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ABSTRACT

The Chain of Action-Planning Thoughts (CoaT) paradigm has been shown to
improve the reasoning performance of VLM-based mobile agents in GUI tasks.
However, the scarcity of diverse CoaT trajectories limits the expressiveness and
generalization ability of such agents. While self-training is commonly employed
to address data scarcity, existing approaches either overlook the correctness of
intermediate reasoning steps or depend on expensive process-level annotations
to construct process reward models (PRM). To address the above problems, we
propose an Iterative Preference Learning (IPL) that constructs a CoaT-tree through
interative sampling, scores leaf nodes using rule-based reward, and backpropagates
feedback to derive Thinking-level Direct Preference Optimization (T-DPO) pairs.
To prevent overfitting during warm-up supervised fine-tuning, we further introduce
a three-stage instruction evolution, which leverages GPT-4o to generate diverse
Q&A pairs based on real mobile UI screenshots, enhancing both generality and lay-
out understanding. Experiments on three standard Mobile GUI-agent benchmarks
demonstrate that our agent MobileIPL outperforms strong baselines, including
continual pretraining models such as OS-ATLAS and UI-TARS. It achieves state-
of-the-art performance across three standard Mobile GUI-Agents benchmarks and
shows strong generalization to out-of-domain scenarios.

1 INTRODUCTION

VLM-based mobile agents (Wang et al., 2023; Ding, 2024) have attracted considerable attention due
to their ability to seamlessly interact with mobile graphical user interfaces (GUIs) and their potential
to autonomously perform daily tasks. Since actions are not directly specified in user instructions,
mobile agents benefit from generating intermediate thoughts aligned with the current GUI context.
Recent work such as AITZ(Zhang et al., 2024b) has demonstrated that the Chain of Action-Planning
Thoughts (CoaT) pattern—resembling the slow-thinking “System 2” process—is particularly effective
in GUI domains.

However, directly applying supervised fine-tuning (SFT) on CoaT trajectories may cause overfitting,
leading the model to be trapped in fixed reasoning patterns. To address this limitation, recent studies
in the general domain have explored self-training strategies. These approaches typically utilize the
correctness of the final answer in output as a reward signal to train the model(Luong et al., 2024).
While effective in some contexts, relying solely on final answers overlooks the quality of intermediate
reasoning steps, which can result in reward hacking and suboptimal reasoning processes. Some
search-based approaches, such as ReST-MCTS (Xie et al., 2024), tackle this problem by learning
a process reward model (PRM) to evaluate individual reasoning steps. However, these approaches
often require large-scale manual annotation of intermediate steps (Guo et al., 2025a). This challenge
is especially severe in the Mobile GUI Agent domain. Unlike text-based tasks in coding or math, GUI
environments rely on real devices or simulators, making step-level reward annotation significantly
more costly and labor-intensive.

To address these limitations, we propose an iterative sampling framework that constructs a CoaT-tree
based on Monte Carlo Tree Search (MCTS). Instead of relying on a PRM, we score each reasoning
step and construct thinking-level DPO (T-DPO) pairs without manual step annotation. Specifically,
we perform multi-turn dialogue with a vision-language model (VLM) to incrementally build a CoaT-
tree, where each node corresponds to a sampled response at a given reasoning step, conditioned
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on the dialogue history. This hierarchical structure captures diverse reasoning paths and facilitates
fine-grained assessment of intermediate thoughts. We first assign rewards to the leaf node, and then
propagate these signals backward through the CoaT-tree to earlier reasoning steps. Based on the
resulting values, we construct thinking-level DPO pairs to help agents optimize both final actions and
the overall quality of their reasoning.

To mitigate the lack of diversity after warm-up SFT, we adopt an instruction evolution strategy.
Specifically, we generate diverse Q&A pairs grounded in real mobile UI screenshots from downstream
training datasets. These Q&A pairs serve two purposes: (1) prevent agents from overfitting to
static downstream instructions by introducing varied reasoning contexts, and (2) improve agents’
understanding of UI layouts through visually grounded question-answering. We evaluate our approach
on the CoaT dataset AITZ and long-horizon dataset AMEX, where it outperforms state-of-the-
art GUI-agent continual pretraining agents such as OS-ATLAS (Wu et al., 2024) (+4.04%) and
UI-TARS (Qin et al., 2025) (+3.54%). Furthermore, experiments on the AndroidControl dataset
demonstrate the strong generalization capability of our method to unseen apps and instructions
(tasks). Under limited training resources, IPL consistently outperforms naive DPO using only half of
the data for one iterative training round (+4.5%), or one-fifth of the data for two iterative training
rounds (+0.3%). Analytical experiments show instruction evolution simultaneously improves both
the diversity and quality of reasoning.

Overall, our main contributions are summarized as follows:

•We propose an iterative framework to construct a CoaT-tree, and utilize rule-based rewards with
backward credit assignment to form thinking-level DPO pairs for reasoning optimization.

• We introduce an instruction evolution strategy to mitigate overfitting during warm-up SFT, enhanc-
ing the model’s generalization and UI understanding.

• We demonstrate the effectiveness of our method on three GUI-agent benchmarks: AITZ, AMEX,
and AndroidControl. Furthermore, our approach even surpasses SoTA continual pretraining models.

2 RELATED WORK

2.1 MOBILE GUI AGENT

LLMs (Achiam et al., 2023) are increasingly used as autonomous agents for mobile interaction (Li
et al., 2024b; Wen et al., 2023). With the rapid development of vision-language models (VLMs),
researchers build mobile GUI agents (Yang et al., 2023; Zheng et al., 2024; Qin et al., 2025; Team)
and multi-agent frameworks (Ding, 2024; Li et al., 2024c; Wang et al., 2024a) based on closed-source
VLMs. Meanwhile, some researchers focus on training agents with stronger element grounding
(Cheng et al., 2024; Wu et al., 2024), page navigation (Niu et al., 2024; Lu et al., 2024; Gou et al.,
2024; Wang et al., 2025), GUI understanding (You et al., 2024; Baechler et al., 2024) and task
planning capabilities (Zhang et al., 2024c; Nong et al., 2024; Xu et al., 2024; Qinghong Lin et al.,
2024; Dorka et al., 2024) based on open-source VLMs. Our method organizes trajectory data into
multi-turns of dialogues based on the CoaT thinking pattern, preventing the agent becomes an action
model with limited capabilities.

2.2 REINFORCEMENT LEARNING

The algorithms applied in natural language processing to align with human preferences include
Direct Preference Optimization (DPO) (Rafailov et al., 2023), Identity Preference Optimization
(IPO) (Azar et al., 2024), Kahneman-Tversky Optimization (KTO) (Ethayarajh et al., 2023), and
Proximal Policy Optimization (PPO) (Schulman et al., 2017). Specifically, ReFT (Luong et al.,
2024) adopts reinforcement learning as a fine-tuning paradigm to improve performance on math
problems. ReST-MCTS* (Zhang et al., 2024a) focuses on the higher-quality step reward, where
the process reward model is important. Xie, et al. (Xie et al., 2024) label the preference via MCTS
based on feedback from self-evaluation. For mobile GUI agents, Digirl (Bai et al., 2024) and Distrl
(Wang et al., 2024c) use online trajectory collection to improve the generalization of agents whose
process is very slow. Reachagent (Wu et al., 2025) uses DPO training to compare the quality of
multiple actions. TCPO (Jiao et al., 2025) also optimizes thoughts, but does not explicitly enforce
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thought–action consistency. TreePO (Li et al., 2025), TreeRL (Hou et al., 2025), and SPO (Guo et al.,
2025b) segment long sequences into many short segments, which leads to high computational cost
and low data efficiency. In contrast, our method models thoughts with a fixed CoaT-tree and uses
T-DPO to optimize the thinking process, while step values are computed directly from rule-based
rewards, without unstable PRMs. This design yields more efficient sampling and training, especially
in GUI-agent settings.

