

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MOBILEIPL: ENHANCING MOBILE AGENTS THINKING PROCESS VIA ITERATIVE PREFERENCE LEARNING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 The Chain of Action-Planning Thoughts (CoaT) paradigm has been shown to
012 improve the reasoning performance of VLM-based mobile agents in GUI tasks.
013 However, the scarcity of diverse CoaT trajectories limits the expressiveness and
014 generalization ability of such agents. While self-training is commonly employed
015 to address data scarcity, existing approaches either overlook the correctness of
016 intermediate reasoning steps or depend on expensive process-level annotations
017 to construct process reward models (PRM). To address the above problems, we
018 propose an Iterative Preference Learning (IPL) that constructs a CoaT-tree through
019 iterative sampling, scores leaf nodes using rule-based reward, and backpropagates
020 feedback to derive Thinking-level Direct Preference Optimization (T-DPO) pairs.
021 To prevent overfitting during warm-up supervised fine-tuning, we further introduce
022 a three-stage instruction evolution, which leverages GPT-4o to generate diverse
023 Q&A pairs based on real mobile UI screenshots, enhancing both generality and lay-
024 out understanding. Experiments on three standard Mobile GUI-agent benchmarks
025 demonstrate that our agent *MobileIPL* outperforms strong baselines, including
026 continual pretraining models such as OS-ATLAS and UI-TARS. It achieves state-
027 of-the-art performance across three standard Mobile GUI-Agents benchmarks and
028 shows strong generalization to out-of-domain scenarios.

1 INTRODUCTION

031 VLM-based mobile agents (Wang et al., 2023; Ding, 2024) have attracted considerable attention due
032 to their ability to seamlessly interact with mobile graphical user interfaces (GUIs) and their potential
033 to autonomously perform daily tasks. Since actions are not directly specified in user instructions,
034 mobile agents benefit from generating intermediate thoughts aligned with the current GUI context.
035 Recent work such as AITZ(Zhang et al., 2024b) has demonstrated that the Chain of Action-Planning
036 Thoughts (CoaT) pattern—resembling the slow-thinking “System 2” process—is particularly effective
037 in GUI domains.

038 However, directly applying supervised fine-tuning (SFT) on CoaT trajectories may cause overfitting,
039 leading the model to be trapped in fixed reasoning patterns. To address this limitation, recent studies
040 in the general domain have explored self-training strategies. These approaches typically utilize the
041 correctness of the final answer in output as a reward signal to train the model(Luong et al., 2024).
042 While effective in some contexts, relying solely on final answers overlooks the quality of intermediate
043 reasoning steps, which can result in reward hacking and suboptimal reasoning processes. Some
044 search-based approaches, such as ReST-MCTS (Xie et al., 2024), tackle this problem by learning
045 a process reward model (PRM) to evaluate individual reasoning steps. However, these approaches
046 often require large-scale manual annotation of intermediate steps (Guo et al., 2025a). This challenge
047 is especially severe in the Mobile GUI Agent domain. Unlike text-based tasks in coding or math, GUI
048 environments rely on real devices or simulators, making step-level reward annotation significantly
049 more costly and labor-intensive.

050 To address these limitations, we propose an iterative sampling framework that constructs a CoaT-tree
051 based on Monte Carlo Tree Search (MCTS). Instead of relying on a PRM, we score each reasoning
052 step and construct thinking-level DPO (T-DPO) pairs without manual step annotation. Specifically,
053 we perform multi-turn dialogue with a vision-language model (VLM) to incrementally build a CoaT-
tree, where each node corresponds to a sampled response at a given reasoning step, conditioned

054 on the dialogue history. This hierarchical structure captures diverse reasoning paths and facilitates
 055 fine-grained assessment of intermediate thoughts. We first assign rewards to the leaf node, and then
 056 propagate these signals backward through the CoaT-tree to earlier reasoning steps. Based on the
 057 resulting values, we construct thinking-level DPO pairs to help agents optimize both final actions and
 058 the overall quality of their reasoning.

059 To mitigate the lack of diversity after warm-up SFT, we adopt an instruction evolution strategy.
 060 Specifically, we generate diverse Q&A pairs grounded in real mobile UI screenshots from downstream
 061 training datasets. These Q&A pairs serve two purposes: (1) prevent agents from overfitting to
 062 static downstream instructions by introducing varied reasoning contexts, and (2) improve agents’
 063 understanding of UI layouts through visually grounded question-answering. We evaluate our approach
 064 on the CoaT dataset AITZ and long-horizon dataset AMEX, where it outperforms state-of-the-
 065 art GUI-agent continual pretraining agents such as OS-ATLAS (Wu et al., 2024) (+4.04%) and
 066 UI-TARS (Qin et al., 2025) (+3.54%). Furthermore, experiments on the AndroidControl dataset
 067 demonstrate the strong generalization capability of our method to unseen apps and instructions
 068 (tasks). Under limited training resources, IPL consistently outperforms naive DPO using only half of
 069 the data for one iterative training round (+4.5%), or one-fifth of the data for two iterative training
 070 rounds (+0.3%). Analytical experiments show instruction evolution simultaneously improves both
 071 the diversity and quality of reasoning.

072 Overall, our main contributions are summarized as follows:

- 073 • We propose an iterative framework to construct a CoaT-tree, and utilize rule-based rewards with
 074 backward credit assignment to form thinking-level DPO pairs for reasoning optimization.
- 075 • We introduce an instruction evolution strategy to mitigate overfitting during warm-up SFT, enhanc-
 076 ing the model’s generalization and UI understanding.
- 077 • We demonstrate the effectiveness of our method on three GUI-agent benchmarks: AITZ, AMEX,
 078 and AndroidControl. Furthermore, our approach even surpasses SoTA continual pretraining models.

081 2 RELATED WORK

083 2.1 MOBILE GUI AGENT

085 LLMs (Achiam et al., 2023) are increasingly used as autonomous agents for mobile interaction (Li
 086 et al., 2024b; Wen et al., 2023). With the rapid development of vision-language models (VLMs),
 087 researchers build mobile GUI agents (Yang et al., 2023; Zheng et al., 2024; Qin et al., 2025; Team)
 088 and multi-agent frameworks (Ding, 2024; Li et al., 2024c; Wang et al., 2024a) based on closed-source
 089 VLMs. Meanwhile, some researchers focus on training agents with stronger element grounding
 090 (Cheng et al., 2024; Wu et al., 2024), page navigation (Niu et al., 2024; Lu et al., 2024; Gou et al.,
 091 2024; Wang et al., 2025), GUI understanding (You et al., 2024; Baechler et al., 2024) and task
 092 planning capabilities (Zhang et al., 2024c; Nong et al., 2024; Xu et al., 2024; Qinghong Lin et al.,
 093 2024; Dorka et al., 2024) based on open-source VLMs. Our method organizes trajectory data into
 094 multi-turns of dialogues based on the CoaT thinking pattern, preventing the agent becomes an action
 095 model with limited capabilities.

096 2.2 REINFORCEMENT LEARNING

099 The algorithms applied in natural language processing to align with human preferences include
 100 Direct Preference Optimization (DPO) (Rafailov et al., 2023), Identity Preference Optimization
 101 (IPO) (Azar et al., 2024), Kahneman-Tversky Optimization (KTO) (Ethayarajh et al., 2023), and
 102 Proximal Policy Optimization (PPO) (Schulman et al., 2017). Specifically, ReFT (Luong et al.,
 103 2024) adopts reinforcement learning as a fine-tuning paradigm to improve performance on math
 104 problems. ReST-MCTS* (Zhang et al., 2024a) focuses on the higher-quality step reward, where
 105 the process reward model is important. Xie, et al. (Xie et al., 2024) label the preference via MCTS
 106 based on feedback from self-evaluation. For mobile GUI agents, Digirl (Bai et al., 2024) and Distrl
 107 (Wang et al., 2024c) use online trajectory collection to improve the generalization of agents whose
 108 process is very slow. Reachagent (Wu et al., 2025) uses DPO training to compare the quality of
 109 multiple actions. [TCPO \(Jiao et al., 2025\)](#) also optimizes thoughts, but does not explicitly enforce

thought-action consistency. TreePO (Li et al., 2025), TreeRL (Hou et al., 2025), and SPO (Guo et al., 2025b) segment long sequences into many short segments, which leads to high computational cost and low data efficiency. In contrast, our method models thoughts with a fixed CoaT-tree and uses T-DPO to optimize the thinking process, while step values are computed directly from rule-based rewards, without unstable PRMs. This design yields more efficient sampling and training, especially in GUI-agent settings.

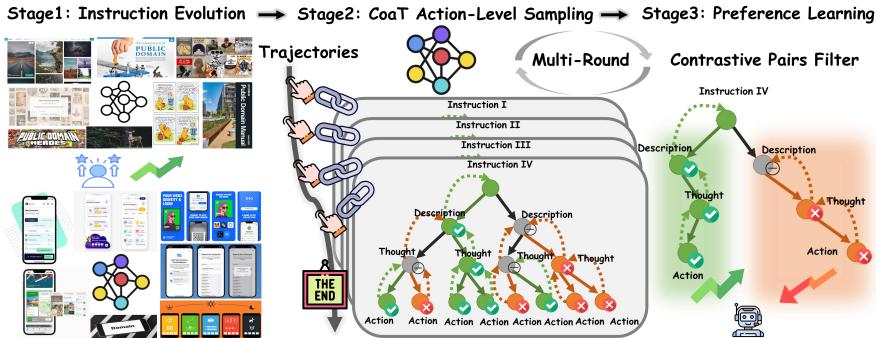


Figure 1: Overview of iterative preference learning framework. The left part presents the process of warm-up fine-tuning a general VLM to a mobile GUI domain agent with basic capabilities. The mid and right parts represent the iterative CoaT thinking-level sampling and T-DPO training process.

3 METHODOLOGY

In this section, we first introduce the multi-turn thinking process formulation (§ 3.1) and explain our method. As shown in Figure 1, our method starts with instruction evolution strategy (§ 3.2) to enhance output diversity in warm-up SFT stage. Then, a CoaT-tree through iterative sampling (§ 3.3) is employed for each action. Every leaf node represents a complete action and is scored using a rule-based reward function. We then backpropagate the rewards along the tree to assign credit to intermediate reasoning steps. This process yields thinking-level contrastive pairs for DPO, which further improves the model’s reasoning ability. The detailed process is presented in Algorithm 1.

