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Abstract

Despite remarkable advancements in few-shot001
generalization in natural language processing,002
most models are developed and evaluated pri-003
marily in English. To establish a rigorous004
and equitable evaluation framework for few-005
shot cross-lingual transfer, we introduce a new006
benchmark, called BUFFET, which unifies 15007
diverse tasks across 54 languages in a sequence-008
to-sequence format and provides a fixed set009
of few-shot examples and instructions. Using010
BUFFET, we perform thorough evaluations of011
ten state-of-the-art multilingual large language012
models with different transfer methods, namely013
in-context learning and fine-tuning. Our find-014
ings reveal significant room for improvement015
in few-shot in-context cross-lingual transfer.016
Strong multilingual pre-trained or instruction-017
tuned models such as BLOOM or ChatGPT018
often lag behind much smaller mT5-base mod-019
els given the same number of few-shot samples,020
particularly in low-resource languages. Our021
analysis suggests avenues for future research in022
few-shot cross-lingual transfer.023

1 Introduction024

Recent advances in NLP primarily focus on En-025

glish (Blasi et al., 2022). As there is a shortage of026

adequate training data for most languages world-027

wide (Yu et al., 2022), zero-shot cross-lingual trans-028

fer (Hu et al., 2020b) is an active research area.029

This involves training models on high-resource lan-030

guages like English, and then directly applying031

them to new languages without any training data032

in the target language. This approach often results033

in limited success when the target language is sig-034

nificantly different from the source language, mo-035

tivating recent efforts to adapt models to a task in036

a new language using a limited number of training037

data in the target language. Such few-shot transfer038

often boosts performance, especially in languages039

that are dissimilar to the source language (Lauscher040

et al., 2020; Hedderich et al., 2020).041
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Figure 1: BUFFET includes unified diverse tasks in
the same format, covering many typologically diverse
languages to enable a fair comparison across different
models, transfer methods, and learning setups.

Although there has been significant research on 042

few-shot learning in English, employing techniques 043

like in-context learning that do not necessitate pa- 044

rameter updates (Beltagy et al., 2022; Shin et al., 045

2020), few-shot cross-lingual transfer is still under- 046

explored (Lin et al., 2021). While several recent 047

work demonstrates the effectiveness of in-context 048

learning in non-English languages on specific tar- 049

get tasks (Shi et al., 2023; Qin et al., 2023), it 050

remains uncertain how well in-context learning 051

performs in comparison to widely-employed fine- 052

tuning-based transfer, particularly in a comparable 053

setup involving diverse tasks and languages. 054

To comprehensively assess the capabilities of 055

language models (LMs) for few-shot cross-lingual 056

transfer, we introduce BUFFET: Benchmark of 057

Unified Format FEw-shot Transfer Evaluation 058

(Figure 1) to enable rigorous evaluations and ad- 059

vance research on few-shot cross-lingual transfer. 060

Similar to a rich buffet, BUFFET curates a diverse 061

mix of tasks: 15 different tasks—including classifi- 062

cation, structured prediction, and natural language 063
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generation—across 54 languages. BUFFET has064

several unique characteristics that are not present065

in prior multi-task multilingual benchmarks:066

• providing a fixed set of few-shot demonstrations067

for training and validation for fair comparisons.068

• combining diverse tasks into a unified text-to-069

text format with instructions.070

• including datasets annotated on the target lan-071

guage and covering under-represented languages072

often missing in prior benchmarks.073

On this new benchmark, we extensively evalu-074

ate the current state-of-the-art multilingual large075

language models (LLMs), including mT5 (Xue076

et al., 2021), mT0 (Muennighoff et al., 2023),077

BLOOM (Scao et al., 2022), BLOOMZ (Muen-078

nighoff et al., 2023), and ChatGPT (Ouyang et al.,079

2022), using both fine-tuning and in-context learn-080

ing approaches. We also evaluate recent English-081

centric powerful open LMs such as Llama-2 (Tou-082

vron et al., 2023) and Mistral (Jiang et al., 2023).083

In particular, BUFFET enables us to investigate084

the following research questions:085

(RQ1) Is in-context learning competitive with086

fine-tuning in few-shot cross-lingual transfer?087

Notably, given the same small numbers of exam-088

ples in the target languages, in-context learning on089

LLMs often under-performs much smaller special-090

ized mT5-base models (Figure 1 bottom left).091

(RQ2) How well do different transfer methods092

perform across tasks and languages? The093

performance gap between in-context learning and094

fine-tuning baselines is more significant in under-095

represented languages (Figure 1 bottom center).096

However, these LLMs perform well on generative097

tasks where a smaller task-specific LM struggles,098

demonstrating their superiority in generating fluent099

text for across languages. Meanwhile, although100

recent strong open LMs such as LLama2 or Mistral101

demonstrate strong performance in high-resource102

languages, possibly benefiting from a small amount103

of multilingual pre-training data (Touvron et al.,104

2023), they often show significant drops in per-105

formance on other languages less represented in106

English-centric pre-training corpora.107

(RQ3) How does the choice of transfer setup af-108

fect different transfer strategies? BUFFET also109

enables us to perform an in-depth analysis of the110

effects of different demonstrations and instruc-111

tions on the downstream transfer quality. We112

find that the choice of few-shot training examples113

has a substantial effect on model performance, es-114

pecially for in-context learning, and often shows 115

more significant effects than varying instructions. 116

Optimal transfer settings may differ across mod- 117

els: instruction-tuned models often struggle to ef- 118

fectively utilize few-shot samples, possibly due 119

to overfitting on their instruction-tuned training 120

schemes. This highlights the need for a standard- 121

ized benchmark like BUFFET to facilitate fair 122

comparisons and further studies assessing these 123

transfer dynamics in non-English data to improve 124

few-shot cross-lingual transfer methodologies for 125

many world languages.1 126

2 Background and Related Work 127

While few-shot cross-lingual transfer methods such 128

as fine-tuning and in-context learning have been 129

investigated (Section 2.1), limited research ex- 130

plores different methods under comparable con- 131

ditions. We introduce BUFFET as a benchmark 132

(Section 2.2) to facilitate fair comparisons between 133

models and learning methods. 134

2.1 Methods for Cross-lingual Transfer 135

Fine-tuning for cross-lingual transfer. Prior 136

work has shown that multilingual pre-trained mod- 137

els (Devlin et al., 2019; Xue et al., 2021; Conneau 138

et al., 2020a), once trained on task data in resource- 139

rich languages (e.g., English) have the ability to 140

adapt to new languages with no training instances 141

in a target language (Conneau et al., 2020b; Hu 142

et al., 2020b; Wu and Dredze, 2019). However, 143

such zero-shot transfer often struggles in languages 144

that are distant from the source languages (Hed- 145

derich et al., 2020). Lauscher et al. (2020) shows 146

that further fine-tuning models on few-shot sam- 147

ples in target languages give large performance 148

improvements from zero-shot transfer approaches. 149

Cross-lingual in-context learning. In-context 150

learning (Brown et al., 2020) aims to teach LMs 151

new tasks by conditioning on a task description 152

(instruction) and training examples (demonstra- 153

tions). Despite active research on in-context learn- 154

ing (Schick and Schütze, 2021; Min et al., 2022b), 155

most prior work focuses on English. Lin et al. 156

(2021); Muennighoff et al. (2023) introduces pre- 157

trained LMs trained on more multilingual pre- 158

trained corpora or translated datasets and shows 159

improved results. More recently, some concur- 160

rent work evaluates the effectiveness of proprietary 161

LLMs e.g., ChatGPT on multilingual setup (Bang 162

1Our data and code are available online at XXX.
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et al., 2023; Ahuja et al., 2023). However, how163

LLMs using in-context learning compete with the164

aforementioned fine-tuning approaches in a compa-165

rable setup and at scale has yet to be investigated.166

2.2 Benchmarks for Cross-lingual Transfer167

To enable a scalable and rigorous evaluation168

across multiple tasks, prior work has proposed169

multi-task benchmarks that unify existing datasets.170

XTREME (Hu et al., 2020b), XTREME-R (Ruder171

et al., 2021) and XGLUE (Liang et al., 2020)172

focus on zero-shot transfer of models fine-tuned173

on English datasets. Despite English-based few-174

shot evaluation benchmarks, such as CrossFit (Ye175

et al., 2021), in few-shot cross-lingual transfer,176

we lack a standardized evaluation benchmark to177

facilitate the comparison of models and learning178

methods. BUFFET provides the first large-scale179

few-shot cross-lingual transfer suits to address the180

gap. Importantly, to mitigate the effects of the high-181

performance variance in few-shot cross-lingual182

transfer (Zhao et al., 2021), we curate and aggre-183

gate results from multiple fixed k-shot training in-184

stances for each task and language. Concurrent185

with our work, MEGA (Ahuja et al., 2023) and186

XTREME-UP (Ruder et al., 2023) accelerate evalu-187

ations of cross-lingual transfer. BUFFET focuses188

on benchmarking few-shot transfer capabilities un-189

der comparable setup, with an emphasis on under-190

standing the transfer dynamics.191

3 Benchmark: BUFFET192

We introduce a new standardized few-shot193

cross-lingual evaluation benchmark: BUFFET194

(Benchmark of Unified Format Few-shot Transfer195

Evaluation). BUFFET unifies diverse NLP tasks196

and provides fixed sets of few-shot samples per task197

to facilitate fair comparisons (Table 1). BUFFET-198

Full covers 15 different tasks across 54 languages,199

while BUFFET-Light enables affordable and200

quick evaluations on limited subsets while retain-201

ing task and language diversities.202

3.1 Design Principles203

To establish a rigorous and equitable evaluation204

framework for few-shot cross-lingual transfer, we205

follow these design principles.206

Standardized few-shot samples. BUFFET pro-207

vides three different training and validation sets of208

k-shots (e.g., k=32) per task for a non-classification209

task, or per class for a classification task. This is210

to prevent significant performance discrepancies 211

among various k-shot samples, which makes com- 212

parisons of different methods difficult. 213

Task diversity. BUFFET encompasses a broad 214

range of task types, such as classification, genera- 215

tion, extraction, and structured prediction tasks, un- 216

like existing cross-lingual benchmarks focusing on 217

classification or retrieval (Hu et al., 2020b; Ruder 218

et al., 2021; Liang et al., 2020). By converting all 219

tasks into the same text-to-text format, we elimi- 220

nate the need for task-specific model modifications. 221

Language diversity. BUFFET covers 54 ty- 222

pologically diverse languages, spanning 24 lan- 223

guage families, including under-represented lan- 224

guages (e.g., indigenous languages of the Americas, 225

African languages). The 36 out of 54 languages 226

are not Indo-European languages. A full list of 227

languages is available in Appendix Table 5. 228

Beyond evaluations on translated data. Prior 229

few- or zero-shot evaluations were often conducted 230

on datasets translated from English (e.g., XNLI; 231

Conneau et al. 2018, XCOPA; Ponti et al. 2020). 232

Those datasets might exhibit undesired biases, such 233

as translation artifacts or unnatural topic distribu- 234

tions (Clark et al., 2020; Artetxe et al., 2020; Asai 235

et al., 2021). BUFFET includes both translation- 236

based datasets and datasets that are annotated di- 237

rectly in each language (Table 1, Data curation). 238

3.2 BUFFET Construction Process 239

Following Ye et al. (2021), we unify all datasets 240

listed in Table 1 into the same text-to-text format, 241

where a model is expected to directly generate the 242

desired outputs given diverse inputs (Raffel et al., 243

2020). A task has instructions, k-shot training and 244

validation examples, as well as test examples, each 245

of which consists of input and output. 246

3.2.1 Unification Process 247

Instance selection. By default, we use all lan- 248

guages included in the original datasets.2 For each 249

language in each dataset, we use the original test or 250

validation datasets as test instances (if the test set 251

is not publicly available), and we randomly sample 252

three sets of k-shot examples (demonstrations) for 253

training and validation from the original training 254

dataset, using the same random seeds.3 255

2For XLSUM and WikiANN, we sample languages target
languages as discussed in Appendix Section A.

3We use 100, 13, and 21 as seed numbers.
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Tasks Dataset Output |L| k Metric Domain Data curation

Summarization XLSUM summary 12 1 ROUGE News aligned
Question Generation TYDI QA-QG question 8 8 BLEU Wikipedia in-language
NLI XNLI 3-way class 14 16 acc. misc. translation

AMERICAS NLI 3-way class 10 16 acc. misc. translation
PARSI NLU 3-way class 1 16 acc. misc. in-language
OCNLI 3-way class 1 16 acc. misc. in-language
KLUE-NLI 3-way class 1 16 acc. misc. in-language

Paraphrase Detection PAWS-X 2-way class 6 7 acc. Wikipedia aligned
Sentiment INDIC-NLU-SENT. 2-way class 14 16 acc. e-commerce translation
Analysis AMAZON REVIEW 2-way class 5 16 acc. e-commerce in-language
Commonsense XCOPA multi-choice 11 16 acc. misc. translation
Reasoning XWINOGRAD multi-choice 4 8 acc. misc. translation
QA TYDIQA span 8 8 F1 Wikipedia in-language
Named Entity WIKIANN names & tags 33 32 F1 Wikipedia aligned
Recognition MASAKHANER names & tags 9 32 F1 News in-language

Table 1: The eight target tasks built upon 15 existing datasets in BUFFET. |L| indicates the number of
languages, and k indicates the total number of training instances. We include datasets that are curated by translation,
in-language annotation (in-language) and automatically aligned (aligned) following Yu et al. (2022).