Figure 1: Overview of iterative preference learning framework. The left part presents the process of
warm-up fine-tuning a general VLM to a mobile GUI domain agent with basic capabilities. The mid
and right parts represent the iterative CoaT thinking-level sampling and T-DPO training process.

3 METHODOLOGY

In this section, we first introduce the multi-turn thinking process formulation (§ 3.1) and explain
our method. As shown in Figure 1, our method starts with instruction evolution strategy (§ 3.2) to
enhance output diversity in warm-up SFT stage. Then, a CoaT-tree through iterative sampling (§ 3.3)
is employed for each action. Every leaf node represents a complete action and is scored using a
rule-based reward function. We then backpropagate the rewards along the tree to assign credit to
intermediate reasoning steps. This process yields thinking-level contrastive pairs for DPO, which
further improves the model’s reasoning ability. The detailed process is presented in Algorithm 1.

3.1 MULTI-TURN THINKING PROCESS FORMULATION

Each mobile GUI task contains a trajectory T , several pages u, actions â, and an instruction I , which
can be represented as:

T =
{
I, u0, â0, u1, â1, · · · , un, ân} (1)

We formulate action âi in the CoaT reasoning process as a multi-turn dialogue âi = [s1, s2, s3, s4],
where si represents description, action-thought, action-decision, and grounding, respectively. This
thinking paradigm based on the thinking–decision–grounding triplet, has been widely validated as
effective in previous GUI works (Shen et al., 2024; Zhang et al., 2024b; Qin et al., 2025; Cheng et al.,
2024). So the reasoning process can be formulated as:

s1 = Description(P1, ui) (2)

s2 = Thought(P2, ui, I, â0, · · · , âi−1, s1) (3)

P represents each round of dialogue input prompt, I is the task instruction, u is the current GUI, and
âi is the step i history action. Agents perform poorly when decoding the entire reasoning process
in a single step, which is because image modal u dominates the input tokens, surpassing textual
instructions I and action history âi, and diverting their attention away from the textual details. During
autoregressive training, the agent is unaware that producing a final answer conforming to the required
format is indispensable throughout the reasoning process. Multi-turn thinking process effectively
mitigates this problem, because additional dialogue steps guarantee a final answer is generated:

s3 = Action(P3, ui, I, s1, s2) (4)
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s4 = Grounding(P4, ui, I, s1, s2, s3) (5)
Previous work either performed RL in GUI-Agent directly on the trajectory without CoaT, missing the
detailed thinking process of each action, or forced the model to bear the heavy burden of outputting
the entire reasoning process at once. In our method, when the reasoning process ends, the final s4 is
recorded as ân+1, step i moves one step forward on the trajectory T and its thinking step reward is
calculated recursively based on final step s4. Dialogue-level textual input helps balance cross-modal
token proportions and steers the agent’s attention toward the current reasoning step.

3.2 INSTRUCTION EVOLUTION

Where can you find the app rating in the image?

Instruction Evolution

Seed : AITZ Annotations

Level I : Core Basic Capabilities

Level II : Widget Functionality & Relationships

Level III : GUI Advanced FAQ

Q: What is the function of the 'Install' button in 
the image?

A: The 'Install' button is used to download and 
install the DuckDuckGo Privacy Browser app.

Q: Where can you find the app rating in the image?

A: The app rating '4.6*' is located at coordinates 
<|box_start|>(62,214),(151,228)<|box_end|>.

“Instruction": “Install app \"DuckDuckGo Privacy 
Browser\"",
“Action": "click on the \"Install\" button located 
at the left and upper middle part of the screen."

Q : What elements are included in the 'Website Protection' screenshot?

A : The 'Website Protection' screenshot includes an image of a website 
and text indicating it blocks hidden trackers.

Q : What is the layout of the 'Tools' and 'Browsers' buttons?

A : The 'Tools' and 'Browsers' buttons are positioned horizontally 
next to each other below the 'About this app' section.

Figure 2: We process a three-stage instruction
evolution and knowledge augmentation, enabling
the agent to produce more diverse outputs for
corresponding tasks while effectively mitigating
overfitting.

As discussed in the previous section, the CoaT
patterns in the mobile agent domain are typically
fixed. As a result, agents tend to overfit these
static paradigms and struggle to generate diverse
reasoning paths after the warm-up SFT training
(as detailed in Sec 4.4). To address this issue, we
enhance the original training trajectories, denoted
as T , by appending additional Q&A annotations
to UI screenshots through an instruction evolution
process, thereby creating a new dataset Q with
a broader range of instruction formats. Specifi-
cally, as shown in Figure 2, the evolution process
consists of three levels:

Level I: General GUI Q&A tasks. Grounding,
Reference (Ref), and Page Descriptions are aimed
at enhancing the agent’s foundational capabilities.
These tasks (Liu et al., 2024; Yang et al., 2024) are
proven to be the core capabilities of GUI agents
during the pre-training.

Level II: Widget caption and relationships. De-
scriptions of widget functions and the nested par-
tition relationships between widgets. These tasks
help agents understand the relationships between
widgets, as previous work (Deng et al., 2024) has
found that agents tend to click on the textview, even in scenarios where the textview and the button
are separate.

Level III: GUI advanced FAQ. Inspired by Shen et al. (2024), we design an advanced FAQ that
features more complex Q&A, including descriptions of the page’s structural framework as well as
expectations and predictions about navigation outcomes triggered by control interactions.

Warm-up Supervised Fine-tuning: To develop agents with standard thinking format and expand
the reasoning space, we mix T and the instruction evolution data Q, then perform warm-up SFT on

D =
{
T ,Q

}
=

{
(u, e)(i)

}|D|

i=1
, where u represents the prior knowledge (instructions, screenshot

and action history) from T or the questions from Q, and e is the reasoning process from T or the
answer from Q which is organized into multi-turn dialogues. To ensure output diversity, we select an
earlier checkpoint with better potential correct space and diverse output to serve as the seed policy
model. More details can be seen in Appendix B.

3.3 ITERATIVE PREFERENCE LEARNING

After the warm-up SFT, the agent acquires basic GUI capabilities. We construct a CoaT-tree by
iteratively sampling each reasoning step and then assign a score to the leaf nodes based on a rule-based
reward function. Using these scores, we generate thinking-level DPO pairs to optimize the agent’s
reasoning process.

