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ABSTRACT

Most traditional causal discovery methods assume that all task-relevant variables
are observed, an assumption often violated in practice. Although some recent
works allow the presence of latent variables, they typically assume the absence of
certain special causal relations to ensure a degree of simplicity, which might also
be invalid in real-world scenarios. This paper tackles a challenging and important
setting where latent and observed variables are interconnected through complex
causal relations. Under an assumption ensuring that latent variables leave ade-
quate footprints in observed variables, we develop a series of novel theoretical
results, leading to an efficient causal discovery algorithm which is the first one
capable of handling the setting with both latent variables and complex relations
within polynomial time. Our algorithm first sequentially identifies latent variables
from leaves to roots and then sequentially infers causal relations from roots to
leaves. Moreover, we prove trustworthiness of our algorithm, meaning that when
the assumption is invalid, it can raise an error rather than draw an incorrect causal
conclusion, thus preventing potential damage to downstream tasks. We demon-
strate the efficacy of our algorithm through experiments. Our work significantly
enhances efficiency and reliability of causal discovery in complex systems.

1 INTRODUCTION

O1 L

O3O2

Figure 1: A causal struc-
ture violating all of the
purity, measurement, and
no-triangle assumptions.

Causality is a fundamental notion in natural and social sciences, which
plays a crucial role in explanation, prediction, decision making and con-
trol (Zhang et al., 2018). Uncovering causality through analysis of ob-
servational data, commonly known as causal discovery, has garnered
significant attention. Most traditional causal discovery methods (Spirtes
& Glymour, 1991; Chickering, 2002; Shimizu et al., 2006) assume that
all task-relevant variables are observed. However, we often fail to col-
lect and measure all of them in practice, making latent variables ubiqui-
tous. Although some previous works such as FCI (Spirtes et al., 1995)
allow the presence of latent variables, their results are not informative of the number of latent vari-
ables and their causal relations. By utilizing linear models, some recent works can represent la-
tent variables and their causal relations explicitly in their results. However, they often assume the
absence of certain special causal relations to ensure a degree of simplicity, including the purity
assumption (Cai et al., 2019; Xie et al., 2020) positing the absence of edges between observed vari-
ables, the measurement assumption (Silva et al., 2006; Kummerfeld & Ramsey, 2016) positing the
absence of edges from observed variables to latent ones, and the no-triangle assumption (Huang
et al., 2022; Dong et al., 2024) positing the absence of triangles formed by three mutually adjacent
variables. Unfortunately, these assumptions are invalid in many real-world scenarios. Consider the
causal structure shown as Fig. 1 where 𝐿 and 𝑂 respectively denote latent and observed variables.
Clearly, 𝑂2 → 𝑂3 violates the purity assumption, 𝑂1 → 𝐿 violates the measurement assumption,
and the triangle composed of 𝐿,𝑂2, 𝑂3 violates the no-triangle assumption. This structure can be
found in business contexts, where 𝑂1, 𝐿, 𝑂2, 𝑂3 refer to advertisement spending, consumer interest,
product views, and product sales respectively. In this paper, given observational data generated by
a linear non-Gaussian acyclic model (LiNGAM) with latent variables, we aim to correctly identify
the underlying complete causal structure, which is a directed acyclic graph (DAG) that explicitly
represents both observed and latent variables along with their causal relations, in an important and
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challenging setting where latent and observed variables are interconnected through complex causal
relations, where “complex” means that none of the above three assumptions is employed.

Adams et al. (2021) first investigate the setting with both latent variables and complex relations.
They develop a causal discovery algorithm under the assumption which is exactly sufficient and
necessary for identifiability of LiNGAM with latent variables, but it requires the number of latent
variables as prior knowledge and lacks robustness, hence is not advisable in practice. Subsequently,
Jin et al. (2024) introduce a stronger assumption that latent variables have pure children, ensuring
latent variables leave adequate footprints in observed variables. Under this assumption, they pro-
pose the first practical algorithm capable of handling this challenging and important setting, which
recovers the causal graph in a bottom-up manner, progressing from leaves to roots. Unfortunately,
its has exponential time complexity with respect to the number of variables, substantially limiting
its applicability. In this paper, under a similar assumption also involving pure children, we propose
an efficient algorithm with only cubic time complexity. Our algorithm follows a bottom-up then
top-down pattern. In stage 1, it sequentially identifies latent variables through their pure children,
progressing from leaves to roots. In stage 2, for variables not recognized as others’ pure children in
stage 1, it sequentially infers their causal relations, progressing from roots to leaves.

As mentioned above, both Jin et al. (2024) and we both make assumptions involving pure children
to enable a practical causal discovery algorithm. In fact, the pure children assumption is also used
in many previous works allowing the presence of latent variables but not complex relations (Silva
et al., 2006; Cai et al., 2019; Xie et al., 2020; Huang et al., 2022; Dong et al., 2024). However,
no existing study can reliably verify the validity of this assumption, leaving no guarantee that their
recovered causal graph is correct, which could be potentially harmful in practical applications. For
instance, in financial markets, a plausible but incorrect causal conclusion might mislead investors to
make poor investment choices and cause significant financial losses. To overcome this limitation,
we additionally prove trustworthiness of our algorithm, meaning that it can raise an error rather than
return an incorrect causal structure when the pure children assumption is invalid. Specifically, if the
assumption is violated, we prove at the end of stage 1, there exists an unidentified latent variable
or an identified latent variable whose recognized pure children are not actually its pure children. In
stage 2, this hidden risk will be triggered, prompting the error signal.

The major innovations of our work are summarized as follows.
• We investigate an understudied setting in causal discovery where latent and observed variables

are interconnected through complex causal relations, which is important and challenging.
• Under a pure children assumption, we develop a series of novel theoretical results, leading to

an efficient causal discovery algorithm. This is the first one capable of handling the setting with
latent variables and complex relations within polynomial time.

• We prove trustworthiness of our algorithm, meaning that when the pure children assumption
is invalid, it can raise an error rather than return an incorrect result, thus preventing potential
damage to downstream tasks. To the best of our knowledge, there is a lack of similar results in
the literature of causal discovery with latent variables.

In summary, our work significantly enhances efficiency and reliability of causal discovery in com-
plex systems. It may both inspire further research in causal discovery and benefit research in natural
and social sciences. Due to space limit, we defer detailed discussion on related works to App. A.

2 PRELIMINARY

We focus on the linear non-Gaussian acyclic model (LiNGAM) with latent variables whose graph
structure G0 is a DAG. Its vertex set is V0 = L ∪ O0 where L and O0 respectively denote the set of
latent and observed variables. We augment G0 to G by creating two children for every 𝑂 ∈ O0, each
of which is 𝑂 plus an independent non-Gaussian noise. We denote the set of such created variables
by O1

1 and let O = O0 ∪ O1, V = L ∪ O. Trivially, identifying G0 is equivalent to identifying G.

1While the values of observed variables are directly accessible for causal discovery, the causal relations of
latent variables can only be inferred indirectly, e.g., through their pure children (Def. 1). By introducing O1
to create pure children for each observed variable, we can uniformly handle both types of variables through
analyzing their pure children, thereby eliminating the need to repeatedly distinguish between treatments of
latent and observed variables and keeping our core methodology clear.
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(a) G0: L = {𝐿1, ..., 𝐿4},O0 = {𝑂1, ..., 𝑂16}.
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16}.

Figure 2: An illustrative example of augmenting (a) G0 to (b) G.

An example is shown as Fig. 2. Because of the linearity, each variable 𝑉𝑖 ∈ V follows

𝑉𝑖 =
∑︁
𝑉𝑗 ∈V

𝑎𝑖 𝑗𝑉 𝑗 + 𝜖𝑉𝑖
, (1)

where 𝜖𝑉𝑖
refers to an exogenous noise. All exogenous noises have non-Gaussian distributions and

are independent of each other. 𝑎𝑖 𝑗 ≠ 0 iff 𝑉 𝑗 is a parent of 𝑉𝑖 . Eq. (1) can also be written as

𝑉𝑖 =
∑︁
𝑉𝑗 ∈V

𝑚𝑖 𝑗𝜖𝑉𝑗
. (2)

where 𝑀 = (𝐼 − 𝐴)−1 with 𝑀 and 𝐴 being matrices composed of 𝑚𝑖 𝑗 and 𝑎𝑖 𝑗 respectively. By
convention, we assume the distribution over V is both Markov and rank-faithful (see Asmp. 3 in
App. C) to G. Given 𝑉 ∈ V, we denote its parents, children, neighbors, ancestors, and descen-
dants by Pa(𝑉),Ch(𝑉),Ne(𝑉),An(𝑉), and De(𝑉). Particularly, a variable’s ancestors/descendants
do not include itself. We call a variable’s ancestors/descendants plus itself its generalized ances-
tors/descendants, denoted by GAn(𝑉) and GDe(𝑉). We abbreviate

⋃
𝑉∈V′ Pa(𝑉) to

⋃
Pa(V′).

3 EFFICIENT CAUSAL DISCOVERY

In this section, we develop a series of novel theoretical results under Asmp. 1, leading to an efficient
causal discovery algorithm with only cubic time complexity.
Definition 1. (Pure child) We say 𝑉2 is a pure child of 𝑉1, denoted by 𝑉2 ∈ PCh(𝑉1), if (i) Pa(𝑉2) =
{𝑉1} and (ii) ∀𝑉 ∈ De(𝑉2), |Pa(𝑉) | = 1.

Example. In Fig. 2(a), PChG0 (𝐿2) = {𝑂7, 𝑂8, 𝑂9}. 𝑂11 ∉ PChG0 (𝐿2) as PaG0 (𝑂11) =

{𝐿2, 𝑂10} ≠ {𝐿2}. 𝑂10 ∉ PChG0 (𝐿2) as 𝑂11 ∈ DeG0 (𝑂10) but |PaG0 (𝑂11) | = 2.

Remark. This concept has been widely used in related works, but there is no consensus on its exact
definition. For instance, a pure child in Silva et al. (2006); Kummerfeld & Ramsey (2016); Xie
et al. (2020); Li et al. (2024) must be an observed variable with no child, which is more restrictive
than ours. In Jin et al. (2024), a variable’s pure child can have a descendant with multiple parents
provided that these parents do not include the variable itself, which is less restrictive than ours.

Assumption 1. ∀𝐿 ∈ L, |PChG0 (𝐿) | ≥ 2 and |NeG0 (𝐿) | ≥ 3.

Example. The graph in Fig. 2(a) satisfies this assumption, where PChG0 (𝐿1) = {𝐿3, 𝐿4} and
NeG0 (𝐿1) = {𝐿2, 𝐿3, 𝐿4, 𝑂2, 𝑂6}.
Remark. This assumption allows each latent variable to leave footprints in observed variables ad-
equate for identification. It naturally holds in the scenarios with many directly measured variables
such as topic model (Arora et al., 2013). Similar assumptions involving pure children were also
made in many previous works (Silva et al., 2006; Kummerfeld & Ramsey, 2016; Cai et al., 2019;
Xie et al., 2020; Zeng et al., 2021; Chen et al., 2022; Xie et al., 2022; Huang et al., 2022; Chen
et al., 2023; Dong et al., 2024; Jin et al., 2024; Xie et al., 2024).

3.1 STAGE 1: IDENTIFYING LATENT VARIABLES

§ High-level Overview. In stage 1, we identify latent variables through their pure children. Con-
cretely, we initialize an active set as O0. First, we locate some variables that are pure children
of others from the active set (Thms. 1 and 2). Second, we identify these pure children’s parents
(Thm. 3). Third, we update the active set by replacing these pure children with their parents. Re-
peating this process until the active set cannot be updated, all latent variables can be identified finally
(Thm. 4). Clearly, we follow a bottom-up pattern in stage 1, progressing from leaves to roots.

3
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Figure 3: Left: Initial H1, where V𝑐 and V𝑝 are marked in red and black respectively; Right: Initial
H2, which is exactly G0, where V𝑐 and V 𝑓 are marked in red and black respectively.

§ Initialization. During stage 1, we maintain two sets of variables V𝑐,V𝑝 and a graph H1 over
V𝑐 ∪V𝑝 . Initially, we let V𝑐,V𝑝 be O0,O1 respectively and let 𝑉𝑖 ∈ PaH1 (𝑉 𝑗 ) iff 𝑉𝑖 ∈ O0, 𝑉 𝑗 ∈ O1,
and 𝑉𝑖 ∈ PaG (𝑉 𝑗 ). For G shown as Fig. 2(b), the initial H1 is displayed on the left of Fig. 3. Subse-
quently, V𝑐,V𝑝 , and H1 will be updated following the rules described later in § Update. Intuitively,
V𝑐 consists of identified variables whose causal relations (i.e., both incoming and outgoing edges of
the variable in the underlying causal graph) are not fully identified, V𝑝 consists of identified vari-
ables whose causal relations are fully identified, and H1 consists of all identified causal relations.
Considering the initial case, such intuitions become particularly apparent. Clearly, Cond. 1 holds
initially, and we will show later Cond. 1 always holds throughout stage 1.

Condition 1. (1) ∀𝑉 ∈ V𝑝 , |PaH1 (𝑉) | = 1 and ChH1 (𝑉) = PChG (𝑉); (2) ∀𝑉 ∈ V𝑐, PaH1 (𝑉) = ∅,
|ChH1 (𝑉) | ≥ 2, and ChH1 (𝑉) ⊂ PChG (𝑉).

For ease of exposition, we denote V\(V𝑐 ∪V𝑝) by V 𝑓 and the induced subgraph of G over V𝑐 ∪V 𝑓

by H2. For G shown as Fig. 2(b), the initial V 𝑓 is exactly L and the initial H2 is displayed on the
right of Fig. 3, which is exactly G0. Intuitively, while V𝑐∪V𝑝 consists of all identified variables, V 𝑓

consists of all unidentified variables. While H1 consists of all identified causal relations, H2 consists
of all unidentified causal relations. Considering the initial case, such intuitions become apparent.

§ Locating Pure Children. Ideally, we want to locate pure children in a single step, but this is
impossible because of the existence of complex causal relations. Instead, we first locate identifiable
pairs (Def. 2) from V𝑐 (Thm. 1) and then locate pure children from these identifiable pairs (Thm. 2).
Definition 2. (Identifiable pair, IP) We say {𝑉1, 𝑉2} ⊂ V𝑐 is an IP, denoted by {𝑉1, 𝑉2} ∈ S, if

(1) PaH2 (𝑉2) = {𝑉1}, ChH2 (𝑉2) = ∅, and NeH2 (𝑉1)\{𝑉2} ≠ ∅. We denote this by {𝑉1, 𝑉2} ∈ S1; or
(2) ∃𝑉0 ∈ V𝑐 ∪ V 𝑓 \{𝑉1, 𝑉2} s.t. PaH2 (𝑉1) = PaH2 (𝑉2) = {𝑉0}, ChH2 (𝑉1) = ChH2 (𝑉2) = ∅, and

𝑉0 ∈ V𝑐 or NeH2 (𝑉0)\{𝑉1, 𝑉2} ≠ ∅. We denote this by {𝑉1, 𝑉2} ∈ S2; or
(3) ∃𝑉0 ∈ V𝑐 ∪ V 𝑓 \{𝑉1, 𝑉2} s.t. PaH2 (𝑉1) = {𝑉0}, ChH2 (𝑉1) = {𝑉2}, PaH2 (𝑉2) = {𝑉0, 𝑉1}, and

ChH2 (𝑉2) = ∅. We denote this by {𝑉1, 𝑉2} ∈ S3.

Example. In the right sub-figure of Fig. 3, S1 = {{𝑂1, 𝑂3}, {𝑂1, 𝑂4}}, S2 = {{𝑂3, 𝑂4}, {𝑂7, 𝑂8},
{𝑂7, 𝑂9}, {𝑂8, 𝑂9}{𝑂12, 𝑂13}, {𝑂12, 𝑂14}, {𝑂13, 𝑂14}, {𝑂15, 𝑂16}}, S3 = {{𝑂10, 𝑂11}}.
Intuition. Although H2 is unknown, we will show later that identifiable pairs can still be located
from V𝑐 via statistical analysis (Thm. 1), this is what “identifiable” means.

The connection between identifiable pairs and pure children are as follows:
(1) If {𝑉1, 𝑉2} ∈ S1, 𝑉2 is 𝑉1’s pure child or 𝑉1 is 𝑉2’s pure child.
(2) If {𝑉1, 𝑉2} ∈ S2, 𝑉1 and 𝑉2 are both pure children of 𝑉0.
(3) If {𝑉1, 𝑉2} ∈ S3, neither 𝑉1 nor 𝑉2 is a pure child of any other variable.

Definition 3. (Pseudo-residual (Cai et al., 2019)) Given three variables𝑉1, 𝑉2, 𝑉3 s.t. Cov(𝑉2, 𝑉3) ≠
0, the pseudo-residual of 𝑉1, 𝑉2 relative to 𝑉3 is defined as

R(𝑉1, 𝑉2 |𝑉3) = 𝑉1 −
Cov(𝑉1, 𝑉3)
Cov(𝑉2, 𝑉3)

𝑉2. (3)

Intuition. Pseudo-residual is a simple variant of the conventional residual. The former reduces
to the latter when 𝑉2 = 𝑉3. Before Cai et al. (2019), similar concepts have already been used by
earlier works (Drton & Richardson, 2004; Chen et al., 2017).

Theorem 1. ∀{𝑉𝑖 , 𝑉 𝑗 } ⊂ V𝑐, {𝑉𝑖 , 𝑉 𝑗 } ∈ S iff there exists 𝑉𝑘 ∈ V𝑐\{𝑉𝑖 , 𝑉 𝑗 } s.t. Cov(𝑉𝑖 , 𝑉 𝑗 )
Cov(𝑉𝑖 , 𝑉𝑘)Cov(𝑉 𝑗 , 𝑉𝑘) ≠ 0 and for each such 𝑉𝑘 , R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑘) ⫫ V𝑐\ {𝑉𝑖 , 𝑉 𝑗 }.
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Figure 4: Left: H1 after the first iteration, where V𝑐 and V𝑝 are marked in red and black respectively;
Right: H2 after the first iteration, where V𝑐 and V 𝑓 are marked in red and black respectively.
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Figure 5: Left: H1 at the end of stage 1, where V𝑐 and V𝑝 are marked in red and black respectively;
Right: H2 at the end of stage 1, where V𝑐 and V 𝑓 are marked in red and black respectively.

Remark. This theorem provides a method for locating identifiable pairs from V𝑐 via statistical
analysis. In principle, we need to do independence test for each 𝑉𝑘 . But in fact, it is sufficient to
only consider any single 𝑉𝑘 (see Prop. 1 in App. C.2.1), reducing the time complexity.

By the way, this theorem significantly differs from Thm. 2 in Cai et al. (2019) although they both
involve pseudo-residuals. Specifically, with the measurement assumption, the purity assumption,
and an implicit assumption that each observe variable has only one parent, the latter implies that
observed pure children can be located by independence involving pseudo-residuals readily. In con-
trast, without these assumptions, the former indicates that with both correlations and independence
involving pseudo-residuals, we can only locate identifiable pairs.

Definition 4. (Quintuple constraint) We say (𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5) satisfies the quintuple constraint if
there exist 𝛼, 𝛽 s.t. 𝑉1 + 𝛼𝑉3 + 𝛽𝑉4 ⫫ 𝑉2 and Cov(𝑉1 + 𝛼𝑉3 + 𝛽𝑉4, 𝑉5) = 0.

Theorem 2. ∀{𝑉𝑖 , 𝑉 𝑗 } ∈ S, let {𝑉𝑖1 , 𝑉𝑖2 } ⊂ ChH1 (𝑉𝑖).
(1) R(𝑉𝑖1 , 𝑉 𝑗 |𝑉𝑖2 ) ⫫ 𝑉𝑖2 iff {𝑉𝑖 , 𝑉 𝑗 } ∈ S1 and 𝑉𝑖 ∈ PaG (𝑉 𝑗 ).
(2) Suppose {𝑉𝑖 , 𝑉 𝑗 } ∉ S1, ∃{𝑉𝑖′ , 𝑉 𝑗′ } ∈ S\{{𝑉𝑖 , 𝑉 𝑗 }} s.t. {𝑉𝑖′ , 𝑉 𝑗′ } ∩ {𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ only if (but not

if) {𝑉𝑖 , 𝑉 𝑗 } ∈ S2.

(3) Suppose {𝑉𝑖 , 𝑉 𝑗 } ∉ S1, ∃{𝑉𝑘 , 𝑉𝑙} ⊂ ⋃
ChH1 (V𝑐\{𝑉𝑖 , 𝑉 𝑗 }) s.t. (𝑉𝑖1 , 𝑉𝑖2 , 𝑉 𝑗 , 𝑉𝑘 , 𝑉𝑙) satisfies the

quintuple constraint iff {𝑉𝑖 , 𝑉 𝑗 } ∈ S3 and 𝑉𝑖 ∈ PaG (𝑉 𝑗 ).

Remark. This theorem provides a method to divide S into S1, S2, S3 via statistical analysis, that
is, we can locate pure children from identifiable pairs. Given {𝑉𝑖 , 𝑉 𝑗 } ∈ S, we first check whether
{𝑉𝑖 , 𝑉 𝑗 } ∈ S1 based on (1). If it is and 𝑉𝑖 ∈ PaG (𝑉 𝑗 ), then 𝑉 𝑗 is 𝑉𝑖’s pure child. Otherwise, we
further check whether {𝑉𝑖 , 𝑉 𝑗 } ∈ S2 based on (2,3). If it is, then both 𝑉𝑖 and 𝑉 𝑗 are pure children
of another unknown variable; otherwise, they are not.

§ Identifying Pure Children’s Parents. As mentioned in Rem. of Thm. 2, for any pair in S2, its
parent is unknown. To avoid duplicate identification of latent variables, we need to check whether its
parent is in V𝑐 or V 𝑓 (Thm. 3(1)) and whether it shares the parent with other pairs in S2 (Thm. 3(2)).

Theorem 3. (1) ∀{𝑉𝑖 , 𝑉 𝑗 } ∈ S2,
⋂

PaG ({𝑉𝑖 , 𝑉 𝑗 }) ⊂ V𝑐 iff ∃{𝑉𝑖′ , 𝑉 𝑗′ } ∈ S1 s.t. {𝑉𝑖 , 𝑉 𝑗 }∩{𝑉𝑖′ , 𝑉 𝑗′ } ≠
∅. (2) ∀{{𝑉𝑖 , 𝑉 𝑗 }, {𝑉𝑖′ , 𝑉 𝑗′ }} ⊂ S2,

⋂
PaG ({𝑉𝑖 , 𝑉 𝑗 }) =

⋂
PaG ({𝑉𝑖′ , 𝑉 𝑗′ }) iff ∃{𝑉𝑖′′ , 𝑉 𝑗′′ } ∈ S2 s.t.

{𝑉𝑖 , 𝑉 𝑗 } ∩ {𝑉𝑖′′ , 𝑉 𝑗′′ } ≠ ∅ and {𝑉𝑖′ , 𝑉 𝑗′ } ∩ {𝑉𝑖′′ , 𝑉 𝑗′′ } ≠ ∅.

Example. In Fig. 3, an example of (1) is that {𝑉𝑖 , 𝑉 𝑗 } = {𝑂3, 𝑂4} and {𝑉𝑖′ , 𝑉 𝑗′ } = {𝑂1, 𝑂3}; an
example of (2) is that {𝑉𝑖 , 𝑉 𝑗 } = {𝑂7, 𝑂8} and {𝑉𝑖′ , 𝑉 𝑗′ } = {𝑉𝑖′′ , 𝑉 𝑗′′ } = {𝑂7, 𝑂9}.