3.1 MULTI-TURN THINKING PROCESS FORMULATION

Each mobile GUI task contains a trajectory \mathcal{T} , several pages u , actions \hat{a} , and an instruction I , which can be represented as:

$$\mathcal{T} = \{I, u_0, \hat{a}_0, u_1, \hat{a}_1, \dots, u_n, \hat{a}_n\} \quad (1)$$

We formulate action \hat{a}_i in the CoaT reasoning process as a multi-turn dialogue $\hat{a}_i = [s_1, s_2, s_3, s_4]$, where s_i represents description, action-thought, action-decision, and grounding, respectively. This thinking paradigm based on the thinking–decision–grounding triplet, has been widely validated as effective in previous GUI works (Shen et al., 2024; Zhang et al., 2024b; Qin et al., 2025; Cheng et al., 2024). So the reasoning process can be formulated as:

$$s_1 = \text{Description}(P_1, u_i) \quad (2)$$

$$s_2 = \text{Thought}(P_2, u_i, I, \hat{a}_0, \dots, \hat{a}_{i-1}, s_1) \quad (3)$$

P represents each round of dialogue input prompt, I is the task instruction, u is the current GUI, and \hat{a}_i is the step i history action. Agents perform poorly when decoding the entire reasoning process in a single step, which is because image modal u dominates the input tokens, surpassing textual instructions I and action history \hat{a}_i , and diverting their attention away from the textual details. During autoregressive training, the agent is unaware that producing a final answer conforming to the required format is indispensable throughout the reasoning process. Multi-turn thinking process effectively mitigates this problem, because additional dialogue steps guarantee a final answer is generated:

$$s_3 = \text{Action}(P_3, u_i, I, s_1, s_2) \quad (4)$$

$$s_4 = \text{Grounding}(P_4, u_i, I, s_1, s_2, s_3) \quad (5)$$

Previous work either performed RL in GUI-Agent directly on the trajectory without CoaT, missing the detailed thinking process of each action, or forced the model to bear the heavy burden of outputting the entire reasoning process at once. In our method, when the reasoning process ends, the final s_4 is recorded as \hat{a}_{n+1} , step i moves one step forward on the trajectory \mathcal{T} and its thinking step reward is calculated recursively based on final step s_4 . Dialogue-level textual input helps balance cross-modal token proportions and steers the agent’s attention toward the current reasoning step.

3.2 INSTRUCTION EVOLUTION

As discussed in the previous section, the CoaT patterns in the mobile agent domain are typically fixed. As a result, agents tend to overfit these static paradigms and struggle to generate diverse reasoning paths after the warm-up SFT training (as detailed in Sec 4.4). To address this issue, we enhance the original training trajectories, denoted as \mathcal{T} , by appending additional Q&A annotations to UI screenshots through an instruction evolution process, thereby creating a new dataset \mathcal{Q} with a broader range of instruction formats. Specifically, as shown in Figure 2, the evolution process consists of three levels:

Level I: General GUI Q&A tasks. Grounding, Reference (Ref), and Page Descriptions are aimed at enhancing the agent’s foundational capabilities. These tasks (Liu et al., 2024; Yang et al., 2024) are proven to be the core capabilities of GUI agents during the pre-training.

Level II: Widget caption and relationships. Descriptions of widget functions and the nested partition relationships between widgets. These tasks help agents understand the relationships between widgets, as previous work (Deng et al., 2024) has found that agents tend to click on the textview, even in scenarios where the textview and the button are separate.

Level III: GUI advanced FAQ. Inspired by Shen et al. (2024), we design an advanced FAQ that features more complex Q&A, including descriptions of the page’s structural framework as well as expectations and predictions about navigation outcomes triggered by control interactions.

Warm-up Supervised Fine-tuning: To develop agents with standard thinking format and expand the reasoning space, we mix \mathcal{T} and the instruction evolution data \mathcal{Q} , then perform warm-up SFT on $\mathcal{D} = \{\mathcal{T}, \mathcal{Q}\} = \{(u, e^{(i)})\}_{i=1}^{|\mathcal{D}|}$, where u represents the prior knowledge (instructions, screenshot and action history) from \mathcal{T} or the questions from \mathcal{Q} , and e is the reasoning process from \mathcal{T} or the answer from \mathcal{Q} which is organized into multi-turn dialogues. To ensure output diversity, we select an earlier checkpoint with better potential correct space and diverse output to serve as the seed policy model. More details can be seen in Appendix B.

3.3 ITERATIVE PREFERENCE LEARNING

After the warm-up SFT, the agent acquires basic GUI capabilities. We construct a CoaT-tree by iteratively sampling each reasoning step and then assign a score to the leaf nodes based on a rule-based reward function. Using these scores, we generate thinking-level DPO pairs to optimize the agent’s reasoning process.

Iterative Sampling & Rule-based Reward. We iteratively sample each reasoning step along the CoaT paradigm (Zhang et al., 2024b). The \mathcal{K} sampling results $(\hat{s}_t | \hat{s}_{1:t-1})^{\mathcal{K}}$ at step t can be expressed

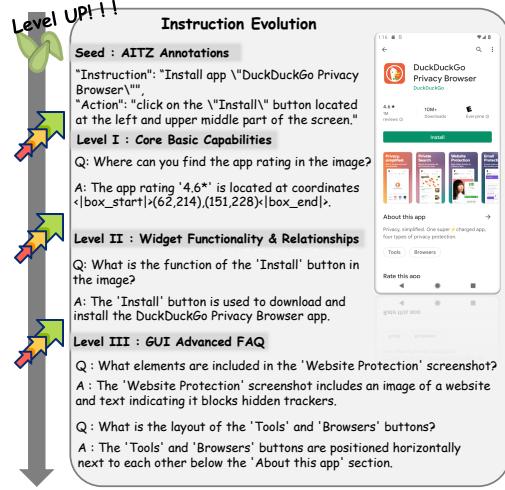


Figure 2: We process a three-stage instruction evolution and knowledge augmentation, enabling the agent to produce more diverse outputs for corresponding tasks while effectively mitigating overfitting.

216 as:

217
218
219
$$\hat{s}_t = \left\{ (\hat{s}_t^{(k)} \mid \hat{s}_0, \dots, \hat{s}_{t-1}) \right\}_{k=1}^K \quad (6)$$

220
Naturally, the final step in CoaT (the leaf node in the sampling tree) expresses a reward compared

221
with the ground truth action a^* , which is then propagated back to other intra-nodes. The formula for

222
the rule-based reward of leaf nodes is as follows:

223
224
225
$$v(s_t) = \begin{cases} 1, & s_t = a^* \\ v_{type} + score_{match}, & type(s_t \sim a^*) \\ 0, & others \end{cases} \quad (7)$$

226
227

228
229
230
$$score_{match} = \begin{cases} v_{format} + 1 \cdot (1 - d(x, y)) - (v_{type} + v_{format}) \cdot d(x, y), & type(a^*) = CLICK \\ v_{format} + (1 - v_{type} - v_{format}) \cdot F_1, & type(a^*) = INPUT \\ 0, & others \end{cases} \quad (8)$$

231
232

The reward score $v(s_t)$ ranges from 0 to 1, with a fully correct prediction receiving a score of 1. We use v_{type} and v_{format} to indicate whether the predicted action type and output format match the ground truth. For click and input actions, we further evaluate their internal structure using smooth rewards based on spatial distance $d(x, y)$ and text match F_1 . The final reward is computed from the similarity between the prediction and the ground truth:

- **Click:** A distance-based score between the predicted and ground-truth coordinates, normalized to $[0, 1]$; smaller distances yield higher scores.
- **Input:** The F_1 score between the predicted and ground-truth strings; greater textual overlap yields higher scores.

The full reward is defined in Equation 7 and discussed further in Section C.

Based on the structure of the CoaT-tree, we recursively compute the value of each intermediate reasoning step. Specifically, the value of s_{t-1} is computed as the average value of its \mathcal{K} sampled continuations at s_t :

247
248
249
$$v(s_{t-1}) = c \cdot \frac{1}{\mathcal{K}} \sum_{k=1}^{\mathcal{K}} v(s_t^{(k)}) \quad (9)$$

250
251

Here, \mathcal{K} denotes the number of sampled continuations for each reasoning step, and c is a discount factor. The parameter searching experiment for \mathcal{K} is described in detail in Section 4.4.

Contrastive Data Filter. After obtaining the sampling tree and node values, we evaluate the quality of the trees and extract contrastive data. We can divided the sampling trees into three categories $\mathcal{R} = \{\alpha, \beta, \gamma\}$ based on their output quality, and the classification standards of α, β, γ are as follows:

256
257
258
$$\alpha = \frac{|\{\mathcal{S}^{(i)} \mid \forall v_k \in \mathcal{S}^{(i)}, v_k = 1\}|}{\sum_{i=1}^{|\mathcal{T}|} |(u, e)^{(i)}|} \quad (10)$$

259
260

261
262
$$\beta = \frac{|\{\mathcal{S}^{(i)} \mid \exists v_k, v_{k'} \in \mathcal{S}^{(i)}, v_k = 1, v_{k'} \neq 1\}|}{\sum_{i=1}^{|\mathcal{T}|} |(u, e)^{(i)}|} \quad (11)$$

263
264

265
$$\gamma = \frac{|\{\mathcal{S}^{(i)} \mid \forall v_k \in \mathcal{S}^{(i)}, v_k \neq 1\}|}{\sum_{i=1}^{|\mathcal{T}|} |(u, e)^{(i)}|} \quad (12)$$

$\mathcal{S}^{(i)}$ and v_k refer to the instruction i sampling tree and the k -th leaf nodes value of \mathcal{K} sampled output. α is considered a perfect sampling tree, which can stably output correct thoughts and actions with in-domain trajectories, β represents potential correct trees that can be used to construct contrastive data, and γ denotes sampling trees that require refinement. $\beta + \gamma$ is considered a valid sampling space. In β , actions with a value of 1 and as many diverse action types as possible are extracted