Iterative Sampling & Rule-based Reward. We iteratively sample each reasoning step along the
CoaT paradigm (Zhang et al., 2024b). The K sampling results (ŝt|ŝ1:t−1)

K at step t can be expressed

4
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as:

ŝt =
{
(ŝ

(k)
t | ŝ0, · · · , ŝt−1)

}K

k=1
(6)

Naturally, the final step in CoaT (the leaf node in the sampling tree) expresses a reward compared
with the ground truth action a∗, which is then propagated back to other intra-nodes. The formula for
the rule-based reward of leaf nodes is as follows:

v(st) =


1, st = a∗
vtype + scorematch, type(st ∼ a∗)

0, others

(7)

scorematch =


vformat + 1 · (1− d(x, y))− (vtype + vformat) · d(x, y), type(a∗) = CLICK

vformat + (1− vtype − vformat) · F1, type(a∗) = INPUT

0, others

(8)

The reward score v(st) ranges from 0 to 1, with a fully correct prediction receiving a score of 1. We
use vtype and vformat to indicate whether the predicted action type and output format match the ground
truth. For click and input actions, we further evaluate their internal structure using smooth rewards
based on spatial distance d(x, y) and text match F1. The final reward is computed from the similarity
between the prediction and the ground truth:

• Click: A distance-based score between the predicted and ground-truth coordinates, normal-
ized to [0, 1]; smaller distances yield higher scores.

• Input: The F1 score between the predicted and ground-truth strings; greater textual overlap
yields higher scores.

The full reward is defined in Equation 7 and discussed further in Section C.

Based on the structure of the CoaT-tree, we recursively compute the value of each intermediate
reasoning step. Specifically, the value of st−1 is computed as the average value of its K sampled
continuations at st:

v(st−1) = c · 1

K

K∑
k=1

v(s
(k)
t ) (9)

Here, K denotes the number of sampled continuations for each reasoning step, and c is a discount
factor. The parameter searching experiment for K is described in detail in Section 4.4.

Contrastive Data Filter. After obtaining the sampling tree and node values, we evaluate the quality
of the trees and extract contrastive data. We can divided the sampling trees into three categories
R = {α, β, γ} based on their output quality, and the classification standards of α, β, γ are as follows:

α =

∣∣∣{S(i) | ∀vk ∈ S(i), vk = 1
}∣∣∣∑|T |

i=1 |(u, e)(i)|
(10)

β =

∣∣∣{S(i) | ∃vk, vk′ ∈ S(i), vk = 1, vk′ ̸= 1
}∣∣∣∑|T |

i=1 |(u, e)(i)|
(11)

γ =

∣∣∣{S(i) | ∀vk ∈ S(i), vk ̸= 1
}∣∣∣∑|T |

i=1 |(u, e)(i)|
(12)

S(i) and vk refer to the instruction i sampling tree and the k-th leaf nodes value of K sampled output.
α is considered a perfect sampling tree, which can stably output correct thoughts and actions with
in-domain trajectories, β represents potential correct trees that can be used to construct contrastive
data, and γ denotes sampling trees that require refinement. β + γ is considered a valid sampling
space. In β, actions with a value of 1 and as many diverse action types as possible are extracted

5
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as positive samples. In γ, the final ground truth action a∗ is used as a positive sample, but the
intermediate steps of CoaT are not provided, and the pairs can be represented as:

βpairs = ⟨ŝ(k)t ↑, ŝ(k
′)

t ↓| (ŝ1, . . . , ŝt−1),

v(ŝ
(k)
t )− v(ŝ

(k′)
t ) > 1/K⟩

(13)

γpairs = ⟨a∗ ↑, ŝ(k)t ↓| ŝ1, . . . , ŝt−1⟩ (14)

Thinking-level Direct Preference Optimizing. After CoaT thinking-level Iterative Sampling, several
positive and negative example pairs are collected. During this stage, the agent policy undergoes
updates through the above data-pairs, SFT loss, and CoaT-DPO loss (Rafailov et al., 2023). Suppose
the agent gets values to pair ⟨+,−⟩ at CoaT step t, which are named s+t and s−t ; we have the agent
performing a comparison for these pairs based on the same thoughts s1:t−1, which can be calculated
as:

LT-DPO = −E(s1:t−1,s
−
t ,s+t )∼Ts

[
log σ(β log

πθ(s
+
t |s1:t−1)

πref (s
+
t |s1:t−1)

−β log
πθ(s

−
t |s1:t−1)

πref (s
−
t |s1:t−1)

)

]
,

(15)

To further refine the agent’s performance post-optimization, we employ the updated agent as the new
base agent to continue collecting contrastive CoaT-action level pairs for additional T-DPO training.
This iterative process is maintained until the agent reaches the performance bottleneck.

Algorithm 1: Iterative CoaT thinking-level sampling and DPO self-training.
Input: base VLM π, advanced annotated model RSoTA, step-level trajectory data T , instruction evolution

Q&A setQ, number of sampling K, golden action a∗, value function v, the sampled CoaT data D, number
of iterationsN .

1: for i = 1 to N0 do
2: Q∗ ← instruction_evolution(RSoTA, T ) // instruction evolution by GPT-4o
3: Q ← human_evaluation(h,Q∗) // human filter
4: end for
5: πS0 ←Warm-up_SFT(π, T ,Q) // fine-tune seed model
6: for n = 1 toN do
7: for i = 1 to |T | do
8: Di ← generate_sampling_thought(πSn−1 , Ti, K) // CoaT Sampling

9: V leaf
i ← v(Di, a

∗
i ) // match and calculate leaf values using Eq(7)

10: V intra
i ← recursive_calculate(Di, V

leaf
i ) // recursive intra node values using Eq(9)

11: D+
i , D

−
i ← contrastive_data_filter(Di, Vi) // filter positive and negative data using

Eq(13, 14)
12: end for
13: πSn ← DPO(πSk−1 , D

+, D−) // DPO self-training reference model
14: end for
Output: πS , DG,Q

4 EXPERIMENTS

4.1 EXPERIMENTS SETUPS

Dataset. AITZ (Zhang et al., 2024b) is a high-quality trajectory set filtered and re-annotated from
AITW (Rawles et al., 2023), containing four subsets , which also includes five types of actions
AMEX (Chai et al., 2024) uses the same apps and action space as AITZ, but its task instructions are
more complex and detailed, with an average trajectory length of 15+. AndroidControl (Li et al.,
2024a) includes OOD datasets, such as app unseen and task unseen.

Metrics. For evaluation, we use Step.Acc as metrics, consistent with Auto-GUI(Zhang & Zhang,
2023), measures the agent’s performance and uses Action Type to assess the degree of action type
matching. This metric effectively evaluates the model’s planning ability.

6
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Table 1: Main results of AITZ dataset. ZS, FT, PF, and IPL are short for zero-shot, fine-tuning,
specific domain pre-training, and iterative preference learning, respectively. ‘-’ represents that the
agent or evaluation prompt is not open-sourced. Seed means the seed model for sampling and T-DPO
training. Ri refers to the number of iterations during training.

Model Mode
Atomic

SCROLL CLICK TYPE PRESS STOP Total

type match type match type match

CogAgent (CoaT) ZS 70.22 88.23 66.15 45.80 21.80 45.95 24.60 72.59 53.28
AUTO-GUI (CoaT) FT 61.40 74.56 32.20 87.20 81.40 57.70 74.40 82.98 47.69

AriaUI-MoE FT 53.73 85.51 60.20 84.20 80.80 63.70 76.38 78.53 63.56
Seeclick-7B PF 11.14 69.92 52.96 53.80 53.00 67.88 55.36 62.93 49.11
UGround-7B PF 58.22 80.94 58.48 82.56 73.85 58.22 68.78 74.54 60.19
OS-Atlas-7B PF 76.12 75.82 54.83 87.80 81.60 68.67 81.75 77.83 65.11
UI-Tars-7B PF 52.50 83.03 64.27 89.97 82.76 61.87 74.35 77.59 65.61

Falcon-UI-7B PF - - - - - - - 84.70 69.10

Qwen2-VL-7B (CoaT) FT 47.50 81.53 59.72 81.96 73.85 58.22 67.39 74.26 60.36

AITZ-Seed FT 42.83 82.48 53.16 82.56 75.29 56.65 61.82 73.14 55.40
MobileIPL IPL 51.08 91.73 71.45 88.20 83.40 51.69 78.17 81.90 69.15

Table 2: Main results on AMEX. Seed means the seed model for sampling.