§ Update. For pairs in S1, we move the children from V𝑐 to V𝑝 and add edges from parents to
children into H1. For pairs in S2 whose parents are in V 𝑓 rather than V𝑐, we merge multiple pairs
that share a common parent into a single set, move each set from V𝑐 to V𝑝 , create and add a new
latent variable into V𝑐 as the set’s parent, and add edges from parents to children into H1. For
initialization shown as Fig. 3, the updated result is shown as Fig. 4.
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Algorithm 1: Stage 1: Identifying latent variables (overview)
Input: Observed variables O0 and O1
Output: V𝑐, V𝑝 , and H1

1 Initializing V𝑐,V𝑝 , and H1 following § Initialization in Sec. 3.1.
2 while the current V𝑐 is not identical to the previous V𝑐 do
3 Locating identifiable pairs S from V𝑐 based on Thm. 1.
4 Locating pure children from identifiable pairs based on Thm. 2.
5 Identifying pure children’s parents based on Thm. 3.
6 Updating V𝑐, V𝑝 , and H1 following § Update in Sec. 3.1.
7 end

§ Repeating This Process. After update, Cond. 1 is still valid (see Prop. 2 in App. C.2.1). By
induction, we can repeat the above process until V𝑐 cannot be updated. Here, an additional question
emerges: how to test independence/correlation involving latent variables. For any 𝐿 ∈ V𝑐 ∪ V𝑝 , let
𝑂 be its any observed descendant in H1. With the fact implied by Cond. 1 that 𝑂 can be expressed
as scaled 𝐿 plus a noise independent of all variables except 𝐿’s descendants in H1 (this can also be
implied by Cond. 3 in Sec. 4.1), any independence/correlation in our theoretical results involving 𝐿
holds iff it holds when 𝐿 is replaced with 𝑂. Therefore, we can replace latent variables with their
any observed descendant in H1. Finally, all latent variables can be identified (Thm. 4). For G shown
as Fig. 2(b), the final result of stage 1 is shown as Fig. 5. An overview of our algorithm in stage
1 is shown as Alg. 1 while a detailed version is deferred to Alg. 3 in App. E. It has O(𝑅 |O0 |3)
complexity where 𝑅 is the number of iterations.
Theorem 4. If S1 ∪ S2 = ∅, V 𝑓 = ∅.

Remark. If both S1 and S2 are empty, then V𝑐 cannot be updated, that is, stage 1 comes to an end.
At this moment, V 𝑓 = ∅, which means that all latent variables are identified.

3.2 STAGE 2: INFERRING CAUSAL RELATIONS

§ High-level Overview. The aim of stage 2 is to infer causal relations between variables not recog-
nized as others’ pure children in stage 1, i.e., to recover H2 at the end of stage 1, when V 𝑓 = ∅ based
on Thm. 4. We initialize an active set as V𝑐 at the end of stage 1. First, we identify a root variable
in the active set (Thm. 5). Second, we estimate the root variable’s effects on others (Thm. 6). Third,
we remove the root variable from the active set and also removes its effects on others. Repeating this
process until there is no variable in the active set, we can estimate all causal effects and then recover
H2. Finally, we can obtain G by combining H1 with H2. Clearly, we follow a top-down pattern in
stage 2, progressing from roots to leaves.

§ Initialization. We denote the active set by U𝑐 and initialize it as V𝑐 at the end of stage 1. For the
sake of uniform processing, we view observed variables in U𝑐 as latent variables, and assign each
𝑉𝑖 ∈ U𝑐 with two observed surrogates 𝑋2𝑖−1 and 𝑋2𝑖 , which can be any variable in GDeH1 (𝑉𝑖1 ) ∩ O
and GDeH1 (𝑉𝑖2 ) ∩ O where {𝑉𝑖1 , 𝑉𝑖2 } ⊂ ChH1 (𝑉𝑖). Taking H1 shown on the left of Fig. 5 as an
example, two observed surrogates of 𝐿1 can be 𝑂12 and 𝑂15 while two observed surrogates of 𝑂1
can be 𝑂′

1 and 𝑂′′
1 . Clearly, Cond. 2 holds initially (𝑒′

𝑋 𝑗
= 0 for any 𝑗). we will show later Cond. 2

always holds throughout stage 2.

Condition 2. (1) ∀𝑉 ∈ U𝑐,DeH2 (𝑉) ⊂ U𝑐. (2) ∀𝑉𝑖 ∈ U𝑐, 𝑋2𝑖−1, 𝑋2𝑖 can be written as

𝑋2𝑖−1 = 𝑐𝑖1

∑︁
𝑉𝑗 ∈U𝑐

𝑚𝑖 𝑗𝜖𝑉𝑗
+ 𝑒𝑋2𝑖−1 + 𝑒′𝑋2𝑖−1

, 𝑋2𝑖 = 𝑐𝑖2

∑︁
𝑉𝑗 ∈U𝑐

𝑚𝑖 𝑗𝜖𝑉𝑗
+ 𝑒𝑋2𝑖 + 𝑒′𝑋2𝑖

, (4)

where ∀ 𝑗 , 𝑘, 𝑙, (i) 𝜖𝑉𝑗
⫫ 𝑒𝑋𝑘

⫫ 𝑒′
𝑋𝑙

, (ii) 𝑒𝑋 𝑗
⫫ 𝑒𝑋𝑘

if 𝑗 ≠ 𝑘 , and (iii) 𝑒′
𝑋2 𝑗−1

⫫ 𝑒′
𝑋2𝑘

. Without loss of
generality, we assume each 𝑐𝑖1 is positive and each 𝜖𝑉𝑗

has variance 1.

§ Identifying a Root Variable. Thm. 5 provides a method via independence tests.

Theorem 5. ∀𝑉𝑖 ∈ U𝑐, AnH2 (𝑉𝑖) ∩ U𝑐 = ∅ iff ∀𝑉 𝑗 ∈ U𝑐\{𝑉𝑖}, R(𝑋2 𝑗−1, 𝑋2𝑖−1 |𝑋2𝑖) ⫫ 𝑋2𝑖 .

§ Estimating the Root Variable’s Effects. This can be accomplished based on Thm. 6.
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Algorithm 2: Stage 2: Inferring causal relations (overview)
Input: V𝑐, V𝑝 , and H1 output by Alg. 1
Output: a complete causal structure G

1 Initialize U𝑐 following § Initialization in Sec. 3.2.
2 while U𝑐 ≠ ∅ do
3 if no variable in U𝑐 satisfies the independence condition in Thm. 5 then
4 raise error // This will not happen if Asmp. 1 is valid.
5 end
6 Identifying a root variable 𝑉𝑖 ∈ U𝑐 based on Thm. 5.
7 Estimating 𝑉𝑖’s effects on other variables in U𝑐 based on Thm. 6.
8 Removing 𝑉𝑖 from U𝑐 and updating 𝑋2 𝑗−1, 𝑋2 𝑗 for each 𝑉 𝑗 ∈ U𝑐 following Eq. (6).
9 end

10 G := H1 ∪H2 where H2 is recovered from the estimated effects.

Theorem 6. If 𝑉𝑖 ∈ U𝑐 and AnH2 (𝑉𝑖) ∩ U𝑐 = ∅, then Cov(𝑋2𝑖−1, 𝑋2𝑖) = 𝑐𝑖1𝑐𝑖2 and ∀𝑉 𝑗 ∈ U𝑐\{𝑉𝑖},

sgn(𝑚 𝑗𝑖) = sgn(
Cov(𝑋2𝑖−1, 𝑋2 𝑗 )
Cov(𝑋2 𝑗−1, 𝑋2 𝑗 )

), Cov(𝑋2𝑖−1, 𝑋2 𝑗 )Cov(𝑋2𝑖 , 𝑋2 𝑗−1) = 𝑐𝑖1𝑐𝑖2𝑐 𝑗1𝑐 𝑗2𝑚2
𝑗𝑖 . (5)

Besides, ∀𝑉 𝑗 ∈ V𝑐\U𝑐, 𝑚 𝑗𝑖 = 0.

Remark. Within the current iteration, 𝑚 𝑗𝑖 cannot be determined since 𝑐 𝑗1𝑐 𝑗2 is still unknown. At
some later iteration when𝑉 𝑗 becomes the root variable, 𝑐 𝑗1𝑐 𝑗2 is known and𝑚 𝑗𝑖 can be determined.

§ Removal. We remove the identified root variable 𝑉𝑖 from U𝑐 and eliminate its effects on
𝑋2 𝑗−1, 𝑋2 𝑗 following Eq. (6) for each 𝑉 𝑗 ∈ U𝑐.

𝑋2 𝑗−1 := R(𝑋2 𝑗−1, 𝑋2𝑖−1 |𝑋2𝑖), 𝑋2 𝑗 := 𝑋2 𝑗 . (6)

§ Repeating This Process. After removal, Cond. 2 is still valid (see Prop. 3 in App. C.2.2). By
the principal of induction, we can repeat the above process until there is no variable in U𝑐. Finally,
all causal effects can be estimated, from which H2 can be recovered following Eqs. (1) and (2).
Combining H1 with H2, we can obtain G. An overview of our algorithm in stage 2 is shown as
Alg. 2 while a detailed version is deferred to Alg. 4 in App. E. It has O(|V𝑐 |3) time complexity.

3.3 SUMMARY

Theorem 7. Suppose the observed variables are generated by a LiNGAM with latent variables
satisfying the rank-faithfulness assumption and Asmp. 1, in the limit of infinite data, our algorithm
correctly identifies the underlying complete causal structure.

4 TRUSTWORTHY CAUSAL DISCOVERY

In this section, we prove that our algorithm is trustworthy in the sense that it can raise an error
rather than return an incorrect result if Asmp. 1 is invalid. This is quite challenging since we need
to precisely characterize the behavior of our algorithm when Asmp. 1 is violated, that is, we have to
carefully examine, modify, and re-prove all theoretical results in Sec. 3 in the case without Asmp. 1.
Definition 5. (Paired pseudo-pure children) We say {𝑉2, 𝑉3} is a pair of pseudo-pure children of 𝑉1,
denoted by {𝑉2, 𝑉3} ∈ P3Ch(𝑉1), if (i)

⋂
Pa({𝑉2, 𝑉3}) = {𝑉1}, (ii)

⋃
Pa({𝑉2, 𝑉3})\{𝑉1, 𝑉2, 𝑉3} = ∅,

(iii) 𝑉2 ∈ Ne(𝑉3), and (iv) ∀𝑉 ∈ ⋃
De({𝑉2, 𝑉3})\{𝑉2, 𝑉3}, |Pa(𝑉) | = 1.

Example. In Fig. 2(a), P3Ch(𝐿2) = {{𝑂10, 𝑂11}}. In Fig. 6(a), {𝐿,𝑉2} ∉ P3Ch(𝑉1) since 𝑉4 ∈⋃
De({𝐿,𝑉2})\{𝐿,𝑉2} but |Pa(𝑉4) | = 2.

Intuition. With the edge between 𝑉2 and 𝑉3 removed, they both become pure children of 𝑉1.

Definition 6. (Pathological variable, PV) Given a latent variable 𝐿, we say a 𝐿 is a type-I PV
(I-PV) if Pa(𝐿) = {𝑉1} and Ch(𝐿) = {𝑉2, 𝑉3, 𝑉4} where Pa(𝑉2) = {𝑉1, 𝐿}, |Pa(𝑉) | = 1 for each
𝑉 ∈ De(𝑉2), and P3Ch(𝐿) = {{𝑉3, 𝑉4}}. We say 𝐿 is a type-II PV (II-PV) if Pa(𝐿) = ∅, Ch(𝐿) =
{𝑉1, 𝑉2, 𝑉3, 𝑉4}, and P3Ch(𝐿) = {{𝑉1, 𝑉2}, {𝑉3, 𝑉4}}. 𝐿 is a PV if it is either a I-PV or a II-PV.
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V4V3

L

V2

V1

(a)

L

V3V2V1 V4

(b)
Figure 6: Illustration of (a) I-PV and (b) II-PV.

Remark. If a I-PV shown as Fig. 6(a) ex-
ists in G0, running our algorithm, there might
be 𝑉1 ∈ V𝑐 and ChH1 (𝑉1) = {𝐿,𝑉2} some-
time; if a II-PV shown as Fig. 6(b) exists
in G0, running our algorithm, there might be
𝐿 ∈ V𝑐 and ChH1 (𝐿) = {𝑉1, 𝑉2} sometime. In both cases, there exists 𝑉 ∈ V𝑐 s.t. neither
ChH1 (𝑉) ⊂ PChG (𝑉) nor {ChH1 (𝑉)} = P3ChG (𝑉).
A pathological variable must satisfy many restrictive conditions, including but not limited to (1) it
is a latent variable; (2) it has just the right number of parents and children; (3) its each descendant
has the right number of parents.

Assumption 2. (1) ∀𝐿 ∈ L, 𝑉 ∈ V0\{𝐿}, ChG0 (𝐿) ⊄ ChG0 (𝑉) ∪ {𝑉}. (2) ∀𝑉 ∈ V0, ChG0 (𝑉) is the
unique minimal bottleneck (see Def. 8 in App. C.3) from ChG0 (𝑉) to O0. (3) ∀𝐿 ∈ L, 𝐿 is not a PV.

O3O2O1

L1 L2

(a)
O3O2O1

L1

(b)

Figure 7: The observational distribution gener-
ated by (a) which violates Asmp. 2(1) can also
be explained by (b) which satisfies Asmp. 1.

Remark. Adams et al. (2021) have proven that
(1) and (2) are both necessary for identifiability,
implying that it might be unreasonable to expect
trustworthiness without them. For instance, sup-
pose G0 is shown as Fig. 7(a). It violates (1) so it
is unidentifiable, that is, its observational distri-
bution (i.e. 𝑝(𝑂1, 𝑂2, 𝑂3)) can be explained by
another causal graph, such as Fig. 7(b) satisfying
Asmp. 1, so Fig. 7(b) will be returned as the result. (3) is a technical assumption not strictly neces-
sary but significantly eases the readability and accessibility of the proof as it ensures that for every
𝑉 ∈ V𝑐, either ChH1 (𝑉) ⊂ PChG (𝑉) or {ChH1 (𝑉)} = P3ChG (𝑉). Considering that (3) is rather
weak since a PV must satisfy many restrictive conditions, it does not damage the generalizability
of our results substantially.

4.1 STAGE 1: IDENTIFYING LATENT VARIABLES

§ High-level Overview. We provide a variant for each theoretical result in Sec. 3.1. At the end of
Sec. 3.1, all latent variables are identified and each variable’s children in the reconstructed graph are
all its actual pure children. But at the end of this section, there is an unidentified latent variable or
an identified latent variable whose recognized pure children are not actually its pure children. This
potential risk will be triggered in stage 2 such that an error can be raised.

Condition 3. (1) ∀𝑉 ∈ V𝑝 , |PaH1 (𝑉) | = 1 and ChH1 (𝑉) = PChG (𝑉); (2) ∀𝑉 ∈ V𝑐, PaH1 (𝑉) = ∅
and |ChH1 (𝑉) | ≥ 2. If ChH1 (𝑉) ⊄ PChG (𝑉), then {ChH1 (𝑉)} = P3ChG (𝑉) and 𝑉 satisfies some
other conditions (more details are deferred to App. C.3.1).

Remark. (1) is identical to Cond. 1(1) and (2) is different from Cond. 1(2).

Theorem 8. ∀{𝑉𝑖 , 𝑉 𝑗 } ⊂ V𝑐, {𝑉𝑖 , 𝑉 𝑗 } ∈ S iff there exists 𝑉𝑘 ∈ V𝑐\{𝑉𝑖 , 𝑉 𝑗 } s.t. Cov(𝑉𝑖 , 𝑉 𝑗 )
Cov(𝑉𝑖 , 𝑉𝑘)Cov(𝑉 𝑗 , 𝑉𝑘) ≠ 0 and for each such 𝑉𝑘 , R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑘) ⫫ V𝑐\ {𝑉𝑖 , 𝑉 𝑗 }.

Remark. It is identical to Thm. 1, so the identifiable pairs will still be located from observed
variables correctly and exhaustively.

Theorem 9. ∀{𝑉𝑖 , 𝑉 𝑗 } ∈ S, let {𝑉𝑖1 , 𝑉𝑖2 } ⊂ ChH1 (𝑉𝑖).
(1) R(𝑉𝑖1 , 𝑉 𝑗 |𝑉𝑖2 ) ⫫ 𝑉𝑖2 iff {𝑉𝑖 , 𝑉 𝑗 } ∈ S1 and 𝑉𝑖 ∈ PaG (𝑉 𝑗 ).
(2) Suppose {𝑉𝑖 , 𝑉 𝑗 } ∉ S1, ∃{𝑉𝑖′ , 𝑉 𝑗′ } ∈ S\{{𝑉𝑖 , 𝑉 𝑗 }} s.t. {𝑉𝑖′ , 𝑉 𝑗′ } ∩ {𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ only if (but not

if) {𝑉𝑖 , 𝑉 𝑗 } ∈ S2.

(3) Suppose {𝑉𝑖 , 𝑉 𝑗 } ∉ S1, ∃{𝑉𝑘 , 𝑉𝑙} ⊂ ⋃
ChH1 (V𝑐\{𝑉𝑖 , 𝑉 𝑗 }) s.t. (𝑉𝑖1 , 𝑉𝑖2 , 𝑉 𝑗 , 𝑉𝑘 , 𝑉𝑙) satisfies the

quintuple constraint only if (but not if) {𝑉𝑖 , 𝑉 𝑗 } ∈ S3 and 𝑉𝑖 ∈ PaG (𝑉 𝑗 ).

Remark. (1,2) here are identical to (1,2) in Thm. 2 while (3) here is different from (3) in Thm. 2.
Denote the result of our algorithm at this step by S̃1, S̃2, S̃3, this means that all pairs in S1 will
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be incorporated into S̃1, all pairs in S2 will be incorporated into S̃2, but some pairs in S3 will be
incorporated into S̃2 rather than S̃3. Formally, there is S̃1 = S1, S̃2 ⊃ S2, and S̃3 ⊂ S3.

Theorem 10. (1) ∀{𝑉𝑖 , 𝑉 𝑗 } ∈ S̃2,
⋂

PaG ({𝑉𝑖 , 𝑉 𝑗 }) ⊂ V𝑐 iff ∃{𝑉𝑖′ , 𝑉 𝑗′ } ∈ S̃1 s.t. {𝑉𝑖 , 𝑉 𝑗 } ∩
{𝑉𝑖′ , 𝑉 𝑗′ } ≠ ∅. (2) ∀{{𝑉𝑖 , 𝑉 𝑗 }, {𝑉𝑖′ , 𝑉 𝑗′ }} ⊂ S̃2,

⋂
PaG ({𝑉𝑖 , 𝑉 𝑗 }) =

⋂
PaG ({𝑉𝑖′ , 𝑉 𝑗′ }) iff

∃{𝑉𝑖′′ , 𝑉 𝑗′′ } ∈ S̃2 s.t. {𝑉𝑖 , 𝑉 𝑗 } ∩ {𝑉𝑖′′ , 𝑉 𝑗′′ } ≠ ∅ and {𝑉𝑖′ , 𝑉 𝑗′ } ∩ {𝑉𝑖′′ , 𝑉 𝑗′′ } ≠ ∅.

Remark. Similar to Thm. 3, it also guarantees no duplicate identification of latent variables.

Theorem 11. If Asmp. 1 is invalid, when S̃1∪ S̃2 = ∅, V 𝑓 ≠ ∅ or there exists 𝐿 ∈ V𝑐 s.t. ChH1 (𝐿) ⊄
PChG (𝐿).
Remark. It is a variant of Thm. 4, which means that at the end of this section, there is an unidenti-
fied latent variable (e.g., Fig. 8(b)) or an identified latent variable whose recognized pure children
(i.e., children in H1) are not actually its pure children (e.g., Fig. 8(d)).

L1

O3 O7O6O5O4

L2

(a)

O3 O7O6O5O4

L2

O’3 O’’3 O’4 O’’4 O’6 O’’6O’5 O’’5 O’7 O’’7

(b)

L1

O2 O6O5O4O3

(c)

L1

O2 O6O5O4O3

O’2 O’’2 O’3 O’’3 O’5 O’’5O’4 O’’4 O’6 O’’6

(d)

Figure 8: Suppose G0 is shown as (a), H1 at the end of stage 1 is shown as (b), where V 𝑓 = {𝐿1} ≠ ∅.
Suppose G0 is shown as (c), H1 at the end of stage 1 is shown as (d), where 𝐿1 ∈ V𝑐,ChH1 (𝐿1) =
{𝑂2, 𝑂3} ⊄ PChG (𝐿1).
4.2 STAGE 2: INFERRING CAUSAL RELATIONS

§ High-level Overview. We provide a variant of Thm. 5 as Thm. 12. In Sec. 3.2, there always exists
a variable satisfying Thm. 5 at each iteration. But in this section, there exists no variable satisfying
Thm. 12 at some iteration, when an error can be raised.
Condition 4. (1) ∀𝑉 ∈ V𝑐\U𝑐,ChH1 (𝑉𝑖) ⊂ PChG (𝑉𝑖). (2) ∀𝑉 ∈ U𝑐 ∪ V 𝑓 ,DeH2 (𝑉) ⊂ U𝑐 ∪ V 𝑓 .
(3) ∀𝑉𝑖 ∈ U𝑐, 𝑋2𝑖−1, 𝑋2𝑖 can be written as

𝑋2𝑖−1 = 𝑐𝑖1

∑︁
𝑉𝑗 ∈U𝑐∪V 𝑓

𝑚𝑖 𝑗𝜖𝑉𝑗
+ 𝑒𝑋2𝑖−1 + 𝑒′𝑋2𝑖−1

, 𝑋2𝑖 = 𝑐𝑖2

∑︁
𝑉𝑗 ∈U𝑐∪V 𝑓

𝑚𝑖 𝑗𝜖𝑉𝑗
+ 𝑒𝑋2𝑖 + 𝑒′𝑋2𝑖

, (7)

where ∀ 𝑗 , 𝑘, 𝑙, (i) 𝜖𝑉𝑗
⫫ 𝑒𝑋𝑘

⫫ 𝑒′
𝑋𝑙

, (ii) {𝑒𝑋2 𝑗−1 , 𝑒𝑋2 𝑗 } ⫫ {𝑒𝑋2𝑘−1 , 𝑒𝑋2𝑘 } if 𝑗 ≠ 𝑘 , (iii) 𝑒𝑋2 𝑗−1 ⫫ 𝑒𝑋2 𝑗

iff ChH1 (𝑉 𝑗 ) ⊂ PChG (𝑉 𝑗 ), and (iv) 𝑒′
𝑋2 𝑗−1

⫫ 𝑒′
𝑋2𝑘

. Without loss of generality, we assume each 𝑐𝑖1 is
positive and each 𝜖𝑉𝑗

has variance 1.

Remark. It is a variant of Cond. 3.

Theorem 12. ∀𝑉𝑖 ∈ U𝑐, AnH2 (𝑉𝑖) ∩ (U𝑐 ∪V 𝑓 ) = ∅ and ChH1 (𝑉𝑖) ⊂ PChG (𝑉𝑖) iff ∀𝑉 𝑗 ∈ U𝑐\{𝑉𝑖},
R(𝑋2 𝑗−1, 𝑋2𝑖−1 |𝑋2𝑖) ⫫ 𝑋2𝑖 .

Remark. It is a variant of Thm. 5, which implies that if at some iteration, there exists no 𝑉𝑖 ∈ U𝑐

s.t. AnH2 (𝑉𝑖) ∩ (U𝑐 ∪ V 𝑓 ) = ∅ and ChH1 (𝑉𝑖) ⊂ PChG (𝑉𝑖), we cannot find a 𝑉𝑖 ∈ U𝑐 satisfying
the independence condition, when an error can be raised. Combining Thm. 11 and Cor. 6 in
App. C.3.2, we can conclude that this must happen before U𝑐 becomes an empty set. More details
are provided in the proof Thm. 13.

4.3 SUMMARY

Theorem 13. Suppose the observed variables are generated by a LiNGAM with latent variables
satisfying the rank-faithfulness assumption and Asmp. 2, if Asmp. 1 is invalid, in the limit of infinite
data, our algorithm raises an error.

5 EXPERIMENT

We first use four causal graphs shown as Fig. 9 to generate synthetic data. For each graph, we draw
10 sample sets of size 2k, 5k, 10k respectively. Each causal strength is sampled from a uniform

9
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Figure 9: Causal graphs satisfying Assumption 1.
Table 1: Comparison on synthetic data. ↑ means higher is better while ↓ means lower is better.