Instruction selection. We use English instructions256

from SuperNaturalInstructions (Wang et al., 2022b)257

and PromptSource (Bach et al., 2022). Among mul-258

tiple instructions, we sample the first instruction259

for a similar task that suits our scheme. The full260

list of the instructions is in Appendix Table 6.261

Instruction translation. The availability of cross-262

lingual instruction is still largely limited, and prior263

work often translates instructions for target tasks264

(Lin et al., 2021; Shi et al., 2023). We provide265

translated instructions in 54 target languages, trans-266

lated by NLLB (Costa-jussà et al., 2022), and man-267

ually translate the instructions into five languages.4268

3.2.2 Tasks and Dataset Curation269

Unlike in English, the availability of high-quality270

labeled datasets is largely limited, especially in gen-271

erations or reasoning tasks, and the few available272

datasets are often translated from English. We273

select eight popular NLP tasks and identify avail-274

able datasets for each task following the survey of275

multilingual datasets by Yu et al. (2022). Appendix276

Table 6 shows examples, and Appendix Section A.1277

discusses the dataset choices.278

Summarization. The task is to generate a sum-279

mary given an article. We use the XLSUM (Hasan280

et al., 2021) dataset of news article summarization.281

Question generation. The task is to generate a282

question according to a given input passage and283

a corresponding answer (Xiao et al., 2021). We284

convert the TYDIQA (Clark et al., 2020) dataset285

into a question generation task, which we refer to286

4Manual translations are performed by volunteers.

TYDIQA-QG. 287

Natural language inference (NLI). NLI 288

involves determining the logical relationship 289

(entailment, contradiction, neutral) 290

between two text fragments, i.e., a premise and 291

a hypothesis. We include five datasets covering 292

typologically-diverse languages 293

Paraphrase detection. The task is to identify 294

whether two sentences have/do not have the same 295

meaning (duplicate or not duplicated). 296

We adopt PAWS-X (Yang et al., 2019). 297

Sentiment analysis. Binary sentiment anal- 298

ysis identifies whether a text (e.g., a product 299

review from Amazon) expresses positive or 300

negative sentiment towards a topic. We 301

use the MULTILINGUAL AMAZON REVIEW 302

DATASET (Keung et al., 2020) and INDICNLU- 303

SENTIMENT (Aggarwal et al., 2022), and convert 304

the former to a binary classification task (see Ap- 305

pendix Section A.1). 306

Commonsense reasoning. For a sentence and two 307

options, the task is to select one of the option la- 308

bels, (A) or (B), based on which is better suited 309

to the given context. We use two commonsense 310

reasoning datasets, XCOPA (Ponti et al., 2020) 311

and XWINOGRAD (Muennighoff et al., 2023). 312

Question answering (QA). The task is to answer 313

a question given a paragraph, where the answer is 314

a sub-span of the paragraph. We use TYDIQA- 315

GOLDP (Clark et al., 2020), which we refer to as 316

TYDIQA for simplicity. 317

Named entity recognition. The task is rep- 318

resentative of sequence labeling to detect and 319
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classify named entities in an input sentence.320

We adopt WIKIANN (Pan et al., 2017) and321

MASAKHANER (Adelani et al., 2021). We con-322

vert the task into a text-to-text format, where323

a model extracts all named entities with named324

entity tags:5 <location>, <person>, and325

<organization>.6326

3.3 BUFFET Evaluation327

Evaluation metrics. In Table 1, we list metrics328

for each task. To mitigate the variance from differ-329

ent few-shot samples, for each language included330

in a given task, we average the model’s perfor-331

mance over three different sets of k-shot instances.332

Subsequently, each dataset score is calculated as333

a macro-average of the per-language score (Clark334

et al., 2020). Finally, following Liang et al. (2020),335

we take two separate average scores: (a) Avg. class336

score of all classification and QA tasks, and (b)337

Avg. generation score of all generation tasks.338

BUFFET-Light. Conducting a comprehensive339

evaluation covering a wide range of languages and340

tasks in BUFFET is valuable but computationally341

expensive, especially when we use external APIs342

or large model sizes (e.g., more than ten billion).343

BUFFET-Light is a representative subset of lan-344

guages and tasks for resource-limited scenarios.345

We select languages and datasets to ensure that we346

cover diverse languages and output formats, dis-347

cussed in detail in Section A.3.348

4 Benchmarking LMs on BUFFET349

4.1 Transfer Methods350

We investigate various transfer methods with and351

without parameter updates, summarized in Table 2.352

To assess the benefit of k-shot training examples in353

the target language, we also conduct experiments354

on zero-shot transfer methods. We assume that the355

model can optionally use instructions in the target356

language or another language, or full training sets357

in a high-resource language like English.358

Fine-tuning (methods with parameter updates).359

We explore several transfer approaches that require360

5This is more challenging than the standard sequence la-
beling setup since the model must reproduce the entity spans
and generate appropriate tags. For example, the output for
“Obama served as the 44th president of the United States.”
would be “Obama <person> United States <location>.”

6Although MASAKHANER supports other named entity
tags and distinguishes the beginning and middle/end of the
named entities, we discard named entity categories beyond
the three types and merge the beginning and middle/end entity
tags to make the task formulation consistent with WIKIANN.

Training Demos Instructions
Transfer EN Target EN Target

TARGET FT k
ENGLISH FT N
ENG.+TGT. FT N k

ENGLISH ICL k ✓
TARGET ICL k ✓
Z-EICL ✓

Transfer Pretraining LMs

FINE-TUNING Unlabeled mT5-base
ICL Unlabeled BLOOM, mT5-xxl
ICL + Instruction BLOOMZ-7B, mT0-xxl

Tuning ChatGPT

Table 2: Comparison of transfer methods, based on
the resources they use, and LMs. The top section
requires parameter updates via fine-tuning (FT), and the
bottom uses ICL with no updates. k = k-shot examples;
N = full training data; ✓= instruction language. The
bottom half lists the models evaluated in this work. The
blue-colored rows are instruction-tuned models.

parameter updates: Target fine-tuning (TARGET 361

FT) that trains models on few-shot samples for 362

each language, English fine-tuning (ENGLISH 363

FT) that trains models on a source language (i.e., 364

English) only and uses no target language data, and 365

English+Target fine-tuning (ENG.+TGT. FT) 366

further fine-tunes the ENGLISH FT models on few- 367

shot samples of target languages. 368

In-context learning (methods without updates). 369

We explore several in-context learning methods. 370

English in-context learning (ENGLISH ICL) 371

uses English instructions and demonstrations in 372

the target languages, while Target In-context 373

learning (TARGET ICL) uses both instructions 374

and demonstrations in the target language. Fi- 375

nally, Zero-shot English In-context learning (Z- 376

EICL) uses only English instructions without 377

demonstrations (neither in English nor in the target 378

language), as in zero-shot transfer. Unlike in En- 379

glish, where abundant instructions and instance an- 380

notations are available, for many languages we lack 381

annotated instructions (Wang et al., 2022b). We 382

use machine-translated instructions in BUFFET. 383

4.2 Language Models 384

We evaluate six diverse LM (Table 2 bottom), 385

including pretrained vanilla LMs as well as 386

instruction-tuned LMs, which have been trained 387

on a massive number of tasks with instructions. 388

Models for fine-tuning. Due to the high costs of 389

fine-tuning for every k-shot setting, we experiment 390

5



Output Classification Multi-choice Span Str. Generation Avg.
Tasks NLI Sent. PWX XCP XWG TyDi NER QG Summ. class gen

TGT. FT mT5 35.0 67.2 47.7 44.1 48.8 5.2 33.4 3.2 2.5 40.7 2.9
ENG. FT mT5 49.9 89.8 77.5 49.6 50.0 66.8 39.0 3.8 6.2 60.7 5.0
ENG.+TGT. mT5 51.8 91.0 77.8 49.5 48.5 69.5 47.8 12.5 11.8 61.2 12.2

ENG. ICL BLOOM 32.1 81.7 42.2 50.2 51.0 54.7 24.2 9.3 3.4 45.0 6.4
mT5 35.7 50.0 42.2 50.4 47.5 0.2 0.0 0.0 0.4 31.7 0.2

BLOOMZ 31.5 86.3∗ 48.5∗ 50.4 54.2 65.8∗ 25.5 13.5 8.3∗ 47.5 10.9
mT0 32.6 80.4∗ 60.5∗ 52.9 57.8 74.5∗ 6.9 15.3 2.7∗ 52.2 9.7

ChatGPT 54.5 91.1 68.6 76.7 73.3 68.1 45.4 21.2 5.4 64.6 13.3
TGT. ICL BLOOM 27.9 80.5 46.5 49.9 51.8 11.8 23.4 11.2 3.6 40.4 7.4

mT5 35.7 50.0 42.2 49.8 45.2 0.2 0.0 0.0 0.4 31.5 0.2
BLOOMZ 32.0 61.7∗ 52.5∗ 49.7 55.5 63.1∗ 23.4 9.1 8.0∗ 43.4 8.5

mT0 36.2 72.1∗ 60.6∗ 50.5 60.3 73.6∗ 7.9 16.1 3.4∗ 46.3 9.7
ChatGPT 48.2 91.5 68.2 74.3 73.4 68.0 44.8 21.1 11.4 62.7 16.3

Z-EICL BLOOM 33.3 37.2 42.3 50.0 47.1 4.3 0.0 14.0 6.3 29.2 10.1
mT5 35.1 49.8 42.2 50.7 55.5 2.2 0.0 0.1 4.8 32.5 0.6

BLOOMZ 33.5 51.6∗ 57.8∗ 51.8 51.0 83.2∗ 11.2 9.5 4.3∗ 41.9 6.9
mT0 48.5 90.0∗ 90.6∗ 63.8 61.0 80.1∗ 0.0 10.2 12.0∗ 56.4 11.1

Table 3: Overall experiment results in BUFFET. Note that to enable comparison between ChatGPT (only tested
on BUFFET-Light) and other methods, we present BUFFET-Light results, and the overall results on BUFFET are
available in Table 10. The blue-colored rows are instruction-tuned models. We added ∗ symbols next to the scores
for the tasks on which the models have been trained. Bold fonts indicate the best results for each task, among the
models that are not directly trained on the task. When ChatGPT achieves the best results, we note the second-best
number from the models not trained on the task, as ChatGPT may have been trained on a similar task.

with an efficient yet competitive mT5-base with391

580 million parameters (Xue et al., 2021).392

Models for in-context learning. We exper-393

iment with BLOOM-7B (7 billion parameters;394

Scao et al., 2022) and mT5-xxl (13 billion pa-395

rameters; Xue et al., 2021). We also experiment396

with their instruction-tuned variants: BLOOMZ-397

7B and mT0-xxl (Muennighoff et al., 2023),398

as well as the current state-of-the-art ChatGPT399

(gpt-3.5-turbo-0301; Ouyang et al. 2022).400

Note that these models may be trained on some401

datasets included in BUFFET. Due to the high402

API costs, we conduct ChatGPT evaluations on403

BUFFET-Light data only with the two few-shot404

transfer methods. While our main experiments405

focus on multilingual pre-trained models, in Sec-406

tion 5.2 we further evaluate four English-centric407

LMs on BUFFET-Light.408

4.3 Experiment Details409

Fine-tuning. For ENG.+TGT. FT and ENGLISH410

FT, we train on representative English datasets411

following Hu et al. (2020b) for three epochs and412

five for smaller COPA and Winograd datasets. The413

source English datasets are listed in the appendix.414

We fine-tune on k-shot samples for 300 epochs415

(TARGET FT) and 200 epochs (ENG.+TGT. FT). 416

In-context learning. We prompt LLMs with in- 417

structions and k-shot demonstrations available in 418

BUFFET. Our preliminary experiments reveal 419

mT0 performs significantly better when zero or 420

very few few-shot samples are used, so we use 4- 421

shots for mT0 ENGLISH ICL and TARGET ICL by 422

default, while for other models we use all demon- 423

strations unless they exceed max context length. 424

We use greedy decoding for predictions. For tasks 425

with a fixed set of pre-specified answer candidates, 426

we compute the probability of option tokens by iter- 427

ating options except for ChatGPT without access to 428

token probabilities. Due to the high inference costs, 429

we evaluate ChatGPT only on BUFFET-Light. 430

5 Results and Analysis 431

5.1 Main Results 432

Table 3 shows aggregated results of fine-tuned 433

and in-context learning-based LMs on BUFFET- 434

Light for fair comparisons between ChatGPT and 435

other models. Full experiment results including 436

BUFFET-Full results on each task are in the Ap- 437

pendix. Below, we summarize the key findings. 438
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Figure 2: Model performance on NLI and NER,
displayed for various languages. The languages are
sorted based on token availability in mC4, with the left
side representing high-resource ones. ChatGPT results
are not shown on the NER chart as some languages are
not included in BUFFET-Light.