Model Training Data Gmail Booking Music SHEIN News CM ToDo Signal Yelp Overall

SeeClick-7B AITW+External 28.2 29.4 18.1 20.0 30.0 53.1 30.7 37.1 27.4 30.44
SphAgent-7B AITW 32.1 45.9 46.1 35.1 48.3 61.1 55.9 43.3 42.9 45.63
SphAgent-7B AMEX 61.7 68.2 77.7 72.0 71.9 64.6 79.6 71.3 69.6 70.71
AriaUI-MoE AMEX 63.1 62.3 68.5 58.9 83.0 54.7 62.5 83.3 66.9 64.10
UGround-7B AMEX 70.9 68.8 72.7 63.7 77.7 67.7 63.7 80.1 67.6 69.12
SphAgent-7B AITW + AMEX 62.4 68.1 76.3 71.9 68.6 67.3 77.6 66.0 64.1 69.14
OS-Atlas-7B AMEX 61.1 73.5 77.9 61.6 75.2 66.4 71.0 75.9 72.0 70.33
UI-Tars-7B AMEX 67.7 70.0 71.8 63.8 71.5 67.7 77.0 86.4 72.8 70.33

Qwen2-VL-7B
AMEX 58.0 70.1 76.6 63.8 79.4 66.8 67.8 80.2 76.6 69.01
+ CoaT 75.9 68.1 77.7 66.2 76.8 66.4 77.5 79.6 65.6 70.93

MobileIPL-7B
AMEX (Seed) 57.0 60.2 68.8 63.1 75.0 50.2 65.6 77.7 62.6 62.19

MobileIPL 77.3 71.8 80.0 68.4 85.3 71.3 73.5 82.1 71.8 74.29

Baselines. Following prior work(Wu et al., 2024)(Qin et al., 2025), we use Qwen2-VL-7B (Wang
et al., 2024b) as the backbone of our model. We select CogAgent (Hong et al., 2024), AUTO-GUI,
Shpagent, OS-Atlas, UGround, UI-Tars and FedMobileAgent as baseline agents. GUI continuous
pre-training agents can be further divided into two categories: (1) training the model as a GUI
grounding agent, such as OS-Atlas-7B. (2) training the model as a general GUI agent, such as UI-Tars.
More details are provided in Appendix D.

4.2 MAIN RESULT

AITZ. As shown in Table 1, MobileIPL achieves SoTA performance on most metrics. The reason
for the lower PRESS Acc. is discussed in Section 4.4 and Appendix H. Multiple rounds of T-DPO
improve MobileIPL by more than 10% (55.40% -> 69.15%) compared to the seed model MobileIPL
and Qwen2-VL-7B (60.36% -> 69.15%). Compared to continuous pre-training agents such as Falcon-
UI, which is pre-trained on three million GUIs, MobileIPL still surpasses a performance difference of
0.05%. The amount of training data required by our method is substantially smaller than that used by
these pre-training approaches.

AMEX. As shown in Table 2, MobileIPL surpasses the previous SOTA model, SphAgent-7B, by
3.58%. It also outperforms the baseline model (Qwen2-vl+CoaT) by 3.36%. Additionally, MobileIPL
surpasses OS-Atlas (+3.69%) and UI-Tars (+3.69%), both of which also use Qwen2-vl as the
backbone. With the incorporation of CoaT, the baseline model Qwen2-vl shows an increase of 1.92%,
demonstrating the effectiveness of CoaT patterns. In summary, these results confirm that MobileIPL
delivers significant improvements over existing models in long trajectory scenarios.
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Table 3: High-level instruction experiment re-
sults on AndroidControl.

Mode Model Grounding Step.Acc

FT
Aria-UI-7B 43.2 10.2

InternVL-2-4B 72.7 66.7
Qwen2-VL-7B (SFT) 68.5 69.1

PF
OS-Atlas-7B 78.5 71.2
Falcon-UI-7B - 72.7

UI-Tars-7B 80.5 72.5

RL Qwen2-VL-7B(GRPO) 70.7 69.8

Ours MobileIPL 77.0 72.7

Table 4: High-level instruction results on An-
droidControl in-domain and OOD subsets.

Mode Model IDD app-UN task-UN

FT
PaLM 2S(full) 65.5 58.7 59.7

PaLM 2S(LoRA) 70.8 58.5 59.6
Qwen2-VL-7B(SFT) 69.1 61.4 64.1

PF
FedMobileAgent 54.7 52.3 51.2

SphAgent-7B 69.4 57.1 62.9
OS-Atlas-7B 71.2 60.7 66.2

RL Qwen2-VL-7B(GRPO) 70.2 68.1 69.7

IPL MobileIPL-7B 73.6 70.0 72.2

AndroidControl. As shown in Table 3, MobileIPL achieves SOTA performance in Step.Acc (72.7%),
reaching the SOTA model Falcon-UI with fewer data. MobileIPL also outperforms continual pre-
training agents in the GUI domain, such as OS-Atlas (+1.5%) and UI-Tars (+0.2%). Compared to
the baseline model Qwen2-VL(SFT), MobileIPL not only improves Mobile Agent performance but
also enhances grounding by 8.5%. As shown in Table 4, MobileIPL continues to achieve SOTA
performance in unseen OOD settings, demonstrating strong generalization. In contrast, compared to
performance in the IDD domain, the pre-trained model OS-Atlas shows a significant drop. MobileIPL
exhibits less performance degradation in out-of-domain settings. We also ran GRPO with Qwen2-VL
under the same computational resources, and found OOD performance similar to MobileIPL, because
both are self-training. However, MobileIPL still outperforms GRPO in all subsets.

4.3 ABLATION STUDY

To test the effectiveness of IPL and instruction evolution, we conducted ablation experiments. First,
removing IPL and using only SFT caused performance to drop from 65.4% to 60.4%, compared to
the first round of MobileIPL, highlighting the crucial role that IPL plays. Next, removing instruction
evolution led to a 2.5% drop in IPL performance in the first round. This occurs because, without
evolution, the model generates fewer training samples (156,418 -> 113,239). And as shown in
Figure 3 (a), without instruction evolution, the diversity of model outputs decreased, causing a drop
in IPL performance. This further confirms that instruction evolution is crucial for improving IPL.

Table 5: Ablation study results on AITZ.

Model Scroll Click Type Press Total

MobileIPL-R1 45.8 71.1 81.2 23.5 65.4
- IPL 46.9 59.4 78.6 55.4 60.4 (-5.0)
- Evo (R1) 44.8 67.7 78.8 24.0 62.9 (-2.5)
- IPL Negative (R1) 46.9 61.1 74.2 56.6 61.4 (-4.0)
- IPL + Naive DPO (R1) 47.5 59.7 73.8 58.2 60.3 (-5.1)
- 1/2 training data (R1) 42.9 68.3 79.0 43.8 64.8 (-0.6)
- 4/5 training data (R2) 30.8 67.1 77.6 33.2 60.6 (-4.8)

Standard Self Training. Addition-
ally, we remove negative samples
from IPL-R1, training the model
using only fully correct samples.
This results in a 4.0% performance
drop, suggesting that negative sam-
ples help the model learn how to
reason rather than merely memo-
rize (SFT). Furthermore, training
on the entire trajectory with navie DPO reduces performance from 65.4% to 60.3%. Compared with
SFT trained on CoaT tree positive data (–IPL Negative), naive DPO is still 1.1 % lower, confirming
the effectiveness of CoaT-tree sampling and the thinking-process optimization.