Error in Latent Variables ↓ Correct-Ordering Rate ↑ F1-Score ↑ Running Time(s) ↓
2k 5k 10k 2k 5k 10k 2k 5k 10k 2k 5k 10k

Case 1

GIN 0.0±0.0 0.0±0.0 0.0±0.0 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.21±0.18 1.39±0.13 1.63±0.16
LaHME 0.3±0.5 0.1±0.3 0.2±0.4 0.83±0.26 0.94±0.17 0.89±0.23 0.93±0.11 0.98±0.08 0.95±0.10 1.39±0.15 1.61±0.11 1.87±0.14

Po-LiNGAM 0.2±0.4 0.1±0.3 0.0±0.0 0.92±0.16 0.98±0.07 1.00±0.00 0.70±0.19 0.93±0.17 0.99±0.04 61.69±21.19 65.24±20.98 67.68±13.64
Ours 0.0±0.0 0.1±0.3 0.0±0.0 0.92±0.13 0.91±0.18 1.00±0.00 0.98±0.03 0.97±0.07 1.00±0.00 1.80±0.19 2.18±0.23 2.49±0.11

Case 2

GIN 1.0±0.0 1.0±0.0 1.0±0.0 0.43±0.00 0.43±0.02 0.43±0.00 0.75±0.00 0.74±0.02 0.75±0.00 1.29±0.11 1.58±0.15 1.71±0.18
LaHME 0.0±0.0 0.0±0.0 0.0±0.0 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.38±0.13 1.63±0.24 1.81±0.18

PO-LiNGAM 0.6±0.5 0.4±0.5 0.1±0.3 0.73±0.26 0.77±0.28 0.94±0.17 0.77±0.16 0.90±0.10 0.98±0.06 36.54±11.98 38.89±10.87 37.56±9.16
Ours 0.0±0.0 0.0±0.0 0.0±0.0 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.56±0.03 1.81±0.05 2.26±0.17

Case 3

GIN 0.0±0.0 0.0±0.0 0.0±0.0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.54±0.07 0.58±0.06 0.68±0.06
LaHME 1.0±0.0 0.9±0.3 1.0±0.0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 7.83±0.79 8.71±0.52 10.38±0.49

PO-LiNGAM 0.0±0.0 0.0±0.0 0.0±0.0 0.75±0.22 0.79±0.27 0.91±0.21 0.50±0.15 0.63±0.18 0.89±0.19 56.88±15.50 75.78±12.07 89.10±8.05
Ours 0.0±0.0 0.0±0.0 0.0±0.0 0.98±0.04 1.00±0.00 1.00±0.00 0.92±0.10 0.98±0.03 0.99±0.01 3.64±0.10 4.20±0.13 5.02±0.14

Case 4

GIN 0.9±0.3 0.9±0.3 0.9±0.3 0.19±0.03 0.20±0.00 0.19±0.03 0.28±0.02 0.29±0.01 0.27±0.05 0.91±0.10 0.94±0.10 1.11±0.11
LaHME 1.8±0.6 2.0±0.0 2.0±0.0 0.22±0.02 0.20±0.00 0.20±0.00 0.34±0.03 0.32±0.00 0.32±0.01 2.27±0.34 2.61±0.37 3.22±0.79

PO-LiNGAM 0.9±0.5 0.4±0.5 0.0±0.0 0.63±0.31 0.71±0.35 1.00±0.00 0.53±0.24 0.73±0.29 1.00±0.00 36.76±2.13 44.31±9.78 45.65±4.39
Ours 0.3±0.5 0.0±0.0 0.0±0.0 0.91±0.15 1.00±0.00 1.00±0.00 0.87±0.19 1.00±0.01 1.00±0.00 4.30±0.25 4.90±0.13 5.94±0.12

distribution over [−2.0,−0.5] ∪ [0.5, 2.0] and each noise is generated from the seventh power of
uniform distribution. We compare our methods with GIN (Xie et al., 2020), LaHME (Xie et al.,
2022), and PO-LiNGAM (Jin et al., 2024). We use 3 metrics to evaluate the performance, including
(i) Error in Latent Variables, the absolute difference between the estimated number of latent vari-
ables and the ground-truth one; (ii) Correct-Ordering Rate, the number of correctly estimated causal
ordering divided by the number of causal ordering in the ground-truth graph; (iii) F1-Score of causal
edges. The results are summarized in Tab. 1, where we also report the running time. In particular,
we set the size of the largest atomic unit in GIN and PO-LiNGAM to 1 for a fair comparison.

With sufficient samples, all methods can handle case 1 properly. GIN does not perform well in case
2 where some latent variable has no observed pure child. Both GIN and LaHME are not suitable for
case 3 and case 4 where the purity or measurement assumption is invalid. While PO-LiNGAM and
our algorithm can both handle all cases properly, ours is far more efficient. PO-LiNGAM alternates
between inferring causal relations and inferring causal relations from leaves to roots, whereas ours
first identifying latent variables from leaves to roots and then infers causal relations from roots to
leaves. The efficiency gap arises from distinct approaches for inferring causal relations. Take case
3 as an example, PO-LiNGAM first identifies 𝑂9 as a leaf node by finding a subset P ⊂ O0\{𝑂9}
s.t. a particular linear combination of P ∪ {𝑂9} is independent of O0\{𝑂9}, where P is exactly
𝑂9’s parents {𝑂5, 𝑂7}. In contrast, our algorithm first identifies 𝑂1 as a root node because for any
𝑂𝑖 ∈ O0\{𝑂1}, R(𝑋2𝑖−1, 𝑋1 |𝑋2) ⫫ 𝑋2. Clearly, PO-LiNGAM needs to traverse the power set of
O0\{𝑂9} while the ours only needs to traverse O0\{𝑂1} itself.

O2

L2

O3 O4 O5 O6

O7 O8 O9

O1L1

Case 5

O2 O3

O4 O5

O6 O7 O8 O9

O1

L1

Case 6

Figure 10: Causal graphs violating Asmp. 1.

In addition, we also do experiments on data gener-
ated by the graphs shown in Fig. 10, where Asmp. 1
is invalid. On 10 sample sets sized 10k for each
case, while other algorithms all yield incorrect re-
sults, ours raises an error 8 times in case 5 and 7
times in case 6.

We also apply our proposed algorithm to real-world data, more details are deferred to App. D.

6 CONCLUSION

In this paper, we focus on the setting where latent variables and observed variables are intercon-
nected through complex causal relations. Under a pure children assumption, we propose an efficient
algorithm, which is the first one capable of handling the setting with both latent variables and com-
plex relations within polynomial time. Also, we prove trustworthiness of our algorithm. To the best
of our knowledge, there is no similar result in the literature of causal discovery with latent variables.

Limitations. First, although Asmp. 1 allows the presence of complex causal relations, it is still
somewhat restrictive, we will attempt to relax it without compromising efficiency significantly in
our future work. Second, this work does not accommodate non-stationary (Liu & Kuang, 2023) and
cyclic (Sethuraman et al., 2023) causal relations, on which we defer the research to our future work.
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A RELATED WORKS

Traditional causal discovery methods mostly assume that all task-relevant variables are ob-
served (Spirtes & Glymour, 1991; Colombo & Maathuis, 2014; Chickering, 2002; Shimizu et al.,
2006; 2011; Hoyer et al., 2009; Peters et al., 2014; Mooij et al., 2016). Unfortunately, latent variables
are pervasive in practice, in which case these methods usually introduce spurious causal relations.
This limitation has inspired extensive works on causal discovery with latent variables. While some
of these works cannot uncover the number of latent variables and their causal relations (Spirtes
et al., 1995; Claassen et al., 2013; Claassen & Bucur, 2022) or explicitly assume that latent variables
are independent of each other (Hoyer et al., 2008; Tashiro et al., 2014; Maeda & Shimizu, 2020;
Salehkaleybar et al., 2020; Yang et al., 2022; Cai et al., 2023), others allow the presence of causally-
related latent variables and can also infer their causal relations by utilizing linear models (Silva et al.,
2006; Anandkumar et al., 2013; Kummerfeld & Ramsey, 2016; Cai et al., 2019; Xie et al., 2020;
Zeng et al., 2021; Adams et al., 2021; Chen et al., 2022; Xie et al., 2022; Huang et al., 2022; Chen
et al., 2023; Dong et al., 2024; Jin et al., 2024; Li et al., 2024; Xie et al., 2024). Among the latter line
of works, the measurement assumption is employed by all except Adams et al. (2021); Dong et al.
(2024); Jin et al. (2024) and the purity assumption is used by all except Silva et al. (2006); Kummer-
feld & Ramsey (2016); Adams et al. (2021); Dong et al. (2024); Jin et al. (2024); Li et al. (2024);
Xie et al. (2024). In addition, Huang et al. (2022) employ the non-triangle assumption that any three
variables are not mutually adjacent while Dong et al. (2024) weaken this assumption slightly by al-
lowing three mutually adjacent variables only if they are all observed variables. That is, only Adams
et al. (2021) and Jin et al. (2024) can handle setting where latent variables and observed variables
are interconnected through complex causal relations, which are of particular relevance to our work.

Adams et al. (2021) are the first one investigating the important and challenging setting with both
latent variables and complex relations, they present the sufficient and necessary condition for iden-
tifiability of LiNGAMs with latent variables, which is a really profound theoretical contribution.
Also, using this condition as the assumption, they develop a causal discovery method, which is un-
fortunately inadvisable in practice as acknowledged by themselves. First, because it is based on
overcomplete independent component analysis (OICA) which needs to know the number of source
signals (Podosinnikova et al., 2019; Ding et al., 2019), it requires the number of latent variables as
prior knowledge and is computationally intractable. Given the mixing matrix returned by OICA,
it still needs to test which submatrices’ singular values are exact zeros, which is rather sensitive to
noise. Subsequently, Jin et al. (2024) strike a delicate balance between theoretical identifiability
and practical feasibility. Specifically, under a stronger assumption involving pure children similar
to many previous works (Cai et al., 2019; Xie et al., 2020; 2022; Huang et al., 2022; Dong et al.,
2024), they propose the first practical algorithm capable of handling the setting with both latent
variables and complex relations. But this algorithm has exponential time complexity with respect
to the number of variables, seriously limiting its applicability. To overcome this limitation, under
a similar assumption also involving pure children that is moderately more restrictive than Jin et al.
(2024)’s2, we propose an efficient algorithm which is the first one capable of handling the challeng-
ing setting within only polynomial time. Our algorithm differs significantly from theirs. Specifically,
their algorithm follows a bottom-up pattern, which alternates between inferring causal relations and
identifying latent variables, progressing from leaves to roots. Instead, ours follows a bottom-up then
top-down pattern, which first sequentially identifies all latent variables, progressing from leaves to
roots, and then sequentially infers causal relations, progressing from roots to leaves. Also, we prove
trustworthiness of our algorithm, which means that it can raise an error rather than return an incor-
rect result when the pure children assumption is invalid. To the best of our knowledge, there is a
complete lack of similar results in the literature of causal discovery with latent variables.

While the works discussed above all focus on the linear case, there are also some studies investigat-
ing nonlinear problems, but most assume access to counterfactual data (Brehmer et al., 2022; Ahuja
et al., 2022) or interventional data (Ahuja et al., 2023; Jiang & Aragam, 2023; Buchholz et al., 2023;
Zhang et al., 2023). Notably, without structural restrictions such as the pure children assumption,

2On the one hand, our definition of pure child is more restrictive than Jin et al. (2024)’s as stated in Rem.
of Def. 1, so our assumption is also more restrictive than theirs. On the other hand, the gap between these two
assumptions is narrower than that between Adams et al. (2021)’s and Jin et al. (2024)’s because Adams et al.
(2021) have absolutely no need for pure children, so we say our assumption is “moderately” more restrictive
than Jin et al. (2024)’s.
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even linear causal models satisfying the measurement assumption are unidentifiable without com-
prehensive interventional data obtained by intervening on each latent variable individually (Squires
et al., 2023). To the best of our knowledge, in the presence of latent variables, only Kivva et al.
(2021) and Kong et al. (2023) can handle non-linear problems through only observational data, but
they both make rather strong assumptions. Specifically, Kivva et al. (2021) require that all latent
variables are discrete. Kong et al. (2023) require that the mapping from all exogenous noises to ob-
served variables is invertible. We leave further research on nonlinear problems to our future work.

B NOTATIONS

We summarize notations in Tab. 2

Table 2: Summary of notations.
Notation Description First appeared

G0 Original ground-truth causal graph Sec. 2

L Latent variables Sec. 2

O0 Original observed variables Sec. 2

V0 L ∪ O0 Sec. 2

G Augmented ground-truth causal graph Sec. 2

O1 Created observed variables Sec. 2

O O0 ∪ O1 Sec. 2

V V0 ∪ O1 Sec. 2

Pa(𝑉) Parents of 𝑉 Sec. 2

Ch(𝑉) Children of 𝑉 Sec. 2

Ne(𝑉) Neighbors of 𝑉 Sec. 2

An(𝑉) Ancestors of 𝑉 Sec. 2

De(𝑉) Descendants of 𝑉 Sec. 2

GAn(𝑉) Generalized ancestors of 𝑉 , that is, An(𝑉) ∪ {𝑉} Sec. 2

GDe(𝑉) Generalized descendants of 𝑉 , that is, De(𝑉) ∪ {𝑉} Sec. 2

PCh(𝑉) Pure children of 𝑉 Def. 1 in Sec. 3

P3Ch(𝑉) Paired pseudo-pure children of 𝑉 Def. 5 in Sec. 4

PDe(𝑉) Pure descendants of 𝑉 Def. 7 in App. C.2.1

P2De(𝑉) Pseudo-pure descendants of 𝑉 Def. 9 in App. C.3.1

V𝑐 A set of variables maintained during stage 1 with specific initialization and update rules Sec. 3.1

V𝑝 A set of variables maintained during stage 1 with specific initialization and update rules Sec. 3.1

V 𝑓 V\(V𝑝 ∪ V𝑐) Sec. 3.1

H1 A graph over V𝑐 ∪ V𝑝 maintained during stage 1 with specific initialization and update rules Sec. 3.1

H2 Induced subgraph of G over V 𝑓 ∪ V𝑐 Sec. 3.1

S Identifiable pairs in V𝑐 Def. 2 in Sec. 3.1

S1, S2, S3 Subsets of S Def. 2 in Sec. 3.1

S̃1, S̃2, S̃3 Subsets of S return by our algorithm when Asmp. 1 is invalid Rem. of Thm. 9 in Sec. 4.1

R(𝑉1, 𝑉2 |𝑉3) Pseudo-residual of 𝑉1, 𝑉2 relative to 𝑉3 Def. 3 in Sec. 3.1

U𝑐 Active set in stage 2 Sec. 3.2

C PROOF

Assumption 3. (Rank faithfulness) Given a probability distribution 𝑝 and a DAG G, 𝑝 is rank
faithful to G if every rank constraint on a sub-covariance matrix that holds in 𝑝 is entailed by every
linear structural model with respect to G.
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Intuition. This assumption implies that

(1) 𝑚𝑖 𝑗 ≠ 0 iff 𝑉 𝑗 ∈ GAn(𝑉𝑖).
(2) Suppose 𝑚𝑖𝑘𝑚 𝑗𝑘𝑚𝑖𝑙𝑚 𝑗𝑙 ≠ 0, 𝑚𝑖𝑘/𝑚 𝑗𝑘 ≠ 𝑚𝑖𝑙/𝑚 𝑗𝑙 iff there exists two non-intersecting paths

from {𝑉𝑘 , 𝑉𝑙} to {𝑉𝑖 , 𝑉 𝑗 }.

Remark. In the following proof, rather than working directly with the rank faithfulness assump-
tion itself, we only utilize these two properties derived from it. Since these two properties can
also be derived from the bottleneck faithfulness assumption in Adams et al. (2021), we can readily
replace this assumption with the bottleneck faithfulness assumption in our work.

For ease of exposition, given 𝑉 ∈ V and V′ ⊂ V, we abbreviate Pa(𝑉) ∩ V′ as PaV′ (𝑉) in the
following.

C.1 IMPORTANT LEMMAS

In this section, we summarize several important properties of the pseudo-residual (Lem. 1) and the
quintuple constraint (Lem. 2), which serve as the cornerstones of the proofs of many following
theoretical results.

Darmois-Skitovitch (D-S) Theorem. (Kagan et al., 1973) Suppose two random variables 𝑉1 and 𝑉2
are both linear combinations of independent random variables {𝑛𝑖}𝑖:

𝑉1 =
∑︁
𝑖

𝛼𝑖𝑛𝑖 , 𝑉2 =
∑︁
𝑖

𝛽𝑖𝑛𝑖 . (8)

Then, if 𝑉1 ⫫ 𝑉2, each 𝑛𝑖 for which 𝛼𝑖𝛽𝑖 ≠ 0 follows Gaussian distribution. That is, if there exists a
non-Gaussian 𝑛 𝑗 s.t. 𝛼 𝑗 𝛽 𝑗 ≠ 0, 𝑉1 ⫫∕ 𝑉2.

Lemma 1. Given 𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5 (it is possible that 𝑉3 = 𝑉4 = 𝑉5) where Cov(𝑉1, 𝑉2)
Cov(𝑉1, 𝑉3)Cov(𝑉2, 𝑉3) ≠ 0,

(1) If 𝑉1 = 𝜆1𝑒 + 𝑒′1 and 𝑉2 = 𝜆2𝑒 + 𝑒′2 where {𝑒′1, 𝑒
′
2} ⫫ {𝑒,𝑉3, 𝑉4}, Cov(𝑒,𝑉3) ≠ 0, Var(𝑒) ≠ 0,

and 𝜆1𝜆2 ≠ 0, then R(𝑉1, 𝑉2 |𝑉3) ⫫ 𝑉4.

(2) If there exists 𝑉𝑖 s.t. only one of 𝑚1𝑖 and 𝑚2𝑖 is non-zero and 𝑚4𝑖 ≠ 0, then R(𝑉1, 𝑉2 |𝑉3) ⫫∕ 𝑉4.

(3) If there exists 𝑉𝑖 , 𝑉 𝑗 s.t. 𝑚1𝑖𝑚1 𝑗𝑚2𝑖𝑚2 𝑗𝑚4𝑖𝑚5 𝑗 ≠ 0 and 𝑚1𝑖/𝑚1 𝑗 ≠ 𝑚2𝑖/𝑚2 𝑗 , then
R(𝑉1, 𝑉2 |𝑉3) ⫫∕ 𝑉4 or R(𝑉1, 𝑉2 |𝑉3) ⫫∕ 𝑉5.

Remark. (1) provides a sufficient condition for independence involving the pseudo-residual to
hold while (2, 3) provides two sufficient conditions for independence involving the pseudo-residual
to not hold.

Proof. The proofs of are as follows.

(1) R(𝑉1, 𝑉2 |𝑉3) = (𝜆1𝑒+𝑒′1)−
Cov(𝜆1𝑒+𝑒′1 ,𝑉3 )
Cov(𝜆2𝑒+𝑒′2 ,𝑉3 ) (𝜆2𝑒+𝑒′2) = (𝜆1𝑒+𝑒′1)−

𝜆1
𝜆2
(𝜆2𝑒+𝑒′2) = 𝑒

′
1−

𝜆1
𝜆2
𝑒′2 ⫫ 𝑉4.

(2) As only one of 𝑚1𝑖 and 𝑚2𝑖 is non-zero, R(𝑉1, 𝑉2 |𝑉3) contains 𝜖𝑉𝑖
. Since 𝑚4𝑖 ≠ 0, based on

D-S Theorem, R(𝑉1, 𝑉2 |𝑉3) ⫫∕ 𝑉4.

(3) As 𝑚1𝑖𝑚1 𝑗𝑚2𝑖𝑚2 𝑗 ≠ 0 and 𝑚1𝑖/𝑚1 𝑗 ≠ 𝑚2𝑖/𝑚2 𝑗 , R(𝑉1, 𝑉2 |𝑉3) contains 𝜖𝑉𝑖
or 𝜖𝑉𝑗

. Since
𝑚4𝑖𝑚5 𝑗 ≠ 0, based on D-S Theorem, R(𝑉1, 𝑉2 |𝑉3) ⫫∕ 𝑉4 or R(𝑉1, 𝑉2 |𝑉3) ⫫∕ 𝑉5.

□

Lemma 2. Given 𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5,

(1) If there exists 𝑉𝑖 s.t. 𝑚1𝑖𝑚2𝑖 ≠ 0 and 𝑚3𝑖 = 𝑚4𝑖 = 0, then (𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5) does not satisfy
the quintuple constraint.
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(2) Suppose 𝑒𝑖 , 𝑒 𝑗 , 𝑒′1, 𝑒
′
2, 𝑒

′
3, 𝑒

′
4 are mutually independent and 𝑉1, 𝑉2, 𝑉3, 𝑉4 can be written as

𝑉1 = 𝜆1𝑒𝑖 + 𝛾1𝑒 𝑗 + 𝑒′1, 𝑉2 = 𝜆2𝑒𝑖 + 𝛾2𝑒 𝑗 + 𝑒′2, 𝑉3 = 𝜆3𝑒𝑖 + 𝛾3𝑒 𝑗 + 𝑒′3, 𝑉4 = 𝜆4𝑒𝑖 + 𝑒′4, (9)
where Var(𝑒𝑖)Var(𝑒 𝑗 ) ≠ 0, 𝜆1𝜆2𝜆3𝜆4 ≠ 0, and 𝛾1𝛾2𝛾3 ≠ 0. (2.a) If 𝑉5 ⫫ {𝑒 𝑗 , 𝑒′1, 𝑒

′
2, 𝑒

′
3, 𝑒

′
4}

and Cov(𝑉5, 𝑒𝑖) ≠ 0, then (𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5) satisfies the quintuple constraint; (2.b) If 𝑉5 ⫫
{𝑒 𝑗 , 𝑒′1, 𝑒

′
2, 𝑒

′
3}, Cov(𝑉5, 𝑒𝑖)Cov(𝑉5, 𝑒

′
4) ≠ 0, and 𝜆1/𝜆3 ≠ 𝛾1/𝛾3, then (𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5) does

not satisfy the quintuple constraint.

Remark. (2.a) provides a sufficient condition for the quintuple constraint to hold while (1, 2.b)
provides two sufficient conditions for the quintuple constraint to not hold.

Proof. The proofs are as follows.

(1) As 𝑚1𝑖 ≠ 0 and 𝑚3𝑖 = 𝑚4𝑖 = 0, 𝑉1 + 𝛼𝑉3 + 𝛽𝑉4 contains 𝜖𝑉𝑖
. Since 𝑚2𝑖 ≠ 0, based on D-S

Theorem, for any 𝛼, 𝛽, 𝑉1 + 𝛼𝑉3 + 𝛽𝑉4 ⫫∕ 𝑉2.

(2) If 𝑉5 ⫫ {𝑒 𝑗 , 𝑒′1, 𝑒
′
2, 𝑒

′
3, 𝑒

′
4} and Cov(𝑉5, 𝑒𝑖) ≠ 0, let Cov(𝑉1 + 𝛼𝑉3 + 𝛽𝑉4, 𝑉2) = 0 and Cov(𝑉1 +

𝛼𝑉3 + 𝛽𝑉4, 𝑉5) = 0, we have
𝜆1 + 𝛼𝜆3 + 𝛽𝜆4 = 0, 𝛾1 + 𝛼𝛾3 = 0,

then
𝑉1 + 𝛼𝑉3 + 𝛽𝑉4 = (𝜆1 + 𝛼𝜆3 + 𝛽𝜆4)𝑒𝑖 + (𝛾1 + 𝛼𝛾3)𝑒 𝑗 + 𝑒′1 + 𝛼𝑒

′
3 + 𝛽𝑒

′
4 = 𝑒′1 + 𝛼𝑒

′
3 + 𝛽𝑒

′
4 ⫫ 𝑉5.