5

as positive samples. In γ , the final ground truth action a^* is used as a positive sample, but the intermediate steps of CoAT are not provided, and the pairs can be represented as:

$$\begin{aligned} \beta_{pairs} = & \langle \hat{s}_t^{(k)} \uparrow, \hat{s}_t^{(k')} \downarrow | (\hat{s}_1, \dots, \hat{s}_{t-1}), \\ & v(\hat{s}_t^{(k)}) - v(\hat{s}_t^{(k')}) > 1/\mathcal{K} \end{aligned} \quad (13)$$

$$\gamma_{pairs} = \langle a^* \uparrow, \hat{s}_t^{(k)} \downarrow | \hat{s}_1, \dots, \hat{s}_{t-1} \rangle \quad (14)$$

Thinking-level Direct Preference Optimizing. After CoaT thinking-level Iterative Sampling, several positive and negative example pairs are collected. During this stage, the agent policy undergoes updates through the above data-pairs, SFT loss, and CoaT-DPO loss (Rafailov et al., 2023). Suppose the agent gets values to pair $\langle +, - \rangle$ at CoaT step t , which are named s_t^+ and s_t^- ; we have the agent performing a comparison for these pairs based on the same thoughts $s_{1:t-1}$, which can be calculated as:

$$\mathcal{L}_{\text{T-DPO}} = -\mathbb{E}_{(s_{1:t-1}, s_t^-, s_t^+) \sim \mathcal{T}_s} \left[\log \sigma(\beta \log \frac{\pi_\theta(s_t^+ | s_{1:t-1})}{\pi_{ref}(s_t^+ | s_{1:t-1})} - \beta \log \frac{\pi_\theta(s_t^- | s_{1:t-1})}{\pi_{ref}(s_t^- | s_{1:t-1})}) \right], \quad (15)$$

To further refine the agent's performance post-optimization, we employ the updated agent as the new base agent to continue collecting contrastive CoaT-action level pairs for additional T-DPO training. This iterative process is maintained until the agent reaches the performance bottleneck.

Algorithm 1: Iterative CoaT thinking-level sampling and DPO self-training.

Input: base VLM π , advanced annotated model R_{SoTA} , step-level trajectory data \mathcal{T} , instruction evolution Q&A set \mathcal{Q} , number of sampling \mathcal{K} , golden action a^* , value function v , the sampled CoAT data D , number of iterations \mathcal{N}

```

1: for  $i = 1$  to  $N_0$  do
2:    $\mathcal{Q}^* \leftarrow \text{instruction\_evolution}(R_{\text{SoTA}}, \mathcal{T})$  // instruction evolution by GPT-4o
3:    $\mathcal{Q} \leftarrow \text{human\_evaluation}(h, \mathcal{Q}^*)$  // human filter
4: end for
5:  $\pi_{S_0} \leftarrow \text{Warm-up\_SFT}(\pi, \mathcal{T}, \mathcal{Q})$  // fine-tune seed model
6: for  $n = 1$  to  $\mathcal{N}$  do
7:   for  $i = 1$  to  $|\mathcal{T}|$  do
8:      $D_i \leftarrow \text{generate\_sampling\_thought}(\pi_{S_{n-1}}, \mathcal{T}_i, \mathcal{K})$  // CoaT Sampling
9:      $V_i^{\text{leaf}} \leftarrow v(D_i, a_i^*)$  // match and calculate leaf values using Eq(7)
10:     $V_i^{\text{intra}} \leftarrow \text{recursive\_calculate}(D_i, V_i^{\text{leaf}})$  // recursive intra node values using Eq(9)
11:     $D_i^+, D_i^- \leftarrow \text{contrastive\_data\_filter}(D_i, V_i)$  // filter positive and negative data using
        Eq(13, 14)
12: end for
13:  $\pi_{S_n} \leftarrow \text{DPO}(\pi_{S_{n-1}}, D^+, D^-)$  // DPO self-training reference model
14: end for
Output:  $\pi_S, D_G, \mathcal{Q}$ 

```

4 EXPERIMENTS

4.1 EXPERIMENTS SETUPS

Dataset. AITZ (Zhang et al., 2024b) is a high-quality trajectory set filtered and re-annotated from AITW (Rawles et al., 2023), containing four subsets, which also includes five types of actions. **AMEX** (Chai et al., 2024) uses the same apps and action space as AITZ, but its task instructions are more complex and detailed, with an average trajectory length of 15+. **AndroidControl** (Li et al., 2024a) includes OOD datasets, such as app unseen and task unseen.

Metrics. For evaluation, we use **Step.Acc** as metrics, consistent with Auto-GUI(Zhang & Zhang, 2023), measures the agent’s performance and uses **Action Type** to assess the degree of action type matching. This metric effectively evaluates the model’s planning ability.

324 **Table 1: Main results of AITZ dataset.** ZS, FT, PF, and IPL are short for zero-shot, fine-tuning,
 325 specific domain pre-training, and iterative preference learning, respectively. ‘-’ represents that the
 326 agent or evaluation prompt is not open-sourced. Seed means the seed model for sampling and T-DPO
 327 training. R_i refers to the number of iterations during training.

Model	Mode	Atomic									
		SCROLL		CLICK		TYPE		PRESS	STOP	Total	
		type	match	type	match	type	match	type	match	type	match
CogAgent (CoaT)	ZS	<u>70.22</u>	88.23	66.15	45.80	21.80	45.95	24.60	72.59	53.28	
AUTO-GUI (CoaT)	FT	61.40	74.56	32.20	87.20	81.40	57.70	74.40	<u>82.98</u>	47.69	
AriaUI-MoE	FT	53.73	85.51	60.20	84.20	80.80	63.70	76.38	78.53	63.56	
SeeClick-7B	PF	11.14	69.92	52.96	53.80	53.00	67.88	55.36	62.93	49.11	
UGround-7B	PF	58.22	80.94	58.48	82.56	73.85	58.22	68.78	74.54	60.19	
OS-Atlas-7B	PF	76.12	75.82	54.83	87.80	81.60	68.67	81.75	77.83	65.11	
UI-Tars-7B	PF	52.50	83.03	64.27	89.97	82.76	61.87	74.35	77.59	65.61	
Falcon-UI-7B	PF	-	-	-	-	-	-	-	84.70	69.10	
Qwen2-VL-7B (CoaT)	FT	47.50	81.53	59.72	81.96	73.85	58.22	67.39	74.26	60.36	
AITZ-Seed	FT	42.83	82.48	53.16	82.56	75.29	<u>56.65</u>	61.82	73.14	55.40	
MobileIPL	IPL	51.08	91.73	71.45	88.20	83.40	51.69	78.17	81.90	69.15	

342 **Table 2: Main results on AMEX.** Seed means the seed model for sampling.

Model	Training Data	Gmail	Booking	Music	SHEIN	News	CM	ToDo	Signal	Yelp	Overall
SeeClick-7B	AITW+External	28.2	29.4	18.1	20.0	30.0	53.1	30.7	37.1	27.4	30.44
SphAgent-7B	AITW	32.1	45.9	46.1	35.1	48.3	61.1	55.9	43.3	42.9	45.63
SphAgent-7B	AMEX	61.7	68.2	77.7	72.0	71.9	64.6	79.6	71.3	69.6	70.71
AriaUI-MoE	AMEX	63.1	62.3	68.5	58.9	83.0	54.7	62.5	83.3	66.9	64.10
UGround-7B	AMEX	70.9	68.8	72.7	63.7	77.7	67.7	63.7	80.1	67.6	69.12
SphAgent-7B	AITW + AMEX	62.4	68.1	76.3	71.9	68.6	67.3	77.6	66.0	64.1	69.14
OS-Atlas-7B	AMEX	61.1	73.5	77.9	61.6	75.2	66.4	71.0	75.9	72.0	70.33
UI-Tars-7B	AMEX	67.7	70.0	71.8	63.8	71.5	67.7	77.0	86.4	72.8	70.33
Qwen2-VL-7B	AMEX	58.0	70.1	76.6	63.8	79.4	66.8	67.8	80.2	76.6	69.01
	+ CoaT	75.9	68.1	77.7	66.2	76.8	66.4	77.5	79.6	65.6	70.93
MobileIPL-7B	AMEX (Seed)	57.0	60.2	68.8	63.1	75.0	50.2	65.6	77.7	62.6	62.19
	MobileIPL	77.3	<u>71.8</u>	80.0	68.4	85.3	71.3	73.5	82.1	71.8	74.29

356 **Baselines.** Following prior work(Wu et al., 2024)(Qin et al., 2025), we use Qwen2-VL-7B (Wang
 357 et al., 2024b) as the backbone of our model. We select CogAgent (Hong et al., 2024), AUTO-GUI,
 358 Shpgagent, OS-Atlas, UGround, UI-Tars and FedMobileAgent as baseline agents. GUI continuous
 359 pre-training agents can be further divided into two categories: (1) training the model as a GUI
 360 grounding agent, such as OS-Atlas-7B. (2) training the model as a general GUI agent, such as UI-Tars.
 361 More details are provided in Appendix D.

363 4.2 MAIN RESULT

366 **AITZ.** As shown in Table 1, MobileIPL achieves SoTA performance on most metrics. The reason
 367 for the lower PRESS Acc. is discussed in Section 4.4 and Appendix H. Multiple rounds of T-DPO
 368 improve MobileIPL by more than 10% (55.40% -> 69.15%) compared to the seed model MobileIPL
 369 and Qwen2-VL-7B (60.36% -> 69.15%). Compared to continuous pre-training agents such as Falcon-
 370 UI, which is pre-trained on three million GUIs, MobileIPL still surpasses a performance difference of
 371 0.05%. The amount of training data required by our method is substantially smaller than that used by
 372 these pre-training approaches.

373 **AMEX.** As shown in Table 2, MobileIPL surpasses the previous SOTA model, SphAgent-7B, by
 374 3.58%. It also outperforms the baseline model (Qwen2-vl+CoaT) by 3.36%. Additionally, MobileIPL
 375 surpasses OS-Atlas (+3.69%) and UI-Tars (+3.69%), both of which also use Qwen2-vl as the
 376 backbone. With the incorporation of CoaT patterns. In summary, these results confirm that MobileIPL
 377 delivers significant improvements over existing models in long trajectory scenarios.

378
379
380
Table 3: High-level instruction experiment re-
sults on **AndroidControl**.

Mode	Model	Grounding	Step.Acc
FT	Aria-UI-7B	43.2	10.2
	InternVL-2-4B	72.7	66.7
	Qwen2-VL-7B (SFT)	68.5	69.1
PF	OS-Atlas-7B	78.5	71.2
	Falcon-UI-7B	-	72.7
	UI-Tars-7B	80.5	72.5
RL	Qwen2-VL-7B(GRPO)	70.7	69.8
Ours	MobileIPL	77.0	72.7

381
382
383
384
385
386
387
388
389
390
Table 4: High-level instruction results on **An-
droidControl in-domain** and **OOD** subsets.