Low Resource. We also perform low-resource on AITZ, sampling 1/2 and 1/5 of the training data.
As shown in table 5, using only half of the data, the first round of IPL training already outperformed
the best results achieved by the original CoAT-SFT (-IPL) and naive DPO training. Furthermore,
when using only one-fifth of the data, the second round of IPL training surpassed the performance of
CoAT-SFT (-IPL), demonstrating the effectiveness of our method even in low-resource scenarios.

4.4 DISCUSSION AND ANALYSIS

Reasoning Space Sampling. To evaluate the instruction evolution, we analyze the diversity of
the sampling space for Random 1000 steps, the standard deviation of encoded embeddings, the
dimensionality-reduced distribution, and the distribution of S(i) mentioned in Section 3.3. As shown
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(a) Reasoning Space Sampling (c) IPL on Pre-training Agents

(b) IPL Scaling

Figure 3: (a) Reasoning diversity before and after instruction evolution (left top) and the distribution
of standard deviation and accuracy (left bottom). (b) Step.Acc changes for action types in AITZ
across IPL iterations (right top). (c) The performance of UI-Tars-7B and Qwen2-VL-7B on AITZ as
the seed model with 4-round IPL training (right bottom).

in Figure 3 (a), the thoughts after instruction evolution exhibit a broader space than direct SFT.
Additionally, the embedding standard deviation within each tree increases significantly compared to
the original data (+ 0.158). The diversified outputs do not negatively impact the agent’s reasoning
process, while the proportion of action sampling that includes the correct answer improves from
72.7% to 77.9%. The bottom-right subplot reflects the distribution of output accuracy. Consistently
Correct indicates that all samples for the current step match the golden answer, while Consistently
Error is the opposite. Both represents cases where some samples are correct while others are
incorrect, which serves as an ideal source for constructing T-DPO pairs. Compared to 47% on
the evolved data, the agent achieves 68.7% convergence on the original data but exhibits a strong
polarization(4%). Three-stage instruction evolution significantly expands the sampling space (from
4% to 31%), proving that it simultaneously improves both the diversity and quality of reasoning.
More details are in Appendix F.

Table 6: Parameters Searching on AITZ for the first round. K is
the sampling number and R is the round of T-DPO learning.

Parameter TYPE CLICK SCROLL PRESS STOP Total

K = 2 79.2 68.9 35.1 38.3 76.1 64.0
K = 3 81.2 71.1 45.8 23.4 73.5 65.3 (+1.3)
K = 4 81.2 70.4 51.2 35.5 66.8 65.9 (+0.6)

R = 0 75.7 53.3 43.7 58.2 63.2 57.5
R = 1 77.5 71.1 43.3 23.5 67.0 61.2 (+3.7)
R = 2 80.5 71.1 47.0 31.1 67.6 64.1 (+2.9)
R = 3 82.0 71.5 47.2 47.8 79.1 68.4 (+4.3)
R = 4 82.6 71.5 51.1 51.7 78.2 69.2 (+0.8)

Parameters Searching. We
conducted an ablation study on
the impact of the sampling num-
ber (K) per stage and iterative
round number (R). As shown in
the table 6, increasing the num-
ber of samples generally leads
to better model performance.
However, since our framework
adopts a tree structure, increas-
ing the sampling number from 3
to 4 causes the minimum num-
ber of tree nodes to grow significantly from 33 = 27 to 43 = 64. Despite this sharp increase, the
performance improvement is limited (less than 1%). Therefore, we adopt a sampling number of 3
for the final experiments. Regarding the number of rounds, we observe that both IPL performance
and the size of the self-training dataset converge after several iterations. We therefore select the
convergence round as our default setting. Additional details on computational cost are provided in
Appendix G.

IPL Scaling. Although overall Step.Acc increases across IPL iterations, not all action types follow
this trend. As shown in Figure 3(b), from the seed model to the first IPL round, PRESS accuracy
drops sharply (58.22% → 23.49%), whereas CLICK rises (53.26% → 71.12%). In the second round,
however, PRESS accuracy rebounds. This stems from the severe underrepresentation of PRESS
actions early on: the proportion of PRESS samples in the preference data grows from 1.6% (1 round)

9
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to 10.9% (2 round) as training progresses. With greater reasoning diversity and more PRESS-related
examples, the model gradually learns PRESS behaviors and recovers accuracy in later rounds.

Iterative Preference Learning On GUI Continuous Pre-training Agent. As discussed in the
previous experimental analysis, continuous pre-training in the GUI domain provides the agents with
a stronger base model. However, we still need to explore the compatibility between post-training
IPL, instruction evolution, and pre-training. As shown in Figure 3 (c), UI-Tars outperforms Qwen2-
VL-7B in all training stages, demonstrating better performance during the instruction evolution
phase (62.7% > 55.4%). After four rounds of IPL, UI-Tars Step.Acc improves by 1.4% compared
to MobileIPL (69.2% -> 70.6%). More importantly, UI-Tars nearly converges after the first round
of IPL, significantly reducing the number of sampling and preference learning iterations, thereby
keeping the computational cost of post-training within an acceptable range.

5 CONCLUSION

In this paper, we propose Mobile Iterative Preference Learning (MobileIPL), a self-training GUI
agent framework that incorporates instruction evolution, iterative sampling in the CoaT-tree, and a
rule-based reward. We extensively evaluate MobileIPL on the AITZ, AMEX, and AndroidControl
benchmarks, demonstrating its effectiveness. Furthermore, MobileIPL exhibits strong generalization
capabilities on the OOD subsets of AndroidControl. Experiments show that instruction evolution
increases output diversity, generates more training data in IPL, and thereby improves IPL performance.
Finally, Continuous Pre-training experiments confirm the mutual reinforcement between MobileIPL
and pre-training, leading to enhanced performance.

6 ETHICS STATEMENT

We have rigorously refined our dataset to remove any elements that could compromise personal
privacy, thereby guaranteeing the highest level of protection for individual data. Instruction evolution
was completed by AI SoTA close-sourced VLM, to whom we paid the necessary compensation to
ensure that the training data was not leaked. The human evaluation of our work was carried out
through a meticulously randomized selection of IT professionals. This process ensured a gender-
balanced and educationally diverse panel, reflecting a wide spectrum of perspectives and expertise.

