia, Zhihan Zheng, Yunhe Yan, Longxi Gao, Yuanchun Li, and
Mengwei Xu. LlamaTouch: A faithful and scalable testbed for mobile ui task automation. ArXiv
preprint, abs/2404.16054, 2024c. URL https://arxiv.org/abs/2404.16054.

Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents.
ArXiv preprint, abs/2309.11436, 2023. URL https://arxiv.org/abs/2309.11436.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web agent,
if grounded. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
piecKJ2DlB.

A COAT THINKING PROCESS

The table 7 summarizes the CoT paradigms (inputs and outputs) used in prior related works. CoaT
paradigm for fine-tuning agents: The effectiveness of the approach in AITZ stems from the inclusion
of extra screen descriptions as part of the input, along with joint output of Screen Context, Action
Think, Action Target, and Action Result. In contrast, our experiments show that a stage-wise
multi-turn dialogue output leads to better performance. In this setup, the model focuses on a single
sub-task at each stage, which not only improves clarity but also encourages a simplified and deliberate
reasoning process. This insight aligns with UI-TARS, which only requires the model to generate
a brief thought during inference. Small-scale agent framing: Even models with relatively small
parameter sizes can benefit from task-decomposed downstream training. For instance, OS-ATLAS
and Falcon-UI adopt a similar architecture using GPT-4o for textual description and OS-ATLAS-base
as the grounding model. They fine-tune models separately on different downstream tasks, resulting
in a collection of OS-ATLAS-pro models, each specialized for a specific sub-task. Large-scale
prompting-based frameworks: Larger models typically adopt a multi-agent framework to support
a CoT-style reasoning process. For example, AppAgent v2 and Mobile-Agent-v2 both utilize a
plan–action–reflection architecture to complete tasks. In our work, we adopt a stage-wise CoaT
multi-turn dialogue format, where the model focuses on one sub-task at a time. This design enables
us to move away from the dependence on extra screen description inputs, as seen in AITZ, while
leveraging the description + grounding structure proposed in OS-ATLAS to form the final structure
of the MobileIPL CoaT paradigm.

B SELECTION OF SEED POLICY MODEL

In our preliminary experimental exploration, we discovered that for the seed policy model, better
performance in the SFT phase does not necessarily translate to a higher upper bound in the subsequent
IPL phase. This is because as training progresses, the model’s output space becomes increasingly

14

https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2404.05719
http://papers.nips.cc/paper_files/paper/2024/hash/76ec4dc30e9faaf0e4b6093eaa377218-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/76ec4dc30e9faaf0e4b6093eaa377218-Abstract-Conference.html
https://arxiv.org/abs/2403.02713
https://arxiv.org/abs/2404.16054
https://arxiv.org/abs/2309.11436
https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=piecKJ2DlB

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Comparison of methods and their corresponding CoT paradigms.

Method Backbone Input Output (CoT Paradigm)

Android in the Zoo One fine-tuned agent Instruction + image +
screen description

Screen Context → Action Think → Action Target
→ Action Result

UI-TARS One fine-tuned agent Instruction + image Thought → Action
OS-ATLAS One fine-tuned agent +

one large agent
Instruction + image Action Description + Action Model

Mobile-Agent-v2 Multi-agent + prompt
engineering

Instruction + image Stage 1: Plan → Stage 2: Action → Stage 3:
Reflection

MobileIPL One fine-tuned agent Instruction + image Stage 1: Description → Stage 2: Plan → Stage 3:
Action → Stage 4: Grounding

aligned with the training data, reducing its diversity in sampling. Consequently, for incorrect instances,
the model tends to generate erroneous outputs regardless of the sampling attempts. To address this, we
propose a sampling-oriented selection method for the seed policy model, incorporating the following
two evaluation metrics:

Sampling Accuracy(AccS), which requires the model to hit more correct actions a in the sampled
output space S.