LLMs with in-context learning often lag behind439

much smaller fine-tuned models. Our com-440

parison shows that few-shot cross-lingual transfer441

via in-context learning remains challenging; EN-442

GLISH ICL using BLOOM, BLOOMZ (7B) and443

mT0 (13B) often under-performs mt5-base (580M)444

fine-tuned on English datasets (ENGLISH FT or445

ENG.+TGT. FT). Even the current state-of-the-446

art ChatGPT underperforms mT5-base ENG.+TGT.447

FT in simple discriminative tasks (e.g., PAWS-448

X) or structured prediction tasks (NER). How-449

ever, ICL baselines constantly outperform mT5450

(TARGET FT) across tasks and ENG.+TGT. FT451

on XCOPA and XWINOGRAD with limited scarce452

English task data. This implies that when lacking453

task-specific training data even in English, prompt-454

ing LLMs can be more effective, while otherwise455

training a specialized model on English data and456

then fine-tuning few-shot instances is still effective457

in discriminative tasks.458

Zero- and few-shot transfer remains challenging459

in under-represented languages. Figure 2 il-460

lustrates model performance on NER (WIKIANN461

and MASAKHANER) and NLI (XNLI, AMERI-462

CASNLI) across different languages.7 The lan-463

guages are sorted based on the token availability464

in the mC4 corpus,8 with high-resource languages465

positioned on the left side. In general, models466

such as mT5 ENGLISH FT or ChatGPT ENGLISH467

ICL exhibit strong performance in high-resource468

languages, but their effectiveness diminishes in469

underrepresented languages (right side, Figure 2).470

For instance, on NLI in Aymara (aym), ChatGPT471

achieves slightly higher performance than a ran-472

7Several languages in MASAKHANER or AMERICAS NLI
are not part of the pretraining process.

8We use token count statistics at https://github.
com/allenai/allennlp/discussions/5265.
Languages not seen in pretraining are sorted alphabetically.
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Figure 3: Model performance across different num-
bers of k-shots. mT5 FT denotes mT5 ENG.+TGT. FT.
More results are in Appendix.

dom baseline. We also find that fine-tuning with 473

k in-language examples is very effective for less- 474

represented languages: mT5 ENG.+TGT. FT sig- 475

nificantly outperforms mT5 ENGLISH FT in lower- 476

resource languages (e.g., 30% improvements in 477

Hausa on MasakhaNER). 478

Instruction-tuning helps zero-shot ICL but may 479

not generalize well to few-shot settings. The 480

zero-shot performance of instruction-tuned models 481

is significantly higher than the zero-shot perfor- 482

mance of non-instruction-tuned models (Table 3: 483

mT0-xxl and BLOOMZ-7B Z-EICL v.s. mT5-xxl 484

and BLOOM-7B Z-EICL). However, instruction- 485

tuned models show surprising performance dete- 486

rioration in few-shot settings: across tasks, mT0 487

performs worse in few-shot settings than in zero- 488

shot settings (ENGLISH ICL v.s. Z EICL). we 489

hypothesize that since these models are optimized 490

to execute a new task solely based on an instruc- 491

tion, with no prior demonstrations (Muennighoff 492

et al., 2023), they struggle to learn in context from 493

few-shot demonstrations. We conduct controlled 494

experiments in Section 5.2 for further analysis. 495

5.2 Analysis 496

Effect of varying number of k. Figure 3 demon- 497

strates the impact of increasing the number of 498

few-shot samples for in-context learning and fine- 499

tuning, on two tasks: TYDIQA, and WIKIANN. 500

We vary the number of few-shot demonstrations, in- 501

cluding 0, 1, 4, and 8 (for the tasks with more than 502

8 shots). Full results on more tasks and languages 503

are in Appendix D.3. Increasing the number of 504

few-shot examples has a notable positive impact on 505

fine-tuning (mT5 FT). Similarly, non-instruction- 506

tuned BLOOM benefits from the inclusion of few- 507

shot samples on most of the tasks. However, for 508

instruction-tuned models, namely BLOOMZ and 509

mT0, which were exclusively trained with instruc- 510

tions rather than demonstrations, we observe a sig- 511
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Figure 4: Model performance across different k-shot demonstrations for TYDIQA, WIKIANN, INDICSENTI-
MENT and AMAZONREVIEW. Each circle indicates performance given different k-shot demonstrations.

nificant decline in performance when additional512

demonstrations are added, possibly due to the over-513

fit to the zero-shot ICL scenario, even on previously514

unseen tasks such as WIKIANN. Prior work on En-515

glish instruction-tuning has demonstrated that train-516

ing an LM on diverse setups (few-shot, zero-shot,517

using both demonstrations and instructions) is ef-518

fective in alleviating such sensitivity of instruction-519

tuned models to diverse evaluation setups (Longpre520

et al., 2023). It is important to develop multilingual521

instruction-following models capable of effectively522

utilizing both instructions and demonstrations.523

Effect of different k shots. Figure 4 shows model524

performance across the three different sets of k525

examples. We observe the significant variance in526

fine-tuning-based transfer across different demon-527

strations, confirming Zhao et al. (2021). Impor-528

tantly, we show that in-context learning is even529

more sensitive to demonstration choice than few-530

shot fine-tuning, further emphasizing the impor-531

tance of standardized k-shots for a fair transfer532

evaluation. For instance, the standard deviation533

on AMAZON REVIEW for BLOOM ENGLISH ICL534

and mT5 ENG.+TGT. FT is 2.2 and 0.2, respec-535

tively. We also found that in 49.7% of the cases,536

the optimal k-shot demonstrations for BLOOM and537

BLOOMZ ENGLISH ICL differ.538

Effect of model scaling. Appendix Figure 12539

shows the performance of BLOOM-560 million, 1540

billion, and 7 billion with few-shot ENGLISH ICL541

on a subset of the tasks. Overall performance sig-542

nificantly improves across different model sizes,543

indicating cross-lingual transfer performance via544

ICL improves with scale; this is consistent with545

findings in Lin et al. (2021) on classification tasks.546

Effect of prompt templates. We investigate the547

effectiveness of different English instructions on548

TYDIQA-QG in four-shot settings using mT0549

and BLOOM as base models in Appendix Ta-550

ble 24. We compare four relevant instructions551

and one irrelevant instruction (an instruction for552

AMAZON REVIEW) and find that the performance553

sharply decreases with irrelevant instructions on the554

instruction-tuned model (7.1 → 0.4 BLEU). How- 555

ever, among relevant instructions, the performance 556

gap on BLOOM is limited compared to the large 557

variance observed across different demonstration 558

sets. The larger performance gap for instruction- 559

tuned mT0 likely indicates that instruction-tuned 560

models are more sensitive to diverse prompts. 561

Evaluating English-centric LMs. BUFFET- 562

Light enables easy and quick evaluations of LMs. 563

We conduct BUFFET-Light evaluations on four 564

recently released LMs (7B) primarily trained in 565

English: LLama1 (Touvron et al., 2023), Llama2, 566

Llama2-chat (Touvron et al., 2023) and Mis- 567

tral (Jiang et al., 2023). Full results are in Ta- 568

ble 26: on average, LLama1, LLama2, LLama2- 569

chat, and Mistral get 28.1, 41.6, 44.1, and 45.2 on 570

classification tasks, and 4.3, 6.4, 6.4, and 7.4 on 571

generation tasks, respectively. Except for LLama1 572

which explicitly filters out text in non-alphabetic 573

languages, other English-centric LMs match or ex- 574

ceed multilingual BLOOM and BLOOMZ. This 575

result suggests even small amounts of multilingual 576

data in pre-training help LLMs acquire multilingual 577

abilities, corroborating Blevins and Zettlemoyer 578

(2022a). Yet, they often struggle with many other 579

languages (e.g., AMERICASNLI or INDIC SENTI- 580

MENT), and it remains unclear how much target 581

language data is necessary for this to occur. 582

6 Conclusion and Discussion 583

We introduce BUFFET, a few-shot cross-lingual 584

transfer benchmark that encompasses a diverse 585

range of discriminative and generative tasks across 586

many typologically diverse languages. While 587

LLMs utilizing in-context learning excel in genera- 588

tion tasks, they are often surpassed by smaller fine- 589

tuned models specifically trained for target tasks. 590

Our analysis sheds light on several important open 591

questions for better multilingual instruction-tuning, 592

and more balanced multilingual pre-training, and 593

suggests the necessity of evaluating across lan- 594

guages and tasks under comparable settings.9 595

9We provide detailed discussions in Appendix Section E.
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Limitations596

Selection of tasks. As the first step toward597

standardized evaluation for few-shot cross-lingual598

transfer, BUFFET focuses on popular discrimina-599

tive tasks and some generative tasks, with well-600

studied evaluation protocols and rich annotated601

resources. Due to the lack of high-quality non-602

English annotated data, BUFFET does not include603

many datasets that require complex reasoning tasks.604

Further exploration can expand these evaluations605

to more diverse and complex tasks, such as MTOP606

(Li et al., 2021) or MGMS8K (Shi et al., 2023),607

or knowledge-intensive tasks (Asai et al., 2021;608

Ogundepo et al., 2023). Yet, it should be noted609

that high-quality generation or reasoning task data610

are often only available handful of resource-rich611

languages, which makes BUFFET-style compre-612

hensive comparisons across languages difficult. We613

encourage the community to work towards diverse614

high-quality evaluation datasets in more world lan-615

guages.616

Hyper-parameter search or prompting. Since617

our main focus is to benchmark different LMs618

and learning methods in a comparable format,619

we do not explore sophisticated prompting meth-620

ods or conduct task- or language-dependent hyper-621

parameter searches. We anticipate that BUFFET622

will encourage the LLM community to explore new623

methods to further improve in-context learning be-624

yond English.625

Translated instructions. We use instructions626

translated by the NLLB (Costa-jussà et al., 2022)627

for TARGET ICL; such machine-translated in-628

structions are prone to errors, especially in less-629

represented languages, that can affect the final per-630

formance.631

Lack of underrepresented variants, dialects632

Typologically distinct and low-resource languages633

are often excluded from the cross-lingual bench-634

marks used to assess cross-lingual transfer capa-635

bilities in LLMs. Our evaluation with BUFFET636

demonstrates that even the most powerful LLMs637

still perform poorly on less-represented languages,638

by evaluating them on more than 50 languages.639

However, we do not specifically focus on finer-640

grained language varieties and dialects that are641

commonly spoken by underrepresented popula-642

tions. We advocate for conducting more studies643

that include under-represented languages and their644

dialects, as emphasized in previous works (Aji645

et al., 2022; Kakwani et al., 2020), particularly 646

when evaluating massively multilingual models. 647

Ethics Statement 648

While there has been significant research on in- 649

context learning with LLMs, most of the focus has 650

been on the English language. This raises questions 651

about the applicability of findings from English 652

few-shot NLP to few-shot cross-lingual transfer 653

scenarios. To address this gap, BUFFET aims to 654

provide a comprehensive and less biased evaluation 655

framework. However, it is important to note that 656

our benchmark dataset currently covers only 54 out 657

of the approximately 6,000 world languages. In 658

light of these limitations, we encourage future re- 659

search to explore the effectiveness and limitations 660

of widely used transfer methods in a more diverse 661

range of languages. This will help us gain a deeper 662

understanding of the generalizability of transfer 663

learning techniques across different linguistic con- 664

texts. We curate existing open-licensed datasets 665

as source datasets of BUFFET, and manually as- 666

sessed sampled questions to see the quality of data 667

as well as potential privacy risks. 668
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Appendix1096

A Benchmark Details1097

BUFFET unifies diverse tasks and languages to1098

enable a comparable and equitable evaluation for1099

few-shot cross-lingual transfer. We provide a com-1100

parison with other multi-task benchmarks in Ta-1101

ble 4. In this section, we present technical dataset1102

details.1103

A.1 Task-specific Details1104

Natural language inference. In addition to the1105

widely used XNLI (Conneau et al., 2018), we1106

gather NLI datasets that are annotated in each lan-1107

guage or designed to cover under-represented lan-1108

guages: AMERICASNLI (Ebrahimi et al., 2022),1109

PARSINLU-ENTAILMENT (Khashabi et al., 2021),1110

KLUE-NLI (Park et al., 2021), and OCNLI (Hu1111

et al., 2020a). We use the same target labels,1112

entailment, contradiction, neutral1113

across different datasets. We use 16 examples for1114

each class.1115

Paraphrase detection. We adopt PAWS-X (Yang1116

et al., 2019) and include 16 shots for each class as1117

few-shot training and validation data.1118

Sentiment analysis. We use the MULTILINGUAL1119

AMAZON REVIEW DATASET (Keung et al., 2020)1120

and INDICNLU-SENTIMENT (Aggarwal et al.,1121

2022). INDICNLU-SENTIMENT is created by1122

translating English sentiment analysis data into di-1123

verse Indic languages. For the former, we discard1124

the neutral class (the reviews with a score of 3)1125

and assign reviews with scores of 4 and 5 to the1126

positive class and reviews with scores of 1 and 2 to1127

the negative class. For both datasets, we sample 161128

demonstrations per class.1129

Commonsense reasoning. We use two common-1130

sense reasoning datasets, XCOPA (Ponti et al.,1131

2020) and XWINOGRAD (Muennighoff et al.,1132

2023). Due to the smaller scale of the datasets,1133

we sample 16 and 8 training instances in total for1134

XCOPA and XWINOGRAD, respectively.1135

Question answering. We use TYDIQA-1136

GOLDP (Clark et al., 2020) for QA, as the data1137

is annotated in each language, better reflecting na-1138

tive speakers’ interests and linguistic phenomenon.1139

Due to the longer average input length, we limit1140

the number of exemplars to 8.1141

Named entity recognition. We adopt1142

WIKIANN (Pan et al., 2017) and1143

Multi-ling. Few-S Gen. Low-R

XTREME ✓
XTREME-R ✓
XGLUE ✓ ✓
CrossFit ✓ ✓
MEGA* ✓ ✓
XTREME-UP* ✓ ✓
BUFFET ✓ ✓ ✓ ✓

Table 4: Comparison of the existing benchmarks based
on their multilinguality (Multi-ling.), few-shot task for-
mulation (Few-S), availability of generative tasks (Gen.),
and coverage of low-resource languages (Low-R). ∗ in-
dicates concurrent work.