Mode	Model	IDD	app-UN	task-UN
FT	PaLM 2S(full)	65.5	58.7	59.7
	PaLM 2S(LoRA)	70.8	58.5	59.6
	Qwen2-VL-7B(SFT)	69.1	61.4	64.1
PF	FedMobileAgent	54.7	52.3	51.2
	SphAgent-7B	69.4	57.1	62.9
	OS-Atlas-7B	71.2	60.7	66.2
RL	Qwen2-VL-7B(GRPO)	70.2	68.1	69.7
IPL	MobileIPL-7B	73.6	70.0	72.2

AndroidControl. As shown in Table 3, MobileIPL achieves SOTA performance in Step.Acc (72.7%), reaching the SOTA model Falcon-UI with fewer data. MobileIPL also outperforms continual pre-training agents in the GUI domain, such as OS-Atlas (+1.5%) and UI-Tars (+0.2%). Compared to the baseline model Qwen2-VL(SFT), MobileIPL not only improves Mobile Agent performance but also enhances grounding by 8.5%. As shown in Table 4, MobileIPL continues to achieve SOTA performance in unseen OOD settings, demonstrating strong generalization. In contrast, compared to performance in the IDD domain, the pre-trained model OS-Atlas shows a significant drop. MobileIPL exhibits less performance degradation in out-of-domain settings. We also ran GRPO with Qwen2-VL under the same computational resources, and found OOD performance similar to MobileIPL, because both are self-training. However, MobileIPL still outperforms GRPO in all subsets.

401
402
4.3 ABLATION STUDY

403 To test the effectiveness of IPL and instruction evolution, we conducted ablation experiments. First,
404 removing IPL and using only SFT caused performance to drop from 65.4% to 60.4%, compared to
405 the first round of MobileIPL, highlighting the crucial role that IPL plays. Next, removing instruction
406 evolution led to a 2.5% drop in IPL performance in the first round. This occurs because, without
407 evolution, the model generates fewer training samples (156,418 \rightarrow 113,239). And as shown in
408 Figure 3 (a), without instruction evolution, the diversity of model outputs decreased, causing a drop
409 in IPL performance. This further confirms that instruction evolution is crucial for improving IPL.

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Table 5: Ablation study results on AITZ.

Model	Scroll	Click	Type	Press	Total
MobileIPL-R1	45.8	71.1	81.2	23.5	65.4
- IPL	46.9	59.4	78.6	55.4	60.4 (-5.0)
- Evo (R1)	44.8	67.7	78.8	24.0	62.9 (-2.5)
- IPL Negative (R1)	46.9	61.1	74.2	56.6	61.4 (-4.0)
- IPL + Naive DPO (R1)	47.5	59.7	73.8	58.2	60.3 (-5.1)
- 1/2 training data (R1)	42.9	68.3	79.0	43.8	64.8 (-0.6)
- 4/5 training data (R2)	30.8	67.1	77.6	33.2	60.6 (-4.8)

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1350
1351
1352
1353
1354
1355

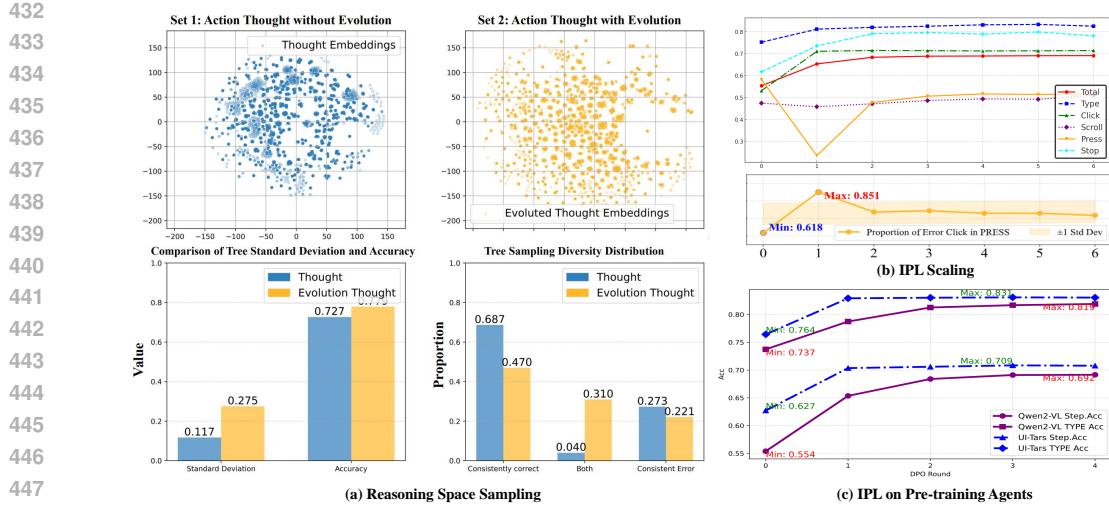


Figure 3: (a) Reasoning diversity before and after instruction evolution (left top) and the distribution of standard deviation and accuracy (left bottom). (b) Step.Acc changes for action types in AITZ across IPL iterations (right top). (c) The performance of UI-Tars-7B and Qwen2-VL-7B on AITZ as the seed model with 4-round IPL training (right bottom).

in Figure 3 (a), the thoughts after instruction evolution exhibit a broader space than direct SFT. Additionally, the embedding standard deviation within each tree increases significantly compared to the original data (+ 0.158). The diversified outputs do not negatively impact the agent’s reasoning process, while the proportion of action sampling that includes the correct answer improves from 72.7% to 77.9%. The bottom-right subplot reflects the distribution of output accuracy. **Consistently Correct** indicates that all samples for the current step match the golden answer, while **Consistently Error** is the opposite. **Both** represents cases where some samples are correct while others are incorrect, which serves as an ideal source for constructing T-DPO pairs. Compared to 47% on the evolved data, the agent achieves 68.7% convergence on the original data but exhibits a strong polarization(4%). Three-stage instruction evolution significantly expands the sampling space (from 4% to 31%), proving that it simultaneously improves both the diversity and quality of reasoning. More details are in Appendix F.

Parameters Searching. We conducted an ablation study on the impact of the sampling number (K) per stage and iterative round number (R). As shown in the table 6, increasing the number of samples generally leads to better model performance. However, since our framework adopts a tree structure, increasing the sampling number from 3 to 4 causes the minimum number of tree nodes to grow significantly from $3^3 = 27$ to $4^3 = 64$. Despite this sharp increase, the performance improvement is limited (less than 1%). Therefore, we adopt a sampling number of 3 for the final experiments. Regarding the number of rounds, we observe that both IPL performance and the size of the self-training dataset converge after several iterations. We therefore select the convergence round as our default setting. Additional details on computational cost are provided in Appendix G.

IPL Scaling. Although overall Step.Acc increases across IPL iterations, not all action types follow this trend. As shown in Figure 3(b), from the seed model to the first IPL round, PRESS accuracy drops sharply (58.22% \rightarrow 23.49%), whereas CLICK rises (53.26% \rightarrow 71.12%). In the second round, however, PRESS accuracy rebounds. This stems from the severe underrepresentation of PRESS actions early on: the proportion of PRESS samples in the preference data grows from 1.6% (1 round)

Table 6: **Parameters Searching** on AITZ for the first round. K is the sampling number and R is the round of T-DPO learning.

Parameter	TYPE	CLICK	SCROLL	PRESS	STOP	Total
$K = 2$	79.2	68.9	35.1	38.3	76.1	64.0
$K = 3$	81.2	71.1	45.8	23.4	73.5	65.3 (+1.3)
$K = 4$	81.2	70.4	51.2	35.5	66.8	65.9 (+0.6)
$R = 0$	75.7	53.3	43.7	58.2	63.2	57.5
$R = 1$	77.5	71.1	43.3	23.5	67.0	61.2 (+3.7)
$R = 2$	80.5	71.1	47.0	31.1	67.6	64.1 (+2.9)
$R = 3$	82.0	71.5	47.2	47.8	79.1	68.4 (+4.3)
$R = 4$	82.6	71.5	51.1	51.7	78.2	69.2 (+0.8)

486 to 10.9% (2 round) as training progresses. With greater reasoning diversity and more PRESS-related
 487 examples, the model gradually learns PRESS behaviors and recovers accuracy in later rounds.
 488

489 **Iterative Preference Learning On GUI Continuous Pre-training Agent.** As discussed in the
 490 previous experimental analysis, continuous pre-training in the GUI domain provides the agents with
 491 a stronger base model. However, we still need to explore the compatibility between post-training
 492 IPL, instruction evolution, and pre-training. As shown in Figure 3 (c), UI-Tars outperforms Qwen2-
 493 VL-7B in all training stages, demonstrating better performance during the instruction evolution
 494 phase ($62.7\% > 55.4\%$). After four rounds of IPL, UI-Tars Step.Acc improves by 1.4% compared
 495 to MobileIPL ($69.2\% \rightarrow 70.6\%$). More importantly, UI-Tars nearly converges after the first round
 496 of IPL, significantly reducing the number of sampling and preference learning iterations, thereby
 497 keeping the computational cost of post-training within an acceptable range.
 498

5 CONCLUSION

500 In this paper, we propose Mobile Iterative Preference Learning (**MobileIPL**), a self-training GUI
 501 agent framework that incorporates instruction evolution, iterative sampling in the CoaT-tree, and a
 502 rule-based reward. We extensively evaluate MobileIPL on the AITZ, AMEX, and AndroidControl
 503 benchmarks, demonstrating its effectiveness. Furthermore, MobileIPL exhibits strong generalization
 504 capabilities on the OOD subsets of AndroidControl. Experiments show that instruction evolution
 505 increases output diversity, generates more training data in IPL, and thereby improves IPL performance.
 506 Finally, Continuous Pre-training experiments confirm the mutual reinforcement between MobileIPL
 507 and pre-training, leading to enhanced performance.
 508