AccS =

∑|T |
i=1

∣∣∣{e(i)j | a
(i) ∼ e

(i)
j , e

(i)
j ∈ S

(i)
}∣∣∣∑|T |

i=1 |S(i)|
(16)

Sampling Diversity(DivR), which requires the model to have a more diverse and extensive sampling
space. Standard deviation calculation of a single sampled tree DevS(i) :

DevS(i) =
1

T

T∑
t=1

StdDev
(
E(ŝ

(k)
t) | k = 1, . . . ,K

)
(17)

Among them, E(ŝ
(k)
t) represents the representation of the kth sample output of the tth step after the

encoder. Calculation of the standard deviation of the set DivS :

DivR =
1

N

N∑
i=1

DevS(i) (18)

where N is the number of sampled trees in the set R.

C RULE-BASED REWARD DESIGN

Derivation Of The Value Function. Our value function incorporates hyperparameters inspired
by ReFT and is also influenced by the sampling number used during IPL. We explain the rationale
behind key parameter choices in our method, especially those in Eq.(7), Eq.(13), and Eq.(14):

Strong Reward: We follow the ReFT (Luong et al., 2024) score to define strong reward signals,
assigning values of 1 and 0, corresponding to fully correct and completely incorrect reasoning paths,
respectively. In ReFT, a supervision signal of 0.1 encourages the model to produce a final answer
following the predefined format. In our approach, this signal is repurposed to reward action type
matching. Meanwhile, an additional vformat reward is introduced to encourage proper formatting of
actions.

Weak Reward: For input action, the value linearly increases from vformat + vtype up to the strong
reward level, with vformat acting as a threshold to distinguish weak from type-correct reward. For
grounding actions, values range between vformat + vtype and 1, too. A value of vformat indicates
minimal correctness (e.g., extractable coordinates), while 1 indicates a closest match with the golden
action, suitable for DPO pairing. Except vformat and vtype serving as discrete supervision signals,
all other value signals are maintained as continuous. 1 / K in Eq. (13) arises naturally from our
hierarchical training structure. For example, if one child is incorrect (e.g., value drops from 1 to 0),
the average value for the parent node decreases by 0.33 when the sampling number is 3. Thus, 1 / K
serves as a meaningful threshold to distinguish positive vs. negative examples in the CoAT tree.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Text F1 vs. text-embedding similarity: ablation on reward design. Best results are in bold.

Reward Type TYPE (type) TYPE (acc) TOTAL (type) TOTAL (acc)
BERT 84.17 76.70 77.81 62.49

F1 87.78 81.23 78.74 65.37

Text F1 vs. Text-Embedding Similarity: We replaced the F1-based reward with a BERT-based
semantic reward and evaluated both variants. As shown in Table 8, the F1 reward outperforms the
BERT embedding reward across all metrics, with the largest gain on TYPE ACTION (acc) (+4.53%).
This aligns with the importance of exact keyword matching in GUI input, indicating that F1 is better
suited than semantic similarity for reward design in mobile UI input scenarios.

Figure 4: The heatmap at the left represents the sampling before instruction evolution, while the one
at the right represents the sampling after instruction evolution.

D EXPERIMENT SETUP

Models. Unlike AITZ, we do not compare the CoaT result with the expected page and decide
whether to roll back because most actions in real-device scenarios cannot be rolled back without cost.
Previous work conducted continual pretraining on Qwen2-VL-7B using GUI domain data, resulting
in a stronger base model. In our ablation study, we discuss the impact of continuous pretraining on
IPL. ()

Setup. We conduct hyperparameter searches on AITZ to reproduce the baseline results and find that
the optimal learning rate ranges from 3e-5 to 3e-6. Therefore, all baseline fine-tuning experiments
adopt this setting. Before IPL, during the instruction evolution stage, we apply LoRA fine-tuning with
a LoRA rank of 128. For IPL Stage 1, we use a learning rate between 1e-6 and 1e-7. In subsequent
stages, we apply a constant learning rate of 1e-7. The batch size is consistently set to 128. During
fine-tuning (including baseline fine-tuning), we enable ViT training, whereas in the IPL phase, we
experiment with freezing ViT. For AITZ training, we followed the Falcons’ approach, utilizing a
maximum 1540×1540 resolution. For other experiments, we reduce the resolution to 1280×720 to
optimize computational efficiency. The maximum context length is set to 32K for all experiments.
The fine-tuning experiments are conducted for 2 epochs, while IPL training is performed for 1 epoch.
Since the large volume of Android control data, we sample 1/5 of the dataset for each IPL training
iteration.