Instruction

Input 

Instances

English Instruction 

Arabic Instruction 

Swahili Instruction 

Japanese Instruction 

Telugu Instruction 

Translate

BUFFET
Instruction

Training Instances (e.g., k=32)

Test Instances

Select

Output 

Figure 5: BUFFET includes 15 datasets, which are
unified into the same single text-to-text format.

MASAKHANER (Adelani et al., 2021). WIKIANN 1144

is automatically curated and exhibit alignment 1145

errors (Yu et al., 2022). We sample languages on 1146

WIKIANN as discussed in Section A.2. We use 32 1147

instances overall for few-shot transfer. 1148

Summarization. We use the XLSUM (Hasan et al., 1149

2021) dataset to benchmark models’ ability to gen- 1150

erate a summary given a news article. Due to the 1151

context window limit, we use only 1 shot for train- 1152

ing in this task. 1153

Question generation. We convert the TYDIQA- 1154

GOLDP dataset into a question generation task, 1155

which we refer to TYDIQA-QG. Given the gold 1156

paragraph and an answer, the system generates the 1157

original question. We use 8 examples for few-shot 1158

training. 1159

A.2 More Details of BUFFET 1160

This section will provide further details of the 1161

BUFFET benchmark. Figure 5 summarizes the 1162

construction process of BUFFET. 1163

Instance and language sampling for XLSUM, 1164

WIKIANN and AMAZON REVIEW. For au- 1165

tomatically aligned datasets with many test lan- 1166

guages, such as XLSUM or WIKIANN, we filter 1167

out languages that are not included in any other 1168

BUFFET datasets following suggestions by Yu 1169
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et al. (2022).10 With large-scale automatically1170

aligned datasets, we randomly sample 1,000 test in-1171

stances in XLSUM and WIKIANN and 2,000 test1172

instances for Amazon Review, to reduce inference1173

time costs across many languages and multiple sets1174

of demonstrations.1175

Instructions. The full list of the instructions1176

written in English is available in Table 7. For1177

some tasks, we modify the original instruction1178

to make labels consistent with the names used in1179

BUFFET or to remove task-specific dependencies1180

in the input data field. For example, an instruc-1181

tion for PAWS-X says the class names are “re-1182

peated/not repeated” while in BUFFET we use1183

“duplicated/not_duplicated” as labels, so we change1184

the labels in the original instruction.1185

List of the languages. We show the list of the1186

54 languages included in BUFFET in Table 5.1187

BUFFET covers 25 different language families,1188

and also exhibits geographical diversities. Table 81189

shows the full list of the datasets with language1190

names included in BUFFET.1191

Examples. Table 6 shows the input and output1192

examples in BUFFET. We reformulate all o the1193

tasks with diverse formats into the same text-to-text1194

format.1195

A.3 BUFFET-Light1196

Task and language decisions. The goal of build-1197

ing the BUFFET-Light subset is to enable quick1198

multilingual evaluation without losing the language1199

and task diversity in the original BUFFET. To1200

this end, we filter BUFFET so that we evaluate1201

between 3 and 7 languages per task, and each lan-1202

guage is included in at most three tasks.11 This1203

design choice allows us to consider 31 diverse lan-1204

guages across all tasks in BUFFET while reducing1205

the number of evaluation settings by 66%.1206

Final list of BUFFET-light. The full list of1207

tasks and languages in BUFFET are in Table 9.1208

B More Experimental Details1209

Fine-tuning. We use the following En-1210

glish datasets for ENGLISH FT and ENG.+TGT.1211

10On XLSUM, we further reduce the number of languages
to reduce the inference costs while maintaining language di-
versities.

11In addition to the high-resource languages per task, we
also include low-resource languages when available (i.e., for
NLI) to not unfairly inflate BUFFET-Light scores.

Language name Language family code

Amharic Afro-Asiatic amh
Arabic Afro-Asiatic ar
Assamese Indo-European as
Aymara aymaran languages aym
Belarusian Indo-European be
Bengali Indo-European bn
Boro Sino-Tibetan brx
Bulgarian Indo-European bg
Bribri Chibchan bzd
Chinese Sino-Tibetan zh
Asháninka Arawakan cni
Estonian Uralic et
Finnish Uralic fi
French Indo-European fr
German Indo-European de
Guarani Tupian gn
Gujarati Indo-European gu
Haitian French Creole ht
Hausa Niger–Congo hau
Wixarika Uto-Aztecan hch
Hindi Indo-European hi
Igbo Niger–Congo ibo
Indonesian Austronesian id
Italian Indo-European it
Japanese Japonic ja
Kannada Dravidian kn
Kinyarwanda Niger–Congo kin
Korean Koreanic ko
Luo Nilo Saharan luo
Maithili Indo-European mai
Malayalam Dravidian ml
Marathi Indo-European mr
Modern Greek Indo-European el
Nahuatl Uto-Aztecan nah
Oriya (macrolanguage) Indo-European or
Otomí Oto-Manguean oto
Panjabi Indo-European pa
NigerianPidgin English Creole pcm
Persian Indo-European fa
Portuguese Indo-European pt
Quechua others qu
Russian Indo-European ru
Shipibo-Konibo Panoan shp
Spanish Indo-European es
Swahil Niger–Congo sw
Tamil Dravidian ta
Rarámuri Uto-Aztecan tar
Telugu Dravidian te
Thai Kra–Dai th
Turkish Turkic tr
Urdu Indo-European ur
Vietnamese Austroasiatic vi
Wolof Niger–Congo" wol
Yorùbá Niger–Congo yor

Table 5: List of all languages in BUFFET.

FT: SQUAD (Rajpurkar et al., 2016) for 1212

QA, MNLI (Williams et al., 2017) for NLI, 1213

PAWS (Zhang et al., 2019) for paraphrase detec- 1214

tion, XLSUM (Hasan et al., 2021) for summa- 1215

rization, COPA (Arun and Balakrishnan, 2018) 1216

for XCOPA, WINOGRAD for XWINOGRAD, the 1217

AMAZON MULTILINGUAL REVIEW English set 1218
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Task Dataset Input Output

NLI AMERICAS
NLI

premise: Ramonar mayamp jawsañaxanawakunalaykutix mä
jiskt’aw utjitana . . . walikiwa. . . tukt’ayayita.. mä jisk’t’aw utji-
tana kuntix lurkan ukata. [SEP] hypothesis: Janiw jayraskayat
Ramonar jawsañxa. (aym)

contradiction

PARAPHRASE PAWS-X sentence 1: Ses parents sont Angelina Miers, une artiste de pre-
mier plan, et Don Luis Toranzos, d’Argentine. [SEP] sentence
2: Ses parents sont Angelina Miers, elle-même un artiste de
premier plan, et Don Luis Toranzos d’Argentine. (fr)

duplicate

SENTIMENT AMAZON review title: 质量很好，空间容量大，可以装很多东西
review body: 箱子很轻盈，柔韧性不错，不易变形。外观
优雅美观，出行很有范，呵呵。好评！

positive

COMMONSENSE XCOPA Õpetaja andis õpilastele kodutöö. (A) Õpilased saatsid kirju.
(B) Õpilased ägisesid. (et)

(B)

COMMONSENSE XWINOGRAD フリースは綿より感触がよい。_のほうがずっと柔らか
いからいだ。 (A)フリース (B)綿

(A)

QA TYDIQA question: Mikä oli Stanley Kubrickin ensimmäinen elokuva?
context: Lyhytelokuvien jälkeen Kubrick teki ensimmäisen
pitkän elokuvansa Fear and Desire vuonna 1953 rahoittaen
sen kokonaan itse ja sukulaistensa avustuksella, mikä oli tuol-
loin hyvin epätavallista. Kubrickin esikoiselokuva oli kuitenkin
floppi, ja ohjaaja osti kaikki esityskopiot itselleen, jotta elokuvaa
ei näytettäisi. Elokuva merkitsi myös hänen ensimmäisen avio-
liittonsa loppua, koska Kubrick tapasi kuvauksien aikana Ruth
Sabotkan, jonka kanssa hän muutti yhteen avioeronsa jälkeen.
Kubrick ja Sabotka menivät naimisiin vuonna 1955, ja he saivat
yhdessä yhden lapsen, Katharinan (syntynyt 1953). (fi)

Fear and Desire

NER MASAKHANER Issachar alikuwa ametokea India akielekea Israel ambapo ali-
wekwa chini ya ulinzi na hakutakiwa kutoka nje ya uwanja wa
ndege wa Russia .

India
<organization>
Israel
<organization>
Russia
<organization>

QG TYDIQA-QG premise: 롯데는이번상반기채용과관련해구직자들에게
실질적인도움이될수있도록다양한방법으로정보제공
활동을강화할계획이다. [SEP] hypothesis: 롯데는어떠한
정보도제공하지않을계획이다.

contradiction

Table 6: The input and output examples in BUFFET. We show one example from one dataset per task. Due to the
long input length, we do not include a summarization example in this table.

for sentiment analysis, and the TYDIQA-QG En-1219

glish set for question generation.1220

For ENGLISH FT, we limit the number of En-1221

glish training samples to 100,000 and fine-tune1222

mT5-base (Xue et al., 2021) for 3 epochs. For1223

the ENGLISH FT baseline, we transfer this model1224

directly to new languages, while for ENG.+TGT.1225

FT, we initialize the model checkpoint with the1226

trained model weight and further fine-tune a model1227

on few-shot samples for 300 epochs.1228

In-context learning. Different models have dif-1229

ferent maximum context window sizes: mT0 only1230

accepts up to 1024 tokens, while BLOOMZ and1231

ChatGPT accept up to 2048 and 4096, respectively.1232

We use training instances up to the maximum con-1233

text window. We set the maximum token length1234

to 15 except for XLSUM and TYDIQA-QG. For 1235

XLSUM, we set the maximum token length to 100, 1236

and for TYDIQA-QG, we set the maximum token 1237

length to 50. We use greedy decoding throughout 1238

the experiments. For BLOOM-based model evalu- 1239

ations, we use a single RTX-100 GPU with 24 GB 1240

GPU memory. We use int8bit quantization to avoid 1241

GPU out-of-memory errors. To evaluate mT5 and 1242

mT0, we use TPU v3-8. 1243

We found English-centric LMs (Llama1, 1244

Llama2, Llama2-chat, and Mistral) show strong 1245

abilities of in-context learning and often can gen- 1246

erate output in expected formats (e.g., selecting a 1247

class label). To accelerate evaluations, we make 1248

those models directly predict outputs, rather than 1249

computing prompt token probabilities of input se- 1250
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Dataset Instructions

NLI Take the premise sentence as truth. Then the hypothesis is true (entailment), false (contradiction) or
inconclusive (neutral)?

PAWS-X In this task you are given a sentence pair that has high lexical overlap. If the sentences have the same
meaning and are just paraphrases of each other label them as duplicate, if not label them as not_duplicate

SENTIMENT In this task, you’re given a review from Amazon. Your task is to generate a rating for the product. The
rating is extremely negative, negative, neutral, positive, and really positive.

XCOPA In this task you are given a premise and two alternatives (A) and (B). You must choose the alternative
that is more plausibly the cause or effect of the situation described by the premise.

XWINOGRAD Replace the _ in the above sentence with the correct option

QA Read the given passage and answer a question about the information present in the passage.

NER Given the following sentence, indicate the name entities (i.e., the real-world objects such as a person,
location, organization, etc. that can be denoted with a proper name) such as “New York Times”. For
each word of a named-entity, indicate their type “location” or “organization” or “person”.

SUMMARIZATION In this task, you are given an article. Your task is to summarize the article in a sentence.

QG This task is about reading the given passage and constructing a question about the information present in
the passage.

Table 7: The list of English instructions for each task in BUFFET.

Task Dataset Languages

NLI AMERICAS NLI aym, bzd, cni, gn, hch, nah, too, quy, shp, tar
KLUE NLI ko
OCNLI zh
PARSI NLU ENTAILMENT fa
XNLI ar, bg, de, el, en, es, fr, hi, ru, sw, th, tr, ur, vi, zh

PARAPHRASE DETECTION PAWS (en,) de, es, fr, ja, ko, zh
SENTIMENT AMAZON REVIEW (en), de, es, fr, ja, zh
ANALYSIS INDIC SENTIMENT as, bn, brx, gu, hi, kn, mai, ml, mr, or, pa, ta, te, ur
COMMONSENSE XCOPA et, ht, it, id, qu, sw, zh, ta, th, tr, vi
COMMONSENSE XWINOGRAD (en,) ja, pt, ru, zh
QA TYDIQA (en,) ar, be, fi, id, sw, ko, ru, te
NER WIKIANN ( en,) ta, fr, it, ja, vi, qu, be, gu, et, th, or, kn, fi, gn, ru, el, ur, es,

hi, te, as, sw, pa, bg, ml, tr, fa, id, ko, mr, de, ar, bn, zh
MASAKHANER amh, hau, ibo, kin, luo, pcm, swa, wol, yor

SUMMARIZATION XLSUM (english, ) ta, vi, id, tr, ja, th, bn, ar, en, es, fa, zh, sw
QG TYDIQA-QG (en,) ar, be, fi, id, sw, ko, ru, te

Table 8: The list of datasets with language lists in BUFFET.