510 6 ETHICS STATEMENT

511 We have rigorously refined our dataset to remove any elements that could compromise personal
 512 privacy, thereby guaranteeing the highest level of protection for individual data. Instruction evolution
 513 was completed by AI SoTA close-sourced VLM, to whom we paid the necessary compensation to
 514 ensure that the training data was not leaked. The human evaluation of our work was carried out
 515 through a meticulously randomized selection of IT professionals. This process ensured a gender-
 516 balanced and educationally diverse panel, reflecting a wide spectrum of perspectives and expertise.
 517

518 7 REPRODUCIBILITY STATEMENT

520 All models and datasets used in this paper are open-source. The full experimental setup is detailed in
 521 Appendix D. Unless noted, all experiments use the same settings. We describe compute resources in
 522 Appendix G. Overall, these practices make our results reproducible.
 523

524 REFERENCES

526 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 527 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
 528 *ArXiv preprint*, abs/2303.08774, 2023. URL <https://arxiv.org/abs/2303.08774>.
 529

530 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Rémi Munos, Mark Rowland, Michal
 531 Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
 532 human preferences. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li (eds.), *International
 533 Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia,
 534 Spain*, volume 238 of *Proceedings of Machine Learning Research*, pp. 4447–4455. PMLR, 2024.
 535 URL <https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html>.
 536

537 Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir Zubach, Hassan Mansoor, Vincent Etter,
 538 Victor Carbune, Jason Lin, Jindong Chen, and Abhanshu Sharma. Screenai: A vision-language
 539 model for UI and infographics understanding. In *Proceedings of the Thirty-Third International
 Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9, 2024*, pp.
 3058–3068. ijcai.org, 2024. URL <https://www.ijcai.org/proceedings/2024/339>.
 540

540 Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
 541 Training in-the-wild device-control agents with autonomous reinforcement learning. In Amir
 542 Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and
 543 Cheng Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference
 544 on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, De-
 545 cember 10 - 15, 2024, 2024*. URL http://papers.nips.cc/paper_files/paper/2024/hash/1704ddd0bb89f159dfe609b32c889995-Abstract-Conference.html.

546

547 Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Peng Gao, Shuai
 548 Ren, and Hongsheng Li. AMEX: Android multi-annotation expo dataset for mobile gui agents.
 549 *ArXiv preprint*, abs/2407.17490, 2024. URL <https://arxiv.org/abs/2407.17490>.

550

551 Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
 552 ong Wu. SeeClick: Harnessing gui grounding for advanced visual gui agents. *ArXiv preprint*,
 553 abs/2401.10935, 2024. URL <https://arxiv.org/abs/2401.10935>.

554 Shihang Deng, Weikai Xu, Hongda Sun, Wei Liu, Tao Tan, Jianfeng Liu, Ang Li, Jian Luan, Bin Wang,
 555 Rui Yan, et al. Mobile-Bench: An evaluation benchmark for llm-based mobile agents. *ArXiv
 556 preprint*, abs/2407.00993, 2024. URL <https://arxiv.org/abs/2407.00993>.

557

558 Tinghe Ding. MobileAgent: enhancing mobile control via human-machine interaction and sop
 559 integration. *ArXiv preprint*, abs/2401.04124, 2024. URL <https://arxiv.org/abs/2401.04124>.

560

561 Nicolai Dorka, Janusz Marecki, and Ammar Anwar. Training a vision language model as smartphone
 562 assistant. *ArXiv preprint*, abs/2404.08755, 2024. URL <https://arxiv.org/abs/2404.08755>.

563

564 Kawin Ethayarajh, Winnie Xu, Dan Jurafsky, and Douwe Kiela. Human-centered loss functions
 (halos). Technical report, Technical report, Contextual AI, 2023.

565

566 Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
 567 Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents.
 568 *ArXiv preprint*, abs/2410.05243, 2024. URL <https://arxiv.org/abs/2410.05243>.

569

570 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 571 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 572 via reinforcement learning. *ArXiv preprint*, abs/2501.12948, 2025a. URL <https://arxiv.org/abs/2501.12948>.

573

574 Yiran Guo, Lijie Xu, Jie Liu, Dan Ye, and Shuang Qiu. Segment policy optimization: Effective
 575 segment-level credit assignment in rl for large language models. *arXiv preprint arXiv:2505.23564*,
 576 2025b.

577

578 Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
 579 Wang, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A visual language model for GUI agents.
 580 In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA,
 581 USA, June 16-22, 2024*, pp. 14281–14290. IEEE, 2024. doi: 10.1109/CVPR52733.2024.01354.
 582 URL <https://doi.org/10.1109/CVPR52733.2024.01354>.

583

584 Zhenyu Hou, Ziniu Hu, Yujiang Li, Rui Lu, Jie Tang, and Yuxiao Dong. Treerl: Llm reinforce-
 585 ment learning with on-policy tree search. *arXiv preprint arXiv:2506.11902*, 2025.

586

587 Kechen Jiao, Zhirui Fang, Jiahao Liu, Bei Li, Qifan Wang, Xinyu Liu, Junhao Ruan, Zhongjian
 588 Qiao, Yifan Zhu, Yixin Xu, et al. Tcpo: Thought-centric preference optimization for effective
 589 embodied decision-making. In *Proceedings of the 2025 Conference on Empirical Methods in
 590 Natural Language Processing*, pp. 9585–9599, 2025.

591

592 Wei Li, William E. Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyama-
 593 gundlu, and Oriana Riva. On the effects of data scale on UI control agents. In Amir Globersons,
 594 Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
 595 Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference
 596 on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-
 597 ber 10 - 15, 2024, 2024a*. URL http://papers.nips.cc/paper_files/paper/2024/hash/a79f3ef3b445fd4659f44648f7ea8ffd-Abstract-Datasets_and_Benchmarks_Track.html.

594 Wei Li, William E. Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyama-
 595 gundlu, and Oriana Riva. On the effects of data scale on UI control agents. In Amir Globersons,
 596 Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
 597 Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on*
 598 *Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December*
 599 *10 - 15, 2024, 2024b*. URL http://papers.nips.cc/paper_files/paper/2024/hash/a79f3ef3b445fd4659f44648f7ea8ffd-Abstract-Datasets_and_Benchmarks_Track.html.

600

601 Yanda Li, Chi Zhang, Wanqi Yang, Bin Fu, Pei Cheng, Xin Chen, Ling Chen, and Yunchao Wei.
 602 AppAgent-V2: Advanced agent for flexible mobile interactions. *ArXiv preprint*, abs/2408.11824,
 603 2024c. URL <https://arxiv.org/abs/2408.11824>.

604

605 Yizhi Li, Qingshui Gu, Zhoufutu Wen, Ziniu Li, Tianshun Xing, Shuyue Guo, Tianyu Zheng, Xin
 606 Zhou, Xingwei Qu, Wangchunshu Zhou, et al. Treepo: Bridging the gap of policy optimiza-
 607 tion and efficacy and inference efficiency with heuristic tree-based modeling. *arXiv preprint*
 608 *arXiv:2508.17445*, 2025.

609

610 Xiao Liu, Bo Qin, Dongzhu Liang, Guang Dong, Hanyu Lai, Hanchen Zhang, Hanlin Zhao, Iat Long
 611 Iong, Jiadai Sun, Jiaqi Wang, et al. AutoGLM: Autonomous foundation agents for guis. *ArXiv*
 612 *preprint*, abs/2411.00820, 2024. URL <https://arxiv.org/abs/2411.00820>.

613

614 Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
 615 Kaipeng Zhang, Yu Qiao, and Ping Luo. GUI Odyssey: A comprehensive dataset for cross-
 616 app gui navigation on mobile devices. *ArXiv preprint*, abs/2406.08451, 2024. URL <https://arxiv.org/abs/2406.08451>.

617

618 Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. ReFT:
 619 Reasoning with reinforced fine-tuning. *ArXiv preprint*, abs/2401.08967, 2024. URL <https://arxiv.org/abs/2401.08967>.

620

621 Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang, and
 622 Qi Wang. Screenagent: A vision language model-driven computer control agent. In *Proceedings*
 623 *of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju,*
 624 *South Korea, August 3-9, 2024*, pp. 6433–6441. ijcai.org, 2024. URL <https://www.ijcai.org/proceedings/2024/711>.

625

626 Songqin Nong, Jiali Zhu, Rui Wu, Jiongchao Jin, Shuo Shan, Xiutian Huang, and Wenhao Xu.
 627 MobileFlow: A multimodal llm for mobile gui agent. *ArXiv preprint*, abs/2407.04346, 2024. URL
 628 <https://arxiv.org/abs/2407.04346>.

629

630 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
 631 Li, Yunxin Li, Shijue Huang, et al. UI-TARS: Pioneering automated gui interaction with native
 632 agents. *ArXiv preprint*, abs/2501.12326, 2025. URL <https://arxiv.org/abs/2501.12326>.

633

634 Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian Lei,
 635 Lijuan Wang, and Mike Zheng Shou. ShowUI: One vision-language-action model for gui visual
 636 agent. *arXiv e-prints*, pp. arXiv–2411, 2024.

637

638 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea
 639 Finn. Direct preference optimization: Your language model is secretly a reward model. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 640 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural*
 641 *Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December*
 642 *10 - 16, 2023, 2023*. URL http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.

643

644 Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy P. Lillicrap. And-
 645 roidinthewild: A large-scale dataset for android device control. In Alice Oh, Tristan
 646 Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in*
 647 *Neural Information Processing Systems 36: Annual Conference on Neural Information Processing*
 648 *Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023*. URL
 649 http://papers.nips.cc/paper_files/paper/2023/hash/bbbb6308b402fe909c39dd29950c32e0-Abstract-Datasets_and_Benchmarks.html.