CoaT Multi-turn Dialogue Prompts.

1. Page Description. Based on the mobile screenshot: Image URL, identify and describe the
key elements visible on the screen, including any text, buttons, icons, input fields, or other
interactive components.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

2. CoaT Action Thought. Given the task: instruction, and considering the contextual details
from the image alongside the full history of previous actions: action history, determine
the most logical and effective next step. Focus on providing a clear, actionable, and goal-
oriented response to advance the task.

3. CoaT Action Description. Task: Determine the Most Appropriate Next Step. Based on the
previous analysis and the objective, determine the most appropriate next step to achieve
the goal. Choose from the following options: - **click**: Select a button or specific UI
element by specifying it clearly (e.g., ‘click xxx’, where ‘xxx’ is the button name or identifier).
- **scroll**: Perform a scrolling action if the required element is not visible, specifying
the direction (e.g., ‘scroll up’, ‘scroll down’). - **type**: Input specific text into a field
or search bar, specifying the text clearly (e.g., type “content”). - **press**: Interact with
device-level buttons such as Home, Back, or Enter, specifying the button (e.g., “press Back”).
- **stop**: Conclude the task, indicating that the objective has been achieved. Provide the
chosen action in the specified format and ensure it aligns with the analysis and the visible
UI elements.

4. Click Action Grounding. As discussed earlier, your task now is to identify the precise
screen region coordinates to tap for the action coat action. The coordinates must be integers
and strictly within the range of 0 to 1000 for both axes. Please provide your response in the
required format: <|box_start|>(top_x, top_y),(bottom_x, bottom_y)<|box_end|>. Ensure
your output adheres to these constraints and remains concise.

Instruction evolution Prompts.

1. Page Description Annotation. I will provide you with a mobile page. Please describe
the current page. Your description should include the content of the page and its general
functionality. Please note that the descriptions you generate should be of moderate length.
Your page description should match the actual image.

2. Action Thought Annotation. **QUERY**: task, **ACTION HISTORY**: To proceed
with the query, your past actions include: action history, **NEXT ACTION**: This is
the next action you need to take: coat action, **TASK**: Given the screen and the above
information, you have three tasks to do. First, you have to analyze what you have done.
Second, you should analyze the screen for relevant details that might pertain to the given
query. This includes checking for specific applications, icons, or buttons that are visible
and any information or results that are currently displayed on the screen. Tip: If the screen
does not have the information you need, you can scroll left or scroll up to try to get the
information. Don’t answer this logic question by saying that because the provided **NEXT
ACTION** is..., therefore, the next action is... You need to think carefully on your own. You
must answer the question with suitable lengths and the following format: ’Think: I have
done..., Current screen is..., I need to... So the next action is ...’ Your final action should be
the same as the NEXT ACTION above.

3. Q&A Annotation. Your goal is to draw inspiration from the given images and image
description information to create multiple new questions and answers. This new creation
is closely related to the given image and information, but the answers involved should be
directly derived from the given information, because UI positions and UI text are one-to-one
correspondence. Specifically, you should construct the following three types of questions
and answers, a total of 15: 1. the function of some elements in the image. 2. Grounding
questions and answers (the coordinates and approximate location of the target in the image).
3. Partial detailed information questions and answers (the structural relationship between
multiple elements, type, style, etc.). Please try to keep your questions and answers diverse
and informative, and ignore the message in the device status bar. Here is the information
related to the image: UI positions: {ui positions}, UI text: {ui text}, coat screen desc:
{coat screen desc}, Please provide the following information in JSON format with the key
questions and answers, and Don’t add annotation parsing:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 5: The left figure shows an example of unstable annotation preferences in AMEX, while the
right figure presents the proportion of this type of annotation.

