
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUDITING BLACK-BOX LLM APIS WITH A RANK-
BASED UNIFORMITY TEST

Anonymous authors
Paper under double-blind review

ABSTRACT

As API access becomes a primary interface to large language models (LLMs),
users often interact with black-box systems that offer little transparency into the
deployed model. To reduce costs or maliciously alter model behaviors, API
providers may discreetly serve quantized or fine-tuned variants, which can de-
grade performance and compromise safety. Detecting such substitutions is diffi-
cult, as users lack access to model weights and, in most cases, even output logits.
To tackle this problem, we propose a Rank-based Uniformity Test (RUT) that can
verify the behavioral equality of a black-box LLM to a locally deployed authentic
model. Our method is accurate, query-efficient, and avoids detectable query pat-
terns, making it robust to adversarial providers that reroute or mix responses upon
the detection of testing attempts. We evaluate the approach across diverse query
domains and threat scenarios, including quantization, harmful fine-tuning, jail-
break prompts, and full model substitution, showing that it consistently achieves
superior detection power over prior methods under constrained query budgets.

1 INTRODUCTION

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

RUT(Ours)
MMD (Gao et al., 2025)
KS

Figure 1: Statistical power of different meth-
ods in detecting substitution of the Gemma-2-
9b-it with its 4-bit quantized variant, as the pro-
portion of API responses from the quantized
model increases. Our method significantly out-
performs MMD (Gao et al., 2025) and the Kol-
mogorov–Smirnov (KS) baseline.

APIs have become a central access point for
large language models (LLMs) in consumer ap-
plications, enterprise tools, and research work-
flows (Anysphere Inc., 2025; Yun et al., 2025;
ResearchFlow, 2025). However, while users
can query black-box APIs, they have little to no
visibility into the underlying model implemen-
tation. Combined with the high cost of serv-
ing large models and the latency pressure to re-
duce time-to-first-token (TTFT), API providers
are incentivized to deploy smaller or quan-
tized variants of the original model to cut costs.
Such modifications, while opaque to end users,
can degrade model performance and introduce
safety risks (Egashira et al., 2024). In more
concerning cases, providers may incorporate
harmful fine-tuning, jailbreak-enabling system
prompts, or even misconfigured system compo-
nents without realizing it (mirpo, 2025).

These risks highlight the need for LLM API auditing—the task of checking whether a deployed
model is as claimed. Yet this is particularly challenging in the black-box setting: users typically lack
access to model weights and receive only limited metadata (e.g., top-5 token log-probabilities). This
necessitates detection methods that rely solely on observed outputs. However, even such output-
level methods face potential evasion: if the detection relies on invoking an LLM API with specially
constructed query distributions, a dishonest API provider could detect the special pattern and reroute
those queries to the original model they claim to serve. Worse still, even without knowing the
detection strategy, an API provider could mix multiple models, making the response distribution
harder to distinguish.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this work, we focus on auditing API providers that serve open-weight models, and formulate
the LLM API auditing as a model equality test following Gao et al. (2025): given query access to a
target API and a certified reference model of the expected configurations, the goal is to determine
if the two produce statistically indistinguishable outputs on shared prompts. The auditor is assumed
to have full access to a faithful reference implementation of the claimed model, such as its decoding
parameters and logit outputs.

We propose that a model equality test for auditing LLM APIs must satisfy three key criteria: ac-
curacy, query efficiency, and robustness to adversarial attacks. Accuracy reflects how reliably a
test can be used in practice. Query efficiency is critical for reducing operational overhead, which
incentivizes more audits to ensure API models’ integrity. Robustness is equally essential for real-
world deployment, where audits must both evade detection by adversarial API providers and remain
effective under targeted attacks.

While several methods have been proposed for model equality testing, they each fall short in one
or more of these criteria (Table 1). Existing methods include Maximum Mean Discrepancy (MMD)
(Gao et al., 2025), trained text classifiers (Sun et al., 2025), identity prompting (Huang et al., 2025),
and benchmark performance comparison (Chen et al., 2023a). However, Sun et al. (2025) require
prohibitively many API queries; Huang et al. (2025) fail to capture model variations such as size,
version, or quantization (Cai et al., 2025); and Gao et al. (2025) and Chen et al. (2023a) rely on
special query distributions that can be adversarially detected and circumvented by techniques such
as prompt caching (Gu et al., 2025).