648 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 649 optimization algorithms. *ArXiv preprint*, abs/1707.06347, 2017. URL <https://arxiv.org/abs/1707.06347>.
 650

651 Huawen Shen, Chang Liu, Gengluo Li, Xinlong Wang, Yu Zhou, Can Ma, and Xiangyang Ji. Falcon-
 652 UI: Understanding gui before following user instructions. *ArXiv preprint*, abs/2412.09362, 2024.
 653 URL <https://arxiv.org/abs/2412.09362>.
 654

655 Q Team. Qwen2. 5-vl, january 2025. URL <https://qwenlm.github.io/blog/qwen2>.
 656

657 Bryan Wang, Gang Li, and Yang Li. Enabling conversational interaction with mobile UI using
 658 large language models. In Albrecht Schmidt, Kaisa Väänänen, Tesh Goyal, Per Ola Kristensson,
 659 Anicia Peters, Stefanie Mueller, Julie R. Williamson, and Max L. Wilson (eds.), *Proceedings
 660 of the 2023 CHI Conference on Human Factors in Computing Systems, CHI 2023, Hamburg,
 661 Germany, April 23-28, 2023*, pp. 432:1–432:17. ACM, 2023. doi: 10.1145/3544548.3580895.
 662 URL <https://doi.org/10.1145/3544548.3580895>.
 663

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei
 664 Huang, and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effec-
 665 tive navigation via multi-agent collaboration. In Amir Globersons, Lester Mackey, Danielle
 666 Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Ad-
 667 vances in Neural Information Processing Systems 38: Annual Conference on Neural In-
 668 formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December
 669 10 - 15, 2024*, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/0520537ba799d375b8ff5523295c337a-Abstract-Conference.html.
 670

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 671 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 672 world at any resolution. *ArXiv preprint*, abs/2409.12191, 2024b. URL <https://arxiv.org/abs/2409.12191>.
 673

Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye Hao, Jun Wang, and Kun Shao. DistRL: An asyn-
 674 chronous distributed reinforcement learning framework for on-device control agents. *ArXiv
 675 preprint*, abs/2410.14803, 2024c. URL <https://arxiv.org/abs/2410.14803>.
 676

Wenhao Wang, Zijie Yu, William Liu, Rui Ye, Tian Jin, Siheng Chen, and Yanfeng Wang. FedMo-
 677 bileAgent: Training mobile agents using decentralized self-sourced data from diverse users. *ArXiv
 678 preprint*, abs/2502.02982, 2025. URL <https://arxiv.org/abs/2502.02982>.
 679

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao
 680 Liu, Yaqin Zhang, and Yunxin Liu. Empowering llm to use smartphone for intelligent task
 681 automation. *ArXiv preprint*, abs/2308.15272, 2023. URL <https://arxiv.org/abs/2308.15272>.
 682

Qinzhuo Wu, Wei Liu, Jian Luan, and Bin Wang. ReachAgent: Enhancing mobile agent via page
 683 reaching and operation. *ArXiv preprint*, abs/2502.02955, 2025. URL <https://arxiv.org/abs/2502.02955>.
 684

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
 685 Ding, Liheng Chen, Paul Pu Liang, et al. Os-Atlas: A foundation action model for generalist gui
 686 agents. *ArXiv preprint*, abs/2410.23218, 2024. URL <https://arxiv.org/abs/2410.23218>.
 687

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P. Lillicrap, Kenji Kawaguchi, and
 688 Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. *ArXiv
 689 preprint*, abs/2405.00451, 2024. URL <https://arxiv.org/abs/2405.00451>.
 690

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
 691 and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. *ArXiv
 692 preprint*, abs/2412.04454, 2024. URL <https://arxiv.org/abs/2412.04454>.
 693

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-
 694 UI: Visual grounding for gui instructions. *ArXiv preprint*, abs/2412.16256, 2024. URL <https://arxiv.org/abs/2412.16256>.
 695

702 Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. AppAgent:
 703 Multimodal agents as smartphone users. *ArXiv preprint*, abs/2312.13771, 2023. URL <https://arxiv.org/abs/2312.13771>.
 704

705 Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei
 706 Yang, and Zhe Gan. Ferret-UI: Grounded mobile ui understanding with multimodal llms. *ArXiv*
 707 *preprint*, abs/2404.05719, 2024. URL <https://arxiv.org/abs/2404.05719>.
 708

709 Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-
 710 mcts*: LLM self-training via process reward guided tree search. In Amir Globersons, Lester
 711 Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
 712 (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neu-*
 713 *ral Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-*
 714 *ber 10 - 15, 2024*, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/76ec4dc30e9faaf0e4b6093eaa377218-Abstract-Conference.html.
 715

716 Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu
 717 Tang. Android in the Zoo: Chain-of-action-thought for gui agents. *ArXiv preprint*, abs/2403.02713,
 718 2024b. URL <https://arxiv.org/abs/2403.02713>.
 719

720 Li Zhang, Shihe Wang, Xianqing Jia, Zhihan Zheng, Yunhe Yan, Longxi Gao, Yuanchun Li, and
 721 Mengwei Xu. LlamaTouch: A faithful and scalable testbed for mobile ui task automation. *ArXiv*
 722 *preprint*, abs/2404.16054, 2024c. URL <https://arxiv.org/abs/2404.16054>.
 723

724 Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents.
 725 *ArXiv preprint*, abs/2309.11436, 2023. URL <https://arxiv.org/abs/2309.11436>.
 726

727 Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web agent,
 728 if grounded. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna,*
 729 *Austria, July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=piEcKJ2D1B>.
 730

731 A COAT THINKING PROCESS

732 The table 7 summarizes the CoT paradigms (inputs and outputs) used in prior related works. CoaT
 733 paradigm for fine-tuning agents: The effectiveness of the approach in AITZ stems from the inclusion
 734 of extra screen descriptions as part of the input, along with joint output of Screen Context, Action
 735 Think, Action Target, and Action Result. In contrast, our experiments show that a stage-wise
 736 multi-turn dialogue output leads to better performance. In this setup, the model focuses on a single
 737 sub-task at each stage, which not only improves clarity but also encourages a simplified and deliberate
 738 reasoning process. This insight aligns with UI-TARS, which only requires the model to generate
 739 a brief thought during inference. Small-scale agent framing: Even models with relatively small
 740 parameter sizes can benefit from task-decomposed downstream training. For instance, OS-ATLAS
 741 and Falcon-UI adopt a similar architecture using GPT-4o for textual description and OS-ATLAS-base
 742 as the grounding model. They fine-tune models separately on different downstream tasks, resulting
 743 in a collection of OS-ATLAS-pro models, each specialized for a specific sub-task. Large-scale
 744 prompting-based frameworks: Larger models typically adopt a multi-agent framework to support
 745 a CoT-style reasoning process. For example, AppAgent v2 and Mobile-Agent-v2 both utilize a
 746 plan-action-reflection architecture to complete tasks. In our work, we adopt a stage-wise CoaT
 747 multi-turn dialogue format, where the model focuses on one sub-task at a time. This design enables
 748 us to move away from the dependence on extra screen description inputs, as seen in AITZ, while
 749 leveraging the description + grounding structure proposed in OS-ATLAS to form the final structure
 750 of the MobileIPL CoaT paradigm.
 751

752 B SELECTION OF SEED POLICY MODEL

753 In our preliminary experimental exploration, we discovered that for the seed policy model, better
 754 performance in the SFT phase does not necessarily translate to a higher upper bound in the subsequent
 755 IPL phase. This is because as training progresses, the model’s output space becomes increasingly

756 Table 7: Comparison of methods and their corresponding CoT paradigms.
757

758 Method	759 Backbone	760 Input	761 Output (CoT Paradigm)
760 Android in the Zoo	761 One fine-tuned agent	762 Instruction + image + screen description	763 Screen Context → Action Think → Action Target → Action Result
761 UI-TARS	762 One fine-tuned agent	763 Instruction + image	764 Thought → Action
762 OS-ATLAS	763 One fine-tuned agent + one large agent	764 Instruction + image	765 Action Description + Action Model
763 Mobile-Agent-v2	764 Multi-agent + prompt engineering	765 Instruction + image	766 Stage 1: Plan → Stage 2: Action → Stage 3: Reflection
764 MobileIPL	765 One fine-tuned agent	766 Instruction + image	767 Stage 1: Description → Stage 2: Plan → Stage 3: Action → Stage 4: Grounding

766 aligned with the training data, reducing its diversity in sampling. Consequently, for incorrect instances, 767 the model tends to generate erroneous outputs regardless of the sampling attempts. To address this, we 768 propose a sampling-oriented selection method for the seed policy model, incorporating the following 769 two evaluation metrics:

770 **Sampling Accuracy** (Acc_S), which requires the model to hit more correct actions a in the sampled 771 output space \mathcal{S} .

$$772 Acc_S = \frac{\sum_{i=1}^{|\mathcal{T}|} \left| \{e_j^{(i)} \mid a^{(i)} \sim e_j^{(i)}, e_j^{(i)} \in \mathcal{S}^{(i)}\} \right|}{\sum_{i=1}^{|\mathcal{T}|} |\mathcal{S}^{(i)}|} \quad (16)$$

773 **Sampling Diversity** (Div_R), which requires the model to have a more diverse and extensive sampling 774 space. Standard deviation calculation of a single sampled tree $Dev_{\mathcal{S}^{(i)}}$:

$$775 Dev_{\mathcal{S}^{(i)}} = \frac{1}{T} \sum_{t=1}^T \text{StdDev} \left(\mathbf{E}(\hat{s}_t^{(k)}) \mid k = 1, \dots, \mathcal{K} \right) \quad (17)$$

776 Among them, $\mathbf{E}(\hat{s}_t^{(k)})$ represents the representation of the k th sample output of the t th step after the 777 encoder. Calculation of the standard deviation of the set Div_S :

$$778 Dev_R = \frac{1}{N} \sum_{i=1}^N Dev_{\mathcal{S}^{(i)}} \quad (18)$$

779 where N is the number of sampled trees in the set \mathcal{R} .

780 C RULE-BASED REWARD DESIGN

781 **Derivation Of The Value Function.** Our value function incorporates hyperparameters inspired 782 by ReFT and is also influenced by the sampling number used during IPL. We explain the rationale 783 behind key parameter choices in our method, especially those in Eq.(7), Eq.(13), and Eq.(14):

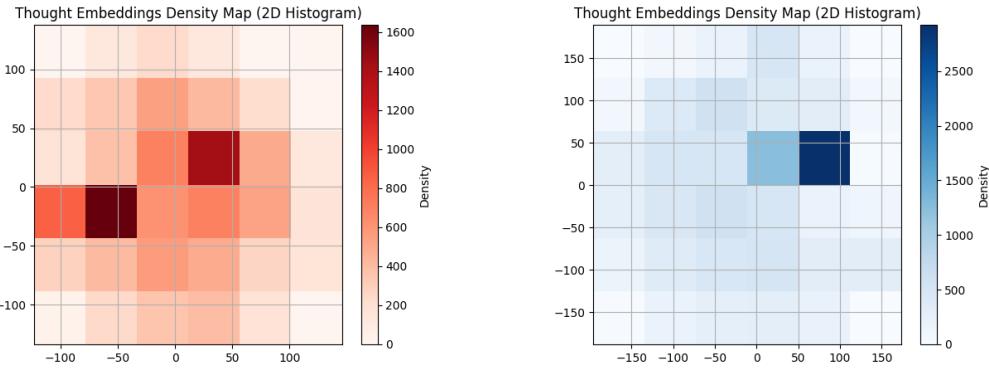
784 **Strong Reward:** We follow the ReFT (Luong et al., 2024) score to define strong reward signals, 785 assigning values of 1 and 0, corresponding to fully correct and completely incorrect reasoning paths, 786 respectively. In ReFT, a supervision signal of 0.1 encourages the model to produce a final answer 787 following the predefined format. In our approach, this signal is repurposed to reward action type 788 matching. Meanwhile, an additional v_{format} reward is introduced to encourage proper formatting of 789 actions.