Task Dataset Languages

NLI AMERICAS NLI aym, cni, hch
KLUE NLI ko
PARSI NLU ENTAILMENT fa
XNLI bg, el, hi, sw, ur

Paraphrase Detection PAWS-X de, es, ja, ko, zh
Sentiment AMAZON REVIEW de, fr, ja, zh
Analysis INDIC SENTIMENT bn, ta, ur
Commonsense XCOPA et, it, ta, th, tr

XWINOGRAD pt, ru
QA TYDIQA be, id, sw
NER WIKIANN be, bg, el, et, fi, it

MASAKHANER yor
Summarization XLSUM bn, fa, es, id, tr, vi
QG TYDIQA-QG ar, fi, ko, ru, te

Table 9: The subset of datasets and languages included in BUFFET-Light.
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quence followed by each class token.1251

C Detailed BUFFET Results1252

This section includes the full list of the experimen-1253

tal results. Overall results on the full BUFFET1254

are available in Table 10, and Figure 6 summarizes1255

overall performance across the eight tasks, on the1256

BUFFET-Light subset.1257

The overall trends on BUFFET-Light remain1258

the same as the original BUFFET. This indicates1259

BUFFET-Light is a reliable and more efficient al-1260

ternative for holistic evaluations for few-shot cross-1261

lingual transfer. Note that ChatGPT is only eval-1262

uated on the BUFFET-Light subsets due to the1263

expensive API costs of experiments.1264

ChatGPT has strong generation capabilities1265

but requires careful instruction design. As dis-1266

cussed, although ChatGPT significantly outper-1267

forms other LLMs with in-context learning, its1268

performance often lags behind fine-tuning-based1269

methods in some discriminative tasks, particularly1270

in less-represented languages. ChatGPT, however,1271

significantly outperforms fine-tuned models on1272

tasks that require target language generations (e.g.,1273

question generation, QA) except summarization1274

(XLSUM). On XLSUM, we found that ChatGPT1275

often generates semantically correct summariza-1276

tions in English rather than in the input article lan-1277

guage, resulting in low ROUGE-2 scores. We do1278

not observe that phenomenon in other LLMs (e.g.,1279

BLOOMZ); we show some ChatGPT output ex-1280

amples in the Appendix Table 25. Though more1281

prompt engineering can boost ChatGPT’s perfor-1282

mance in summarization (Huang et al., 2023), we1283

use the same prompts throughout the evaluations1284

for a fair comparison. We also observe that when1285

instructions are given in the target language, Chat-1286

GPT often outputs a summary in the language, as1287

shown in improved XLSUM performance in Chat-1288

GPT TARGET ICL.1289

Below, we present the performance breakdown1290

for each dataset. “–” indicates that ChatGPT is not1291

evaluated on the subset as it is not included in the1292

BUFFET-Light subset.1293

C.1 NLI1294

Table 11 shows the full results on AMERICASNLI.1295

Table 12 shows the full results on XNLI. Table 131296

presents the full results on the other three entail-1297

ment datasets annotated in each language, KLU-1298

ENLI, OCNLI, and PARSINLUENTAILMENT.1299

NLI (LR)

NLI (HR)

Para.

QA

QG

NER (HR)

NER (LR)

1020304050607080

mt5 Target FT
mt5 English FT
mt5 Eng.+Tgt. FT

BLOOM Eng. ICL
BLOOMZ Eng ICL

mT0 Eng ICL
ChatGPT ICL

Figure 6: Overall results on BUFFET-Light.

On XNLI, ENGLISH FT (zero-shot transfer) 1300

shows strong performance and often outperforms 1301

ENG.+TGT. FT (few-shot transfer). Among ICL 1302

baselines, mT0 ZICL shows the best macro per- 1303

formance on XNLI. However, on AMERICASNLI, 1304

all methods struggle, while ENG.+TGT. FT shows 1305

the best macro performance on AMERICAS NLI. 1306

The performance gap between ENGLISH FT and 1307

ENG.+TGT. FT get significantly larger, with the 1308

largest gap in Aymara (5.5%). Despite its strong 1309

performance on XNLI, mT0 ZICL struggles in 1310

AMERICAS NLI (33.7% on average). 1311

While mT0 ZICL shows robust performance 1312

across XNLI languages, ChatGPT shows a large 1313

performance gap between higher-resource lan- 1314

guages and low-resource languages (57% in Greek 1315

v.s. 33% Urdu). 1316

C.2 Paraphrase Detection 1317

The results on PAWS-X results are available in Ta- 1318

ble 14. ENGLISH FT shows the best performance 1319

on this task among non-instruction-tuned models. 1320

We hypothesize that as the languages included in 1321

PAWS-X are all relatively well-represented lan- 1322

guages and the task is relatively simple, ENGLISH 1323

FT, which is not trained in the target languages, 1324

can achieve high performance. mT0 ZICL shows 1325

quite high performance, likely because the model 1326

is trained on PAWS-X (Muennighoff et al., 2023). 1327

C.3 Sentiment Analysis 1328

The experimental results on AMAZON REVIEW 1329

MULTI and INDIC SENTIMENT are available in 1330

Tables 15 and 16. On both datasets, all models 1331

yield high accuracy across languages, except for 1332

mT5 ZEICL. 1333
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Output Classification Multiple Choice Span Str. Generation Avg.
Tasks NLI Sent. Para. XCPA XWGD QA NER QG Summ. class gen

Random 33.3 50.0 50.0 50.0 50.0 – – – – –
TGT. FT mT5 34.6 67.2 47.2 46.7 50.0 8.3 30.8 3.4 2.8 40.2 3.1
ENG. FT mT5 46.0 89.7 78.6 49.5 48.4 62.9 30.8 4.2 4.0 57.9 4.1
ENG.+TGT. mT5 48.8 90.4 77.9 49.9 49.0 66.7 43.5 12.2 8.4 58.8 10.0

ENG. ICL BLOOM 33.6 85.3 42.4 50.0 50.8 39.2 25.0 11.6 2.4 44.0 7.0
mT5 34.5 50.0 43.2 50.0 49.2 0.3 1.6 0.0 0.3 32.1 0.1

BLOOMZ 33.0 87.2* 49.5* 50.5 52.1 44.5* 20.0 13.9 9.0* 44.3 11.4
mT0 33.6 79.9* 61.1* 57.1 59.6 69.0* 7.9 15.3 1.5* 45.6 8.4

ChatGPT† 54.5 91.1 68.6 76.7 73.3 68.1 45.4 21.2 5.4 64.6 13.3
TGT. ICL BLOOM 31.7 85.3 45.9 50.1 51.7 7.0 25.2 12.8 4.7 41.2 8.7

mT5 34.4 50.0 43.1 50.0 47.3 0.2 0.2 0.0 0.3 31.7 0.1
BLOOMZ 32.1 64.7* 51.7* 50.5 53.1 43.7* 19.1 12.0 10.9* 40.6 11.4

mT0 38.1 70.6* 60.9* 52.8 57.9 70.8* 8.5 14.6 1.8* 45.7 8.2
ChatGPT† 48.2 91.5 68.2 74.3 73.4 68.0 44.8 21.1 11.4 62.7 16.3

Z-EICL BLOOM 32.3 35.8 42.3 50.1 46.4 3.1 0.0 16.4 4.1 28.8 10.0
mT5 34.2 50.0 42.4 50.1 46.4 2.0 0.0 0.1 1.3 32.5 0.7

BLOOMZ 34.0 51.6* 58.0* 50.1 50.9 65.2* 7.6 10.2 2.9* 39.3 6.6
mT0 49.1 90.2* 91.2* 64.1 64.5 75.2* 0.0 10.3 8.5* 56.0 9.4

Table 10: Overall experiment results on BUFFET. The blue-colored rows are instruction-tuned models, and we
added ∗ symbols next to the scores for the tasks on which the models have been trained. “Random” shows random
baseline performance. Bold fonts indicate the best results for each task, among the models that are not directly
trained on the task. When ChatGPT achieves the best results, we also note the second-best number from the models
that are not trained on the task, acknowledging the possibility that ChatGPT may have encountered a similar task
during training.

Transfer + Model Macro aym bzd cni gn hch nah oto quy shp tar

Target FT 35.9 36.0 35.5 35.5 35.7 32.7 37.5 35.2 35.4 37.6 37.8
English FT 42.6 40.7 44.9 43.3 46.8 38.0 42.5 41.6 46.1 43.2 39.2
English Target FT 45.1 46.2 48.6 45.0 49.7 38.8 46.8 44.2 46.4 42.5 43.0
EICL BLOOM 33.7 33.4 34.6 33.2 34.1 33.3 33.5 33.4 34.3 34.0 33.6
EICL mT5 33.3 33.3 32.8 33.3 33.3 33.2 33.2 33.2 33.3 33.3 33.3
EICL BLOOMZ 33.3 33.1 33.5 33.7 33.3 33.3 33.8 32.0 33.3 33.3 33.3
EICL mT0 33.3 33.3 33.2 33.3 33.3 33.4 33.3 33.3 33.4 33.3 32.9
EICL ChatGPT 36.3 33.6 – 40.9 – 34.3 – – – – –
TICL BLOOM 33.7 33.5 34.6 33.2 33.6 33.3 33.5 33.3 34.3 34.0 33.6
TICL mT5 33.3 33.3 32.8 33.3 33.6 33.2 33.2 33.3 33.3 33.3 33.3
TICL BLOOMZ 33.4 33.3 33.5 33.7 33.3 33.3 33.8 33.4 33.3 33.3 33.3
TICL mT0 33.4 33.6 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3
TICL ChatGPT 34.7 33.6 – 36.7 – 33.9 – – – – –
ZICL BLOOM 33.5 33.7 32.0 33.7 32.5 34.7 31.6 33.8 34.7 34.7 33.9
ZICL mT5 34.0 36.3 34.4 32.9 32.8 36.4 33.6 33.7 32.9 33.3 34.1
ZICL BLOOMZ 34.3 36.3 33.5 33.7 33.3 36.4 33.6 33.7 32.9 33.3 34.1
ZICL mT0 33.7 33.5 33.5 33.3 33.7 33.3 34.1 33.2 35.3 33.1 33.5

Table 11: Model performance on AMERICASNLI. We report the average of the three few-shot samples.

C.4 Commonsense1334

XCOPA. The experimental results on XCOPA1335

are available in Table 17. On XCOPA, ChatGPT1336

and mT0 (Z EICL) yield high performance across1337

languages. ChatGPT achieves particularly notable1338

performance in Italian (91.2%). On the other hand,1339

all of the fine-tuning-based methods struggle, as 1340

the small size of the source datasets in English. 1341

This result indicates that for a task that lacks a 1342

large-scale training dataset even in high-resource 1343

languages, LLMs using in-context learning may of- 1344

ten result in higher performance. We observed that 1345

mT0 ENGLISH FT faces difficulties when applied 1346
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Transfer + Model Macro ar bg de el es

Target FT 36.4 35.8 37.8 37.3 37.4 37.0
English FT 59.4 59.2 62.9 61.5 61.4 63.7
English Target FT 57.3 57.7 59.5 59.0 59.4 62.7
EICL BLOOM 33.7 34.0 33.9 33.4 33.3 34.2
EICL mT5 33.3 33.3 33.3 33.3 33.3 33.3
EICL BLOOMZ 33.1 34.1 33.6 33.7 27.9 34.2
EICL mT0 36.3 37.8 36.3 35.3 33.4 33.7
EICL ChatGPT 50.3 – 60.7 – 54.0 –
TICL BLOOM 33.4 33.6 32.7 33.2 33.7 32.9
TICL mT5 33.3 33.3 33.3 33.3 33.2 33.3
TICL BLOOMZ 33.4 33.3 33.7 33.3 34.4 33.3
TICL mT0 40.4 38.8 51.2 41.8 47.8 43.1
TICL ChatGPT 50.5 – 52.4 – 56.9 –
ZICL BLOOM 33.6 33.7 34.1 34.3 33.7 33.7
ZICL mT5 32.3 32.8 32.1 32.5 32.3 30.6
ZICL BLOOMZ 32.1 – – – – –
ZICL mT0 56.2 56.1 58.4 58.7 57.5 58.0

Transfer + Model fr hi ru sw th tr ur vi zh

Target FT 37.4 35.7 36.0 35.1 36.7 36.8 34.2 36.3 35.5
English FT 62.1 58.0 59.8 55.5 57.4 58.4 54.0 57.1 60.4
English Target FT 59.0 55.1 60.1 52.3 56.4 56.1 51.6 55.8 58.3
EICL BLOOM 36.2 33.4 33.6 33.4 33.3 33.3 33.3 33.3 33.4
EICL mT5 33.4 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3
EICL BLOOMZ 35.1 33.4 32.1 33.9 33.0 32.1 33.1 33.2 33.8
EICL mT0 47.3 36.3 34.9 35.8 33.4 38.1 34.9 37.9 33.7
EICL ChatGPT – 48.0 – 55.9 – – 33.1 – –
TICL BLOOM 33.3 33.3 33.2 34.3 34.8 33.8 33.6 32.5 33.0
TICL mT5 33.3 33.2 33.3 33.3 33.5 33.3 33.3 33.3 33.3
TICL BLOOMZ 32.9 33.2 34.0 33.6 33.7 32.9 33.1 32.8 33.3
TICL mT0 39.7 39.9 47.7 37.3 37.4 33.5 35.7 35.3 36.8
TICL ChatGPT – 51.8 – 47.3 – – 44.2 – –
ZICL BLOOM 34.0 33.4 33.5 33.9 33.3 33.1 34.7 33.3 32.3
ZICL mT5 29.6 33.3 32.3 32.7 33.1 34.7 32.8 32.4 31.1
ZICL BLOOMZ – – – – – – 32.8 32.4 31.1
ZICL mT0 58.7 55.3 57.0 53.7 51.6 56.1 54.5 57.3 54.5

Table 12: Model performance on XNLI. We report the average of the three few-shot samples.