E HUMAN ANNOTATION

SoTA Model Cost: We use GPT-4o for annotation, which is priced at 4 USD per 1M input tokens
and 16 USD per 1M output tokens. As shown in Appendix B (Instruction Evolution Prompts), each
image has a resolution of 1080 × 2440. The input prompt is approximately 2K tokens, and the output
is around 0.5K tokens, resulting in a per-page annotation cost of 0.008 USD (input) + 0.004 USD
(output) = 0.012 USD. Given that the Android in the Zoo dataset [1] contains around 18,000 pages,
the total annotation cost is approximately 200 USD.

Human Verification: Human verification is used to identify cases where the model produces incorrect
thoughts due to being forced to align with the golden action. As shown in following table, some
initial annotations contain template-like phrases (e.g., “Since”, “annotation”) and mention multiple
possible actions. These mistakes often happen when the model tries to justify a given action even if it
doesn’t match the actual screen.

The bolded text in following Table highlights common errors. To address this, we regenerated the
prompts and applied automatic filtering based on specific tokens, which helps reduce the need for
manual work.

Before Human Verification: "coat_action_think": "Reason for the Action: - To find and compare
prices, the user needs to locate similar products. - Swiping up or scrolling down is a logical step to
explore further information or discover additional options, as apps like Etsy often display "similar
items" or "recommended products" below the primary product listing. - This action aligns with
typical app design patterns where related items or comparison options are placed further down the
page. 4. Logical Derivation of Action: - Since the task specifies comparing prices of similar items,
and the current screen does not explicitly list such items, the user must navigate downward to uncover
more options. - The instruction to "swipe up" (or scroll down) matches the action type ("action_type":
"scroll", "direction""down"), indicating an attempt to reveal additional content or sections. 5. Since
the next action swiping down matches the annotation, the next action is swiping down.

After Human Verification: Think: I have previously navigated "Back," which indicates that I may
have returned to the previous screen or listing, likely as part of exploring options related to the query
for comparing prices of men’s athletic shoes. Current screen is displaying detailed information about
a product on the Etsy app. This includes item details such as "Handmade item," "Made to order," and
shipping information. There are also options to "Follow shop," "Message seller," and "Add to cart,"
but it does not appear to directly show other comparable items or prices for similar men’s athletic
shoes.I need to scroll further down on this screen to potentially uncover additional details, such as
related products, a comparison section, or other useful information for the query. So the Next action
is Scroll down."

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 9: Data size and training time across iterative rounds.

Standard SFT Round 1 Round 2 Round 3 Round 4 Round 5

Data Samples 63,158 156,418 34,010 28,491 17,027 17,780
Time (hours) 2.8 7.9 2.0 1.7 1.0 1.0

F ITERATIVE SAMPLING IN THE COAT-TREE

As shown in Figure 4, before instruction evolution, the distribution is highly concentrated, with only
8 points exceeding 1000 (including 3 points above 1200). After instruction evolution, the distribution
becomes more balanced, with 20 points exceeding 1000 (including 2 points above 1500).

Figure 6: An example from AITZ demonstrates that when the task and image are the same, multiple
actions may navigate to the same page.

Potential correct space ratio. The proportion of |α|+ |β| represents the potential correct space on
the training data, and the change of this metric can clearly express the agent’s ability to repair and
reason out the correct process based on the correct answer.

G COMPUTATIONAL COST OF IPL ACROSS ITERATIONS

As shown in Table 9, while the first IPL iteration incurs higher cost due to the larger volume of
preference data, subsequent iterations are significantly lighter. The training time per round decreases
rapidly, as the model generates fewer low-quality samples and requires fewer updates. In fact, by
the third iteration, the training time becomes comparable to or even lower than the initial supervised
fine-tuning (SFT) stage.