790 **Weak Reward:** For input action, the value linearly increases from $v_{format} + v_{type}$ up to the strong 791 reward level, with v_{format} acting as a threshold to distinguish weak from type-correct reward. For 792 grounding actions, values range between $v_{format} + v_{type}$ and 1, too. A value of v_{format} indicates 793 minimal correctness (e.g., extractable coordinates), while 1 indicates a closest match with the golden 794 action, suitable for DPO pairing. Except v_{format} and v_{type} serving as discrete supervision signals, 795 all other value signals are maintained as continuous. $1/\mathcal{K}$ in Eq. (13) arises naturally from our 796 hierarchical training structure. For example, if one child is incorrect (e.g., value drops from 1 to 0), 797 the average value for the parent node decreases by 0.33 when the sampling number is 3. Thus, $1/\mathcal{K}$ 798 serves as a meaningful threshold to distinguish positive vs. negative examples in the CoAT tree.

810 Table 8: Text F1 vs. text-embedding similarity: ablation on reward design. Best results are in **bold**.
811

Reward Type	TYPE (type)	TYPE (acc)	TOTAL (type)	TOTAL (acc)
BERT	84.17	76.70	77.81	62.49
F1	87.78	81.23	78.74	65.37

812
813
814
815
816
817 **Text F1 vs. Text-Embedding Similarity:** We replaced the F1-based reward with a BERT-based
818 semantic reward and evaluated both variants. As shown in Table 8, the F1 reward outperforms the
819 BERT embedding reward across all metrics, with the largest gain on *TYPE ACTION (acc)* (+4.53%).
820 This aligns with the importance of exact keyword matching in GUI input, indicating that F1 is better
821 suited than semantic similarity for reward design in mobile UI input scenarios.
822

823
824 Figure 4: The heatmap at the left represents the sampling before instruction evolution, while the one
825 at the right represents the sampling after instruction evolution.
826
827828

D EXPERIMENT SETUP

829 **Models.** Unlike AITZ, we do not compare the CoaT result with the expected page and decide
830 whether to roll back because most actions in real-device scenarios cannot be rolled back without cost.
831 Previous work conducted continual pretraining on Qwen2-VL-7B using GUI domain data, resulting
832 in a stronger base model. In our ablation study, we discuss the impact of continuous pretraining on
833 IPL. ()

834 **Setup.** We conduct hyperparameter searches on AITZ to reproduce the baseline results and find that
835 the optimal learning rate ranges from 3e-5 to 3e-6. Therefore, all baseline fine-tuning experiments
836 adopt this setting. Before IPL, during the instruction evolution stage, we apply LoRA fine-tuning with
837 a LoRA rank of 128. For IPL Stage 1, we use a learning rate between 1e-6 and 1e-7. In subsequent
838 stages, we apply a constant learning rate of 1e-7. The batch size is consistently set to 128. During
839 fine-tuning (including baseline fine-tuning), we enable ViT training, whereas in the IPL phase, we
840 experiment with freezing ViT. For AITZ training, we followed the Falcons’ approach, utilizing a
841 maximum 1540×1540 resolution. For other experiments, we reduce the resolution to 1280×720 to
842 optimize computational efficiency. The maximum context length is set to 32K for all experiments.
843 The fine-tuning experiments are conducted for 2 epochs, while IPL training is performed for 1 epoch.
844 Since the large volume of Android control data, we sample 1/5 of the dataset for each IPL training
845 iteration.

846

CoaT Multi-turn Dialogue Prompts.

847 1. **Page Description.** *Based on the mobile screenshot: Image URL, identify and describe the*
848 *key elements visible on the screen, including any text, buttons, icons, input fields, or other*
849 *interactive components.*

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

2. **CoaT Action Thought.** *Given the task: instruction, and considering the contextual details from the image alongside the full history of previous actions: action history, determine the most logical and effective next step. Focus on providing a clear, actionable, and goal-oriented response to advance the task.*
3. **CoaT Action Description.** *Task: Determine the Most Appropriate Next Step. Based on the previous analysis and the objective, determine the most appropriate next step to achieve the goal. Choose from the following options:* - **click**: Select a button or specific UI element by specifying it clearly (e.g., 'click xxx', where 'xxx' is the button name or identifier). - **scroll**: Perform a scrolling action if the required element is not visible, specifying the direction (e.g., 'scroll up', 'scroll down'). - **type**: Input specific text into a field or search bar, specifying the text clearly (e.g., type "content"). - **press**: Interact with device-level buttons such as Home, Back, or Enter, specifying the button (e.g., "press Back"). - **stop**: Conclude the task, indicating that the objective has been achieved. Provide the chosen action in the specified format and ensure it aligns with the analysis and the visible UI elements.
4. **Click Action Grounding.** *As discussed earlier, your task now is to identify the precise screen region coordinates to tap for the action coat action. The coordinates must be integers and strictly within the range of 0 to 1000 for both axes. Please provide your response in the required format: <|box_start|>(top_x, top_y), (bottom_x, bottom_y)<|box_end|>. Ensure your output adheres to these constraints and remains concise.*

Instruction evolution Prompts.

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

1. **Page Description Annotation.** *I will provide you with a mobile page. Please describe the current page. Your description should include the content of the page and its general functionality. Please note that the descriptions you generate should be of moderate length. Your page description should match the actual image.*
2. **Action Thought Annotation.** ***QUERY**: task, **ACTION HISTORY**: To proceed with the query, your past actions include: action history, **NEXT ACTION**: This is the next action you need to take: coat action, **TASK**: Given the screen and the above information, you have three tasks to do. First, you have to analyze what you have done. Second, you should analyze the screen for relevant details that might pertain to the given query. This includes checking for specific applications, icons, or buttons that are visible and any information or results that are currently displayed on the screen. Tip: If the screen does not have the information you need, you can scroll left or scroll up to try to get the information. Don't answer this logic question by saying that because the provided **NEXT ACTION** is..., therefore, the next action is... You need to think carefully on your own. You must answer the question with suitable lengths and the following format: 'Think: I have done..., Current screen is..., I need to... So the next action is ...' Your final action should be the same as the NEXT ACTION above.*
3. **Q&A Annotation.** *Your goal is to draw inspiration from the given images and image description information to create multiple new questions and answers. This new creation is closely related to the given image and information, but the answers involved should be directly derived from the given information, because UI positions and UI text are one-to-one correspondence. Specifically, you should construct the following three types of questions and answers, a total of 15: 1. the function of some elements in the image. 2. Grounding questions and answers (the coordinates and approximate location of the target in the image). 3. Partial detailed information questions and answers (the structural relationship between multiple elements, type, style, etc.). Please try to keep your questions and answers diverse and informative, and ignore the message in the device status bar. Here is the information related to the image: UI positions: {ui positions}, UI text: {ui text}, coat screen desc: {coat screen desc}, Please provide the following information in JSON format with the key questions and answers, and Don't add annotation parsing:*

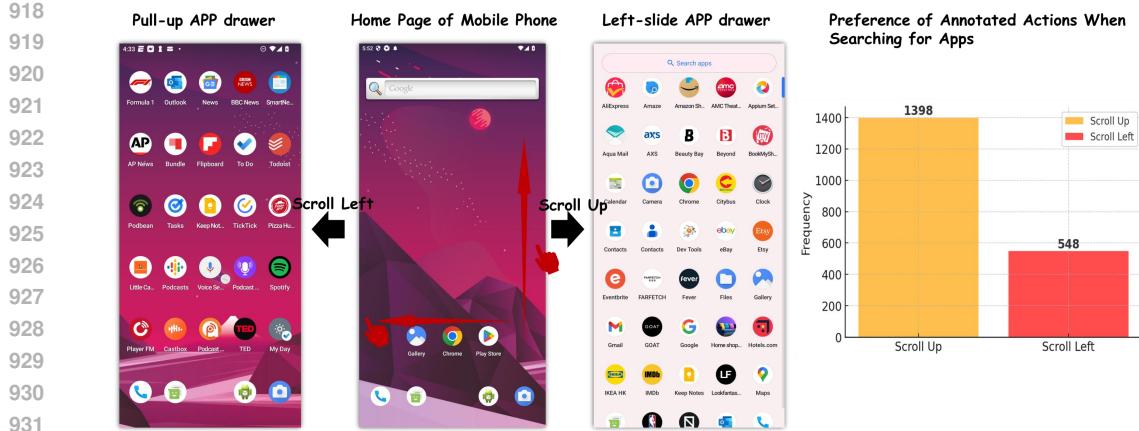


Figure 5: The left figure shows an example of unstable annotation preferences in AMEX, while the right figure presents the proportion of this type of annotation.

E HUMAN ANNOTATION

SoTA Model Cost: We use GPT-4o for annotation, which is priced at 4 USD per 1M input tokens and 16 USD per 1M output tokens. As shown in Appendix B (Instruction Evolution Prompts), each image has a resolution of 1080×2440 . The input prompt is approximately 2K tokens, and the output is around 0.5K tokens, resulting in a per-page annotation cost of $0.008 \text{ USD (input)} + 0.004 \text{ USD (output)} = 0.012 \text{ USD}$. Given that the Android in the Zoo dataset [1] contains around 18,000 pages, the total annotation cost is approximately 200 USD.

Human Verification: Human verification is used to identify cases where the model produces incorrect thoughts due to being forced to align with the golden action. As shown in following table, some initial annotations contain template-like phrases (e.g., “Since”, “annotation”) and mention multiple possible actions. These mistakes often happen when the model tries to justify a given action even if it doesn’t match the actual screen.