Transfer + Model KLUENLI PARSINLUENTAILMENT OCNLI

Target FT 34.0 34.6 34.0
English FT 57.9 51.1 32.5
English Target FT 61.1 50.5 38.6
EICL BLOOM 33.8 28.9 38.9
EICL mT5 33.3 40.4 31.0
EICL BLOOMZ 31.9 28.8 38.2
EICL mT0 34.3 30.0 36.7
EICL ChatGPT 64.8 62.3 –
TICL BLOOM 33.4 28.8 38.2
TICL mT5 33.3 40.4 30.5
TICL BLOOMZ 33.8 29.0 32.1
TICL mT0 43.1 37.4 38.6
TICL ChatGPT 56.5 50.2 –
ZICL BLOOM 33.8 37.4 32.0
ZICL mT5 32.4 31.9 37.6
ZICL BLOOMZ 32.4 31.9 37.6
ZICL mT0 56.9 55.2 50.6

Table 13: Model performance on KLUENLI, OCNLI and PARSINLUENTAILMENT. We report the average of the
three few-shot samples.

to XCOPA. This could be attributed to the limited1347

size of the XCOPA English set, which might not1348

provide enough data for a smaller mT5-base model 1349

to acquire comprehensive task knowledge. 1350
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Transfer + Model Macro de es fr ja ko zh

Target FT 47.2 47.5 48.8 47.1 48.1 44.2 47.3
English FT 78.6 79.9 83.5 84.0 74.5 74.3 75.5
English Target FT 77.9 79.9 82.6 81.0 73.1 73.9 77.0
EICL BLOOM 42.4 41.5 42.3 43.0 42.7 42.0 42.8
EICL mT5 43.2 41.5 42.4 47.7 42.7 42.0 42.6
EICL BLOOMZ 49.5 58.9 58.9 57.7 34.5 29.5 57.8
EICL mT0 61.1 78.7 57.6 57.8 57.3 58.0 57.4
EICL ChatGPT 68.6 73.5 72.0 – 67.4 60.1 69.8
TICL BLOOM 45.9 49.3 42.3 42.4 42.9 54.9 43.0
TICL mT5 43.1 41.5 46.4 43.0 42.7 42.0 42.6
TICL BLOOMZ 51.7 47.4 56.4 51.3 48.8 55.6 50.4
TICL mT0 60.9 67.9 68.1 57.0 57.3 58.0 57.4
TICL ChatGPT 68.5 71.9 71.5 – 67.0 62.8 69.1
ZICL BLOOM 42.4 41.6 42.4 42.9 43.0 42.0 42.7
ZICL mT5 58.0 58.0 57.8 58.6 57.7 58.1 57.5
ZICL BLOOMZ 58.0 58.0 57.8 58.6 57.7 58.1 57.5
ZICL mT0 91.2 91.5 95.5 94.3 87.5 87.9 90.8

Table 14: Model performance on PAWSX. We report the average of the three few-shot samples.

Transfer + Model Macro de zh es fr ja

Target FT 76.3 72.9 77.1 76.1 82.3 73.1
English FT 91.9 94.2 84.5 93.8 95.1 91.8
English Target FT 92.4 93.6 87.6 93.4 94.9 92.3
EICL BLOOM 83.4 82.0 84.9 92.8 88.0 69.2
EICL mT5 50.2 49.4 50.6 50.9 50.6 49.8
EICL BLOOMZ 81.5 75.7 80.2 93.8 93.5 64.3
EICL mT0 79.8 88.7 70.6 81.8 89.6 68.5
EICL ChatGPT 85.8 94.3 87.5 – 96.1 65.0
TICL BLOOM 84.2 87.3 85.7 92.8 84.2 70.9
TICL mT5 50.2 49.4 50.6 50.9 50.6 49.8
TICL BLOOMZ 64.9 57.1 71.2 79.2 61.5 55.5
TICL mT0 72.2 88.9 51.3 58.9 85.1 76.8
TICL ChatGPT 89.7 94.4 85.5 – 95.6 83.2
ZICL BLOOM 50.3 49.4 50.6 50.9 50.7 49.8
ZICL mT5 45.1 48.5 49.6 39.9 37.0 50.4
ZICL BLOOMZ 15.6 23.9 18.4 6.0 9.6 19.8
ZICL mT0 87.3 90.5 72.7 90.8 93.0 89.5

Table 15: Model performance on AMAZON REVIEWS MULTI. We report the average of the three few-shot samples.

XWINOGRAD. The experimental results on1351

XWINOGRAD are available in Table 18. Similar1352

to XCOPA, on XWINOGRAD, fine-tuning-based1353

methods often struggle, while in-context learning1354

with competitive LLMs yields strong performance.1355

C.5 Question Answering1356

TYDIQA experimental results are available in Ta-1357

ble 19. Both the fine-tuning and ICL methods ex-1358

hibit commendable performance on this particular1359

task. It is intriguing to note that both mT0 and1360

BLOOMZ demonstrate relatively lower efficacy1361

in Korean, Finnish, and Russian. This can be at-1362

tributed to the fact that these languages were not1363

included during the pretraining phase.1364

C.6 Named Entity Recognition 1365

WIKIANN. Table 20 contains the results for 1366

WIKIANN. We specifically present the few-shot 1367

results since we discovered that zero-shot baselines 1368

consistently exhibit extremely poor performance, 1369

often close to zero, primarily because generating 1370

the answer in the precise output format proves to 1371

be challenging. 1372

It’s important to acknowledge that the BUFFET- 1373

Light WIKIANN subset comprises languages that 1374

are relatively high-resource, which could poten- 1375

tially lead to an overestimation of ChatGPT’s per- 1376

formance. When comparing the best fine-tuning 1377

method with ChatGPT in the BUFFET-light lan- 1378

guages, they generally perform competitively, with 1379

the exception of Finnish. 1380
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Transfer + Model Macro as bn brx gu hi

Target FT 58.2 61.4 55.8 62.6 56.7 64.1
English FT 87.4 85.0 87.4 89.4 88.4 91.6
English Target FT 88.4 84.6 90.2 90.6 89.7 93.0
EICL BLOOM 87.2 83.7 87.6 91.2 86.1 92.0
EICL mT5 49.8 49.8 49.8 49.8 49.8 49.8
EICL BLOOMZ 93.0 89.6 94.2 94.9 93.1 95.6
EICL mT0 79.9 73.6 88.4 81.3 80.2 81.1
EICL ChatGPT 89.3 – 91.8 – – –
TICL BLOOM 86.5 83.1 86.7 91.2 84.1 92.6
TICL mT5 49.8 49.8 49.8 49.8 49.8 49.8
TICL BLOOMZ 64.5 67.0 61.2 94.9 52.8 56.5
TICL mT0 69.0 87.4 82.9 50.1 78.2 68.3
TICL ChatGPT 89.7 – 92.6 – – –
ZICL BLOOM 49.7 49.8 49.8 49.8 49.8 49.8
ZICL mT5 26.5 24.4 24.4 24.8 26.0 26.1
ZICL BLOOMZ 64.5 67.0 61.2 94.9 52.8 56.5
ZICL mT0 93.2 90.5 93.7 94.3 92.2 95.3

Transfer + Model kn mai ml mr or pa ta te ur

Target FT 59.5 62.6 45.8 60.4 62.7 48.9 57.8 55.0 60.8
English FT 88.4 89.4 86.9 86.1 77.2 90.4 87.0 86.7 90.3
English Target FT 89.6 90.6 86.4 86.2 77.9 91.6 87.4 88.5 91.1
EICL BLOOM 83.0 91.2 85.8 88.9 85.8 89.0 85.0 86.0 85.1
EICL mT5 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8
EICL BLOOMZ 92.7 94.9 91.8 92.4 93.8 94.2 90.6 90.5 93.5
EICL mT0 74.8 71.6 83.2 81.6 78.3 88.1 86.7 78.0 71.7
EICL ChatGPT – – – – – – 82.3 – 93.9
TICL BLOOM 81.8 91.2 84.0 88.2 85.0 88.2 85.3 85.1 84.1
TICL mT5 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8
TICL BLOOMZ 49.7 94.9 66.3 58.3 59.2 57.3 68.2 50.3 66.9
TICL mT0 72.1 49.7 84.4 79.7 66.1 68.8 55.3 58.7 64.9
TICL ChatGPT – – – – – – 83.9 – 92.4
ZICL BLOOM 49.8 49.8 49.3 49.8 49.8 49.8 49.6 49.8 48.7
ZICL mT5 26.8 24.8 29.0 20.7 22.4 32.4 25.4 28.9 34.5
ZICL BLOOMZ 26.8 24.8 29.0 20.7 22.4 32.4 25.4 28.9 34.5
ZICL mT0 93.5 94.3 92.0 92.8 91.2 95.2 92.3 92.9 94.6

Table 16: Model performance on INDIC SENTIMENT. We report the average of the three few-shot samples.

Transfer + Model Macro et ht it id qu sw zh ta th tr vi

Target FT 46.7 50.0 50.1 48.3 50.5 50.4 32.5 49.8 49.3 49.4 33.9 50.0
English FT 48.4 49.8 50.2 49.6 51.0 48.6 48.8 49.0 50.8 48.0 49.6 49.2
English Target FT 49.9 50.3 49.9 49.6 49.2 50.5 50.4 50.4 49.2 50.7 49.5 49.4
EICL BLOOM 50.0 51.5 49.0 49.9 50.0 50.6 50.0 50.1 49.5 50.0 49.9 50.0
EICL mT5 50.0 50.0 49.9 50.7 50.0 49.5 49.8 49.9 50.7 50.0 50.0 50.0
EICL BLOOMZ 50.5 50.7 51.2 50.9 50.0 52.7 49.9 50.0 50.1 49.8 49.8 50.0
EICL mT0 57.1 60.7 60.6 53.4 59.8 50.0 61.6 64.1 51.9 54.1 54.1 58.1
EICL ChatGPT 76.7 87.6 – 91.2 – – – – 54.6 62.6 87.4 –
TICL BLOOM 50.1 49.8 50.4 50.4 49.0 48.8 52.2 50.6 49.6 50.0 49.8 50.2
TICL mT5 50.0 49.9 50.0 49.9 50.0 50.0 49.9 50.0 50.0 50.0 49.5 50.9
TICL BLOOMZ 50.5 45.6 50.8 50.4 53.4 47.4 49.8 51.8 53.2 50.0 49.4 53.4
TICL mT0 52.8 50.4 51.9 51.0 51.9 50.6 53.7 50.5 50.1 50.6 54.3 65.5
TICL ChatGPT 74.4 89.2 – 91.6 – – – – 49.5 55.7 86.2 –
ZICL BLOOM 50.9 51.8 48.8 51.2 51.4 50.6 51.2 53.6 52.4 48.2 49.8 50.6
ZICL mT5 50.1 49.8 50.4 50.4 49.0 48.8 52.2 50.6 49.6 50.0 49.8 50.2
ZICL BLOOMZ 50.1 48.6 50.2 52.4 47.4 50.8 45.2 46.8 54.8 50.6 52.8 51.0
ZICL mT0 64.1 64.0 62.2 66.2 70.0 48.8 66.2 71.8 61.0 63.0 65.0 67.2

Table 17: Model performance on XCOPA. We report the average of the three few-shot samples.

MASAKHANER. Results on MASAKHANER1381

are available at Table 21. In this benchmark, all ICL1382

methods, including ChatGPT, encounter difficul-1383

ties, whereas TARGET FT and ENG.+TGT. FT con- 1384

sistently demonstrates strong performance across 1385

various languages. Notably, by incorporating an 1386
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Transfer + Model Macro jp pt ru zh

Target FT 50.0 48.4 50.3 49.9 51.4
English FT 48.4 52.2 52.2 45.4 51.2
English Target FT 49.0 48.4 48.4 48.8 50.6
EICL BLOOM 50.8 49.6 48.0 54.0 51.5
EICL mT5 49.2 48.4 49.5 47.4 51.3
EICL BLOOMZ 52.1 52.6 50.3 55.3 50.1
EICL mT0 59.6 62.2 57.7 53.2 65.2
EICL ChatGPT 73.3 – 74.1 72.5 –
TICL BLOOM 51.7 52.2 50.2 54.3 50.1
TICL mT5 47.3 48.4 46.2 44.4 50.3
TICL BLOOMZ 53.1 52.7 54.5 55.3 50.0
TICL mT0 57.9 54.9 57.2 62.9 56.5
TICL ChatGPT 71.6 – 70.4 72.8 –
ZICL BLOOM 53.7 51.9 54.4 56.7 51.9
ZICL mT5 46.4 47.4 48.5 45.7 44.2
ZICL BLOOMZ 50.9 51.9 51.9 50.2 49.6
ZICL mT0 64.5 68.7 59.8 62.2 67.3

Table 18: Model performance on XWINOGRAD We report the average of the three few-shot samples.