Therefore, the overall compute overhead of IPL remains moderate and manageable, especially
considering its performance gains. Compared to SFT, IPL introduces only a modest increase in
compute, but brings substantial improvements in reasoning and generalization.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Instruction : Install app \”Spotify\”

Page Description (0.325) Page Description (0.7) Page Description (1)

This is a screenshot of a smartphone
home screen displaying a clean and
simple layout. At the top, the status bar
shows the time as 5:01 and various icons
indicating network signal, Wi-Fi
connection, and battery status. Below
the status bar, there is a search bar for
quick web searches. The main part of
the screen shows a grid of app icons,
including the Google, Gmail, Google
Photos, and YouTube, along with a dock
at the bottom containing the Phone app,
Messages, Google Chrome, and Google
Maps. The top of the screen has a menu
with options for \"Home settings,\"
\"Widgets,\" and \"Wallpapers,\"
suggesting quick access to these
settings.

This is a screenshot of a smartphone
home screen displaying a clean and
simple layout. At the top, the status
bar shows the time as 5:51 and various
icons indicating network strength,
battery life, and more. Below the
status bar, there's a search bar for
quick web searches. The main part of
the screen shows a grid of app icons,
including the Play Store, Gmail, Phone,
and YouTube, suggesting a focus on
communication, media, and
entertainment. There are also three
quick settings options available:
\"Home settings,\" \"Widgets,\" and
\"Wallpapers,\" which likely provide
quick access to customization options
for the home screen.

This is a screenshot of a smartphone
home screen displaying a clean and
simple layout. At the top, the status
bar shows the time as 5:51 and various
icons indicating network signal, Wi-Fi,
and battery status. Below the status
bar, there's a search bar for Google.
The main part of the screen features
a dock with five app icons: Play Store,
Gmail, Phone, Chrome, and YouTube,
and above the dock, there are three
quick settings options: \"Home
settings,\" \"Widgets,\" and
\"Wallpapers.\" The navigation bar at
the bottom includes a back button,
home button, and a recent apps button
for multitasking.

Ground Truth: Click on the
Play Store app located at the
left and lower middle part of
the screen.

Action Thought (0.55)

The Play Store app is already
open, indicating that the next
step is to search for and install
the \"Spotify\" app. Possible
actions are to tap on the Play
Store icon to continue with the
installation process.

Click on the
Play Store app
located at the
left and lower
middle part of
the screen.

CoaT Action (1)

Click on the
Play Store icon
located at the
middle and
lower middle
part.

CoaT Action (0.1)

The Play Store icon is visible on
the dock, which is relevant for
the given query to install Spotify.
Possible actions are to tap on the
Play Store icon to open it and
then use the search function
within the Play Store to find and
install the Spotify app.

The Play Store icon is visible on
the dock, which is relevant to the
given query of installing Spotify.
Possible actions are to tap on the
Play Store icon to open it and then
use the search function within the
Play Store to find and install
Spotify.

Action Thought (0.1)

The Play Store app is already
open, and the next logical step is
to search for and install the
\"Spotify\" app. Possible actions
are to use the search bar at the
bottom of the screen to type in
\"Spotify\" and proceed with
the installation process.",

Click on the
\"Spotify\" app
located at the
lower middle left
part of the
screen.

Click on the
\"Spotify\"
app located at
the lower
right.

CoaT Action (0.1)

Action Thought (1) Action Thought (1)

Click on the
Play Store
app located
at the lower
left.

Click on the
Play Store app
located at the
lower left part
of the screen.

Click on the Play
Store app located
at the left and
lower middle part
of the screen.

Click on the Play
Store app

CoaT Action (1) CoaT Action (1) CoaT Action (1) CoaT Action (1)CoaT Action (0.1)

Groundning (1) Groundning (1) Groundning (0.1) Groundning (0.1) Groundning (1) Groundning (1)

(174,604),(194,624) (158,623),(178,643) (386,664),(406,684) (410,668),(430,688) (165,618),(185,638) (155,623),(175,643)

Groundning (1) Groundning (1)

(132,579),(152,599)(161,584),(181,604)

Figure 7: A sampling tree from AITZ demonstrates how the value is calculated.