If 𝑉5 ⫫ {𝑒 𝑗 , 𝑒′1, 𝑒
′
2, 𝑒

′
3}, Cov(𝑉5, 𝑒𝑖)Cov(𝑉5, 𝑒

′
4) ≠ 0, and 𝜆1/𝜆3 ≠ 𝛾1/𝛾3, let Cov(𝑉1 + 𝛼𝑉3 +

𝛽𝑉4, 𝑉2) = 0 and Cov(𝑉1 + 𝛼𝑉3 + 𝛽𝑉4, 𝑉5) = 0, we have
𝜆1 + 𝛼𝜆3 + 𝛽𝜆4 ≠ 0, 𝛾1 + 𝛼𝛾3 ≠ 0,

then
𝑉1 + 𝛼𝑉3 + 𝛽𝑉4 = (𝜆1 + 𝛼𝜆3 + 𝛽𝜆4)𝑒𝑖 + (𝛾1 + 𝛼𝛾3)𝑒 𝑗 + 𝑒′1 + 𝛼𝑒

′
3 + 𝛽𝑒

′
4 (10)

contains 𝑒𝑖 and 𝑒 𝑗 , so 𝑉1 + 𝛼𝑉3 + 𝛽𝑉4 ⫫∕ 𝑉2.

□

C.2 PROOF OF THEORETICAL RESULTS IN SEC. 3

Definition 1. (Pure child) We say 𝑉2 is a pure child of 𝑉1, denoted by 𝑉2 ∈ PCh(𝑉1), if (i) Pa(𝑉2) =
{𝑉1} and (ii) ∀𝑉 ∈ De(𝑉2), |Pa(𝑉) | = 1.
Remark. Based on this definition, if 𝑉2 ∈ PCh(𝑉1), then Ch(𝑉2) = PCh(𝑉2).

Assumption 1. ∀𝐿 ∈ L, |PChG0 (𝐿) | ≥ 2 and |NeG0 (𝐿) | ≥ 3.

Trivially, if Asmp. 1 holds, then ∀𝐿 ∈ L, |PChG (𝐿) | ≥ 2 and |NeG (𝐿) | ≥ 3.

C.2.1 PROOF OF THEORETICAL RESULTS IN SEC. 3.1

Condition 1. (1) ∀𝑉 ∈ V𝑝 , |PaH1 (𝑉) | = 1 and ChH1 (𝑉) = PChG (𝑉); (2) ∀𝑉 ∈ V𝑐, PaH1 (𝑉) = ∅,
|ChH1 (𝑉) | ≥ 2, and ChH1 (𝑉) ⊂ PChG (𝑉).
Before proving theoretical results in the main text one by one, we first introduce two corollaries
(Cors. 1 and 2) readily derived from Cond. 1.

Corollary 1. (1) ∀𝑉 ∈ V𝑝 ,ChG (𝑉) = ChH1 (𝑉) and PaG (𝑉) = PaH1 (𝑉); (2) ∀𝑉 ∈ V 𝑓 ,ChG (𝑉) =
ChH2 (𝑉) and PaG (𝑉) = PaH2 (𝑉); (3) ∀𝑉 ∈ V𝑐,ChG (𝑉) = ChH1 (𝑉) ∪ ChH2 (𝑉) and PaG (𝑉) =

PaH2 (𝑉).
Remark. This corollary reveals the properties of variables in V𝑝 , V 𝑓 , and V𝑐. (1) means that
for each variable in V𝑝 , its parents and children in the underlying causal graph G are exactly its
parents and children in H1. (2) means that for each variable in V 𝑓 , its parents and children in
the underlying causal graph G are exactly its parents and children in H2. (3) means that for each
variable in V𝑐, its children in the underlying causal graph G are the union of its children in H1
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and its children in H2 while its parents in G are exactly its parents in H2. This corollary is widely
used in the following proofs. To maintain fluency, we will use it without further citation.

Proof. First, if 𝑉𝑖 ∈ V𝑝 , then ChH1 (𝑉𝑖) = PChG (𝑉𝑖) and there exists 𝑉 𝑗 ∈ V𝑐 ∪ V𝑝 s.t. PaH1 (𝑉𝑖) =
{𝑉 𝑗 } based on Cond. 1(1). Moreover, since (i) ChH1 (𝑉 𝑗 ) = PChG (𝑉 𝑗 ) if 𝑉 𝑗 ∈ V𝑝 and (ii)
ChH1 (𝑉 𝑗 ) ⊂ PChG (𝑉 𝑗 ) if 𝑉 𝑗 ∈ V𝑐 based on Cond. 1(1,2), there is always 𝑉𝑖 ∈ PChG (𝑉 𝑗 ). There-
fore, we can conclude that PaG (𝑉𝑖) = {𝑉 𝑗 } = PaH1 (𝑉𝑖) and ChG (𝑉𝑖) = PChG (𝑉𝑖) = ChH1 (𝑉𝑖), this
completes the proof of (1).

Second, if 𝑉𝑖 ∈ V 𝑓 , based on (1) that was just proven, ChG (𝑉𝑖) ∩ V𝑝 = ∅ and PaG (𝑉𝑖) ∩ V𝑝 = ∅,
which is equivalent to ChG (𝑉𝑖) = ChH2 (𝑉𝑖) and PaG (𝑉𝑖) = PaH2 (𝑉𝑖) based on the definition of H2,
this completes the proof of (2).

Third, if 𝑉𝑖 ∈ V𝑐, then ChG (𝑉𝑖) = ChG
V𝑝

(𝑉𝑖) ∪ ChG
V 𝑓 ∪V𝑐

(𝑉𝑖) = ChH1 (𝑉) ∪ ChH2 (𝑉), where

ChG
V𝑝

(𝑉𝑖) = ChH1 (𝑉) follows (1) that was just proven while ChG
V 𝑓 ∪V𝑐

(𝑉𝑖) = ChH2 (𝑉) follows the

definition of H2. Likewise, PaG (𝑉𝑖) = PaH1 (𝑉) ∪PaH2 (𝑉), since PaH1 (𝑉) = ∅ based on Cond. 1(2),
we have PaG (𝑉) = PaH2 (𝑉), this completes the proof of (3). □

Definition 7. (Pure descendant) We say 𝑉2 is a pure descendant of 𝑉1, denoted by 𝑉2 ∈ PDe(𝑉1), if
𝑉2 ∈ ⋃

GDe(PCh(𝑉1))

Example. In Fig. 2(a), PDe(𝐿1) = {𝐿3, 𝐿4, 𝑂12, 𝑂13, 𝑂14, 𝑂15, 𝑂16}.
Remark. Based on this definition, if 𝑉2 ∈ PDe(𝑉1), then Ch(𝑉2) = PCh(𝑉2) and De(𝑉2) =

PDe(𝑉2).

Corollary 2. ∀𝑉 ∈ V 𝑓 , |PDeGV𝑐
(𝑉) | ≥ 2. If |DeGV𝑐

(𝑉) | = 2, then DeGV𝑐
(𝑉) = PChG (𝑉).

Remark. This corollary means that each variable in V 𝑓 has at least two pure descendants in V𝑐,
and if it has exactly two descendants in V𝑐, these two descendants are exactly its all pure children.
Intuitively, this enables us to identify variables in V 𝑓 through analyzing variables in V𝑐.

Proof. First, as V 𝑓 ⊂ L, ∀𝑉 ∈ V 𝑓 , |PChG (𝑉) | ≥ 2. Besides, PChG (𝑉) ⊂ V𝑐∪V 𝑓 . If |PChG
V𝑐

(𝑉) | ≥
2, we have |PDeGV𝑐

(𝑉) | ≥ 2 naturally. Otherwise, PDeGV 𝑓
(𝑉) ⊃ PChG

V 𝑓
(𝑉) ≠ ∅. Let 𝑉𝑖 ∈ PDeGV 𝑓

(𝑉)
s.t. ChH2 (𝑉𝑖) ⊂ V𝑐, we have |PChG

V𝑐
(𝑉𝑖) | ≥ 2, so |PDeGV𝑐

(𝑉) | ≥ |PChG
V𝑐

(𝑉𝑖) | ≥ 2. Therefore,

∀𝑉 ∈ V 𝑓 , there is always |PDeGV𝑐
(𝑉) | ≥ 2.

Following the above analysis, for any 𝑉 ∈ V 𝑓 and 𝑉 ′ ∈ PChG
V 𝑓

(𝑉), we have |PDeGV𝑐
(𝑉 ′) | ≥ 2, so

|DeGV𝑐
(𝑉) | ≥ 2|PChG

V 𝑓
(𝑉) | + |PChG

V𝑐
(𝑉) |. (11)

Note that
|PChG (𝑉) | = |PChG

V 𝑓
(𝑉) | + |PChG

V𝑐
(𝑉) | ≥ 2, (12)

if |DeGV𝑐
(𝑉) | = 2, then PChG

V 𝑓
(𝑉) = ∅ and DeGV𝑐

(𝑉) = PChG
V𝑐

(𝑉), that is, DeGV𝑐
(𝑉) = PChG (𝑉). □

Proposition 1. ∀{𝑉𝑖 , 𝑉 𝑗 , 𝑉𝑘 , 𝑉𝑙} ⊂ V𝑐 where Cov(𝑉𝑖 , 𝑉 𝑗 )Cov(𝑉𝑖 , 𝑉𝑘)Cov(𝑉 𝑗 , 𝑉𝑘) ≠ 0 and
Cov(𝑉𝑖 , 𝑉 𝑗 )Cov(𝑉𝑖 , 𝑉𝑙)Cov(𝑉 𝑗 , 𝑉𝑙) ≠ 0, R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑘) ⫫ V𝑐\{𝑉𝑖 , 𝑉 𝑗 } iff R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑙) ⫫ V𝑐\{𝑉𝑖 , 𝑉 𝑗 }.

Remark. Given {𝑉𝑖 , 𝑉 𝑗 } ⊂ V𝑐, denote {𝑉 ∈ V𝑐\{𝑉𝑖 , 𝑉 𝑗 }|Cov(𝑉𝑖 , 𝑉 𝑗 )Cov(𝑉,𝑉𝑖)Cov(𝑉,𝑉 𝑗 ) ≠ 0}
by V𝑖 𝑗 , this proposition means that there exists no {𝑉𝑘 , 𝑉𝑙} ⊂ V𝑖 𝑗 s.t. R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑘) ⫫ V𝑐\{𝑉𝑖 , 𝑉 𝑗 }
and R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑙) ⫫∕ V𝑐\{𝑉𝑖 , 𝑉 𝑗 }. Therefore, if we want to know whether for each 𝑉 ∈ V𝑖 𝑗 ,
R(𝑉𝑖 , 𝑉 𝑗 |𝑉) ⫫ V𝑐\{𝑉𝑖 , 𝑉 𝑗 }, we only need to consider any single 𝑉𝑘 ∈ V𝑖 𝑗 .

Proof. If R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑘) ⫫ V𝑐\{𝑉𝑖 , 𝑉 𝑗 }, then R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑘) ⫫ 𝑉𝑙 , which means that
Cov(R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑘), 𝑉𝑙) = 0, that is, Cov(𝑉𝑖 ,𝑉𝑘 )

Cov(𝑉𝑗 ,𝑉𝑘 ) =
Cov(𝑉𝑖 ,𝑉𝑙 )
Cov(𝑉𝑗 ,𝑉𝑙 ) , so R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑙) = R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑘) ⫫

V𝑐\{𝑉𝑖 , 𝑉 𝑗 }. Similarly, if R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑙) ⫫ V𝑐\{𝑉𝑖 , 𝑉 𝑗 }, there is also R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑘) ⫫ V𝑐\{𝑉𝑖 , 𝑉 𝑗 }. □
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Theorem 1. ∀{𝑉𝑖 , 𝑉 𝑗 } ⊂ V𝑐, {𝑉𝑖 , 𝑉 𝑗 } ∈ S iff there exists 𝑉𝑘 ∈ V𝑐\{𝑉𝑖 , 𝑉 𝑗 } s.t.
Cov(𝑉𝑖 , 𝑉 𝑗 )Cov(𝑉𝑖 , 𝑉𝑘)Cov(𝑉 𝑗 , 𝑉𝑘) ≠ 0 and for each such 𝑉𝑘 , R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑘) ⫫ V𝑐\ {𝑉𝑖 , 𝑉 𝑗 }.
Proof Sketch. If {𝑉𝑖 , 𝑉 𝑗 } ∈ S, we can prove correlation and independence based on Lem. 1(1).
Otherwise, for each possible case, we can prove either non-correlation or dependence based on
Lem. 1(2,3).

Proof. “Only if”.

(1) Suppose {𝑉𝑖 , 𝑉 𝑗 } ∈ S1. Let 𝑉𝑖 ∈ PaH2 (𝑉 𝑗 ) without loss of generality and 𝑉𝑘 ∈ NeH2 (𝑉𝑖)\{𝑉 𝑗 },
we have GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅3 and let 𝑉𝑙 ∈ GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 }. Clearly, 𝑉𝑖 , 𝑉 𝑗 , 𝑉𝑙

are correlated to each other. Also, 𝑉𝑖 = 𝑉𝑖 + 0, 𝑉 𝑗 = 𝑎 𝑗𝑖𝑉𝑖 + 𝜖𝑉𝑗
where {0, 𝜖𝑉𝑗

} ⫫
{𝑉𝑖} ∪ (V𝑐\{𝑉𝑖 , 𝑉 𝑗 }) and Cov(𝑉𝑖 , 𝑉𝑙) ≠ 0, so R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑙) ⫫ V𝑐\{𝑉𝑖 , 𝑉 𝑗 } based on Lem. 1(1).
Combined with Prop. 1, we reach the conclusion.

(2) Suppose {𝑉𝑖 , 𝑉 𝑗 } ∈ S2. Let PaH2 (𝑉𝑖) = PaH2 (𝑉 𝑗 ) = {𝑉𝑘}. If 𝑉𝑘 ∈ V𝑐, we let 𝑉𝑚 = 𝑉𝑘 .
Otherwise, let 𝑉𝑙 ∈ NeH2 (𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 }. Similarly to fn. 3, we have GDeH2

V𝑐
(𝑉𝑙)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅

and let 𝑉𝑚 ∈ GDeH2
V𝑐

(𝑉𝑙)\{𝑉𝑖 , 𝑉 𝑗 }. Clearly, 𝑉𝑖 , 𝑉 𝑗 , 𝑉𝑚 are correlated to each other. Also,
𝑉𝑖 = 𝑎𝑖𝑘𝑉𝑘 + 𝜖𝑉𝑖

, 𝑉 𝑗 = 𝑎 𝑗𝑘𝑉𝑘 + 𝜖𝑉𝑗
, {𝜖𝑉𝑖

, 𝜖𝑉𝑗
} ⫫ {𝑉𝑘} ∪ (V𝑐\{𝑉𝑖 , 𝑉 𝑗 }) and Cov(𝑉𝑘 , 𝑉𝑚) ≠ 0,

so R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑚) ⫫ V𝑐\{𝑉𝑖 , 𝑉 𝑗 } based on Lem. 1(1). Combined with Prop. 1, we reach the
conclusion.

(3) Suppose {𝑉𝑖 , 𝑉 𝑗 } ∈ S3. Let 𝑉𝑖 ∈ PaH2 (𝑉 𝑗 ) without loss of generality and PaH2 (𝑉𝑖) = {𝑉𝑘}.
Similarly to fn. 3, we also have GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ and let 𝑉𝑙 ∈ GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 }.

Clearly, 𝑉𝑖 , 𝑉 𝑗 , 𝑉𝑙 are correlated to each other. Also, 𝑉𝑖 = 𝑎𝑖𝑘𝑉𝑘 + 𝜖𝑉𝑖
, 𝑉 𝑗 = (𝑎𝑖𝑘𝑎 𝑗𝑖 + 𝑎 𝑗𝑘)𝑉𝑘 +

(𝑎 𝑗𝑖𝜖𝑉𝑖
+ 𝜖𝑉𝑗

) where {𝜖𝑉𝑖
, 𝑎 𝑗𝑖𝜖𝑉𝑖

+ 𝜖𝑉𝑗
} ⫫ {𝑉𝑘} ∪ (V𝑐\{𝑉𝑖 , 𝑉 𝑗 }) and Cov(𝑉𝑘 , 𝑉𝑙) ≠ 0, so

R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑙) ⫫ V𝑐\{𝑉𝑖 , 𝑉 𝑗 } based on Lem. 1(1). Combined with Prop. 1, we reach the conclu-
sion.

“If”. We prove this part by contradiction. Suppose {𝑉𝑖 , 𝑉 𝑗 } ∉ S.

(1) Suppose 𝑉𝑖 ∉ NeH2 (𝑉 𝑗 ), all possible cases are as follows.

(a) Suppose ChH2 (𝑉𝑖) ≠ ∅ or ChH2 (𝑉 𝑗 ) ≠ ∅, we take the former as an example without loss
of generality. Let 𝑉𝑘 ∈ ChH2 (𝑉𝑖). Similarly to fn. 3, we have GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅

and let 𝑉𝑙 ∈ GDeH2
V𝑐

(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 }. An illustrative example is shown as Fig. 11(i). If
𝑉 𝑗 ∉ DeH2 (𝑉𝑖), 𝑚𝑖𝑖𝑚𝑙𝑖 ≠ 0 and 𝑚 𝑗𝑖 = 0, so for any 𝑉 ∈ V𝑐\{𝑉𝑖 , 𝑉 𝑗 } s.t. 𝑉,𝑉𝑖 , 𝑉 𝑗 are cor-
related to each other, R(𝑉𝑖 , 𝑉 𝑗 |𝑉) ⫫∕ 𝑉𝑙 based on Lem. 1(2), which leads to contradiction.
Otherwise, if 𝑉 𝑗 ∈ DeH2 (𝑉𝑖), without loss of generality, we assume 𝑉 𝑗 ∈ DeH2 (𝑉𝑘), in
which case 𝑚 𝑗𝑘𝑚𝑙𝑘 ≠ 0 and 𝑚𝑖𝑘 = 0, so for any 𝑉 ∈ V𝑐\{𝑉𝑖 , 𝑉 𝑗 } s.t. 𝑉,𝑉𝑖 , 𝑉 𝑗 are corre-
lated to each other, R(𝑉𝑖 , 𝑉 𝑗 |𝑉) ⫫∕ 𝑉𝑙 based on Lem. 1(2), which leads to contradiction.

(b) Suppose ChH2 (𝑉𝑖) = ChH2 (𝑉 𝑗 ) = ∅, PaH2 (𝑉𝑖) ≠ ∅, and PaH2 (𝑉 𝑗 ) ≠ ∅. Since {𝑉𝑖 , 𝑉 𝑗 } ∉

S2, there exist {𝑉𝑘 , 𝑉𝑙} ⊂ V𝑐 ∪ V 𝑓 \{𝑉𝑖 , 𝑉 𝑗 } s.t. 𝑉𝑘 ∈ PaH2 (𝑉𝑖) and 𝑉𝑙 ∈ PaH2 (𝑉 𝑗 ).
Similarly to fn. 3, we have GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅, GDeH2

V𝑐
(𝑉𝑙)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ and let

𝑉𝑚 ∈ GDeH2
V𝑐

(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 }, 𝑉𝑛 ∈ GDeH2
V𝑐

(𝑉𝑙)\{𝑉𝑖 , 𝑉 𝑗 } (It is possible that 𝑉𝑚 = 𝑉𝑛). An
illustrative example is shown as Fig. 11(ii). If 𝑉𝑖 ∉ DeH2 (𝑉𝑙) or 𝑉 𝑗 ∉ DeH2 (𝑉𝑘), we
take the former as an example without loss of generality, then 𝑚 𝑗𝑙𝑚𝑛𝑙 ≠ 0 and 𝑚𝑖𝑙 = 0,
so for any 𝑉 ∈ V𝑐\{𝑉𝑖 , 𝑉 𝑗 } s.t. 𝑉,𝑉𝑖 , 𝑉 𝑗 are correlated to each other, R(𝑉𝑖 , 𝑉 𝑗 |𝑉) ⫫∕ 𝑉𝑚
based on Lem. 1(2), which leads to contradiction. Otherwise, 𝑚𝑖𝑘𝑚 𝑗𝑘𝑚𝑖𝑙𝑚 𝑗𝑙 ≠ 0. Since

3There are three possible cases. (1) If 𝑉𝑘 ∈ V𝑐 , we have 𝑉𝑘 ∈ GDeH2
V𝑐

(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅. (2) If 𝑉𝑘 ∈ V 𝑓

and {𝑉𝑖 , 𝑉 𝑗 } ⊄ PDeG (𝑉𝑘), based on Cor. 2, we have GDeH2
V𝑐

(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅. (3) If 𝑉𝑘 ∈ V 𝑓 and {𝑉𝑖 , 𝑉 𝑗 } ⊂
PDeG (𝑉𝑘), since 𝑉 𝑗 ∉ PChG (𝑉𝑘), based on Cor. 2, we have GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅.
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Figure 11: Illustration of “if” part in proof of Thm. 1. A dotted arrow from 𝑉1 to 𝑉2 means that
𝑉2 ∈ GDeH2 (𝑉1). 𝑉 is marked in red if 𝑉 ∈ V𝑐.

there exist two non-intersecting directed paths from {𝑉𝑘 , 𝑉𝑙} to {𝑉𝑖 , 𝑉 𝑗 } (e.g., 𝑉𝑘 → 𝑉𝑖
and 𝑉𝑙 → 𝑉 𝑗 ), 𝑚𝑖𝑘/𝑚𝑖𝑙 ≠ 𝑚 𝑗𝑘/𝑚 𝑗𝑙 . Also, 𝑚𝑚𝑘𝑚𝑛𝑙 ≠ 0. So for any 𝑉 ∈ V𝑐\{𝑉𝑖 , 𝑉 𝑗 }
s.t. 𝑉,𝑉𝑖 , 𝑉 𝑗 are correlated to each other, R(𝑉𝑖 , 𝑉 𝑗 |𝑉) ⫫∕ 𝑉𝑚 or R(𝑉𝑖 , 𝑉 𝑗 |𝑉) ⫫∕ 𝑉𝑛 based on
Lem. 1(3), which leads to contradiction.

(c) Suppose NeH2 (𝑉𝑖) = ∅ or NeH2 (𝑉 𝑗 ) = ∅, we take the former as an example without loss
of generality. Clearly, Cov(𝑉𝑖 , 𝑉 𝑗 ) = 0, which leads to contradiction.

(2) Assume 𝑉𝑖 ∈ PaH2 (𝑉 𝑗 ) or 𝑉 𝑗 ∈ PaH2 (𝑉𝑖), we take the former as an example without loss of
generality, all possible cases are as follows.

(a) Suppose ChH2 (𝑉 𝑗 ) ≠ ∅. Let 𝑉𝑘 ∈ ChH2 (𝑉 𝑗 ). Similarly to fn. 3, we have
GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ and let 𝑉𝑙 ∈ GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 }. An illustrative example

is shown as Fig. 11(iii). Clearly, 𝑚 𝑗 𝑗𝑚𝑙 𝑗 ≠ 0 and 𝑚𝑖 𝑗 = 0, so for any 𝑉 ∈ V𝑐\{𝑉𝑖 , 𝑉 𝑗 } s.t.
𝑉,𝑉𝑖 , 𝑉 𝑗 are correlated to each other, R(𝑉𝑖 , 𝑉 𝑗 |𝑉) ⫫∕ 𝑉𝑙 based on Lem. 1(2), which leads
to contradiction.

(b) Suppose PaH2 (𝑉 𝑗 )\{𝑉𝑖} = ∅ and ChH2 (𝑉 𝑗 ) = ∅. Since {𝑉𝑖 , 𝑉 𝑗 } ∉ S1, we have
NeH2 (𝑉𝑖)\{𝑉 𝑗 } = ∅. Clearly, for any 𝑉 ∈ V𝑐\{𝑉𝑖 , 𝑉 𝑗 }, Cov(𝑉,𝑉𝑖) = 0 which leads to
contradiction.