Table 1: Comparison of LLM auditing methods by
accuracy (Acc.), query-efficiency (Q-Eff.), and ro-
bustness to adversarial providers (Rob.).

Method Acc. Q-Eff. Rob.

RUT (Ours) ✓ ✓ ✓
MMD (Gao et al., 2025) ✓ ✓ ✗
Classifier (Sun et al., 2025) ✗ ✗ ✓
Identity-prompting (Huang et al., 2025) ✗ ✓ ✗
Benchmark (Chen et al., 2023a) ✗ ✗ ✗

Driven by these limitations, we propose
a Rank-based Uniformity Test (RUT)—an
asymmetric two-sample hypothesis test that
addresses all three criteria simultaneously. In
RUT, we sample one response from the tar-
get API and multiple responses from the ref-
erence model for each prompt, then compute
the rank percentile of the API output within
the reference distribution. If the target and
reference models are identical, the percentiles
should follow a uniform distribution. We de-
tect deviations using the Cramér–von Mises test (Cramér, 1928). Our method requires only a single
API call per prompt, operates effectively on real-world, user-like queries, and avoids detectable
patterns that adversarial providers might exploit.

We evaluate RUT across a range of adversarial scenarios in which the API provider secretly substi-
tutes the claimed model with an alternative. In Section 5.2, we study the case where the substitute is
a quantized version of the original model. In Section 5.3, we test models augmented with a hidden
jailbreaking system prompt. In Section 5.4, we examine models finetuned on instruction-following
data. In Section 5.5, we consider substitution with a completely different model. Finally, in Section
5.6, we test the methods on additional query distributions of math and coding.

Under a fixed API query budget, we find RUT outperforms both MMD and a Kolmogorov–Smirnov
test (KS) baseline across all settings. It consistently achieves higher statistical power and shows
greater robustness to probabilistic substitution attacks (Figure 1). Moreover, when applied to five
real-world API-deployed models (Section 5.7), our method yields detection results closely aligned
with other methods and is more robust over string-based metrics on minor decoding mismatches.

To summarize, the main contributions of our work include:

1. A novel test for auditing LLM APIs. We propose RUT, an asymmetric two-sample-test that
needs only one API call per prompt and operates effectively on natural queries, achieving
query efficiency and by-design robustness to adversarial providers.

2. Empirical validation across diverse threat models. We validate the robustness of RUT
under diverse settings, including quantization, jailbreaking, SFT, and full model replacement.

3. Cross-validated audit of live commercial endpoints. We benchmark RUT side-by-side with
established tests (MMD and KS) on three major public LLM APIs and demonstrate its practi-
cality in real-world black-box settings.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

LLM fingerprinting. Fingerprinting approaches focus on identifying LLMs by analyzing their out-
puts. Active fingerprinting involves injecting backdoor-like behavior (Xu et al., 2024) into an LLM
via finetuning, embedding watermarks (Kirchenbauer et al., 2023; Ren et al., 2023) into a model’
s text generation process, or intentionally crafting prompts to elicit unique outputs from different
LLMs (Pasquini et al., 2024). Passive fingerprinting, on the other hand, focuses on analyzing the
inherent patterns in LLM-generated text (Su et al., 2023; Fu et al., 2025; Alhazbi et al., 2025). This
builds on the observation that LLMs expose rich “idiosyncrasies”—distributional quirks that allow
classifiers to identify a model (Sun et al., 2025). While related, fingerprinting aims to authenticate
the origin of the model and prevent publisher overclaim. Consequently, fingerprints are designed
to remain stable under fine-tuning or deployment changes. This is opposite to our auditing objec-
tive. Prior work (Cai et al., 2025) also shows that fingerprinting methods fail to detect quantized
substitutions.

Auditing LLM APIs. A growing body of work investigates whether black-box APIs faithfully
serve the advertised model. The most straightforward audit is to evaluate models’ benchmark per-
formance (art, 2025; Eyuboglu et al., 2024; Chen et al., 2023b), but raw performance alone cannot
expose covert substitutions or partial routing. Gao et al. (2025) formalizes the problem as Model
Equality Testing and shows that a kernel-MMD test can already flag public endpoints that deviate
from their open-weight checkpoints. Concurrently to our work, Cai et al. (2025) investigate the
model substitution setting and show that API providers can evade detection through strategies such
as model quantization, randomized substitution, and benchmark evasion. Building on these insights,
we propose a method that is more robust to such attacks and extend the threat model to include a
broader range of realistic scenarios, such as jailbroken or maliciously finetuned models.