H CASE STUDY

Unstable annotation preferences. As shown in Figure 5, the left section illustrates two different
annotation preferences when searching for an app from the Home Page: SCROLL UP and SCROLL
LEFT, leading to different destination pages. The right part shows the overall preference distribution
when annotators need to find an app. In rare cases, the annotation involves clicking on Google
Play Store to perform a search. This phenomenon is quite common because, fundamentally, the
task completion paths for a UI Agent are diverse. This is also the key difference between online
evaluation and offline data evaluation. From this, we observe that RL training on data with unstable
preferences performs worse than SFT (e.g., AITZ SCROLL). This is because the DPO pair training
method inherently attempts to correct errors in sampled preferences. As a result, the agent oscillates
between two decisions when encountering the same GUI and instruction, failing to achieve consistent
alignment.

Action Equivalence. Unlike Unstable Annotation Preferences, where different actions lead to
different but equivalent pages, the issue here arises from annotators’ random labeling habits in the
training data, preventing the model from learning a consistent preference. Action Equivalence refers
to the phenomenon where multiple actions on the same page can lead to the target page. However,
since only one action is annotated as correct, other valid actions are mistakenly treated as incorrect. As
shown in Figure 6, after entering a search query, clicking on a suggested item in the recommendation
bar, and pressing the Enter key on the keyboard produce the same effect. Similarly, when navigating
back, clicking the on-screen back button and pressing the hardware back button yield the same
outcome.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Thinking-Level Sampling. As shown in Figure 7, unlike mathematical reasoning, the CoaT process
may not exhibit clear logical or computational errors. For a given action, a sampling CoaT data
may produce hallucinations (Page Description) due to insufficient detail in the page description or
fabricated elements; generate repetitive thoughts (Action Thought) due to neglecting action history;
describe the wrong relative position of the correct element (CoaT Action); or misgrounding an
element (Grounding), which is then classified as a negative sample. At the same time, outputs with
more detailed and accurate descriptions, diversified thoughts, and different ways of describing the
same widget are classified as positive samples. Negative examples may be disadvantageous compared
to positive examples, for example, because the description of the page is not detailed enough or the
positioning of the elements is not accurate enough. At the same time, the wrong process may also
give the correct result, but this is a very rare case. In this example, negative samples are generated
due to the following three reasons: (1) Rough page description: The page contains eight app
icons, but the agent’s description includes only four apps: Play Store, Gmail, Phone, and YouTube;
(2) Hallucinated Thought: The agent is unclear about its current page location. In reality, it is
on the Home page, but it mistakenly believes it is in the Play Store (e.g., ”The Play Store app is
already open"). (3) Fabricated Position and Elements: The agent generates the action "Click on the
’Spotify’ app", even though there is no Spotify icon on the current page. This hallucination may stem
from the instruction. Additionally, the Play Store icon should be located at the lower left part of the
screen, but the agent incorrectly describes it as being in the middle and lower middle part.

I USAGE OF LLM STATEMENT

This paper utilized an LLM to improve the clarity and fluency of the text.

21

	Introduction
	Related Work
	Mobile GUI Agent
	Reinforcement Learning

	Methodology
	Multi-turn Thinking Process Formulation
	Instruction Evolution
	Iterative Preference Learning

	Experiments
	Experiments Setups
	Main result
	Ablation Study
	Discussion and Analysis

	Conclusion
	Ethics Statement
	Reproducibility statement
	CoaT Thinking Process
	Selection of Seed Policy Model
	Rule-based Reward Design
	Experiment Setup
	Human Annotation
	Iterative Sampling in the CoaT-tree
	Computational Cost of IPL Across Iterations
	Case Study
	Usage of LLM statement