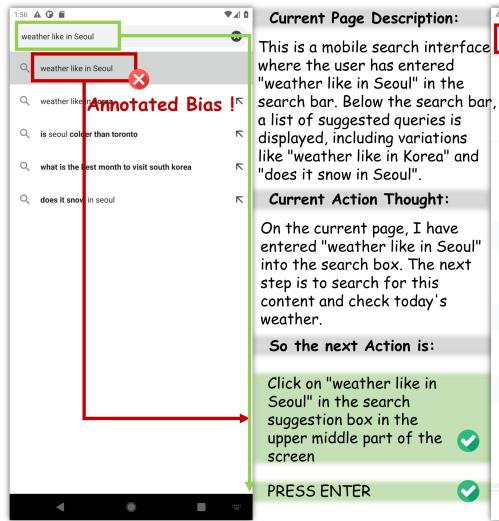
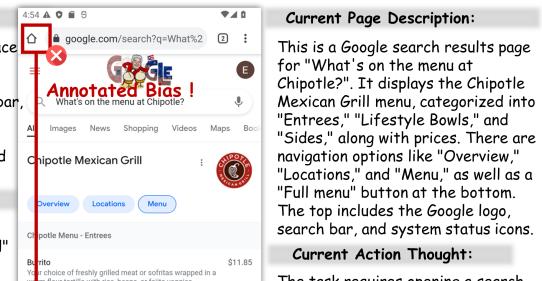
The bolded text in following Table highlights common errors. To address this, we regenerated the prompts and applied automatic filtering based on specific tokens, which helps reduce the need for manual work.

Before Human Verification: "coat_action_think": "Reason for the Action: - To find and compare prices, the user needs to locate similar products. - Swiping up or scrolling down is a logical step to explore further information or discover additional options, as apps like Etsy often display "similar items" or "recommended products" below the primary product listing. - This action aligns with typical app design patterns where related items or comparison options are placed further down the page. 4. Logical Derivation of Action: - Since the task specifies comparing prices of similar items, and the current screen does not explicitly list such items, the user must navigate downward to uncover more options. - The instruction to "swipe up" (or scroll down) matches the action type ("action_type": "scroll", "direction": "down"), indicating an attempt to reveal additional content or sections. 5. Since the next action swiping down matches the annotation, the next action is swiping down.

After Human Verification: Think: I have previously navigated "Back," which indicates that I may have returned to the previous screen or listing, likely as part of exploring options related to the query for comparing prices of men’s athletic shoes. Current screen is displaying detailed information about a product on the Etsy app. This includes item details such as "Handmade item," "Made to order," and shipping information. There are also options to "Follow shop," "Message seller," and "Add to cart," but it does not appear to directly show other comparable items or prices for similar men’s athletic shoes. I need to scroll further down on this screen to potentially uncover additional details, such as related products, a comparison section, or other useful information for the query. So the Next action is Scroll down."

972
973
974 Table 9: Data size and training time across iterative rounds.
975
976
977

	Standard SFT	Round 1	Round 2	Round 3	Round 4	Round 5
Data Samples	63,158	156,418	34,010	28,491	17,027	17,780
Time (hours)	2.8	7.9	2.0	1.7	1.0	1.0

978
979
980 F ITERATIVE SAMPLING IN THE COAT-TREE
981982
983 As shown in Figure 4, before instruction evolution, the distribution is highly concentrated, with only
984 8 points exceeding 1000 (including 3 points above 1200). After instruction evolution, the distribution
985 becomes more balanced, with 20 points exceeding 1000 (including 2 points above 1500).
986987
988 **Ins: Search for "weather like in Seoul"**
989 **in google chrome, I pay special**
attention to today's weather1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Ins: Open Chrome. Search Music event in New York.
1026 **Select the first one. Record its location and time in**
1027 **Google Keep Notes. Add it to Favorites.**

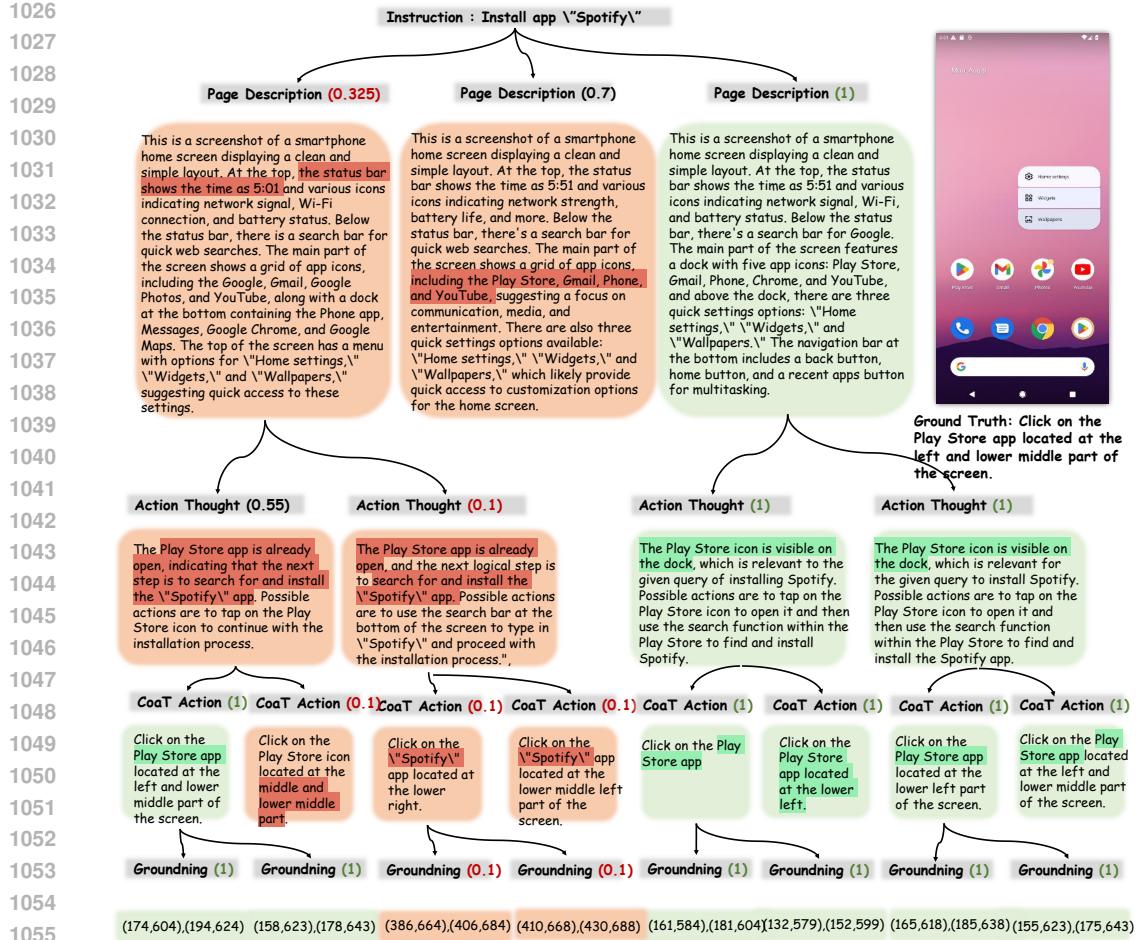


Figure 7: A sampling tree from AITZ demonstrates how the value is calculated.

H CASE STUDY

Unstable annotation preferences. As shown in Figure 5, the left section illustrates two different annotation preferences when searching for an app from the Home Page: **SCROLL UP** and **SCROLL LEFT**, leading to different destination pages. The right part shows the overall preference distribution when annotators need to find an app. In rare cases, the annotation involves clicking on Google Play Store to perform a search. This phenomenon is quite common because, fundamentally, the task completion paths for a UI Agent are diverse. This is also the key difference between online evaluation and offline data evaluation. From this, we observe that RL training on data with unstable preferences performs worse than SFT (e.g., AITZ SCROLL). This is because the DPO pair training method inherently attempts to correct errors in sampled preferences. As a result, the agent oscillates between two decisions when encountering the same GUI and instruction, failing to achieve consistent alignment.

Action Equivalence. Unlike Unstable Annotation Preferences, where different actions lead to different but equivalent pages, the issue here arises from annotators' random labeling habits in the training data, preventing the model from learning a consistent preference. Action Equivalence refers to the phenomenon where multiple actions on the same page can lead to the target page. However, since only one action is annotated as correct, other valid actions are mistakenly treated as incorrect. As shown in Figure 6, after entering a search query, clicking on a suggested item in the recommendation bar, and pressing the Enter key on the keyboard produce the same effect. Similarly, when navigating back, clicking the on-screen back button and pressing the hardware back button yield the same outcome.

1080
 1081 **Thinking-Level Sampling.** As shown in Figure 7, unlike mathematical reasoning, the CoaT process
 1082 may not exhibit clear logical or computational errors. For a given action, a sampling CoaT data
 1083 may produce hallucinations (Page Description) due to insufficient detail in the page description or
 1084 fabricated elements; generate repetitive thoughts (Action Thought) due to neglecting action history;
 1085 describe the wrong relative position of the correct element (CoaT Action); or misgrounding an
 1086 element (Grounding), which is then classified as a negative sample. At the same time, outputs with
 1087 more detailed and accurate descriptions, diversified thoughts, and different ways of describing the
 1088 same widget are classified as positive samples. Negative examples may be disadvantageous compared
 1089 to positive examples, for example, because the description of the page is not detailed enough or the
 1090 positioning of the elements is not accurate enough. At the same time, the wrong process may also
 1091 give the correct result, but this is a very rare case. In this example, negative samples are generated
 1092 due to the following three reasons: (1) **Rough page description:** The page contains eight app
 1093 icons, but the agent’s description includes only four apps: Play Store, Gmail, Phone, and YouTube;
 1094 (2) **Hallucinated Thought:** The agent is unclear about its current page location. In reality, it is
 1095 on the Home page, but it mistakenly believes it is in the Play Store (e.g., ”The Play Store app is
 1096 already open”). (3) **Fabricated Position and Elements:** The agent generates the action ”Click on the
 1097 ‘Spotify’ app”, even though there is no Spotify icon on the current page. This hallucination may stem
 1098 from the instruction. Additionally, the Play Store icon should be located at the lower left part of the
 1099 screen, but the agent incorrectly describes it as being in the middle and lower middle part.
 1100

1101 I USAGE OF LLM STATEMENT

1102 This paper utilized an LLM to improve the clarity and fluency of the text.

1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133