3 PROBLEM FORMULATION

In this section, we formalize the LLM API auditing problem as a black-box model equality test
between a target API and a fully accessible reference model.

Models. We denote an LLM as a conditional distribution π(y|x;φ) over text output y ∈ Y given
an input prompt x ∈ X and decoding parameters φ (e.g., temperature, top-p). In all experiments,
we control the decoding parameters to be the same across models. Two such models are involved
in the test. The reference model πref is fully accessible locally; the verifier can draw an unlimited
number of samples yref ∼ πref( · | x;φ) for any x and obtain relevant logits. The target model πtgt is
exposed only through a remote API that returns exactly one completion ytgt ∼ πtgt( · | x;φ) per call
and charges for every invocation. The total API budget is N prompts.

Hypotheses. The model equality test is cast as a composite two-sample hypothesis test. The null
hypothesis

H0 : πtgt( · | x;φ) = πref( · | x;φ) ∀x ∈ X (1)
states that the deployed model is behaviorally identical to the declared one.

H1 : ∃x ∈ X such that πtgt( · | x;φ) ̸= πref( · | x;φ) (2)

captures any observable deviation, whether arising from quantization, fine-tuning, prompt injection,
or full model replacement.

Adversarial model provider. A dishonest model provider may attempt to evade detection through
probabilistic substitution. We model this behaviour by

πtgt( · | x;φ) =
(
1− q(x)

)
πref( · | x;φ) + q(x)πalt( · | x;φ), (3)

where πalt is an arbitrary alternative model (e.g., quantized or adversarially finetuned version of πref)
and q : X → [0, 1] is an unknown routing function that may depend on the prompt and even on past
interaction history (e.g., routing based on prompt caching (Gu et al., 2025)). When q(x) is small
but positive on a non-negligible fraction of typical prompts, the mixture in equation 3 significantly
complicates discrimination; nevertheless, a sound detection procedure must retain statistical power
under such adversarial conditions.

Detector and objectives. A detector is a decision rule φ : DN → {0, 1} whose output 1 means
“reject H0”. Here,DN denotes the data collected with N API queries and many local model queries.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

For a user-specified significance level α ∈ (0, 1), the detector must satisfy the type-I error constraint
PrH0

[
φ(DN ) = 1

]
≤ α. Subject to this guarantee, the verifier seeks to maximize the statistical

power
β(q, πalt) = Pr

H1

[
φ(DN ) = 1

]
,

uniformly over a broad class of substitution policies (q, πalt); to do so with as few costly API queries
N as possible; and to employ prompts that are indistinguishable from ordinary user traffic, thereby
preventing the provider from detecting and rerouting “suspicious-looking” inputs.

4 METHOD

In this section, we introduce our rank-based uniformity test in Section 4.1 and empirically identify
the most discriminative score function to maximize the detection power in Section 4.2.

4.1 RANK-BASED UNIFORMITY TEST (RUT)

To determine whether the target model πtgt is identical to the reference model πref, we propose a
rank-based uniformity test. This method assesses how typical the target model’s responses are under
the reference model’s generation distribution.

Response score function. To perform a statistical test, we first define a scalar-valued score function
f : Y × X → R that maps a model response and prompt to a real number. This function assigns a
score to each output given the prompt, i.e.,

s = f(y, x), where x ∈ X , y ∈ Y, s ∈ R.

An ideal score function f∗ should induce an injective mapping y 7→ f∗(y, x) for any fixed prompt
x ∈ X . Under this assumption, each distinct response corresponds to a unique score value, ensuring
that the score distribution fully characterizes the model’s outputs.

Uniformity as a test signal. For each prompt x ∈ X , we sample a response ytgt ∼ πtgt(· | x;φ) and
compute its scalar score stgt = f(ytgt, x). To assess how typical this response is under the reference
model, we evaluate its rank in the reference model’s score distribution.

We define the cumulative distribution function (CDF) of the reference model’s scores as:

Fπref(s | x) := Py∼πref(·|x;φ) [f(y, x) ≤ s] .