7 REPRODUCIBILITY STATEMENT

All models and datasets used in this paper are open-source. The full experimental setup is detailed in
Appendix D. Unless noted, all experiments use the same settings. We describe compute resources in
Appendix G. Overall, these practices make our results reproducible.
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A COAT THINKING PROCESS

The table 7 summarizes the CoT paradigms (inputs and outputs) used in prior related works. CoaT
paradigm for fine-tuning agents: The effectiveness of the approach in AITZ stems from the inclusion
of extra screen descriptions as part of the input, along with joint output of Screen Context, Action
Think, Action Target, and Action Result. In contrast, our experiments show that a stage-wise
multi-turn dialogue output leads to better performance. In this setup, the model focuses on a single
sub-task at each stage, which not only improves clarity but also encourages a simplified and deliberate
reasoning process. This insight aligns with UI-TARS, which only requires the model to generate
a brief thought during inference. Small-scale agent framing: Even models with relatively small
parameter sizes can benefit from task-decomposed downstream training. For instance, OS-ATLAS
and Falcon-UI adopt a similar architecture using GPT-4o for textual description and OS-ATLAS-base
as the grounding model. They fine-tune models separately on different downstream tasks, resulting
in a collection of OS-ATLAS-pro models, each specialized for a specific sub-task. Large-scale
prompting-based frameworks: Larger models typically adopt a multi-agent framework to support
a CoT-style reasoning process. For example, AppAgent v2 and Mobile-Agent-v2 both utilize a
plan–action–reflection architecture to complete tasks. In our work, we adopt a stage-wise CoaT
multi-turn dialogue format, where the model focuses on one sub-task at a time. This design enables
us to move away from the dependence on extra screen description inputs, as seen in AITZ, while
leveraging the description + grounding structure proposed in OS-ATLAS to form the final structure
of the MobileIPL CoaT paradigm.

B SELECTION OF SEED POLICY MODEL

In our preliminary experimental exploration, we discovered that for the seed policy model, better
performance in the SFT phase does not necessarily translate to a higher upper bound in the subsequent
IPL phase. This is because as training progresses, the model’s output space becomes increasingly

14

https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2404.05719
http://papers.nips.cc/paper_files/paper/2024/hash/76ec4dc30e9faaf0e4b6093eaa377218-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/76ec4dc30e9faaf0e4b6093eaa377218-Abstract-Conference.html
https://arxiv.org/abs/2403.02713
https://arxiv.org/abs/2404.16054
https://arxiv.org/abs/2309.11436
https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=piecKJ2DlB


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Comparison of methods and their corresponding CoT paradigms.

Method Backbone Input Output (CoT Paradigm)

Android in the Zoo One fine-tuned agent Instruction + image +
screen description

Screen Context → Action Think → Action Target
→ Action Result

UI-TARS One fine-tuned agent Instruction + image Thought → Action
OS-ATLAS One fine-tuned agent +

one large agent
Instruction + image Action Description + Action Model

Mobile-Agent-v2 Multi-agent + prompt
engineering

Instruction + image Stage 1: Plan → Stage 2: Action → Stage 3:
Reflection

MobileIPL One fine-tuned agent Instruction + image Stage 1: Description → Stage 2: Plan → Stage 3:
Action → Stage 4: Grounding

aligned with the training data, reducing its diversity in sampling. Consequently, for incorrect instances,
the model tends to generate erroneous outputs regardless of the sampling attempts. To address this, we
propose a sampling-oriented selection method for the seed policy model, incorporating the following
two evaluation metrics:

Sampling Accuracy(AccS), which requires the model to hit more correct actions a in the sampled
output space S.

AccS =

∑|T |
i=1

∣∣∣{e(i)j | a
(i) ∼ e

(i)
j , e

(i)
j ∈ S

(i)
}∣∣∣∑|T |

i=1 |S(i)|
(16)

Sampling Diversity(DivR), which requires the model to have a more diverse and extensive sampling
space. Standard deviation calculation of a single sampled tree DevS(i) :

DevS(i) =
1

T

T∑
t=1

StdDev
(
E(ŝ

(k)
t ) | k = 1, . . . ,K

)
(17)

Among them, E(ŝ
(k)
t ) represents the representation of the kth sample output of the tth step after the

encoder. Calculation of the standard deviation of the set DivS :

DivR =
1

N

N∑
i=1

DevS(i) (18)

where N is the number of sampled trees in the set R.

C RULE-BASED REWARD DESIGN

Derivation Of The Value Function. Our value function incorporates hyperparameters inspired
by ReFT and is also influenced by the sampling number used during IPL. We explain the rationale
behind key parameter choices in our method, especially those in Eq.(7), Eq.(13), and Eq.(14):

Strong Reward: We follow the ReFT (Luong et al., 2024) score to define strong reward signals,
assigning values of 1 and 0, corresponding to fully correct and completely incorrect reasoning paths,
respectively. In ReFT, a supervision signal of 0.1 encourages the model to produce a final answer
following the predefined format. In our approach, this signal is repurposed to reward action type
matching. Meanwhile, an additional vformat reward is introduced to encourage proper formatting of
actions.

Weak Reward: For input action, the value linearly increases from vformat + vtype up to the strong
reward level, with vformat acting as a threshold to distinguish weak from type-correct reward. For
grounding actions, values range between vformat + vtype and 1, too. A value of vformat indicates
minimal correctness (e.g., extractable coordinates), while 1 indicates a closest match with the golden
action, suitable for DPO pairing. Except vformat and vtype serving as discrete supervision signals,
all other value signals are maintained as continuous. 1 / K in Eq. (13) arises naturally from our
hierarchical training structure. For example, if one child is incorrect (e.g., value drops from 1 to 0),
the average value for the parent node decreases by 0.33 when the sampling number is 3. Thus, 1 / K
serves as a meaningful threshold to distinguish positive vs. negative examples in the CoAT tree.
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Table 8: Text F1 vs. text-embedding similarity: ablation on reward design. Best results are in bold.

Reward Type TYPE (type) TYPE (acc) TOTAL (type) TOTAL (acc)
BERT 84.17 76.70 77.81 62.49

F1 87.78 81.23 78.74 65.37

Text F1 vs. Text-Embedding Similarity: We replaced the F1-based reward with a BERT-based
semantic reward and evaluated both variants. As shown in Table 8, the F1 reward outperforms the
BERT embedding reward across all metrics, with the largest gain on TYPE ACTION (acc) (+4.53%).
This aligns with the importance of exact keyword matching in GUI input, indicating that F1 is better
suited than semantic similarity for reward design in mobile UI input scenarios.

Figure 4: The heatmap at the left represents the sampling before instruction evolution, while the one
at the right represents the sampling after instruction evolution.

D EXPERIMENT SETUP

Models. Unlike AITZ, we do not compare the CoaT result with the expected page and decide
whether to roll back because most actions in real-device scenarios cannot be rolled back without cost.
Previous work conducted continual pretraining on Qwen2-VL-7B using GUI domain data, resulting
in a stronger base model. In our ablation study, we discuss the impact of continuous pretraining on
IPL. ()

Setup. We conduct hyperparameter searches on AITZ to reproduce the baseline results and find that
the optimal learning rate ranges from 3e-5 to 3e-6. Therefore, all baseline fine-tuning experiments
adopt this setting. Before IPL, during the instruction evolution stage, we apply LoRA fine-tuning with
a LoRA rank of 128. For IPL Stage 1, we use a learning rate between 1e-6 and 1e-7. In subsequent
stages, we apply a constant learning rate of 1e-7. The batch size is consistently set to 128. During
fine-tuning (including baseline fine-tuning), we enable ViT training, whereas in the IPL phase, we
experiment with freezing ViT. For AITZ training, we followed the Falcons’ approach, utilizing a
maximum 1540×1540 resolution. For other experiments, we reduce the resolution to 1280×720 to
optimize computational efficiency. The maximum context length is set to 32K for all experiments.
The fine-tuning experiments are conducted for 2 epochs, while IPL training is performed for 1 epoch.
Since the large volume of Android control data, we sample 1/5 of the dataset for each IPL training
iteration.