Transfer + Model Macro ar be fi id sw ko ru te

Target FT 8.3 8.1 6.1 9.1 6.4 5.5 7.5 9.2 14.7
English FT 62.9 61.0 63.2 65.3 69.2 67.9 57.1 56.3 63.5
English Target FT 66.7 65.9 68.0 63.6 70.0 69.3 60.6 65.1 70.7
EICL BLOOM 39.2 43.8 58.2 20.6 47.0 57.5 23.2 32.7 30.4
EICL mT5 0.3 0.7 0.1 0.4 0.2 0.3 0.0 0.3 0.0
EICL BLOOMZ 44.5 45.3 67.7 18.9 61.0 73.7 12.4 19.6 57.6
EICL mT0 69.0 54.0 75.8 68.9 68.8 75.5 68.1 53.7 86.7
EICL ChatGPT 70.8 – 58.9 – 76.5 77.0 – – –
TICL BLOOM 7.0 13.2 11.9 1.7 19.1 4.5 0.7 1.3 3.7
TICL mT5 0.2 0.4 0.1 0.2 0.6 0.2 – 0.3 –
TICL BLOOMZ 43.7 44.7 63.7 17.5 60.3 71.5 12.1 20.3 59.3
TICL mT0 70.8 58.7 75.8 66.9 72.1 78.3 72.1 65.9 76.6
TICL ChatGPT 66.7 – 46.0 – 76.7 77.4 – – –
ZICL BLOOM 2.0 2.2 1.1 3.1 3.2 2.3 1.0 1.5 1.7
ZICL mT5 65.2 80.0 86.3 7.3 81.3 82.0 44.7 55.0 85.1
ZICL BLOOMZ 65.2 80.0 86.3 7.3 81.3 82.0 44.7 55.0 85.1
ZICL mT0 75.2 71.8 84.4 67.3 77.3 78.6 68.3 65.0 88.9

Table 19: Model performance on TYDIQA. We report the average of the three few-shot samples.

additional 32 training examples, ENG.+TGT. FT1387

achieves a significant 34% improvement in perfor-1388

mance for Hausa. These remarkable enhancements1389

underscore the effectiveness of fine-tuning a spe-1390

cialized model on a limited set of training samples1391

in target languages.1392

C.7 Generation1393

TYDIQA-QG. The experimental results for1394

TYDIQA-QG are available in Table 22. On this1395

task, ChatGPT and mT0 ENGLISH ICL show su-1396

perior performance than smaller fine-tuned models,1397

demonstrating their competitiveness in generating1398

fluent text in target languages.1399

XLSUM. XLSUM results are available in Ta-1400

ble 23. Despite strong generation capability, Chat-1401

GPT ENGLISH ICL performance remains low. We1402

found that when instructed in English, ChatGPT 1403

often generates summaries in English, not in the 1404

article language. We haven’t observed such be- 1405

haviors on other tasks or other LLMs. ChatGPT 1406

TARGET ICL shows large improvements from EN- 1407

GLISH ICL, which has not been observed in other 1408

tasks. When instructions in the target language are 1409

given, ChatGPT almost always generates a sum- 1410

mary in the target language. 1411

Among non-instruction-tuned models, 1412

ENG.+TGT. FT yields the highest average 1413

performance. It should be noted that mT0 and 1414

BLOOMZ are trained on XLSUM. Nevertheless, 1415

their performance in some languages remains low. 1416
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Transfer + Model Macro ta fr it ja vi be gu et th

Target FT 43.7 0.2 59.0 55.5 43.9 58.3 63.5 26.0 54.4 23.7
English FT 52.2 0.8 78.2 79.4 56.1 80.5 73.9 24.0 60.5 10.7
English Target FT 56.6 0.8 78.1 76.8 55.7 75.9 76.8 37.0 76.0 25.6
EICL BLOOM 32.8 0.6 51.6 51.0 22.1 53.8 25.6 22.3 37.0 1.7
EICL mT5 1.6 0.0 0.0 0.0 0.0 0.0 3.3 0.3 0.0 0.0
EICL BLOOMZ 22.4 0.5 37.1 43.4 15.6 36.8 15.4 13.0 29.6 0.3
EICL mT0 15.8 0.1 13.8 13.0 9.1 22.9 11.0 6.0 24.1 1.4
EICL ChatGPT 77.6 – – 81.8 – – 78.2 – 78.2 –
TICL BLOOM 32.8 0.7 52.5 50.2 20.8 53.5 24.4 24.0 34.0 1.0
TICL mT5 0.3 0.0 0.0 0.1 0.0 0.1 0.2 1.3 0.0 1.7
TICL BLOOMZ 20.7 0.6 37.3 39.8 15.0 32.1 13.5 8.7 25.1 0.2
TICL mT0 15.8 0.1 13.8 13.0 9.1 22.9 11.0 6.0 24.1 1.4
TICL ChatGPT 76.8 – – 82.3 – – 78.4 – 76.9 –

Transfer + Model or kn fi gn ru el ur es hi te as

Target FT 36.5 12.5 55.5 60.3 50.1 59.0 68.4 54.9 42.4 7.0 25.3
English FT 35.5 11.0 64.2 71.0 60.4 73.4 79.6 75.7 47.9 6.6 26.0
English Target FT 40.0 22.5 74.8 68.0 67.8 74.4 79.1 78.3 53.7 9.5 28.3
EICL BLOOM 22.0 6.0 39.5 47.3 26.1 20.4 70.7 55.2 40.2 5.6 22.7
EICL mT5 0.0 1.3 0.0 0.0 0.0 0.0 10.1 0.0 10.0 0.0 0.7
EICL BLOOMZ 10.0 5.7 31.8 28.0 19.7 15.8 41.7 37.5 30.9 4.2 16.0
EICL mT0 16.3 3.3 15.2 24.3 15.1 12.8 47.1 20.3 18.7 3.3 10.0
EICL ChatGPT – – 81.5 – – 72.4 – – – – –
TICL BLOOM 25.3 6.7 37.6 49.0 26.2 19.7 71.7 55.6 39.9 5.3 24.0
TICL mT5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 1.0
TICL BLOOMZ 6.5 4.0 26.5 24.7 17.4 13.0 47.3 41.1 26.5 3.8 13.0
TICL mT0 16.3 3.3 15.2 24.3 15.1 12.8 47.1 20.3 18.7 3.3 10.0
TICL ChatGPT – – 81.9 – – 69.3 – – – – –

Transfer + Model sw pa bg ml tr fa id ko mr de ar bn zh

Target FT 57.5 29.7 54.2 19.7 55.4 48.0 64.2 36.1 34.8 51.2 40.6 43.0 49.9
English FT 61.0 35.5 67.0 21.4 64.5 60.5 81.6 36.2 36.6 75.1 52.9 48.7 66.6
English Target FT 75.3 42.3 67.1 24.5 79.5 57.6 80.7 57.7 44.7 73.2 52.9 47.7 65.2
EICL BLOOM 60.3 26.3 30.9 14.0 39.4 28.6 61.2 12.0 28.4 41.7 43.9 34.9 38.7
EICL mT5 0.0 0.7 0.0 0.0 0.0 0.0 0.3 0.0 0.4 6.7 16.7 3.7 0.0
EICL BLOOMZ 34.9 15.0 22.7 5.0 34.6 14.7 31.7 9.8 22.6 26.4 21.0 36.0 31.3
EICL mT0 24.3 10.0 14.7 5.0 20.2 21.4 23.4 11.2 12.3 15.7 23.0 23.9 27.7
EICL ChatGPT – – 73.3 – – – – – – – – – –
TICL BLOOM 58.8 26.7 29.6 14.4 39.6 27.8 61.4 10.6 27.9 43.3 44.6 36.8 38.3
TICL mT5 0.4 0.5 0.1 0.4 0.3
TICL BLOOMZ 26.8 14.0 19.7 4.2 31.3 14.7 35.2 8.1 20.4 22.4 23.6 36.2 31.0
TICL mT0 24.3 10.0 14.7 5.0 20.2 21.4 23.4 11.2 12.3 15.7 23.0 23.9 27.7
TICL ChatGPT – – 72.0 – – – – – – – – – –

Table 20: Model performance on WIKIANN. We report the average of the three few-shot samples.

Transfer + Model Macro amh hau ibo kin luo pcm swa wol yor

Target FT 17.4 13.6 31.5 28.6 12.8 14.2 11.1 26.4 8.7 9.9
English FT 9.4 6.2 11.0 14.8 10.5 10.5 8.7 10.4 3.8 8.3
English Target FT 30.5 27.0 44.7 44.3 26.8 26.0 23.7 40.6 18.8 22.4
EICL BLOOM 17.2 3.4 23.8 27.4 18.5 11.6 15.2 24.9 16.3 13.9
EICL mT5 1.5 0.0 13.3 0.0 0.0 0.4 0.0 0.0 0.0 0.0
EICL BLOOMZ 14.9 0.2 11.3 28.4 14.3 4.6 12.4 24.4 17.7 21.0
EICL mT0 1.3 0.0 1.7 0.8 4.9 1.2 0.0 2.2 0.0 0.8
EICL ChatGPT 13.2 – – – – – – – – 13.2
TICL BLOOM 17.2 3.4 23.8 27.4 18.5 11.6 15.2 24.9 16.3 13.9
TICL mT5 0.2 0.0 1.6 0.0 0.0 0.4 0.0 0.0 0.0 0.0
TICL BLOOMZ 14.9 0.2 11.3 28.4 14.3 4.6 12.4 24.4 17.7 21.0
TICL mT0 1.3 0.0 1.7 0.8 4.9 1.2 0.0 2.2 0.0 0.8
TICL ChatGPT 12.8 – – – – – – – – 12.8

Table 21: Model performance on MASAKHANER. We report the average of the three few-shot samples.
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Transfer + Model Macro ar be fi id sw ko ru te

Target FT 3.4 2.7 4.1 2.5 4.4 3.2 2.8 2.1 5.8
English FT 4.2 2.1 3.5 5.1 6.2 5.1 3.0 4.7 4.2
English Target FT 12.2 11.5 7.3 15.8 14.1 13.1 7.9 8.9 18.8
EICL BLOOM 11.6 18.3 10.4 10.8 16.1 15.2 1.3 3.7 17.4
EICL mT5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
EICL BLOOMZ 13.9 19.5 14.2 7.8 23.6 23.1 0.7 2.1 20.3
EICL mT0 15.3 25.8 10.3 3.7 19.6 12.3 4.1 6.2 40.1
EICL ChatGPT 17.8 30.6 – 28.2 – – 0.7 2.6 26.9
TICL BLOOM 12.8 18.1 9.6 10.0 15.7 14.9 7.7 9.2 16.8
TICL mT5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TICL BLOOMZ 12.0 16.0 10.7 5.0 20.0 21.1 1.9 5.2 15.9
TICL mT0 14.6 17.7 9.1 6.6 18.3 12.0 5.1 8.5 39.3
TICL ChatGPT 19.2 24.0 – 27.5 – – 14.8 17.6 12.2
ZICL BLOOM 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0
ZICL mT5 16.5 30.6 15.5 5.2 24.5 21.8 3.0 4.6 26.8
ZICL BLOOMZ 1.7 2.4 2.1 1.7 2.5 2.2 1.0 0.9 1.2
ZICL mT0 10.3 4.9 13.7 3.5 12.3 5.4 1.9 2.0 39.1

Table 22: Model performance on TYDIQA-QG. We report the average of the three few-shot samples.

Transfer + Model Macro Tamil Vietnamese Swahili Indonesian

Target FT 2.8 0.8 11.0 2.0 1.7
English FT 4.0 0.1 18.4 7.8 4.9
English Target FT 8.4 10.9 24.7 8.8 7.8
EICL BLOOM 2.4 0.1 9.0 4.6 3.8
EICL mT5 0.3 0.0 1.7 0.4 0.2
EICL BLOOMZ 9.0 18.6 12.3 1.6 3.3
EICL mT0 1.8 0.0 10.4 5.3 1.0
EICL ChatGPT 5.4 – 19.5 – 4.9
TICL BLOOM 4.7 13.9 10.3 4.6 3.1
TICL mT5 0.3 0.0 1.7 0.3 0.3
TICL BLOOMZ 10.9 4.6 12.9 1.2 15.7
TICL mT0 1.8 0.0 10.4 5.3 1.0
TICL ChatGPT 11.4 – 19.5 – 7.2
ZICL BLOOM 4.1 0.1 10.7 9.0 9.5
ZICL mT5 1.3 0.5 4.8 1.1 0.7
ZICL BLOOMZ 4.3 0.0 0.0 0.0 9.5
ZICL mT0 8.5 1.1 26.9 18.3 16.8

Transfer + Model Turkish Japanese Thai Bengali Arabic Spanish Persian Chinese

Target FT 1.1 6.5 6.5 0.0 0.0 1.5 0.0 2.2
English FT 8.0 0.7 0.9 0.0 0.0 5.7 0.0 1.2
English Target FT 12.1 2.8 8.5 0.0 3.3 10.7 10.0 1.5
EICL BLOOM 5.2 0.3 0.2 0.0 0.1 3.7 0.0 1.1
EICL mT5 0.4 0.0 0.0 0.0 0.0 0.4 0.0 0.0
EICL BLOOMZ 7.0 0.9 48.6 0.0 0.0 5.0 10.0 0.4
EICL mT0 1.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0
EICL ChatGPT 2.4 – – – – – – –
TICL BLOOM 5.2 14.1 0.5 0.0 0.0 3.6 0.0 1.2
TICL mT5 0.5 0.0 0.0 0.0 0.0 0.4 0.0 0.0
TICL BLOOMZ 3.2 37.4 48.6 0.0 0.0 5.8 0.0 1.5
TICL mT0 1.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0
TICL ChatGPT 10.0 – – – – – 20.1 –
ZICL BLOOM 4.3 0.8 0.2 0.0 0.0 3.3 10.0 1.6
ZICL mT5 1.1 2.4 1.9 0.0 0.1 0.7 0.0 1.9
ZICL BLOOMZ 0.0 0.0 0.0 0.0 0.0 7.6 0.1 0.0
ZICL mT0 15.7 3.1 2.4 0.0 0.1 12.4 0.2 4.4