(c) Suppose ChH2 (𝑉𝑖)\{𝑉 𝑗 } ≠ ∅, PaH2 (𝑉 𝑗 )\{𝑉𝑖} ≠ ∅, and ChH2 (𝑉 𝑗 ) = ∅. Let 𝑉𝑘 ∈
ChH2 (𝑉𝑖)\{𝑉 𝑗 } and 𝑉𝑙 ∈ PaH2 (𝑉 𝑗 )\{𝑉𝑖} (It is possible that 𝑉𝑘 = 𝑉𝑙). Similarly to
fn. 3, we have GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅, GDeH2

V𝑐
(𝑉𝑙)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ and let 𝑉𝑚 ∈

GDeH2
V𝑐

(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 }, 𝑉𝑛 ∈ GDeH2
V𝑐

(𝑉𝑙)\{𝑉𝑖 , 𝑉 𝑗 } (It is possible that 𝑉𝑚 = 𝑉𝑛). An il-
lustrative example is shown as Fig. 11(iv). If 𝑉𝑖 ∉ DeH2 (𝑉𝑙), 𝑚 𝑗𝑙𝑚𝑛𝑙 ≠ 0 and 𝑚𝑖𝑙 = 0, so
for any 𝑉 ∈ V𝑐\{𝑉𝑖 , 𝑉 𝑗 } s.t. 𝑉,𝑉𝑖 , 𝑉 𝑗 are correlated to each other, R(𝑉𝑖 , 𝑉 𝑗 |𝑉) ⫫∕ 𝑉𝑛 based
on Lem. 1(2), which leads to contradiction. Otherwise, 𝑚𝑖𝑖𝑚𝑖𝑙𝑚 𝑗𝑖𝑚 𝑗𝑙 ≠ 0, since there
exist two non-intersecting directed paths from {𝑉𝑖 , 𝑉𝑙} to {𝑉𝑖 , 𝑉 𝑗 } (e.g., 𝑉𝑖 and 𝑉𝑙 → 𝑉 𝑗 ),
𝑚𝑖𝑖/𝑚𝑖𝑙 ≠ 𝑚 𝑗𝑖/𝑚 𝑗𝑙 . Also, 𝑚𝑚𝑖𝑚𝑛𝑙 ≠ 0, so for any 𝑉 ∈ V𝑐\{𝑉𝑖 , 𝑉 𝑗 } s.t. 𝑉,𝑉𝑖 , 𝑉 𝑗 are cor-
related to each other, R(𝑉𝑖 , 𝑉 𝑗 |𝑉) ⫫∕ 𝑉𝑚 or R(𝑉𝑖 , 𝑉 𝑗 |𝑉) ⫫∕ 𝑉𝑛 based on Lem. 1(3), which
leads to contradiction.

(d) Suppose PaH2 (𝑉𝑖) ≠ ∅, ChH2 (𝑉𝑖)\{𝑉 𝑗 } = ∅, PaH2 (𝑉 𝑗 )\{𝑉𝑖} ≠ ∅, and ChH2 (𝑉 𝑗 ) = ∅.
Since {𝑉𝑖 , 𝑉 𝑗 } ∉ S3, there exist {𝑉𝑘 , 𝑉𝑙} ⊂ V𝑐 ∪ V 𝑓 \{𝑉𝑖 , 𝑉 𝑗 } s.t. 𝑉𝑘 ∈ PaH2 (𝑉𝑖) and 𝑉𝑙 ∈
PaH2 (𝑉 𝑗 ). Similarly to fn. 3, we have GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅, GDeH2

V𝑐
(𝑉𝑙)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅

and let𝑉𝑚 ∈ GDeH2
V𝑐

(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 },𝑉𝑛 ∈ GDeH2
V𝑐

(𝑉𝑙)\{𝑉𝑖 , 𝑉 𝑗 } (It is possible that𝑉𝑚 = 𝑉𝑛).
An illustrative example is shown as Fig. 11(v). Then the proof is similar to case (1.b).

(e) Suppose PaH2 (𝑉𝑖) = ∅, ChH2 (𝑉𝑖)\{𝑉 𝑗 } = ∅, PaH2 (𝑉 𝑗 )\{𝑉𝑖} ≠ ∅, and ChH2 (𝑉 𝑗 ) = ∅.
Clearly, for any 𝑉 ∈ V𝑐\{𝑉𝑖 , 𝑉 𝑗 }, Cov(𝑉,𝑉𝑖) = 0, which leads to contradiction.

□
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Theorem 2. ∀{𝑉𝑖 , 𝑉 𝑗 } ∈ S, let {𝑉𝑖1 , 𝑉𝑖2 } ⊂ ChH1 (𝑉𝑖).

(1) R(𝑉𝑖1 , 𝑉 𝑗 |𝑉𝑖2 ) ⫫ 𝑉𝑖2 iff {𝑉𝑖 , 𝑉 𝑗 } ∈ S1 and 𝑉𝑖 ∈ PaG (𝑉 𝑗 ).
(2) Suppose {𝑉𝑖 , 𝑉 𝑗 } ∉ S1, ∃{𝑉𝑖′ , 𝑉 𝑗′ } ∈ S\{{𝑉𝑖 , 𝑉 𝑗 }} s.t. {𝑉𝑖′ , 𝑉 𝑗′ } ∩ {𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ only if (but not

if) {𝑉𝑖 , 𝑉 𝑗 } ∈ S2.

(3) Suppose {𝑉𝑖 , 𝑉 𝑗 } ∉ S1, ∃{𝑉𝑘 , 𝑉𝑙} ⊂ ⋃
ChH1 (V𝑐\{𝑉𝑖 , 𝑉 𝑗 }) s.t. (𝑉𝑖1 , 𝑉𝑖2 , 𝑉 𝑗 , 𝑉𝑘 , 𝑉𝑙) satisfies the

quintuple constraint iff {𝑉𝑖 , 𝑉 𝑗 } ∈ S3 and 𝑉𝑖 ∈ PaG (𝑉 𝑗 ).

Proof Sketch. For (1), if {𝑉𝑖 , 𝑉 𝑗 } ∈ S1 and 𝑉𝑖 ∈ PaG (𝑉 𝑗 ), we can prove independence based on
Lem. 1(1); otherwise, for each possible case, we can prove dependence based on Lem. 1(2,3). For
(2), “only if” can be readily derived from the definitions of S2 and S3 while “not if” can be proven
by an example, which is {𝑂7, 𝑂8} in Fig. 3. For (3), if {𝑉𝑖 , 𝑉 𝑗 } ∈ S3 and 𝑉𝑖 ∈ PaG (𝑉 𝑗 ), letting 𝑉
be the common parent of 𝑉𝑖 , 𝑉 𝑗 and 𝑉𝑘 , 𝑉𝑙 be respective generalized descendants of 𝑉’s any two
pure children, we can prove the quintuple constraint is satisfied based on Lem. 2(2.a); otherwise,
for each possible case, we can prove it is not satisfied based on Lem. 2(1).

Proof. Cond. 1 indicates that ∀𝑉 ∈ V𝑐,ChH1 (𝑉) ⊂ PChG (𝑉).

• “If” of (1): Clearly, 𝑉𝑖1 = 𝑎𝑖1𝑖𝑉𝑖 + 𝜖𝑉𝑖1
, 𝑉 𝑗 = 𝑎 𝑗𝑖𝑉𝑖 + 𝜖𝑉𝑗

where {𝜖𝑉𝑖1
, 𝜖𝑉𝑗

} ⫫ {𝑉𝑖 , 𝑉𝑖2 }, and
Cov(𝑉𝑖 , 𝑉𝑖2 ) ≠ 0, so we can reach the conclusion based on Lem. 1(1).

• “Only if” of (1): We prove this part by contradiction.

– Suppose (i) {𝑉𝑖 , 𝑉 𝑗 } ∈ S1 and𝑉 𝑗 ∈ PaG (𝑉𝑖), or (ii) {𝑉𝑖 , 𝑉 𝑗 } ∈ S2, or (iii) {𝑉𝑖 , 𝑉 𝑗 } ∈ S3 and
𝑉 𝑗 ∈ PaG (𝑉𝑖). Since 𝑚𝑖1𝑖𝑚𝑖2𝑖 ≠ 0 and 𝑚 𝑗𝑖 = 0, R(𝑉𝑖1 , 𝑉 𝑗 |𝑉𝑖2 ) ⫫∕ 𝑉𝑖2 based on Lem. 1(2),
which leads to contradiction.

– Suppose {𝑉𝑖 , 𝑉 𝑗 } ∈ S3 and 𝑉𝑖 ∈ PaG (𝑉 𝑗 ). Let PaH2 (𝑉𝑖) = {𝑉𝑘}. Clearly,
𝑚𝑖1𝑖𝑚𝑖1𝑘𝑚 𝑗𝑖𝑚 𝑗𝑘 ≠ 0. Since there exist two non-intersecting directed paths from {𝑉𝑖 , 𝑉𝑘}
to {𝑉𝑖1 , 𝑉 𝑗 } (e.g., 𝑉𝑖 → 𝑉𝑖1 and 𝑉𝑘 → 𝑉 𝑗 ), 𝑚𝑖1𝑖/𝑚𝑖1𝑘 ≠ 𝑚 𝑗𝑖/𝑚 𝑗𝑘 . Also, 𝑚𝑖2𝑖𝑚𝑖2𝑘 ≠ 0, so
R(𝑉𝑖1 , 𝑉 𝑗 |𝑉𝑖2 ) ⫫∕ 𝑉𝑖2 based on Lem. 1(3), which leads to contradiction.

• “If” of (2): This follows the definition of S2.

• “Not only if” of (2): An example is {𝑂7, 𝑂8} in Fig. 3.

• “If” of (3): Let PaH2 (𝑉𝑖) = {𝑉ℎ}. If 𝑉ℎ ∈ V𝑐, let {𝑉𝑘 , 𝑉𝑙} ⊂ ChH1 (𝑉ℎ). Otherwise, 𝑉ℎ ∈ V 𝑓 ⊂
L, let {𝑉ℎ1 , 𝑉ℎ2 } ⊂ PChG (𝑉ℎ). Similarly to fn. 3, we can obtain GDeH2

V𝑐
(𝑉ℎ1 )\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ and

GDeH2
V𝑐

(𝑉ℎ2 )\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅, let 𝑉𝑘 ∈ ⋃
ChH1 (GDeH2

V𝑐
(𝑉ℎ1 )) and 𝑉𝑙 ∈ ⋃

ChH1 (GDeH2
V𝑐

(𝑉ℎ2 )).
In both cases, 𝑉𝑖1 , 𝑉𝑖2 , 𝑉 𝑗 , 𝑉𝑘 can be expressed as

𝑉𝑖1 = 𝑎𝑖ℎ𝑎𝑖1𝑖𝑉ℎ + 𝑎𝑖1𝑖𝜖𝑉𝑖
+ 𝜖𝑉𝑖1

(13)

𝑉𝑖2 = 𝑎𝑖ℎ𝑎𝑖2𝑖𝑉ℎ + 𝑎𝑖2𝑖𝜖𝑉𝑖
+ 𝜖𝑉𝑖2

(14)

𝑉 𝑗 = (𝑎𝑖ℎ𝑎 𝑗𝑖 + 𝑎 𝑗ℎ)𝑉ℎ + 𝑎 𝑗𝑖𝜖𝑉𝑖
+ 𝜖𝑉𝑗

, (15)

𝑉𝑘 = 𝜆𝑘𝑉ℎ + 𝑒𝑉𝑘
, (16)

where 𝑉ℎ, 𝜖𝑉𝑖
, 𝜖𝑉𝑖1

, 𝜖𝑉𝑖2
, 𝜖𝑉𝑗

, 𝑒𝑉𝑘
are independent of each other, 𝑉𝑙 ⫫ {𝜖𝑉𝑖

, 𝜖𝑉𝑖1
, 𝜖𝑉𝑖2

, 𝜖𝑉𝑗
, 𝑒𝑉𝑘

}
and Cov(𝑉𝑙 , 𝑉ℎ) ≠ 0, so (𝑉𝑖1 , 𝑉𝑖2 , 𝑉 𝑗 , 𝑉𝑘 , 𝑉𝑙) satisfies the quintuple constraint based on
Lem. 2(2.a).

• “Only if” of (3): We prove this part by contradiction. Suppose {𝑉𝑖 , 𝑉 𝑗 } ∈ S3 and𝑉 𝑗 ∈ PaH2 (𝑉𝑖)
or {𝑉𝑖 , 𝑉 𝑗 } ∈ S2. Clearly, 𝑚𝑖1𝑖𝑚𝑖2𝑖 ≠ 0, 𝑚 𝑗𝑖 = 0, and for any𝑉𝑘 , 𝑚𝑘𝑖 = 0, so (𝑉𝑖1 , 𝑉𝑖2 , 𝑉 𝑗 , 𝑉𝑘 , 𝑉𝑙)
does not satisfy the quintuple constraint based on Lem. 2(1), which leads to contradiction.

□
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Remark. For the proof of (1) and (3), it can be readily verified that if both 𝑉𝑖1 and 𝑉𝑖2 are identical
to 𝑉𝑖 (i.e., 𝑎𝑖1𝑖 = 𝑎𝑖2𝑖 = 1 and 𝜖𝑉𝑖1

= 𝜖𝑉𝑖2
= 0), the proof remains valid. The same argument applies

to all following theorems involving {𝑉𝑖1 , 𝑉𝑖2 } ⊂ ChH1 (𝑉𝑖) such as Thm. 9. Clearly, when 𝑉𝑖 refers
to any 𝑂 𝑗 ∈ O0, {𝑉𝑖1 , 𝑉𝑖2 } refers to two created children of 𝑂 𝑗 , denoted by {𝑂′

𝑗
, 𝑂′′

𝑗
} ⊂ O1. This

means that we can actually create 𝑂′
𝑗

and 𝑂′′
𝑗

by directly making two copies of 𝑂 𝑗 .

Theorem 3. (1) ∀{𝑉𝑖 , 𝑉 𝑗 } ∈ S2,
⋂

PaG ({𝑉𝑖 , 𝑉 𝑗 }) ⊂ V𝑐 iff ∃{𝑉𝑖′ , 𝑉 𝑗′ } ∈ S1 s.t. {𝑉𝑖 , 𝑉 𝑗 }∩{𝑉𝑖′ , 𝑉 𝑗′ } ≠
∅. (2) ∀{{𝑉𝑖 , 𝑉 𝑗 }, {𝑉𝑖′ , 𝑉 𝑗′ }} ⊂ S2,

⋂
PaG ({𝑉𝑖 , 𝑉 𝑗 }) =

⋂
PaG ({𝑉𝑖′ , 𝑉 𝑗′ }) iff ∃{𝑉𝑖′′ , 𝑉 𝑗′′ } ∈ S2 s.t.

{𝑉𝑖 , 𝑉 𝑗 } ∩ {𝑉𝑖′′ , 𝑉 𝑗′′ } ≠ ∅ and {𝑉𝑖′ , 𝑉 𝑗′ } ∩ {𝑉𝑖′′ , 𝑉 𝑗′′ } ≠ ∅.

Proof. This can be readily derived from the definitions of S1 and S2. □

Proposition 2. Cond. 1 is still valid after update.

Proof. We denote V𝑝 ,V𝑐,V 𝑓 ,H1,H2 after update by V′
𝑝 ,V′

𝑐,V′
𝑓
,H ′

1,H
′
2 respectively. While

Cond. 1 is valid for V′
𝑝 ∩ V𝑝 and V′

𝑐 ∩ V𝑐 trivially, we focus on V′
𝑝\V𝑝 and V′

𝑐\V𝑐.

• If 𝑉 𝑗 ∈ V′
𝑝\V𝑝 , then 𝑉 𝑗 ∈ V𝑐 and there exists 𝑉𝑖 ∈ V𝑐 s.t. (i) {𝑉𝑖 , 𝑉 𝑗 } ∈ S1 and 𝑉𝑖 ∈ PaH2 (𝑉 𝑗 )

or (ii) {𝑉𝑖 , 𝑉 𝑗 } ∈ S2. In both cases, |PaH′
1 (𝑉 𝑗 ) | = 1 because PaH′

1 (𝑉 𝑗 ) = {𝑉𝑖} in case (i) and
PaH′

1 (𝑉 𝑗 ) =
⋂

PaH2 ({𝑉𝑖 , 𝑉 𝑗 }) in case (ii). Also, because PChG (𝑉 𝑗 ) ∩ (V 𝑓 ∪ V𝑐) = ∅, we have
PChG (𝑉 𝑗 ) ⊂ V𝑝 , that is, PChG (𝑉 𝑗 ) = ChH1 (𝑉 𝑗 ), then ChH′

1 (𝑉 𝑗 ) = ChH1 (𝑉 𝑗 ) = PChG (𝑉 𝑗 ).

• If 𝑉 𝑗 ∈ V′
𝑐\V𝑐, then ∀{𝑉𝑘 , 𝑉𝑙} ⊂ ChH′

1 (𝑉 𝑗 ), {𝑉𝑘 , 𝑉𝑙} ∈ S2 and
⋃

PaH2 ({𝑉𝑘 , 𝑉𝑙}) = {𝑉 𝑗 }, so
ChH′

1 (𝑉 𝑗 ) ⊂ PChG (𝑉 𝑗 ). Besides, it is trivial that PaH′
1 (𝑉 𝑗 ) = ∅.

□

Theorem 4. If S1 ∪ S2 = ∅, V 𝑓 = ∅.

Proof. We prove this by contradiction. Suppose V 𝑓 ≠ ∅ and 𝑉𝑖 ∈ V 𝑓 ⊂ L.

• If
⋃

ChH2 (PChG (𝑉𝑖)) = ∅, then PChG (𝑉𝑖) ⊂ V𝑐. Conversely, if PChG (𝑉𝑖) ⊄ V𝑐, there
exists 𝑉 ∈ PChG

V 𝑓
(𝑉𝑖) ⊂ L and ChG (𝑉) = ChH2 (𝑉) = ∅, contradicting Asmp. 1. For each

{𝑉 𝑗 , 𝑉𝑘} ⊂ PChG (𝑉𝑖), it is trivial that {𝑉 𝑗 , 𝑉𝑘} ∈ S2, which leads to contradiction.

• If
⋃

ChH2 (PChG (𝑉𝑖)) ≠ ∅, let V′ = {𝑉 |𝑉 ∈ PDeG (𝑉𝑖),ChH2 (𝑉) ≠ ∅,⋃ChH2 (ChH2 (𝑉 𝑗 )) =
∅} and 𝑉 𝑗 ∈ V′, then ChH2 (𝑉 𝑗 ) ⊂ V𝑐 as proven by contradiction above. If 𝑉 𝑗 ∈ V𝑐, then
for any 𝑉𝑘 ∈ ChH2 (𝑉 𝑗 ), it is trivial that {𝑉 𝑗 , 𝑉𝑘} ∈ S1. Otherwise, 𝑉 𝑗 ∈ V 𝑓 ⊂ L, for each
{𝑉𝑘 , 𝑉𝑙} ⊂ ChH2 (𝑉 𝑗 ), it is trivial that {𝑉𝑘 , 𝑉𝑙} ∈ S2. Both cases lead to contradiction.

□

C.2.2 PROOF OF THEORETICAL RESULTS IN SEC. 3.2

Condition 2. (1) ∀𝑉 ∈ U𝑐,DeH2 (𝑉) ⊂ U𝑐. (2) ∀𝑉𝑖 ∈ U𝑐, 𝑋2𝑖−1, 𝑋2𝑖 can be written as

𝑋2𝑖−1 = 𝑐𝑖1

∑︁
𝑉𝑗 ∈U𝑐

𝑚𝑖 𝑗𝜖𝑉𝑗
+ 𝑒𝑋2𝑖−1 + 𝑒′𝑋2𝑖−1

, 𝑋2𝑖 = 𝑐𝑖2

∑︁
𝑉𝑗 ∈U𝑐

𝑚𝑖 𝑗𝜖𝑉𝑗
+ 𝑒𝑋2𝑖 + 𝑒′𝑋2𝑖

, (17)

where ∀ 𝑗 , 𝑘, 𝑙, (i) 𝜖𝑉𝑗
⫫ 𝑒𝑋𝑘

⫫ 𝑒′
𝑋𝑙

, (ii) 𝑒𝑋 𝑗
⫫ 𝑒𝑋𝑘

if 𝑗 ≠ 𝑘 , and (iii) 𝑒′
𝑋2 𝑗−1

⫫ 𝑒′
𝑋2𝑘

. Without loss of
generality, we assume each 𝑐𝑖1 is positive and each 𝜖𝑉𝑗

has variance 1.

Theorem 5. ∀𝑉𝑖 ∈ U𝑐, AnH2 (𝑉𝑖) ∩ U𝑐 = ∅ iff ∀𝑉 𝑗 ∈ U𝑐\{𝑉𝑖}, R(𝑋2 𝑗−1, 𝑋2𝑖−1 |𝑋2𝑖) ⫫ 𝑋2𝑖 .
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Proof. When |U𝑐 | = 1, the proof is trivial, we focus on the case |U𝑐 | > 1.

“Only if”: As ∀𝑉𝑖 ∈ U𝑐, AnH2 (𝑉𝑖) ∩ U𝑐 = ∅, 𝑋2𝑖−1 and 𝑋2𝑖 can be written as
𝑋2𝑖−1 = 𝑐𝑖1𝜖𝑉𝑖

+ 𝑒𝑋2𝑖−1 + 𝑒′𝑋2𝑖−1
, 𝑋2𝑖 = 𝑐𝑖2𝜖𝑉𝑖

+ 𝑒𝑋2𝑖 + 𝑒′𝑋2𝑖
. (18)

• If Cov(𝑋2 𝑗−1, 𝑋2𝑖) = 0, then 𝑚 𝑗𝑖 = 0, so R(𝑋2 𝑗−1, 𝑋2𝑖−1 |𝑋2𝑖) = 𝑋2 𝑗−1 ⫫ 𝑋2𝑖 .

• If Cov(𝑋2 𝑗−1, 𝑋2𝑖) ≠ 0, then 𝑚 𝑗𝑖 ≠ 0. 𝑋2 𝑗−1 can be written as

𝑋2 𝑗−1 = 𝑐 𝑗1𝑚 𝑗𝑖𝜖𝑉𝑖
+ 𝑐 𝑗1

∑︁
𝑉𝑘 ∈U𝑐\{𝑉𝑖 }

𝑚 𝑗𝑘𝜖𝑉𝑘
+ 𝑒𝑋2 𝑗−1 + 𝑒′𝑋2 𝑗−1

, (19)

where {𝑐 𝑗1
∑

𝑉𝑘 ∈U𝑐\{𝑉𝑖 } 𝑚 𝑗𝑘𝜖𝑉𝑘
+ 𝑒𝑋2 𝑗−1 + 𝑒′

𝑋2 𝑗−1
, 𝑒𝑋2𝑖−1 + 𝑒′

𝑋2𝑖−1
} ⫫ {𝜖𝑉𝑖

, 𝑋2𝑖} and
Cov(𝜖𝑉𝑖

, 𝑋2𝑖) ≠ 0, so R(𝑋2 𝑗−1, 𝑋2𝑖−1 |𝑋2𝑖) ⫫ 𝑋2𝑖 based on Lem. 1(1).

“If”: We prove this part by contradiction. Let 𝑉 𝑗 ∈ AnH2
U𝑐

(𝑉𝑖) ≠ ∅. Since 𝑋2𝑖−1 and 𝑋2𝑖 both contain
𝜖𝑉𝑖

while 𝑋2 𝑗−1 does not contain 𝜖𝑉𝑖
, so R(𝑋2 𝑗−1, 𝑋2𝑖−1 |𝑋2𝑖) ⫫∕ 𝑋2𝑖 based on Lem. 1(2), which leads

to contradiction. □

Theorem 6. If 𝑉𝑖 ∈ U𝑐 and AnH2 (𝑉𝑖) ∩ U𝑐 = ∅, then Cov(𝑋2𝑖−1, 𝑋2𝑖) = 𝑐𝑖1𝑐𝑖2 and ∀𝑉 𝑗 ∈ U𝑐\{𝑉𝑖},

sgn(𝑚 𝑗𝑖) = sgn(
Cov(𝑋2𝑖−1, 𝑋2 𝑗 )
Cov(𝑋2 𝑗−1, 𝑋2 𝑗 )

), Cov(𝑋2𝑖−1, 𝑋2 𝑗 )Cov(𝑋2𝑖 , 𝑋2 𝑗−1) = 𝑐𝑖1𝑐𝑖2𝑐 𝑗1𝑐 𝑗2𝑚2
𝑗𝑖 . (20)

Besides, ∀𝑉 𝑗 ∈ V𝑐\U𝑐, 𝑚 𝑗𝑖 = 0.