CoaT Multi-turn Dialogue Prompts.

1. Page Description. Based on the mobile screenshot: Image URL, identify and describe the
key elements visible on the screen, including any text, buttons, icons, input fields, or other
interactive components.
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2. CoaT Action Thought. Given the task: instruction, and considering the contextual details
from the image alongside the full history of previous actions: action history, determine
the most logical and effective next step. Focus on providing a clear, actionable, and goal-
oriented response to advance the task.

3. CoaT Action Description. Task: Determine the Most Appropriate Next Step. Based on the
previous analysis and the objective, determine the most appropriate next step to achieve
the goal. Choose from the following options: - **click**: Select a button or specific UI
element by specifying it clearly (e.g., ‘click xxx’, where ‘xxx’ is the button name or identifier).
- **scroll**: Perform a scrolling action if the required element is not visible, specifying
the direction (e.g., ‘scroll up’, ‘scroll down’). - **type**: Input specific text into a field
or search bar, specifying the text clearly (e.g., type “content”). - **press**: Interact with
device-level buttons such as Home, Back, or Enter, specifying the button (e.g., “press Back”).
- **stop**: Conclude the task, indicating that the objective has been achieved. Provide the
chosen action in the specified format and ensure it aligns with the analysis and the visible
UI elements.

4. Click Action Grounding. As discussed earlier, your task now is to identify the precise
screen region coordinates to tap for the action coat action. The coordinates must be integers
and strictly within the range of 0 to 1000 for both axes. Please provide your response in the
required format: <|box_start|>(top_x, top_y),(bottom_x, bottom_y)<|box_end|>. Ensure
your output adheres to these constraints and remains concise.

Instruction evolution Prompts.

1. Page Description Annotation. I will provide you with a mobile page. Please describe
the current page. Your description should include the content of the page and its general
functionality. Please note that the descriptions you generate should be of moderate length.
Your page description should match the actual image.

2. Action Thought Annotation. **QUERY**: task, **ACTION HISTORY**: To proceed
with the query, your past actions include: action history, **NEXT ACTION**: This is
the next action you need to take: coat action, **TASK**: Given the screen and the above
information, you have three tasks to do. First, you have to analyze what you have done.
Second, you should analyze the screen for relevant details that might pertain to the given
query. This includes checking for specific applications, icons, or buttons that are visible
and any information or results that are currently displayed on the screen. Tip: If the screen
does not have the information you need, you can scroll left or scroll up to try to get the
information. Don’t answer this logic question by saying that because the provided **NEXT
ACTION** is..., therefore, the next action is... You need to think carefully on your own. You
must answer the question with suitable lengths and the following format: ’Think: I have
done..., Current screen is..., I need to... So the next action is ...’ Your final action should be
the same as the NEXT ACTION above.

3. Q&A Annotation. Your goal is to draw inspiration from the given images and image
description information to create multiple new questions and answers. This new creation
is closely related to the given image and information, but the answers involved should be
directly derived from the given information, because UI positions and UI text are one-to-one
correspondence. Specifically, you should construct the following three types of questions
and answers, a total of 15: 1. the function of some elements in the image. 2. Grounding
questions and answers (the coordinates and approximate location of the target in the image).
3. Partial detailed information questions and answers (the structural relationship between
multiple elements, type, style, etc.). Please try to keep your questions and answers diverse
and informative, and ignore the message in the device status bar. Here is the information
related to the image: UI positions: {ui positions}, UI text: {ui text}, coat screen desc:
{coat screen desc}, Please provide the following information in JSON format with the key
questions and answers, and Don’t add annotation parsing:
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Figure 5: The left figure shows an example of unstable annotation preferences in AMEX, while the
right figure presents the proportion of this type of annotation.

E HUMAN ANNOTATION

SoTA Model Cost: We use GPT-4o for annotation, which is priced at 4 USD per 1M input tokens
and 16 USD per 1M output tokens. As shown in Appendix B (Instruction Evolution Prompts), each
image has a resolution of 1080 × 2440. The input prompt is approximately 2K tokens, and the output
is around 0.5K tokens, resulting in a per-page annotation cost of 0.008 USD (input) + 0.004 USD
(output) = 0.012 USD. Given that the Android in the Zoo dataset [1] contains around 18,000 pages,
the total annotation cost is approximately 200 USD.

Human Verification: Human verification is used to identify cases where the model produces incorrect
thoughts due to being forced to align with the golden action. As shown in following table, some
initial annotations contain template-like phrases (e.g., “Since”, “annotation”) and mention multiple
possible actions. These mistakes often happen when the model tries to justify a given action even if it
doesn’t match the actual screen.

The bolded text in following Table highlights common errors. To address this, we regenerated the
prompts and applied automatic filtering based on specific tokens, which helps reduce the need for
manual work.

Before Human Verification: "coat_action_think": "Reason for the Action: - To find and compare
prices, the user needs to locate similar products. - Swiping up or scrolling down is a logical step to
explore further information or discover additional options, as apps like Etsy often display "similar
items" or "recommended products" below the primary product listing. - This action aligns with
typical app design patterns where related items or comparison options are placed further down the
page. 4. Logical Derivation of Action: - Since the task specifies comparing prices of similar items,
and the current screen does not explicitly list such items, the user must navigate downward to uncover
more options. - The instruction to "swipe up" (or scroll down) matches the action type ("action_type":
"scroll", "direction""down"), indicating an attempt to reveal additional content or sections. 5. Since
the next action swiping down matches the annotation, the next action is swiping down.

After Human Verification: Think: I have previously navigated "Back," which indicates that I may
have returned to the previous screen or listing, likely as part of exploring options related to the query
for comparing prices of men’s athletic shoes. Current screen is displaying detailed information about
a product on the Etsy app. This includes item details such as "Handmade item," "Made to order," and
shipping information. There are also options to "Follow shop," "Message seller," and "Add to cart,"
but it does not appear to directly show other comparable items or prices for similar men’s athletic
shoes.I need to scroll further down on this screen to potentially uncover additional details, such as
related products, a comparison section, or other useful information for the query. So the Next action
is Scroll down."
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Table 9: Data size and training time across iterative rounds.

Standard SFT Round 1 Round 2 Round 3 Round 4 Round 5

Data Samples 63,158 156,418 34,010 28,491 17,027 17,780
Time (hours) 2.8 7.9 2.0 1.7 1.0 1.0

F ITERATIVE SAMPLING IN THE COAT-TREE

As shown in Figure 4, before instruction evolution, the distribution is highly concentrated, with only
8 points exceeding 1000 (including 3 points above 1200). After instruction evolution, the distribution
becomes more balanced, with 20 points exceeding 1000 (including 2 points above 1500).

Figure 6: An example from AITZ demonstrates that when the task and image are the same, multiple
actions may navigate to the same page.

Potential correct space ratio. The proportion of |α|+ |β| represents the potential correct space on
the training data, and the change of this metric can clearly express the agent’s ability to repair and
reason out the correct process based on the correct answer.

G COMPUTATIONAL COST OF IPL ACROSS ITERATIONS

As shown in Table 9, while the first IPL iteration incurs higher cost due to the larger volume of
preference data, subsequent iterations are significantly lighter. The training time per round decreases
rapidly, as the model generates fewer low-quality samples and requires fewer updates. In fact, by
the third iteration, the training time becomes comparable to or even lower than the initial supervised
fine-tuning (SFT) stage.