Table 23: Model performance on XLSUM

D More Analysis 1417

D.1 Performance across Languages 1418

Figure 7 shows performance across languages on 1419

the three tasks, NLI, NER, and QA, adding two 1420
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more LLMs: BLOOMZ and mT0. We observe per-1421

formance drops in Finnish, Korean, and Russian for1422

BLOOM and BLOOMZ in TYDIQA. Finnish, Ko-1423

rean, and Russian are excluded from BLOOM pre-1424

training,12 which we attribute to these performance1425

drops. Conversely, mT5 fine-tuning-based meth-1426

ods consistently display strong performance across1427

languages. Interestingly, in Bengali, which is of-1428

ten considered less represented, BLOOM achieves1429

performance comparable to mT5 fine-tuned mod-1430

els. These results suggest pretraining setup may1431

strongly affect downstream task performance even1432

after instruction tuning.1433

D.2 Variances of Different k-shots1434

In Section 3, we show that different sets of demon-1435

strations can cause significant performance differ-1436

ences. We provide the full visualization results1437

across different tasks.1438

D.3 Variances of the Varying Number of k1439

We provide the full experimental results with a1440

different number of k. We evaluate BLOOM EN-1441

GLISH ICL, BLOOMZ ENGLISH ICL and mT5-1442

ENG.+TGT. FINE-TUNING and mT0 ENGLISH1443

ICL experimental results on AMAZON REVIEW,1444

TYDIQA, TYDIQA-AG, WIKIANN, and in Fig-1445

ures 8, 9, 10 and 11, respectively.1446

AMAZON REVIEW. On AMAZON REVIEW,1447

All models except for BLOOM (pretraining only)1448

show competitive zero-shot performance. BLOOM1449

ENGLISH ICL benefits from few-shot demonstra-1450

tions while mT0 ENGLISH ICL exhibit perfor-1451

mance deterioration as adding more demonstrations1452

across languages.1453

TYDIQA. Among ENGLISH ICL baselines,1454

mT0 shows strong performance up to four demon-1455

strations, although their performance gets really1456

low once more demonstrations are added. Sim-1457

ilar deterioration happens in BLOOMZ. On the1458

contrary, BLOOM performance improves as more1459

shots are added.1460

TYDIQA-QG. Unlike in AMAZON REVIEW or1461

TYDIQA, BLOOMZ ENGLISH ICL shows perfor-1462

mance improvements with more demonstrations in1463

Arabic and Bengali, reaching the highest QG per-1464

formance in Bengali with four demonstrations. On1465

the contrary, both BLOOM and BLOOMZ show1466

12https://huggingface.co/bigscience/
bloom

poor QG performance in Korean and Russian, pos- 1467

sibly due to the lack of those languages during 1468

pretraining. 1469

WIKIANN. On WikiANN, all of the models 1470

gain performance improvements by adding at least 1471

one demonstration, possibly due to the difficulty of 1472

learning the exact output format expected given the 1473

instruction only. As in other datasets, mT0 reaches 1474

its highest performance with four demonstrations. 1475

mT5 ENG.+TGT. FT exhibits performance drops 1476

with one shot, possibly due to their overfit to the 1477

single example. 1478

D.4 Variances of Different Instructions 1479

We investigate the effectiveness of different En- 1480

glish instructions on question generation tasks for 1481

TYDIQA in the four-shot setting using mT0 and 1482

BLOOM as base models in Table 24. We com- 1483

pare four relevant instructions and one irrelevant 1484

instruction (an instruction for AMAZON REVIEW). 1485

In the four-shot setting, whether the instruction 1486

is relevant does not make a huge difference for 1487

BLOOM, and we observed that selections of dif- 1488

ferent demonstrations often largely impact the per- 1489

formance. Yet the performances do suffer a sharp 1490

loss if we are using irrelevant instruction in the 1491

instruction-tuned model. We also discovered that 1492

different models might favor different instructions 1493

for different languages, for example, in Swahili, 1494

four-shot BLOOM favors the first instruction, while 1495

mT0 favors the fourth instruction. 1496

D.5 Qualitative Results for Generation Tasks 1497

Table 25 shows some qualitative results of Chat- 1498

GPT ENGLISH ICL and TARGET TCL on XLSUM 1499

and TYDIQA. Given English instruction, ChatGPT 1500

often generates summaries in English, rather than 1501

in the article language. On the other hand, such 1502

cross-lingual generation behaviors don’t occur in 1503

QA tasks, and the model’s predictions with TAR- 1504

GET ICL and ENGLISH ICL exhibit high overlap 1505

with each other. We hypothesize that ChatGPT’s 1506

cross-lingual summarization behavior can be re- 1507

lated to their private training corpus, and future 1508

work can further investigate this issue. 1509

D.6 Results of English-centric LMs 1510

Table 26 shows BUFFET-Light performance on 1511

four more recent and English-centric LMs whose 1512

checkpoints are publicly available: Llama1-7B, 1513

Llama2-7B, Llama2-7B-Chat and Mistral 7B. 1514
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Figure 7: Model performance across three tasks, NLI, NER, and QA, displayed for various languages. The
languages are sorted based on token availability in mC4, with the left side representing high-resource languages. All
methods show performance deterioration in lower-resource languages (right side), with larger drops in ENGLISH-
ICL methods. Additional fine-tuning in target languages is more effective in less-represented languages.
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Figure 8: Effects of demonstrations on Amazon Review. The x-axis indicates the number of training instances
used during the transfer.
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Figure 9: Effects of demonstrations on TYDIQA. The x-axis indicates the number of training instances used
during the transfer.
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Figure 10: Effects of demonstrations on TYDIQA-QG. The x-axis indicates the number of training instances
used during the transfer.

Despite large-scale multilingual pre-training or1515

instruction-tuning as in prior work (Muennighoff1516

et al., 2023), Mistral, Llama2 (pre-trained and chat)1517

demonstrate strong performance while Llama11518

performance is largely limited. Prior work has1519

shown that a small amount of pre-training data of- 1520

ten results in strong multilingual capabilities of 1521

LLMs that are primarily trained in English pre- 1522

training (Blevins and Zettlemoyer, 2022b; Briakou 1523

et al., 2023). On the other hand, we found that 1524
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Figure 11: Effects of demonstrations on WIKIANN. The x-axis indicates the number of training instances used
during the transfer.

Instruction
BLOOM mT0

fi ru sw fi ru sw

This task is about reading the given passage and constructing a question about
the information present in the passage. Construct a question in such a way that (i)
it is unambiguous, (ii) it is answered from the passage, (iii) its answer is unique
(iv) its answer is a continuous text span from the paragraph. Avoid creating
questions that (i) can be answered correctly without actually understanding the
paragraph and (ii) uses the same words or phrases given in the passage.

8.7 4.3 10.8 5.0 5.3 3.1

Could you generate a question in lang whose answer is as provided based on
the following context?

9.1 4.3 9.5 6.5 7.5 8.7

Could you generate a lang question whose answer is as provided based on the
following context?

9.2 4.3 9.3 6.6 7.4 8.4

Generate a lang question whose answer is as provided based on the following
context. 9.3

4.4 9.1 7.1 7.7 9.0

In this task, you are given a review from Amazon. Your task is to generate a
rating for the product on a scale of 1-5 based on the review. The rating means
-2: extremely poor, 1: poor, 0: neutral, 1: good, 2: extremely good, 3: mixed
and -3: no sentiment expressed

9.2 4.4 10.4 0.4 0.1 0.4

Table 24: The performance (in BLEU score) for different instructions for TYDIQA-QG. lang stands for the full
language name, e.g., Arabic. We modify the instructions from BUFFET, PromptSource (Bach et al., 2022), and
SuperNaturalInstructions (Wang et al., 2022b).

Target Gold. Pred.

XLSUM-
Indonesian

Manajer Chelsea Jose Mourinho memberi waktu 48
jam untuk Wayne Rooney memutuskan apakah dia
ingin meninggalkan Manchester United dan pindah
ke Stamford Bridge. (Google Translate: Chelsea
manager Jose Mourinho has given Wayne Rooney
48 hours to decide whether he wants to leave
Manchester United and move to Stamford Bridge.)

ENGLISH ICL: Manchester United striker Wayne Rooney
has been given 48 hours to resolve speculation over his
future, with Chelsea expressing interest in the player. [en]

TARGET ICL:Mourinho memberi ultimatum kepada
Wayne Rooney untuk mengakhiri spekulasi
kepindahannya dalam waktu 48 jam, sementara MU
dikabarkan sedang mengincar Gareth Bale. [id]

XLSUM-
Turkish

Suriye’nin Rakka vilayetine bağlı Tel Abyad kent
merkezinde IŞİD ile YPG güçleri arasında şiddetli
çatışmalar sürerken, Akçakale sınırı sığınmacılara
yeniden açıldı. IŞİD’e karşı savaşan YPG güçleri
de Tal Abyad’a girdi.

ENGLISH ICL: YPG forces have cut off a vital ISIS
supply route from Tel Abyad to Raqqa, and have taken
control of two neighborhoods in Tel Abyad. [en]

TARGET ICL: YPGńin ele geçirdiği, çatışmaların devam
ettiği ve sivillerin tehlikede olduğu" bilgisini verdi. [tr]

TYDIQA-
Swahili

’Sehemu ya chakula pamoja na wanga, protini na
vitamin

ENGLISH ICL: sehemu za chakula pamoja na wanga,
protini na vitamini.[sw]

TARGET ICL: Sehemu za chakula pamoja na wanga,
protini na vitamini. [sw]

Table 25: ChatGPT outputs for XLSUM and TYDIQA Output. [lang] indicate the language codes of the output text
languages.
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model avg. class avg. gen NLI SA PAWS QA QG SUM NER

Llama 1B (7B) 28.1 4.2 12.9 48.1 27.4 24.4 6.4 2.1 20.2
Llama 2B (7B) 41.6 6.4 32.3 67.4 44.6 36.7 9.6 3.2 26.8
Llama2 Chat (7B) 44.1 6.4 35.0 70.8 45.9 43.1 11.3 1.4 28.0
Mistral (7B) 45.2 7.4 33.3 77.4 46.0 51.8 12.4 2.4 24.0

Table 26: Results of Llama1, Llama2, Llama2-chat and Mistral on BUFFET-light. All models are 7 billion
parameters.
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Figure 12: Model scaling experimental results. We
conduct experiments on four sub-tasks and use three
BLOOM models, BLOOM-560M, 1B, and 7B.

those models often show limited performance in1525

languages that are less represented in such pre-1526

training corpora (e.g., AMERICASNLI, INDIC SEN-1527

TIMENT). This result suggests the importance of1528

understanding how much multilingual training data1529

needs to be included during pre-training to make1530

an LM learn the target languages, which remains1531

unclear.1532

D.7 Effect of Model scaling1533

Figure 12 shows the effects of model scaling on1534

BLOOM.1535

E Discussions for Future Directions1536

Built upon findings from our extensive BUFFET1537

experiments, we suggest the following opportuni-1538

ties for future research on few-shot cross-lingual1539

transfer learning:1540

Improve multilingual instruction tuning. Instruc-1541

tion tuning causes certain models, such as mT0,1542

to become overly specialized to specific ICL for-1543

mats. Although these models demonstrate impres-1544

sive zero-shot performance, they struggle in unfa-1545

miliar settings such as few-shot ICL or tasks in1546

less common formats (e.g., NER). It is important to1547

develop multilingual instruction-following models1548

capable of effectively utilizing both instructions1549

and demonstrations, potentially by drawing inspira-1550

tion from recent work on better instruction-tuning1551

in English (Chung et al., 2022; Min et al., 2022a).1552

Overcome data scarcity using LLMs. Our evalua- 1553

tion reveals that smaller task-specific models (with 1554

intermediate training in English) outperform Chat- 1555

GPT on discriminative tasks with strict output for- 1556

mats. In contrast, ChatGPT outperforms fine-tuned 1557

models on generation, consistent with recent work 1558

(Goyal et al., 2022). This impressive generation ca- 1559

pacity has prompted investigations into generating 1560

training instances from LLMs; these predominantly 1561

focus on English (Wang et al., 2022a; Honovich 1562

et al., 2022) with some preliminary work on gener- 1563

ating multilingual task data (Agrawal et al., 2022). 1564

Further work in this direction offers a promising 1565

solution to obtaining more annotated data for under- 1566

represented languages. 1567

Understand transfer dynamics in cross-lingual 1568

in-context learning. The impact of various in- 1569

structions and demonstrations has been extensively 1570

examined in the context of English in-context learn- 1571

ing, highlighting critical concerns (Lu et al., 2022; 1572

Min et al., 2022b) and motivating methods (Su 1573

et al., 2022). BUFFET will inspire and assist 1574

in further research into the relationship between 1575

language and instruction/demonstration for cross- 1576

lingual in-context learning. 1577

Fairness beyond languages: underrepresented 1578

variants, dialects, and cross-cultural NLP. Ty- 1579

pologically distinct and low-resource languages 1580

are often excluded from the cross-lingual bench- 1581

marks used to assess cross-lingual transfer capa- 1582

bilities in LLMs. Our evaluation with BUFFET 1583

demonstrates that even the most powerful LLMs 1584

still perform poorly on less-represented languages. 1585

The most competitive instruction-tuned models, 1586

ChatGPT or mT0, show significant performance 1587

declines when it comes to indigenous languages, 1588

reaching a level akin to a random baseline. We 1589

advocate for conducting more studies that include 1590

under-represented languages and their dialects, as 1591

emphasized in previous works (Aji et al., 2022; 1592

Kakwani et al., 2020), particularly when evaluating 1593

massively multilingual models. 1594
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