Proof. It is trivial that ∀𝑉 𝑗 ∈ V𝑐\U𝑐, 𝑚 𝑗𝑖 = 0 because 𝑉𝑖 ∉ AnH2 (𝑉 𝑗 ) based on Cond. 2(1). Since
we assume each 𝜖𝑉𝑖

has variance 1 and each 𝑐𝑖1 is positive without loss of generality, ∀𝑉 𝑗 ∈ U𝑐\{𝑉𝑖},
Cov(𝑋2𝑖−1, 𝑋2 𝑗 )
Cov(𝑋2 𝑗−1, 𝑋2 𝑗 )

=
𝑐𝑖1𝑚 𝑗𝑖

𝑐 𝑗1Var(∑𝑉𝑘 ∈U𝑐
𝑚 𝑗𝑘𝜖𝑉𝑘

) , (21)

so sgn(𝑚 𝑗𝑖) = sgn( Cov(𝑋2𝑖−1 ,𝑋2 𝑗 )
Cov(𝑋2 𝑗−1 ,𝑋2 𝑗 ) ). Besides, it is trivial that

Cov(𝑋2𝑖−1, 𝑋2 𝑗 )Cov(𝑋2𝑖 , 𝑋2 𝑗−1) = 𝑐𝑖1𝑐𝑖2𝑐 𝑗1𝑐 𝑗2𝑚2
𝑗𝑖 , Cov(𝑋2𝑖−1, 𝑋2𝑖) = 𝑐𝑖1𝑐𝑖2 . (22)

□

Proposition 3. Cond. 2 is still valid after removal.

Proof. Based on Thm. 5, Cond. 2(1) holds trivially. Besides,

R(𝑋2 𝑗−1, 𝑋2𝑖−1 |𝑋2𝑖) = 𝑐 𝑗1
∑︁

𝑉𝑘 ∈U𝑐\{𝑉𝑖 }
𝑚 𝑗𝑘𝜖𝑉𝑘

+ 𝑒𝑋2 𝑗−1 + 𝑒′𝑋2 𝑗−1
−
𝑚 𝑗𝑖𝑐 𝑗1

𝑐𝑖1
(𝑒𝑋2𝑖−1 + 𝑒′𝑋2𝑖−1

)︸                                    ︷︷                                    ︸
updated 𝑒′

𝑋2 𝑗−1

, (23)

𝑋2 𝑗 = 𝑐 𝑗2

∑︁
𝑉𝑘 ∈U𝑐

𝑚 𝑗𝑘𝜖𝑉𝑘
+ 𝑒𝑋2 𝑗 + 𝑒′𝑋2 𝑗

= 𝑐 𝑗2

∑︁
𝑉𝑘 ∈U𝑐\{𝑉𝑖 }

𝑚 𝑗𝑘𝜖𝑉𝑘
+ 𝑒𝑋2 𝑗 + 𝑒′𝑋2 𝑗

+ 𝑐 𝑗2𝑚 𝑗𝑖𝜖𝑉𝑖︸              ︷︷              ︸
updated 𝑒′

𝑋2 𝑗

, (24)

so Cond. 2(2) is still valid. □

C.2.3 PROOF OF THEORETICAL RESULTS IN SEC. 3.3

Theorem 7. Suppose the observed variables are generated by a LiNGAM with latent variables
satisfying the rank-faithfulness assumption and Asmp. 1, in the limit of infinite data, our algorithm
correctly identifies the underlying complete causal structure.

Proof. In Stage 1, our algorithm sequentially identifies latent variables and their pure children. Dur-
ing this process, H1 records all identified causal relations. According to the theoretical results in
Sec. 3.1, causal relations in H1 are correct. In Stage 2, with H1 fixed, our algorithm recovers H2.
According to the theoretical results in Sec. 3.2, causal relations in H2 are correctly revealed. Com-
bining H1 and H2, our algorithm correctly identifies the underlying complete causal structure. □

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C.3 PROOF OF THEORETICAL RESULTS IN SEC. 4

Definition 5. (Paired pseudo-pure children) We say {𝑉2, 𝑉3} is a pair of pseudo-pure children of 𝑉1,
denoted by {𝑉2, 𝑉3} ∈ P3Ch(𝑉1), if (i)

⋂
Pa({𝑉2, 𝑉3}) = {𝑉1}, (ii)

⋃
Pa({𝑉2, 𝑉3})\{𝑉1, 𝑉2, 𝑉3} = ∅,

(iii) 𝑉2 ∈ Ne(𝑉3), and (iv) ∀𝑉 ∈ ⋃
De({𝑉2, 𝑉3})\{𝑉2, 𝑉3}, |Pa(𝑉) | = 1.

Remark. Based on this definition, if {𝑉2, 𝑉3} ∈ P3Ch(𝑉1) and 𝑉2 ∈ Pa(𝑉3), Ch(𝑉2) = PCh(𝑉2) ∪
{𝑉3} and Ch(𝑉3) = PCh(𝑉3).

Definition 8. (Unique minimal bottleneck) We say B is a bottleneck from J to K (J,K,B need not
be mutually disjoint) if ∀𝐽 ∈ J and 𝐾 ∈ K, each directed path from 𝐽 to 𝐾 includes some 𝐵 ∈ B.
Given a bottleneck B1 from J to K, if any other bottleneck B ≠ B1 satisfying |B| ≥ |B1 |, we say B1
is a minimal bottleneck. Furthermore, if |B| > |B1 |, we say B1 is the unique minimal bottleneck.

Assumption 2. (1) ∀𝐿 ∈ L, 𝑉 ∈ V0\{𝐿}, ChG0 (𝐿) ⊄ ChG0 (𝑉) ∪ {𝑉}. (2) ∀𝑉 ∈ V0, ChG0 (𝑉) is the
unique minimal bottleneck from ChG0 (𝑉) to O0. (3) ∀𝐿 ∈ L, 𝐿 is not a PV.

Trivially, if Asmp. 2 holds, then (1) ∀𝐿 ∈ L, 𝑉 ∈ V\{𝐿}, ChG (𝐿) ⊄ ChG (𝑉) ∪ {𝑉}. (2) ∀𝑉 ∈ V,
ChG (𝑉) is the unique minimal bottleneck from ChG (𝑉) to O. (3) ∀𝐿 ∈ L, 𝐿 is not a PV.

C.3.1 PROOF OF THEORETICAL RESULTS IN SEC. 4.1

Definition 9. (Pseudo-pure descendant) We say 𝑉2 is a pseudo-pure descendant of 𝑉1, denoted by
𝑉2 ∈ P2De(𝑉1), if 𝑉2 ∈ De(𝑉1) and there exists no common cause between 𝑉1 and 𝑉2.

Example. In Fig. 2(a), P2De(𝑂2) = {𝐿1, ..., 𝐿4, 𝑂1, 𝑂3, ..., 𝑂16}.

Condition 3. (1) ∀𝑉 ∈ V𝑝 , |PaH1 (𝑉) | = 1 and ChH1 (𝑉) = PChG (𝑉); (2) ∀𝑉 ∈ V𝑐, PaH1 (𝑉) = ∅
and |ChH1 (𝑉) | ≥ 2. If ChH1 (𝑉) ⊄ PChG (𝑉), then {ChH1 (𝑉)} = P3ChG (𝑉) and �{𝑉𝑖 , 𝑉 𝑗 } ⊂
V𝑐\{𝑉} s.t. 𝑉𝑖 ∈ P2DeG (𝑉), 𝑉 𝑗 ⫫∕ 𝑉 , and 𝑉𝑖 ⫫ 𝑉 𝑗 |𝑉 .

Before proving theoretical results in the main text one by one, we first introduce two corollaries
(Cors. 3 and 4) readily derived from Cond. 3.

Corollary 3. (1) ∀𝑉 ∈ V𝑝 , (i) ChG (𝑉) = ChH1 (𝑉) or ∃𝑉 ′ ∈ V𝑝\{𝑉} s.t. ChG (𝑉) = ChH1 (𝑉) ∪
{𝑉 ′}, and (ii) PaG (𝑉) = PaH1 (𝑉) or ∃𝑉 ′ ∈ V𝑝\{𝑉} s.t. PaG (𝑉) = PaH1 (𝑉) ∪ {𝑉 ′}; (2) ∀𝑉 ∈
V 𝑓 ,ChG (𝑉) = ChH2 (𝑉) and PaG (𝑉) = PaH2 (𝑉); (3) ∀𝑉 ∈ V𝑐,ChG (𝑉) = ChH1 (𝑉) ∪ ChH2 (𝑉)
and PaG (𝑉) = PaH2 (𝑉).

Remark. This is a variant of Cor. 1 in App. C.2.1. While (2,3) here are identical to (2,3) in Cor. 1,
(1) here is slightly different from (1) in Cor. 1 in the sense that for each 𝑉 ∈ V𝑝 , ChG (𝑉) and
PaG (𝑉) contain at most one more variable in V𝑝 than ChH1 (𝑉) and PaH2 (𝑉) here. This corollary
is widely used in the following proofs. To maintain fluency, we will use it without further citation.

Proof. First, if 𝑉𝑖 ∈ V𝑝 , then ChH1 (𝑉𝑖) = PChG (𝑉𝑖) and there exists 𝑉 𝑗 ∈ V𝑐 ∪ V𝑝 s.t.
PaH1 (𝑉𝑖) = {𝑉 𝑗 } based on Cond. 3(1). Moreover, since (i) ChH1 (𝑉 𝑗 ) = PChG (𝑉 𝑗 ) if 𝑉 𝑗 ∈ V𝑝

and (ii) ChH1 (𝑉 𝑗 ) ⊂ PChG (𝑉 𝑗 ) or {ChH1 (𝑉 𝑗 )} = P3ChG (𝑉 𝑗 ) if 𝑉 𝑗 ∈ V𝑐 based on Cond. 1(1,2),
there is (i) 𝑉𝑖 ∈ PChG (𝑉 𝑗 ) or (ii) there exists 𝑉 ′

𝑖
∈ V𝑝\{𝑉𝑖} s.t. P3ChG (𝑉 𝑗 ) = {{𝑉𝑖 , 𝑉 ′

𝑖
}}.

Therefore, we can conclude that (i.a) ChG (𝑉𝑖) = PChG (𝑉𝑖) = ChH1 (𝑉𝑖) if 𝑉𝑖 ∈ PChG (𝑉 𝑗 ); or
(i.b) ChG (𝑉𝑖) = PChG (𝑉𝑖) = ChH1 (𝑉𝑖) if P3ChG (𝑉 𝑗 ) = {{𝑉𝑖 , 𝑉 ′

𝑖
}} and 𝑉 ′

𝑖
∈ PaG (𝑉𝑖); or (i.c)

ChG (𝑉𝑖) = PChG (𝑉𝑖) ∪ {𝑉 ′
𝑖
} = ChH1 (𝑉𝑖) ∪ {𝑉 ′

𝑖
} if P3ChG (𝑉 𝑗 ) = {{𝑉𝑖 , 𝑉 ′

𝑖
}} and 𝑉 ′

𝑖
∈ ChG (𝑉𝑖).

Besides, (ii.a) PaG (𝑉𝑖) = {𝑉 𝑗 } = PaH1 (𝑉𝑖) if 𝑉𝑖 ∈ PChG (𝑉 𝑗 ); or (ii.b) PaG (𝑉𝑖) = {𝑉 𝑗 } = PaH1 (𝑉𝑖)
if P3ChG (𝑉 𝑗 ) = {{𝑉𝑖 , 𝑉 ′

𝑖
}} and 𝑉𝑖 ∈ PaG (𝑉 ′

𝑖
); or (ii.c) PaG (𝑉𝑖) = {𝑉 𝑗 , 𝑉

′
𝑖
} = PaH1 (𝑉𝑖) ∪ {𝑉 ′

𝑖
} if

P3ChG (𝑉 𝑗 ) = {{𝑉𝑖 , 𝑉 ′
𝑖
}} and 𝑉𝑖 ∈ ChG (𝑉 ′

𝑖
). This completes the proof of (1).

The proofs for (2,3) are similar to Cor. 1. □
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Corollary 4. ∀𝑉 ∈ V 𝑓 , |DeH2
V𝑐

(𝑉) | ≥ 2. If |DeH2
V𝑐

(𝑉) | = 2, DeH2
V𝑐

(𝑉) = ChG (𝑉).

Remark. This is a variant of Cor. 2 in App. C.2.1, where “pure descendants” and “pure children” in
Cor. 2 degenerate to “descendants” and “children” here. Although this is not sufficient to identify
variables in V 𝑓 , we can still infer some of their properties through analyzing variables in V𝑐.

Proof. It is trivial that V𝑐 is a bottleneck from V𝑐 ∪ V 𝑓 to V𝑐 ∪ V𝑝 , so for any V′ ⊂ V𝑐 ∪ V 𝑓 ,⋃
GDeGV𝑐

(V′) is a bottleneck from V′ to O given that O ⊂ V𝑐 ∪ V𝑝 . For any 𝑉 ∈ V 𝑓 , ChG (𝑉) =
ChH2 (𝑉) ⊂ V𝑐 ∪ V 𝑓 , so DeH2

V𝑐
(𝑉) = ⋃

GDeGV𝑐
(ChG (𝑉)) is a bottleneck from ChG (𝑉) to O. Based

on Asmp. 2(1,2), we have |DeH2
V𝑐

(𝑉) | ≥ |ChG (𝑉) | ≥ 2. Furthermore, the first “≥” becomes “=” iff

DeH2
V𝑐

(𝑉) = ChG (𝑉) because of Asmp. 2(2). □

Theorem 8. ∀{𝑉𝑖 , 𝑉 𝑗 } ⊂ V𝑐, {𝑉𝑖 , 𝑉 𝑗 } ∈ S iff there exists 𝑉𝑘 ∈ V𝑐\{𝑉𝑖 , 𝑉 𝑗 } s.t. Cov(𝑉𝑖 , 𝑉 𝑗 )
Cov(𝑉𝑖 , 𝑉𝑘)Cov(𝑉 𝑗 , 𝑉𝑘) ≠ 0 and for each such 𝑉𝑘 , R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑘) ⫫ V𝑐\ {𝑉𝑖 , 𝑉 𝑗 }.

Proof. ”Only if”

(1) Suppose {𝑉𝑖 , 𝑉 𝑗 } ∈ S1. The proof is similar to case (1) of “only if” part in proof of Thm. 1,
except that we obtain GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ in a different way4.

(2) Suppose {𝑉𝑖 , 𝑉 𝑗 } ∈ S2. The proof is similar to case (2) of “only if” part in proof of Thm. 1,
except that we obtain GDeH2

V𝑐
(𝑉𝑙)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ similarly to fn. 4.

(3) Suppose {𝑉𝑖 , 𝑉 𝑗 } ∈ S3. The proof is similar to case (3) of “only if” part in proof of Thm. 1,
except that we obtain GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ in a different way5.

”If”. We prove this part by contradiction. Suppose {𝑉𝑖 , 𝑉 𝑗 } ∉ S.

(1) Suppose 𝑉𝑖 ∉ NeH2 (𝑉 𝑗 ). All possible cases are as follows.

(a) Suppose ChH2 (𝑉𝑖) ≠ ∅ or ChH2 (𝑉 𝑗 ) ≠ ∅. The proof is similar to case (1.a) of “if” part in
proof of Thm. 1, except that we obtain GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ similarly to fn. 4.

(b) Suppose ChH2 (𝑉𝑖) = ChH2 (𝑉 𝑗 ) = ∅, PaH2 (𝑉𝑖) ≠ ∅ and PaH2 (𝑉 𝑗 ) ≠ ∅. Since {𝑉𝑖 , 𝑉 𝑗 } ∉

S2, there are two possible cases. This is different from case (1.b) of “if” part in proof of
Thm. 1 because without Asmp. 1, there may exist 𝐿 s.t. |NeG (𝐿) | < 3.

(i) Suppose PaH2 (𝑉𝑖) = PaH2 (𝑉 𝑗 ) = {𝑉𝑘} where 𝑉𝑘 ∈ V 𝑓 and NeH2 (𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } = ∅.
Clearly, for any 𝑉 ∈ V𝑐\{𝑉𝑖 , 𝑉 𝑗 }, Cov(𝑉,𝑉𝑖) = 0, which leads to contradiction.

(ii) Suppose there exists {𝑉𝑘 , 𝑉𝑙} ⊂ V𝑐 ∪ V 𝑓 \{𝑉𝑖 , 𝑉 𝑗 } s.t. 𝑉𝑘 ∈ PaH2 (𝑉𝑖) and
𝑉𝑙 ∈ PaH2 (𝑉 𝑗 ). If GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ and GDeH2

V𝑐
(𝑉𝑙)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅, the

proof is similar to case (1.b) of “if” part in proof of Thm. 1. Otherwise, let
GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } = ∅ without loss of generality, then we have 𝑉𝑘 ∈ V 𝑓 ⊂ L

and ChG (𝑉𝑘) = {𝑉𝑖 , 𝑉 𝑗 } based on Cor. 4. Also, based on Asmp. 2(1), ChG (𝑉𝑘) ⊄

ChG (𝑉𝑙), so 𝑉𝑖 ∉ ChH2 (𝑉𝑙), we have GDeH2
V𝑐

(𝑉𝑙)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ based on Cor. 4 and

let 𝑉𝑚 ∈ GDeH2
V𝑐

(𝑉𝑙)\{𝑉𝑖 , 𝑉 𝑗 }. An illustrative example is shown as Fig. 12(i).

4There are three possible cases. (1) If 𝑉𝑘 ∈ V𝑐 , we have 𝑉𝑘 ∈ GDeH2
V𝑐

(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅. (2) If 𝑉𝑘 ∈ V 𝑓

and {𝑉𝑖 , 𝑉 𝑗 } ⊄ DeH2 (𝑉𝑘), based on Cor. 4, we have GDeH2
V𝑐

(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅. (3) If 𝑉𝑘 ∈ V 𝑓 and {𝑉𝑖 , 𝑉 𝑗 } ⊂
DeH2 (𝑉𝑘), since 𝑉 𝑗 ∉ ChG (𝑉𝑘), based on Cor. 4, we have GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅.

5If 𝑉𝑘 ∈ V𝑐 , then 𝑉𝑘 ∈ GDeH2
V𝑐

(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅. If 𝑉𝑘 ∈ V 𝑓 ⊂ L, suppose GDeH2
V𝑐

(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } = ∅,

base on Cor. 4, ChG (𝑉𝑘) = {𝑉𝑖 , 𝑉 𝑗 }, which leads to ChG (𝑉𝑘) ⊂ ChG (𝑉𝑖) ∪ {𝑉𝑖}, contradicting Asmp. 2(1).
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(i) (ii)

Figure 12: Illustration of case (1.b.ii) of “if” part in proof of Thm. 8. A dotted arrow from 𝑉1 to
𝑉2 means that 𝑉2 ∈ GDeH2 (𝑉1). A dot-dash arrow from 𝑉1 to 𝑉2 means that 𝑉2 ∈ DeH2 (𝑉1). 𝑉 is
marked in red if 𝑉 ∈ V𝑐.

• Suppose 𝑉𝑖 ∉ DeH2 (𝑉𝑙). As 𝑚 𝑗𝑙𝑚𝑚𝑙 ≠ 0 and 𝑚𝑖𝑙 = 0, for any 𝑉 s.t. 𝑉,𝑉𝑖 , 𝑉 𝑗

are correlated to each other, R(𝑉𝑖 , 𝑉 𝑗 |𝑉) ⫫∕ 𝑉𝑚, which leads to contradiction.
• Suppose 𝑉𝑖 ∈ DeH2 (𝑉𝑙), besides 𝑉𝑙 ∉ PaH2 (𝑉𝑖) as mentioned above, we can

also derive 𝑉𝑙 ∉ PaH2 (𝑉𝑘)6, so there exists 𝑉𝑝 ≠ 𝑉𝑘 s.t. 𝑉𝑝 ∈ DeH2 (𝑉𝑙) and
𝑉𝑖 ∈ DeH2 (𝑉𝑝). Based on Asmp. 2(1), ChG (𝑉𝑘) ⊄ ChG (𝑉𝑝), so we have
GDeH2

V𝑐
(𝑉𝑝)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ similarly to fn. 4. Let 𝑉𝑞 ∈ GDeH2

V𝑐
(𝑉𝑝)\{𝑉𝑖 , 𝑉 𝑗 }

(It is possible that 𝑉𝑚 = 𝑉𝑞). An illustrative example is shown as Fig. 12(ii).
If 𝑉 𝑗 ∉ DeH2 (𝑉𝑝), 𝑚𝑖 𝑝𝑚𝑞𝑝 ≠ 0 and 𝑚 𝑗 𝑝 = 0, so for any 𝑉 s.t. 𝑉,𝑉𝑖 , 𝑉 𝑗

are correlated to each other, R(𝑉𝑖 , 𝑉 𝑗 |𝑉) ⫫∕ 𝑉𝑞 , which leads to contradiction.
Otherwise, 𝑚𝑖𝑙𝑚𝑖 𝑝𝑚 𝑗𝑙𝑚 𝑗 𝑝 ≠ 0. Since there exist two non-intersecting directed
paths from {𝑉𝑙 , 𝑉𝑝} to {𝑉𝑖 , 𝑉 𝑗 } (e.g., 𝑉𝑙 → 𝑉 𝑗 and 𝑉𝑝 → ... → 𝑉𝑖), 𝑚𝑖𝑙/𝑚𝑖 𝑝 ≠

𝑚 𝑗𝑙/𝑚 𝑗 𝑝 . Also, 𝑚𝑚𝑙𝑚𝑞𝑝 ≠ 0, so for any 𝑉 s.t. 𝑉,𝑉𝑖 , 𝑉 𝑗 are correlated to each
other, R(𝑉𝑖 , 𝑉 𝑗 |𝑉) ⫫∕ 𝑉𝑚 or R(𝑉𝑖 , 𝑉 𝑗 |𝑉) ⫫∕ 𝑉𝑞 , which leads to contradiction.

(c) Suppose NeH2 (𝑉𝑖) = ∅ or NeH2 (𝑉 𝑗 ) = ∅. The proof is similar to case (1.c) of “if” part in
proof of Thm. 1.

(2) Suppose 𝑉𝑖 ∈ PaH2 (𝑉 𝑗 ) or 𝑉 𝑗 ∈ PaH2 (𝑉𝑖), we take the former as an example without loss of
generality. All possible cases are as follows.

(a) Suppose ChH2 (𝑉 𝑗 ) ≠ ∅. The proof is similar to case (2.a) of “if” part in proof of Thm. 1,
except that we obtain GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ similarly to fn. 4.

(b) Suppose PaH2 (𝑉 𝑗 )\{𝑉𝑖} = ∅ and ChH2 (𝑉 𝑗 ) = ∅. The proof is similar to case (2.b) of “if”
part in proof of Thm. 1.

(c) Suppose ChH2 (𝑉𝑖)\{𝑉 𝑗 } ≠ ∅, PaH2 (𝑉 𝑗 )\{𝑉𝑖} ≠ ∅, and ChH2 (𝑉 𝑗 ) = ∅. The
proof is similar to case (2.c) of “if” part in proof of Thm. 1, except that we obtain
GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ similarly to fn. 4 and GDeH2

V𝑐
(𝑉𝑙)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ similarly to

fn. 5.
(d) Suppose PaH2 (𝑉𝑖) ≠ ∅, ChH2 (𝑉𝑖)\{𝑉 𝑗 } = ∅, PaH2 (𝑉 𝑗 )\{𝑉𝑖} ≠ ∅, and ChH2 (𝑉 𝑗 ) = ∅. The

proof is similar to case (2.d) of “if” part in proof of Thm. 1, except that we obtain both
GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ and GDeH2

V𝑐
(𝑉𝑙)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ similarly to fn. 5.