Therefore, the overall compute overhead of IPL remains moderate and manageable, especially
considering its performance gains. Compared to SFT, IPL introduces only a modest increase in
compute, but brings substantial improvements in reasoning and generalization.
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Instruction : Install app \”Spotify\”

Page Description (0.325) Page Description (0.7) Page Description (1)

This is a screenshot of a smartphone 
home screen displaying a clean and 
simple layout. At the top, the status bar 
shows the time as 5:01 and various icons 
indicating network signal, Wi-Fi 
connection, and battery status. Below 
the status bar, there is a search bar for 
quick web searches. The main part of 
the screen shows a grid of app icons, 
including the Google, Gmail, Google 
Photos, and YouTube, along with a dock 
at the bottom containing the Phone app, 
Messages, Google Chrome, and Google 
Maps. The top of the screen has a menu 
with options for \"Home settings,\" 
\"Widgets,\" and \"Wallpapers,\" 
suggesting quick access to these 
settings.

This is a screenshot of a smartphone 
home screen displaying a clean and 
simple layout. At the top, the status 
bar shows the time as 5:51 and various 
icons indicating network strength, 
battery life, and more. Below the 
status bar, there's a search bar for 
quick web searches. The main part of 
the screen shows a grid of app icons, 
including the Play Store, Gmail, Phone, 
and YouTube, suggesting a focus on 
communication, media, and 
entertainment. There are also three 
quick settings options available: 
\"Home settings,\" \"Widgets,\" and 
\"Wallpapers,\" which likely provide 
quick access to customization options 
for the home screen. 

This is a screenshot of a smartphone 
home screen displaying a clean and 
simple layout. At the top, the status 
bar shows the time as 5:51 and various 
icons indicating network signal, Wi-Fi, 
and battery status. Below the status 
bar, there's a search bar for Google. 
The main part of the screen features 
a dock with five app icons: Play Store, 
Gmail, Phone, Chrome, and YouTube, 
and above the dock, there are three 
quick settings options: \"Home 
settings,\" \"Widgets,\" and 
\"Wallpapers.\" The navigation bar at 
the bottom includes a back button, 
home button, and a recent apps button 
for multitasking.

Ground Truth: Click on the 
Play Store app located at the 
left and lower middle part of 
the screen.

Action Thought (0.55)

The Play Store app is already 
open, indicating that the next 
step is to search for and install 
the \"Spotify\" app. Possible 
actions are to tap on the Play 
Store icon to continue with the 
installation process.

Click on the 
Play Store app 
located at the 
left and lower 
middle part of 
the screen.

CoaT Action (1)

Click on the 
Play Store icon 
located at the 
middle and 
lower middle 
part.

CoaT Action (0.1)

The Play Store icon is visible on 
the dock, which is relevant for 
the given query to install Spotify. 
Possible actions are to tap on the 
Play Store icon to open it and 
then use the search function 
within the Play Store to find and 
install the Spotify app.

The Play Store icon is visible on 
the dock, which is relevant to the 
given query of installing Spotify. 
Possible actions are to tap on the 
Play Store icon to open it and then 
use the search function within the 
Play Store to find and install 
Spotify.

Action Thought (0.1)

The Play Store app is already 
open, and the next logical step is 
to search for and install the 
\"Spotify\" app. Possible actions 
are to use the search bar at the 
bottom of the screen to type in 
\"Spotify\" and proceed with 
the installation process.",

Click on the 
\"Spotify\" app 
located at the 
lower middle left 
part of the 
screen.

Click on the 
\"Spotify\"
app located at 
the lower 
right.

CoaT Action (0.1)

Action Thought (1) Action Thought (1)

Click on the 
Play Store 
app located 
at the lower 
left.

Click on the 
Play Store app 
located at the 
lower left part 
of the screen.

Click on the Play 
Store app located 
at the left and 
lower middle part 
of the screen.

Click on the Play 
Store app

CoaT Action (1) CoaT Action (1) CoaT Action (1) CoaT Action (1)CoaT Action (0.1)

Groundning (1) Groundning (1) Groundning (0.1) Groundning (0.1) Groundning (1) Groundning (1)

(174,604),(194,624) (158,623),(178,643) (386,664),(406,684) (410,668),(430,688) (165,618),(185,638) (155,623),(175,643)

Groundning (1) Groundning (1)

(132,579),(152,599)(161,584),(181,604)

Figure 7: A sampling tree from AITZ demonstrates how the value is calculated.

H CASE STUDY

Unstable annotation preferences. As shown in Figure 5, the left section illustrates two different
annotation preferences when searching for an app from the Home Page: SCROLL UP and SCROLL
LEFT, leading to different destination pages. The right part shows the overall preference distribution
when annotators need to find an app. In rare cases, the annotation involves clicking on Google
Play Store to perform a search. This phenomenon is quite common because, fundamentally, the
task completion paths for a UI Agent are diverse. This is also the key difference between online
evaluation and offline data evaluation. From this, we observe that RL training on data with unstable
preferences performs worse than SFT (e.g., AITZ SCROLL). This is because the DPO pair training
method inherently attempts to correct errors in sampled preferences. As a result, the agent oscillates
between two decisions when encountering the same GUI and instruction, failing to achieve consistent
alignment.

Action Equivalence. Unlike Unstable Annotation Preferences, where different actions lead to
different but equivalent pages, the issue here arises from annotators’ random labeling habits in the
training data, preventing the model from learning a consistent preference. Action Equivalence refers
to the phenomenon where multiple actions on the same page can lead to the target page. However,
since only one action is annotated as correct, other valid actions are mistakenly treated as incorrect. As
shown in Figure 6, after entering a search query, clicking on a suggested item in the recommendation
bar, and pressing the Enter key on the keyboard produce the same effect. Similarly, when navigating
back, clicking the on-screen back button and pressing the hardware back button yield the same
outcome.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Thinking-Level Sampling. As shown in Figure 7, unlike mathematical reasoning, the CoaT process
may not exhibit clear logical or computational errors. For a given action, a sampling CoaT data
may produce hallucinations (Page Description) due to insufficient detail in the page description or
fabricated elements; generate repetitive thoughts (Action Thought) due to neglecting action history;
describe the wrong relative position of the correct element (CoaT Action); or misgrounding an
element (Grounding), which is then classified as a negative sample. At the same time, outputs with
more detailed and accurate descriptions, diversified thoughts, and different ways of describing the
same widget are classified as positive samples. Negative examples may be disadvantageous compared
to positive examples, for example, because the description of the page is not detailed enough or the
positioning of the elements is not accurate enough. At the same time, the wrong process may also
give the correct result, but this is a very rare case. In this example, negative samples are generated
due to the following three reasons: (1) Rough page description: The page contains eight app
icons, but the agent’s description includes only four apps: Play Store, Gmail, Phone, and YouTube;
(2) Hallucinated Thought: The agent is unclear about its current page location. In reality, it is
on the Home page, but it mistakenly believes it is in the Play Store (e.g., ”The Play Store app is
already open"). (3) Fabricated Position and Elements: The agent generates the action "Click on the
’Spotify’ app", even though there is no Spotify icon on the current page. This hallucination may stem
from the instruction. Additionally, the Play Store icon should be located at the lower left part of the
screen, but the agent incorrectly describes it as being in the middle and lower middle part.

I USAGE OF LLM STATEMENT

This paper utilized an LLM to improve the clarity and fluency of the text.
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