(e) Suppose PaH2 (𝑉𝑖) = ∅, ChH2 (𝑉𝑖)\{𝑉 𝑗 } = ∅, PaH2 (𝑉 𝑗 )\{𝑉𝑖} ≠ ∅, and ChH2 (𝑉 𝑗 ) = ∅. The
proof is similar to case (2.e) of “if” part in proof of Thm. 1

□

Lemma 3. ∀{𝑉𝑖 , 𝑉 𝑗 } ∈ S, ChH1 (𝑉𝑖) ⊂ PChG (𝑉𝑖) and ChH1 (𝑉 𝑗 ) ⊂ PChG (𝑉 𝑗 ).

Remark. This lemma means that if a variable 𝑉 is in an identifiable pair, then there is ChH1 (𝑉) ⊂
PChG (𝑉), which is consistent with the case where Asmp. 1 holds. This significantly simplifies the

6We can prove this by contradiction. Suppose 𝑉𝑙 ∈ PaH2 (𝑉𝑘), then ChG (𝑉𝑙) ∪ {𝑉𝑖}\{𝑉𝑘} is a bottleneck
from ChG (𝑉𝑙) to O and |ChG (𝑉𝑙) | = |ChG (𝑉𝑙) ∪ {𝑉𝑖}\{𝑉𝑘}|, contradicting Asmp. 2(2).
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complexity of the proof of some following theoretical results. For instance, with this lemma, most
proof strategies employed in the proof of Thm. 2 can be directly adapted to prove Thm. 9.

Proof. The proofs are as follows.

• Suppose {𝑉𝑖 , 𝑉 𝑗 } ∈ S1 and 𝑉𝑖 ∈ PaG (𝑉 𝑗 ). First, we can easily derive that ChH1 (𝑉 𝑗 ) ⊂
PChG (𝑉 𝑗 )7. Second, we suppose ChH1 (𝑉𝑖) ⊄ PChG (𝑉𝑖) and let 𝑉𝑘 ∈ NeH2 (𝑉𝑖)\{𝑉 𝑗 }. Sim-
ilarly to fn. 4, we have GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ and let 𝑉𝑙 ∈ GDeH2

V𝑐
(𝑉𝑘)\{𝑉𝑖 , 𝑉 𝑗 }. Clearly,

there is 𝑉 𝑗 ∈ P2DeG (𝑉𝑖), 𝑉𝑙 ⫫∕ 𝑉𝑖 , and 𝑉 𝑗 ⫫ 𝑉𝑙 |𝑉𝑖 , contradicting Cond. 3(2).

• Suppose {𝑉𝑖 , 𝑉 𝑗 } ∈ S2, similarly to fn. 7, we can easily derive that ChH1 (𝑉𝑖) ⊂ PChG (𝑉𝑖) and
ChH1 (𝑉 𝑗 ) ⊂ PChG (𝑉 𝑗 ).

• Suppose {𝑉𝑖 , 𝑉 𝑗 } ∈ S3 and 𝑉𝑖 ∈ PaG (𝑉 𝑗 ). First, we can easily derive that ChH1 (𝑉 𝑗 ) ⊂
PChG (𝑉 𝑗 ) similarly to fn. 7. Second, suppose ChH1 (𝑉𝑖) ⊄ PChG (𝑉𝑖), based on Cond. 3(2), we
have {ChH1 (𝑉𝑖)} = P3ChG (𝑉𝑖), so 𝑉𝑖 ∉ O, that is, 𝑉𝑖 ∈ L. Clearly, 𝑉𝑖 is a I-PV. This leads to
contradiction to Asmp. 2(3).

□

Theorem 9. ∀{𝑉𝑖 , 𝑉 𝑗 } ∈ S, let {𝑉𝑖1 , 𝑉𝑖2 } ⊂ ChH1 (𝑉𝑖).
(1) R(𝑉𝑖1 , 𝑉 𝑗 |𝑉𝑖2 ) ⫫ 𝑉𝑖2 iff {𝑉𝑖 , 𝑉 𝑗 } ∈ S1 and 𝑉𝑖 ∈ PaG (𝑉 𝑗 ).
(2) Suppose {𝑉𝑖 , 𝑉 𝑗 } ∉ S1, ∃{𝑉𝑖′ , 𝑉 𝑗′ } ∈ S\{{𝑉𝑖 , 𝑉 𝑗 }} s.t. {𝑉𝑖′ , 𝑉 𝑗′ } ∩ {𝑉𝑖 , 𝑉 𝑗 } ≠ ∅ only if (but not

if) {𝑉𝑖 , 𝑉 𝑗 } ∈ S2.

(3) Suppose {𝑉𝑖 , 𝑉 𝑗 } ∉ S1, ∃{𝑉𝑘 , 𝑉𝑙} ⊂ ⋃
ChH1 (V𝑐\{𝑉𝑖 , 𝑉 𝑗 }) s.t. (𝑉𝑖1 , 𝑉𝑖2 , 𝑉 𝑗 , 𝑉𝑘 , 𝑉𝑙) satisfies the

quintuple constraint only if (but not if) {𝑉𝑖 , 𝑉 𝑗 } ∈ S3 and 𝑉𝑖 ∈ PaG (𝑉 𝑗 )

Proof. Combined with Lem. 3, the proofs of (1), (2), and “only if” part of (3) are similar to Thm. 2.
Here we focus on “not if” part of (3).

Suppose G0 is shown as Fig. 8(c), at the first iteration when V𝑐 = {𝑂2, ..., 𝑂6}, {𝑂2, 𝑂3} ∈ S3 and
𝑂2 ∈ PaG (𝑂3). Let {𝑂21 , 𝑂22 } ⊂ ChH1 (𝑂2), then 𝑂21 , 𝑂22 , 𝑂3 can be expressed as

𝑂21 = 𝑎21𝑎212𝐿1 + 𝑎212𝜖𝑂2 + 𝜖𝑂21
, (25)

𝑂22 = 𝑎21𝑎222𝐿1 + 𝑎222𝜖𝑂2 + 𝜖𝑂22
, (26)

𝑂3 = (𝑎21𝑎32 + 𝑎31)𝐿1 + 𝑎32𝜖𝑂2 + 𝜖𝑂3 . (27)

Because 𝑎31 ≠ 0, 𝑎21𝑎212/(𝑎21𝑎32 + 𝑎31) ≠ 𝑎212/𝑎32. For any {𝑂𝑖 , 𝑂 𝑗 } ∈ ⋃
ChH1 (V𝑐\{𝑂2, 𝑂3}),

they can be expressed as

𝑂𝑖 = 𝜆𝑖𝐿1 + (𝛾𝑖𝜖𝑂4 + 𝑒′𝑖), 𝑂 𝑗 = 𝜆 𝑗𝐿1 + (𝛾 𝑗𝜖𝑂4 + 𝑒′𝑗 ), (28)

where 𝐿1, 𝜖𝑂2 , 𝜖𝑂21
, 𝜖𝑂22

, 𝜖𝑂3 , 𝛾𝑖𝜖𝑂4 + 𝑒′𝑖 are independent of each other, 𝑂 𝑗 ⫫ {𝜖𝑂3 , 𝜖𝑂21
, 𝜖𝑂22

, 𝜖𝑂3 }
and Cov(𝑂 𝑗 , 𝐿1)Cov(𝑂 𝑗 , 𝛾𝑖𝜖𝑂4 + 𝑒′𝑖) ≠ 0. Based on Lem. 2(2.b), (𝑂21 , 𝑂22 , 𝑂3, 𝑂𝑖 , 𝑂 𝑗 ) does not
satisfy the quintuple constraint. □

Corollary 5. Given {𝑉𝑖 , 𝑉 𝑗 } ∈ S3 and 𝑉𝑖 ∈ PaG (𝑉 𝑗 ), let PaH2 (𝑉𝑖) = {𝑉ℎ} and {𝑉𝑖1 , 𝑉𝑖2 } ⊂
ChH1 (𝑉𝑖).
(1) If 𝑉ℎ ∈ V𝑐, then ∃{𝑉𝑘 , 𝑉𝑙} ⊂ ChH1 (V𝑐\{𝑉𝑖 , 𝑉 𝑗 }) s.t. (𝑉𝑖1 , 𝑉𝑖2 , 𝑉 𝑗 , 𝑉𝑘 , 𝑉𝑙) satisfies the quintuple

constraint.

7Suppose ChH1 (𝑉 𝑗 ) ⊄ PChG (𝑉 𝑗 ), based on Cond. 3(2), we have {ChH1 (𝑉 𝑗 )} = P3ChG (𝑉 𝑗 ), so 𝑉 𝑗 ∉ O,
that is, 𝑉 𝑗 ∈ L. Let ChH1 (𝑉 𝑗 ) = {𝑉𝑘 , 𝑉𝑙} where 𝑉𝑘 ∈ PaG (𝑉𝑙), since ChH2 (𝑉 𝑗 ) = ∅, we have ChG (𝑉 𝑗 ) =

{𝑉𝑘 , 𝑉𝑙}. There is ChG (𝑉 𝑗 ) ⊂ {𝑉𝑘} ∪ ChG (𝑉𝑘), contradicting Asmp. 2(1).
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(2) If ∃{𝑉𝑚, 𝑉𝑛} ⊂ V𝑐\{𝑉𝑖 , 𝑉 𝑗 } s.t. 𝑉𝑚 ∈ P2DeG (𝑉ℎ),𝑉𝑛 ⫫∕ 𝑉ℎ, and𝑉𝑚 ⫫ 𝑉𝑛 |𝑉ℎ, then ∃{𝑉𝑘 , 𝑉𝑙} ⊂
ChH1 (V𝑐\{𝑉𝑖 , 𝑉 𝑗 }) s.t. (𝑉𝑖1 , 𝑉𝑖2 , 𝑉 𝑗 , 𝑉𝑘 , 𝑉𝑙) satisfies the quintuple constraint.

Remark. Given {𝑉𝑖 , 𝑉 𝑗 } ∈ S3 and 𝑉𝑖 ∈ PaG (𝑉 𝑗 ), based on Rem. of Thm. 9 in the main text, both
{𝑉𝑖 , 𝑉 𝑗 } ∈ S̃2 and {𝑉𝑖 , 𝑉 𝑗 } ∈ S̃3 are possible. This corollary provides two sufficient conditions that
∃{𝑉𝑘 , 𝑉𝑙} ⊂ ChH1 (V𝑐\{𝑉𝑖 , 𝑉 𝑗 }) s.t. (𝑉𝑖1 , 𝑉𝑖2 , 𝑉 𝑗 , 𝑉𝑘 , 𝑉𝑙) satisfies the quintuple constraint, that is,
{𝑉𝑖 , 𝑉 𝑗 } ∈ S̃3. The proof of the following Thm. 10 highly relies on this corollary.

Proof. The proofs are as follows.

(1) We first prove ChH1 (𝑉ℎ) ⊂ PChG (𝑉ℎ) by contradiction. Suppose ChH1 (𝑉ℎ) ⊄ PChG (𝑉ℎ),
then based on Cond. 3(2), {ChH1 (𝑉ℎ)} = P3ChG (𝑉ℎ). In addition, since {𝑉𝑖 , 𝑉 𝑗 } ∈ S3, we
have ChH1 (𝑉𝑖) ⊂ PChG (𝑉𝑖) and ChH1 (𝑉 𝑗 ) ⊂ PChG (𝑉 𝑗 ) based on Lem. 3, so {𝑉𝑖 , 𝑉 𝑗 } ∈
P3ChG (𝑉ℎ) = {ChH1 (𝑉ℎ)}, that is, {𝑉𝑖 , 𝑉 𝑗 } ⊂ V𝑝 , which leads to contradiction. Therefore,
ChH1 (𝑉ℎ) ⊂ PChG (𝑉ℎ). Let {𝑉𝑘 , 𝑉𝑙} ⊂ ChH1 (𝑉ℎ), then the proof is similar to “‘if’ of (3)”
part in proof of Thm. 2.

(2) Let 𝑉𝑘 ∈ ChH1 (𝑉𝑚) and 𝑉𝑙 ∈ ChH1 (𝑉𝑛), then the proof is similar to “‘if’ of (3)” part in proof
of Thm. 2.

□

Theorem 10. (1) ∀{𝑉𝑖 , 𝑉 𝑗 } ∈ S̃2,
⋂

PaG ({𝑉𝑖 , 𝑉 𝑗 }) ⊂ V𝑐 iff ∃{𝑉𝑖′ , 𝑉 𝑗′ } ∈ S̃1 s.t. {𝑉𝑖 , 𝑉 𝑗 } ∩
{𝑉𝑖′ , 𝑉 𝑗′ } ≠ ∅. (2) ∀{{𝑉𝑖 , 𝑉 𝑗 }, {𝑉𝑖′ , 𝑉 𝑗′ }} ⊂ S̃2,

⋂
PaG ({𝑉𝑖 , 𝑉 𝑗 }) =

⋂
PaG ({𝑉𝑖′ , 𝑉 𝑗′ }) iff

∃{𝑉𝑖′′ , 𝑉 𝑗′′ } ∈ S̃2 s.t. {𝑉𝑖 , 𝑉 𝑗 } ∩ {𝑉𝑖′′ , 𝑉 𝑗′′ } ≠ ∅ and {𝑉𝑖′ , 𝑉 𝑗′ } ∩ {𝑉𝑖′′ , 𝑉 𝑗′′ } ≠ ∅.

Proof. As mentioned in Rem. of Thm. 9 in the main text, S̃1 = S1, S̃2 ⊃ S2, S̃3 ⊂ S3.

• For any {𝑉𝑖 , 𝑉 𝑗 } ∈ S2 ⊂ S̃2, (1) can be derived from the definitions of S1 and S2.

• For {𝑉𝑖 , 𝑉 𝑗 } ∈ S̃2\S2, the proof of (1) is as follows. Clearly, {𝑉𝑖 , 𝑉 𝑗 } ∈ S3. First, based on the
definition of S1, ∀{𝑉𝑖′ , 𝑉 𝑗′ } ∈ S̃1 = S1, {𝑉𝑖 , 𝑉 𝑗 } ∩ {𝑉𝑖′ , 𝑉 𝑗′ } = ∅. Second, based on Cor. 5(1),⋂

PaH2 ({𝑉𝑖 , 𝑉 𝑗 }) ⊄ V𝑐, otherwise {𝑉𝑖 , 𝑉 𝑗 } ∈ S̃3, which leads to contradiction. This finishes
the proof.

• For any {{𝑉𝑖 , 𝑉 𝑗 }, {𝑉𝑖′ , 𝑉 𝑗′ }} ⊂ S2 ⊂ S̃2, (2) can be derived from the definition of S2.

• For {𝑉𝑖 , 𝑉 𝑗 } ∈ S̃2\S2, the proof of (2) is as follows. Clearly, {𝑉𝑖 , 𝑉 𝑗 } ∈ S3.
First, based on the definitions of S2 and S3, ∀{𝑉𝑖′ , 𝑉 𝑗′ } ∈ S̃2\{{𝑉𝑖 , 𝑉 𝑗 }} ⊂ S2 ∪
S3\{{𝑉𝑖 , 𝑉 𝑗 }}, {𝑉𝑖 , 𝑉 𝑗 } ∩ {𝑉𝑖′ , 𝑉 𝑗′ } = ∅. Second, we prove ∀{𝑉𝑖′ , 𝑉 𝑗′ } ∈ S̃2\{{𝑉𝑖 , 𝑉 𝑗 }},⋂

PaH2 ({𝑉𝑖 , 𝑉 𝑗 }) ≠
⋂

PaH2 ({𝑉𝑖′ , 𝑉 𝑗′ }) by contradiction. Let
⋂

PaH2 ({𝑉𝑖 , 𝑉 𝑗 }) = {𝑉ℎ} and
suppose

⋂
PaH2 ({𝑉𝑖′ , 𝑉 𝑗′ }) = {𝑉ℎ}. First, we have 𝑉ℎ ∈ V 𝑓 ⊂ L, otherwise {𝑉𝑖 , 𝑉 𝑗 } ∈ S̃3

based on Cor. 5(1), which leads to contradiction. Second, we also have {𝑉𝑖′ , 𝑉 𝑗′ } ∈ S3,
otherwise let {𝑉𝑖′ , 𝑉 𝑗′ } = {𝑉𝑚, 𝑉𝑛} ∈ S2, we have 𝑉𝑚 ∈ P2DeG (𝑉ℎ), 𝑉𝑛 ⫫∕ 𝑉ℎ, and
𝑉𝑚 ⫫ 𝑉𝑛 |𝑉ℎ, so {𝑉𝑖 , 𝑉 𝑗 } ∈ S̃3 based on Cor. 5(2), which leads to contradiction. Be-
cause 𝑉ℎ is not a II-PV based on Asmp. 2(3), there exists 𝑉𝑘 ∈ NeH2 (𝑉ℎ)\{𝑉𝑖 , 𝑉 𝑗 , 𝑉𝑖′ , 𝑉 𝑗′ }
and we can derive GDeH2

V𝑐
(𝑉𝑘)\

⋃
GDeH2

V𝑐
({𝑉𝑖 , 𝑉 𝑗 , 𝑉𝑖′ , 𝑉 𝑗′ }) ≠ ∅8. Let 𝑉𝑚 ∈ {𝑉𝑖′ , 𝑉 𝑗′ }

8There are three possible cases. (1) If 𝑉𝑘 ∈ V𝑐 , then 𝑉𝑘 ∈ GDeH2
V𝑐

(𝑉𝑘)\
⋃

GDeH2
V𝑐

({𝑉𝑖 , 𝑉 𝑗 , 𝑉𝑖′ , 𝑉 𝑗′ }) ≠

∅. (2) If 𝑉𝑘 ∈ V 𝑓 and 𝑉𝑘 ∈ ChH2 (𝑉ℎ), then DeH2 (𝑉𝑘) ∩ ⋃
GDeH2

V𝑐
({𝑉𝑖 , 𝑉 𝑗 , 𝑉𝑖′ , 𝑉 𝑗′ }) = ∅,

so GDeH2
V𝑐

(𝑉𝑘)\
⋃

GDeH2
V𝑐

({𝑉𝑖 , 𝑉 𝑗 , 𝑉𝑖′ , 𝑉 𝑗′ }) ≠ ∅ based on Cor. 4. (3) If 𝑉𝑘 ∈ V 𝑓 and 𝑉𝑘 ∈
PaH2 (𝑉ℎ), then (DeH2

V𝑐
(𝑉𝑘) ∪ {𝑉ℎ})\

⋃
GDeH2

V𝑐
({𝑉𝑖 , 𝑉 𝑗 , 𝑉𝑖′ , 𝑉 𝑗′ }) is a bottleneck from ChG (𝑉𝑘) to O,
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and 𝑉𝑛 ∈ GDeH2
V𝑐

(𝑉𝑘)\
⋃

GDeH2
V𝑐

({𝑉𝑖 , 𝑉 𝑗 , 𝑉𝑖′ , 𝑉 𝑗′ }), since 𝑉𝑚 ∈ P2DeG (𝑉𝑘), 𝑉𝑛 ⫫∕ 𝑉𝑘 , and
𝑉𝑚 ⫫ 𝑉𝑛 |𝑉𝑘 , {𝑉𝑖 , 𝑉 𝑗 } ∈ S̃3 based on Cor. 5(2), which leads to contradiction.

□

Proposition 4. Cond. 3 is still valid after update.

Proof. We denote V𝑝 ,V𝑐,V 𝑓 ,H1,H2 after update by V′
𝑝 ,V′

𝑐,V′
𝑓
,H ′

1,H
′
2 respectively. While

Cond. 3 is valid for V′
𝑝 ∩ V𝑝 and V′

𝑐 ∩ V𝑐 trivially, we focus on V′
𝑝\V𝑝 and V′

𝑐\V𝑐.

• If 𝑉 𝑗 ∈ V′
𝑝\V𝑝 , then 𝑉 𝑗 ∈ V𝑐 and there exists 𝑉𝑖 ∈ V𝑐 s.t. (1) {𝑉𝑖 , 𝑉 𝑗 } ∈ S̃1 and 𝑉𝑖 ∈ PaH2 (𝑉 𝑗 )

or (2) {𝑉𝑖 , 𝑉 𝑗 } ∈ S̃2. Based on Lem. 3, ChH1 (𝑉 𝑗 ) ⊂ PChG (𝑉 𝑗 ), then the proof is similar to part
1 in proof of Prop. 2.

• If 𝑉 𝑗 ∈ V′
𝑐\V𝑐, then 𝑉 𝑗 ∈ V 𝑓 and ∀{𝑉𝑘 , 𝑉𝑙} ⊂ ChH′

1 (𝑉 𝑗 ), {𝑉𝑘 , 𝑉𝑙} ∈ S̃2 and⋂
PaH2 ({𝑉𝑘 , 𝑉𝑙}) = {𝑉 𝑗 }. Also, we have ∀𝑉 ∈ ChH′

1 (𝑉 𝑗 ), ChH1 (𝑉) ⊂ PChG (𝑉) based on
Lem. 3. Furthermore, based on Thm. 10, there are two possible cases.

– ∀{𝑉𝑘 , 𝑉𝑙} ⊂ ChH′
1 (𝑉 𝑗 ), {𝑉𝑘 , 𝑉𝑙} ∈ S2. In this case, it is trivial that ChH′

1 (𝑉 𝑗 ) ⊂ PChG (𝑉 𝑗 ).
– ChH′

1 (𝑉 𝑗 ) ∈ S3. In this case, it is trivial that ChH′
1 (𝑉 𝑗 ) ∈ P3ChG (𝑉 𝑗 ). Now we prove

{ChH′
1 (𝑉 𝑗 )} = P3ChG (𝑉 𝑗 ) by contradiction. Let ChH′

1 (𝑉 𝑗 ) = {𝑉 𝑗1 , 𝑉 𝑗2 } and suppose
there exists {𝑉𝑘 , 𝑉𝑙} ∈ P3ChG (𝑉 𝑗 )\{{𝑉 𝑗1 , 𝑉 𝑗2 }}. As {𝑉 𝑗1 , 𝑉 𝑗2 } ∩ DeH2 (𝑉𝑘) = ∅, we have
GDeH2

V𝑐
(𝑉𝑘)\{𝑉 𝑗1 , 𝑉 𝑗2 } ≠ ∅ and let 𝑉𝑚 ∈ GDeH2

V𝑐
(𝑉𝑘)\{𝑉 𝑗1 , 𝑉 𝑗2 }. Because 𝑉 𝑗 is not a II-

PV based on Asmp. 2(3), there exists 𝑉𝑖 ∈ NeH2 (𝑉ℎ)\{𝑉 𝑗1 , 𝑉 𝑗2 , 𝑉𝑘 , 𝑉𝑙}. Also, there exists
𝑉𝑛 ∈ GDeH2

V𝑐
(𝑉𝑖) s.t. 𝑉𝑚 ⫫ 𝑉𝑛 |𝑉 𝑗

9. Clearly, 𝑉𝑚 ∈ P2DeG (𝑉 𝑗 ), 𝑉𝑛 ⫫∕ 𝑉 𝑗 , and 𝑉𝑚 ⫫
𝑉𝑛 |𝑉 𝑗 , so {𝑉 𝑗1 , 𝑉 𝑗2 } ∈ S̃3 based on Cor. 5(2), which leads to contradiction. Therefore,
{ChH′

1 (𝑉 𝑗 )} = P3ChG (𝑉 𝑗 ). Likewise, �{𝑉𝑘 , 𝑉𝑙} ⊂ V′
𝑐\{𝑉 𝑗 } s.t. 𝑉𝑘 ∈ P2DeG (𝑉 𝑗 ), 𝑉𝑙 ⫫∕

𝑉 𝑗 , and 𝑉𝑘 ⫫ 𝑉𝑙 |𝑉 𝑗 , otherwise there is also {𝑉 𝑗1 , 𝑉 𝑗2 } ∈ S̃3, which leads to contradiction.

Finally, it is trivial that PaH′
1 (𝑉 𝑗 ) = ∅.

□

Theorem 11. If Asmp. 1 is invalid, when S̃1 ∪ S̃2 = ∅, V 𝑓 ≠ ∅ or there exists 𝐿 ∈ V𝑐 s.t.
ChH1 (𝐿) ⊄ PChG (𝐿).

Proof. The proofs are as follows.

• Suppose ∃𝐿𝑖 ∈ L s.t. |PChG (𝐿𝑖) | < 2. If P3ChG (𝐿𝑖) = ∅, there is 𝐿𝑖 ∈ V 𝑓 trivially. Otherwise,

– It is possible that 𝐿𝑖 ∈ V 𝑓 , e.g., if no pair in P3ChG (𝐿𝑖) is incorporated into S̃2.
– It is possible that 𝐿𝑖 ∈ V𝑐, an example is shown as Fig. 8(d). In this case, there must be

ChH1 (𝐿𝑖) ⊄ PChG (𝐿𝑖) because |PChG (𝐿𝑖) | < 2 but |ChH1 (𝐿𝑖) | ≥ 2 based on Cond. 3(2).
– It is impossible that 𝐿𝑖 ∈ V𝑝 . Suppose 𝐿𝑖 ∈ V𝑝 , then ChH1 (𝐿𝑖) ⊄ PChG (𝐿𝑖), this leads

to contradiction to Cond. 3(1).

so | (DeH2
V𝑐

(𝑉𝑘) ∪ {𝑉ℎ})\
⋃

GDeH2
V𝑐

({𝑉𝑖 , 𝑉 𝑗 , 𝑉𝑖′ , 𝑉 𝑗′ }) | ≥ |ChG (𝑉𝑘) | ≥ 2 based on Asmp. 2(1,2), so

GDeH2
V𝑐

(𝑉𝑘)\
⋃

GDeH2
V𝑐

({𝑉𝑖 , 𝑉 𝑗 , 𝑉𝑖′ , 𝑉 𝑗′ }) ≠ ∅.
9If 𝑉𝑖 ∈ V𝑐 , then 𝑉𝑛 can be 𝑉𝑖 ; if 𝑉𝑖 ∈ V 𝑓 and 𝑉𝑖 ∈ ChH2 (𝑉 𝑗 ), then 𝑉𝑛 can be any variable in DeH2

V𝑐
(𝑉𝑖); if

𝑉𝑖 ∈ V 𝑓 and 𝑉𝑖 ∈ PaH2 (𝑉 𝑗 ), then 𝑉𝑛 can be any variable in DeH2
V𝑐

(𝑉𝑖)\DeH2
V𝑐

(𝑉 𝑗 ).
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• Suppose ∀𝐿 ∈ L, |PChG (𝐿) | ≥ 2. Since Asmp. 1 is invalid, ∃𝐿𝑖 ∈ L s.t. |NeG (𝐿𝑖) | < 3, that
is, |PChG (𝐿𝑖) | = 2 and NeG (𝐿𝑖)\PChG (𝐿𝑖) = ∅. According to the definition of identifiable
pairs (Def. 2), there is always PChG (𝐿𝑖) ∉ S, so there is always 𝐿𝑖 ∈ V 𝑓 .

□

Corollary 6. If Asmp. 1 is invalid, when S̃1 ∪ S̃2 = ∅, (1) ∀𝑉𝑖 ∈ V 𝑓 , |DeH2
V𝑐

(𝑉𝑖) | ≥ 2. (2) ∀𝑉𝑖 ∈ V𝑐

s.t. ChH1 (𝑉𝑖) ⊄ PChG (𝑉𝑖), |DeH2
V𝑐

(𝑉𝑖) | ≥ 1.

Remark. This lemma means that at the end of stage 1, (1) for any 𝑉𝑖 ∈ V𝑐, 𝑉𝑖 has at least two
descendants in V𝑐 and (2) for any ∀𝑉𝑖 ∈ V𝑐 s.t. ChH1 (𝑉𝑖) ⊄ PChG (𝑉𝑖), 𝑉𝑖 has at least one
descendant in V𝑐. This corollary is important for the proofs of the following Thms. 12 and 13.

Proof. The proofs are as follows.

(1) This directly follows Cor. 4.

(2) Based on Cond. 3(2), if ChH1 (𝑉𝑖) ⊄ PChG (𝑉𝑖), then {ChH1 (𝑉𝑖)} = P3ChG (𝑉𝑖), so 𝑉𝑖 ∉ O,
that is, 𝑉𝑖 ∈ L. Let ChH1 (𝑉𝑖) = {𝑉𝑖1 , 𝑉𝑖2 } and 𝑉𝑖1 ∈ PaG (𝑉𝑖2 ), we can prove ChH2 (𝑉𝑖) ≠ ∅
by contradiction. Specifically, suppose ChH2 (𝑉𝑖) = ∅, then ChG (𝑉𝑖) = {𝑉𝑖1 , 𝑉𝑖2 }, note that
ChG (𝑉𝑖) ⊂ ChG (𝑉𝑖1 ) ∪ {𝑉𝑖1 }, this leads to contradiction to Asmp. 2(1). Let 𝑉 𝑗 ∈ ChH2 (𝑉𝑖), it
is trivial that GDeH2

V𝑐
(𝑉 𝑗 ) ≠ ∅, so DeH2

V𝑐
(𝑉𝑖) ≠ ∅.

□

C.3.2 PROOF OF THEORETICAL RESULTS IN SEC. 4.2

Condition 4. (1) ∀𝑉 ∈ V𝑐\U𝑐,ChH1 (𝑉𝑖) ⊂ PChG (𝑉𝑖). (2) ∀𝑉 ∈ U𝑐 ∪ V 𝑓 ,DeH2 (𝑉) ⊂ U𝑐 ∪ V 𝑓 .
(3) ∀𝑉𝑖 ∈ U𝑐, 𝑋2𝑖−1, 𝑋2𝑖 can be written as

𝑋2𝑖−1 = 𝑐𝑖1

∑︁
𝑉𝑗 ∈U𝑐∪V 𝑓

𝑚𝑖 𝑗𝜖𝑉𝑗
+ 𝑒𝑋2𝑖−1 + 𝑒′𝑋2𝑖−1

, 𝑋2𝑖 = 𝑐𝑖2

∑︁
𝑉𝑗 ∈U𝑐∪V 𝑓

𝑚𝑖 𝑗𝜖𝑉𝑗
+ 𝑒𝑋2𝑖 + 𝑒′𝑋2𝑖

, (29)

where ∀ 𝑗 , 𝑘, 𝑙, (i) 𝜖𝑉𝑗
⫫ 𝑒𝑋𝑘

⫫ 𝑒′
𝑋𝑙

, (ii) {𝑒𝑋2 𝑗−1 , 𝑒𝑋2 𝑗 } ⫫ {𝑒𝑋2𝑘−1 , 𝑒𝑋2𝑘 } if 𝑗 ≠ 𝑘 , (iii) 𝑒𝑋2 𝑗−1 ⫫ 𝑒𝑋2 𝑗

iff ChH1 (𝑉 𝑗 ) ⊂ PChG (𝑉 𝑗 ), and (iv) 𝑒′
𝑋2 𝑗−1

⫫ 𝑒′
𝑋2𝑘

. Without loss of generality, we assume each 𝑐𝑖1 is
positive and each 𝜖𝑉𝑗

has variance 1.

Theorem 12. ∀𝑉𝑖 ∈ U𝑐, AnH2 (𝑉𝑖) ∩ (U𝑐 ∪ V 𝑓 ) = ∅ and ChH1 (𝑉𝑖) ⊂ PChG (𝑉𝑖) iff ∀𝑉 𝑗 ∈ U𝑐\{𝑉𝑖},
R(𝑋2 𝑗−1, 𝑋2𝑖−1 |𝑋2𝑖) ⫫ 𝑋2𝑖 .

Proof. When |U𝑐 | = 1, there is V 𝑓 = ∅ and the only 𝑉𝑖 ∈ U𝑐 satisfies ChH1 (𝑉𝑖) ⊂ PChG (𝑉𝑖),
otherwise we can derive contradiction to Cor. 6. We focus on the case where |U𝑐 | > 1.

“Only if”: The proof is similar to “only if” part in Thm. 5.

“If”: We prove this part by contradiction. All possible cases are as follows.

• Suppose ChH1 (𝑉𝑖) ⊄ PChG (𝑉𝑖). Based on Cond. 3(2), {ChH1 (𝑉𝑖)} = P3ChG (𝑉𝑖). Let
ChH1 (𝑉𝑖) = {𝑉𝑖1 , 𝑉𝑖2 } where 𝑉𝑖1 ∈ PaG (𝑉𝑖2 ). Combining Cor. 6(2) with Cond. 4(2),
DeH2

U𝑐
(𝑉𝑖) ≠ ∅ and let 𝑉 𝑗 ∈ DeH2

U𝑐
(𝑉𝑖). Since both 𝑋2𝑖−1 and 𝑋2𝑖 contain 𝜖𝑉𝑖1

and 𝑋2 𝑗−1 does
not contain 𝜖𝑉𝑖1

, R(𝑋2 𝑗−1, 𝑋2𝑖−1 |𝑋2𝑖) ⫫∕ 𝑋2𝑖 based on Lem. 1(2), which leads to contradiction.

• Suppose ChH1 (𝑉𝑖) ⊂ PChG (𝑉𝑖) and AnH2
U𝑐

(𝑉𝑖) ≠ ∅, let 𝑉 𝑗 ∈ AnH2
U𝑐

(𝑉𝑖). The proof is similar to
“if” part in proof of Thm. 5.
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• Suppose ChH1 (𝑉𝑖) ⊂ PChG (𝑉𝑖), AnH2
U𝑐

(𝑉𝑖) = ∅, and AnH2
V 𝑓

(𝑉𝑖) ≠ ∅, let 𝑉𝑘 ∈ PaH2
V 𝑓

(𝑉𝑖).
Combining Cor. 6(1) with Cond. 4(2), DeH2

U𝑐
(𝑉𝑘)\{𝑉𝑖} ≠ ∅. Besides, there exists 𝑉 𝑗 ∈

DeH2
U𝑐

(𝑉𝑘)\{𝑉𝑖} s.t. there exists a directed path from 𝑉𝑘 to 𝑉 𝑗 which does not include 𝑉𝑖 .

Conversely, if for each 𝑉 ∈ DeH2
U𝑐

(𝑉𝑘)\{𝑉𝑖}, every directed path from 𝑉𝑘 to 𝑉 includes 𝑉𝑖 ,
then {𝑉𝑖} is a bottleneck from ChG (𝑉𝑘) to O, which leads to contradiction to Asmp. 2(1,2).
If 𝑉 𝑗 ∉ DeH2 (𝑉𝑖), then 𝑋2𝑖−1 and 𝑋2𝑖 both contain 𝜖𝑉𝑖

while 𝑋2 𝑗−1 does not contain 𝜖𝑉𝑖
,

so R(𝑋2 𝑗−1, 𝑋2𝑖−1 |𝑋2𝑖) ⫫∕ 𝑋2𝑖 based on Lem. 1(2), which leads to contradiction. Otherwise,
𝑋2𝑖−1, 𝑋2𝑖 and 𝑋2 𝑗−1 all contain 𝜖𝑉𝑖

and 𝜖𝑉𝑘
, and there exist two non-intersecting paths from

{𝑉𝑘 , 𝑉𝑖} to {𝑋2 𝑗−1, 𝑋2𝑖−1} (e.g., 𝑉𝑘 → ... → 𝑉 𝑗 → ... → 𝑋2 𝑗−1 and 𝑉𝑖 → ... → 𝑋2𝑖−1), so
R(𝑋2 𝑗−1, 𝑋2𝑖−1 |𝑋2𝑖) ⫫∕ 𝑋2𝑖 based on Lem. 1(3), which leads to contradiction.

□

Proposition 5. If we can find 𝑉 ∈ U𝑐 satisfying Thm. 12, Cond. 4 is still valid after removal.

Proof. Based on Thm. 12, Cond. 4(1,2) holds trivially. The remaining proof is similar to the proof
of Prop. 3. □

C.4 PROOF OF THEORETICAL RESULTS IN SEC. 4.3

Theorem 13. Suppose the observed variables are generated by a LiNGAM with latent variables
satisfying the rank-faithfulness assumption and Asmp. 2, if Asmp. 1 is invalid, in the limit of infinite
data, our algorithm raises an error.

Proof. Based on Thm. 11, at the end of stage 1, denote {𝐿 ∈ V𝑐 |ChH1 (𝐿) ⊄ PChG (𝐿)} by V′
𝑐, if

Asmp. 1 is invalid, V 𝑓 ∪V′
𝑐 ≠ ∅. Based on Cor. 6, |⋃GDeH2

V𝑐
(V 𝑓 ∪V′

𝑐) | ≥ 2. Based on Cond. 4(1,2),

throughout stage 2, there is always
⋃

GDeH2
V𝑐

(V 𝑓 ∪ V′
𝑐) ⊂ U𝑐. When U𝑐 =

⋃
GDeH2

V𝑐
(V 𝑓 ∪ V′

𝑐),
there exists no𝑉𝑖 ∈ U𝑐 s.t. AnH2 (𝑉𝑖)∩ (U𝑐∪V 𝑓 ) = ∅ and ChH1 (𝑉𝑖) ⊂ PChG (𝑉𝑖), that is, we cannot
find a 𝑉𝑖 ∈ U𝑐 satisfying the independence condition in Thm. 12. Therefore, before U𝑐 becomes an
empty set, our algorithm raises an error. □

D REAL-WORLD DATA

The ground-truth causal graph of multitasking behavior model is shown as Fig. 13(a), it satisfies
Asmp. 1, on which our algorithm yields a correct result. Moreover, we add some edges (marked
in red in Fig. 13(b)) into the ground-truth graph by replacing some single variable with the sum of
multiple variables, the modified graph violates Asmp. 1, on which our algorithm raises an error.

Multitasking 
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Correctly marked Letters

Correctly marked Numbers

Correctly marked Figures

Errors marking Numbers

Errors marking Letters

Errors marking Figures

Average of correctly ans.Ques.(Par. 1)

Average of correctly ans.Ques.(Par. 2)

Average of correctly ans.Ques.(Par. 3)

(a)
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Errors marking Figures

Average of correctly ans.Ques.(Par. 1)

Average of correctly ans.Ques.(Par. 2)

Average of correctly ans.Ques.(Par. 3)

(b)

Figure 13: (a) ground-truth causal graph and (b) modified causal graph of multitasking behavior
model. Rectangles represent observed variables while circles represent latent variables.
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E ALGORITHM

Suppose Asmp. 1 holds, the details of our proposed algorithm are provided in Alg. 3 and 4.

Algorithm 3: Stage 1: Identifying latent variables (detailed)
Input: Observed variables O0 and O1
Output: V𝑐, V𝑝 , and H1

1 Initialize V𝑐 as O0, V𝑝 as O1, and let 𝑉1 ∈ PaH1 (𝑉2) iff 𝑉1 ∈ PaG (𝑉2), 𝑉1 ∈ O0, and 𝑉2 ∈ O1.
2 while the current V𝑐 is not identical to the previous V𝑐 do
3 Assert Cond. 1 holds.
4 S := ∅.
5 for {𝑉𝑖 , 𝑉 𝑗 } ⊂ V𝑐 do
6 if ∃𝑉𝑘 ∈ V𝑐\{𝑉𝑖 , 𝑉 𝑗 } s.t. Cov(𝑉𝑖 , 𝑉 𝑗 ) Cov(𝑉𝑖 , 𝑉𝑘)Cov(𝑉 𝑗 , 𝑉𝑘) ≠ 0 and R(𝑉𝑖 , 𝑉 𝑗 |𝑉𝑘) ⫫ V𝑐\ {𝑉𝑖 , 𝑉 𝑗 } then
7 S := S ∪ {{𝑉𝑖 , 𝑉 𝑗 }}.
8 end
9 end

10 Assert S consists of all identifiable pairs satisfying Def. 2. (Thm. 1)
11 S1 := ∅, S2 := ∅, S3 := ∅.
12 for {𝑉𝑖 , 𝑉 𝑗 } ∈ S where {𝑉𝑖1 , 𝑉𝑖2 } ⊂ ChH1 (𝑉𝑖) and {𝑉 𝑗1 , 𝑉 𝑗2 } ⊂ ChH1 (𝑉 𝑗 ) do
13 if R(𝑉𝑖1 , 𝑉 𝑗 |𝑉𝑖2 ) ⫫ 𝑉𝑖2 then
14 S1 := S1 ∪ {{𝑉𝑖 , 𝑉 𝑗 }} and 𝑉𝑖 ∈ PaG (𝑉 𝑗 ).
15 else if R(𝑉 𝑗1 , 𝑉𝑖 |𝑉 𝑗2 ) ⫫ 𝑉 𝑗2 then
16 S1 := S1 ∪ {{𝑉𝑖 , 𝑉 𝑗 }} and 𝑉 𝑗 ∈ PaG (𝑉𝑖).
17 else if ∃𝑉𝑘 ∈ V𝑐\{𝑉𝑖 , 𝑉 𝑗 } s.t. {𝑉𝑖 , 𝑉𝑘} ∈ S or {𝑉 𝑗 , 𝑉𝑘} ∈ S then
18 S2 := S2 ∪ {{𝑉𝑖 , 𝑉 𝑗 }}.
19 else if ∃{𝑉𝑘 , 𝑉𝑙} ⊂

⋃
ChH1 (V𝑐\{𝑉𝑖 , 𝑉 𝑗 }) s.t. (𝑉𝑖1 , 𝑉𝑖2 , 𝑉 𝑗 , 𝑉𝑘 , 𝑉𝑙) satisfies the quintuple constraint then

20 S3 := S3 ∪ {{𝑉𝑖 , 𝑉 𝑗 }} and 𝑉𝑖 ∈ PaG (𝑉 𝑗 ).
21 else if ∃{𝑉𝑘 , 𝑉𝑙} ⊂

⋃
ChH1 (V𝑐\{𝑉𝑖 , 𝑉 𝑗 }) s.t. (𝑉 𝑗1 , 𝑉 𝑗2 , 𝑉𝑖 , 𝑉𝑘 , 𝑉𝑙) satisfies the quintuple constraint then

22 S3 := S3 ∪ {{𝑉𝑖 , 𝑉 𝑗 }} and 𝑉 𝑗 ∈ PaG (𝑉𝑖).
23 else
24 S2 := S2 ∪ {{𝑉𝑖 , 𝑉 𝑗 }}.
25 end
26 end
27 Assert S1 consists of all type-1 identifiable pairs satisfying Def. 2(1). (Thm. 2)
28 Assert S2 consists of all type-2 identifiable pairs satisfying Def. 2(2). (Thm. 2)
29 Assert S3 consists of all type-3 identifiable pairs satisfying Def. 2(3). (Thm. 2)
30 P := ∅.
31 for {𝑉𝑖 , 𝑉 𝑗 } ∈ S2 do
32 if ∃{𝑉𝑖′ , 𝑉 𝑗′ } ∈ S1 s.t. {𝑉𝑖 , 𝑉 𝑗 } ∩ {𝑉𝑖′ , 𝑉 𝑗′ } ≠ ∅ then
33 P := P ∪ {{𝑉𝑖 , 𝑉 𝑗 }}.
34 end
35 end
36 Assert ∀{𝑉𝑖 , 𝑉 𝑗 } ∈ P,

⋂
PaG ({𝑉𝑖 , 𝑉 𝑗 }) ⊂ V𝑐. (Thm. 3(1))

37 S2 := S2\P, 𝑚 := 0.
38 while S2 ≠ ∅ do
39 Arbitrarily choose {𝑉𝑖 , 𝑉 𝑗 } ∈ S2.
40 𝑚 := 𝑚 + 1, Q𝑚 := {{𝑉𝑖 , 𝑉 𝑗 }}.
41 for {𝑉𝑖′ , 𝑉 𝑗′ } ∈ S2\{{𝑉𝑖 , 𝑉 𝑗 }} do
42 if ∃{𝑉𝑖′′ , 𝑉 𝑗′′ } ∈ S2 s.t. {𝑉𝑖 , 𝑉 𝑗 } ∩{𝑉𝑖′′ , 𝑉 𝑗′′ } ≠ ∅ and {𝑉𝑖′ , 𝑉 𝑗′ } ∩ {𝑉𝑖′′ , 𝑉 𝑗′′ } ≠ ∅ then
43 Q𝑚 := Q𝑚 ∪ {{𝑉𝑖′ , 𝑉 𝑗′ }}.
44 end
45 end
46 S2 := S2\Q𝑚.
47 end
48 Assert ∀𝑘 ∈ {1, ..., 𝑚} and {{𝑉𝑖 , 𝑉 𝑗 }, {𝑉𝑖′ , 𝑉 𝑗′ }} ⊂ Q𝑘 ,

⋂
PaG ({𝑉𝑖 , 𝑉 𝑗 }) =

⋂
PaG ({𝑉𝑖′ , 𝑉 𝑗′ }) ⊂ V 𝑓 . (Thm. 3(2))

49 for {𝑉𝑖 , 𝑉 𝑗 } ∈ S1 where 𝑉𝑖 ∈ PaG (𝑉 𝑗 ) do
50 V𝑐 := V𝑐\{𝑉 𝑗 }, V𝑝 := V𝑝 ∪ {𝑉 𝑗 }, and H1 := H1 ∪ {𝑉𝑖 → 𝑉 𝑗 }.
51 end
52 for 𝑘 = 1 : 𝑚 do
53 Introduce a new latent variable 𝐿.
54 V𝑐 := V𝑐 ∪ {𝐿}\⋃Q𝑘 , V𝑝 := V𝑝 ∪⋃

Q𝑘 , and H1 := H1 ∪ {𝐿 → 𝑉 |𝑉 ∈ ⋃
Q𝑘}.

55 end
56 end
57 Assert V𝑐 ∪ V𝑝 = V, that is, V 𝑓 = ∅ (Thm. 4).
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Algorithm 4: Stage 2: Inferring causal relations (detailed)
Input: V𝑐, V𝑝 , and H1 output by Alg. 3
Output: a complete causal structure G

1 Initialize U𝑐 as V𝑐 and assign two observed surrogates 𝑋2𝑖−1, 𝑋2𝑖 for each 𝑉𝑖 ∈ U𝑐.
2 while |U𝑐 | > 0 do
3 Assert Cond. 2 holds.
4 flag:=0.
5 for 𝑉𝑖 ∈ U𝑐 do
6 if ∀𝑉 𝑗 ∈ U𝑐\{𝑉𝑖},R(𝑋2 𝑗−1, 𝑋2𝑖−1 |𝑋2𝑖) ⫫ 𝑋2𝑖 then
7 Assert 𝑉𝑖 is a root variable among U𝑐. (Thm. 5)
8 flag:=1.
9 Calculate sgn(m 𝑗𝑖), 𝑐𝑖1𝑐𝑖2𝑐 𝑗1𝑐 𝑗2𝑚2

𝑗𝑖
, and 𝑐𝑖1𝑐𝑖2 following Eq. (5).

10 U𝑐 := U𝑐\{𝑉𝑖}, 𝑋2 𝑗−1 := R(𝑋2 𝑗−1, 𝑋2𝑖−1 |𝑋2𝑖), 𝑋2 𝑗 := 𝑋2 𝑗 .
11 break
12 end
13 end
14 if flag = 0 then
15 raise error
16 end
17 end
18 for {𝑉𝑖 , 𝑉 𝑗 } ⊂ V𝑐 do

19 𝑚𝑖 𝑗 := sgn(m𝑖 𝑗 )
√︂

𝑐𝑖1 𝑐𝑖2 𝑐 𝑗1 𝑐 𝑗2𝑚
2
𝑖 𝑗

𝑐𝑖1 𝑐𝑖2 𝑐 𝑗1 𝑐 𝑗2

20 end
21 𝐴 := 𝐼 − 𝑀−1 where 𝑀 is composed of 𝑚 𝑗𝑖 .
22 Assert 𝑎 𝑗𝑖 ≠ 0 iff 𝑉𝑖 is a parent of 𝑉 𝑗 .
23 H2 := (V𝑐, ∅).
24 for {𝑉𝑖 , 𝑉 𝑗 } ⊂ V𝑐 do
25 if 𝑎 𝑗𝑖 ≠ 0 then
26 H2 := H2 ∪ {𝑉𝑖 → 𝑉 𝑗 }
27 end
28 end
29 G := H1 ∪H2
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