Since f(y, x) takes values in a discrete set, Fπref is a step function. To ensure the rank statistic is
continuously distributed under the null hypothesis, we apply a randomized quantile residual (Dunn
& Smyth, 1996) to extend the probability integral transform (David & Johnson, 1948) to discrete
distributions. Specifically, we define the rank statistic as

rtgt := Fπref(s
−
tgt) + U · P (f(y, x) = stgt) , U ∼ Uniform[0, 1], (4)

where Fπref(s
−
tgt) := P (f(y, x) < stgt) is the left-limit of the CDF at stgt, and P(f(y, x) = stgt) is

the probability mass at stgt. Under the null hypothesis πtgt = πref, this rank statistic rtgt ∈ [0, 1] is
uniformly distributed.

Conversely, suppose that rtgt ∼ Uniform[0, 1] under the randomized quantile residual construction.
Since the CDF Fπref(· | x) is stepwise and non-decreasing, a uniformly distributed rtgt implies that
the score stgt follows the same discrete distribution as sref. By injectivity of f , this further implies
that ytgt ∼ πref(· | x;φ), and hence πtgt = πref.

Thus, with an injective score function f , testing the uniformity of rtgt as defined in equation 4 offers
a valid signal for distinguishing πtgt from πref.

Empirical approximation of Fπref . In practice, it is intractable to build the true CDF Fπref(· | x).
Instead, we approximate it using an empirical CDF from m reference samples for each prompt.

Given a target response yi ∼ πtgt(· | xi; θ) and reference responses yij ∼ πref(· | xi; θ) for j =
1, . . . ,m, we compute the scalar scores

si := f(yi, xi), sij := f(yij , xi).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We then define the randomized rank statistics ri ∈ [0, 1] as

ri =
1

m

 m∑
j=1

1{si > sij}+ Ui ·
m∑
j=1

1{si = sij}

 ,

where Ui ∼ Uniform[0, 1] is an independent random variable to break ties uniformly, and ensure ri
is an unbiased estimator of rtgt given the prompt xi.

Discriminative score function via empirical selection. While an ideal injective score function
would guarantee sensitivity to any behavioral difference between πtgt and πref, constructing such a
function for which we can calculate the CDF is generally infeasible in practice.

To ensure that our test remains practically effective, we instead require the score function to be
sufficiently discriminative, in the sense that it induces distinct score distributions whenever πref ̸=
πtgt. Formally, for fixed prompt x ∈ X , let

Sπref := f(y, x) with y ∼ πref(· | x;φ), and Sπtgt := f(y, x) with y ∼ πtgt(· | x;φ).

We say that f is sufficiently discriminative if the distributions of Sπref and Sπtgt differ whenever
πref ̸= πtgt, i.e.,

πref(· | x;φ) ̸= πtgt(· | x;φ) ⇒ PSπref
̸= PSπtgt

.

Under this condition, differences in response distributions are reflected in the score distributions,
causing the ranks to deviate from uniformity.

Thus, we aim to find the most discriminative score function among several promising candidates
through empirical experiments. In Section 4.2, we compare five candidate score functions—log-
likelihood, token rank, log-rank, entropy, and the log-likelihood log-rank ratio (Su et al., 2023)—and
find that log-rank is the most discriminative in practice for separating responses by πref and πtgt, and
therefore adopt it in our uniformity test.

Full test procedure. We now present the full RUT procedure.

Let {x1, . . . , xn} ⊂ X be a set of prompts. For each prompt xi, we sample one response from the
target model,

yi ∼ πtgt(· | xi; θ),

and m responses from the reference model,

yij ∼ πref(· | xi; θ), j = 1, . . . ,m.

We compute the log-rank scores

si := f(yi, xi), sij := f(yij , xi),

and the corresponding randomized rank statistics {ri}ni=1.

We apply the Cramér–von Mises (CvM) test (Cramér, 1928) to assess the deviations between
{ri}ni=1 and Uniform[0, 1]. The test evaluates the null hypothesis

H0 : ri ∼ Uniform[0, 1] for all i.

The CvM test statistic is defined as

ω2 =
1

12n
+

n∑
i=1

(
2i− 1

2n
− r(i)

)2

,

where r(1) ≤ r(2) ≤ · · · ≤ r(n) are the ordered rank statistics.

To compute the p-value, we compare the observed statistic ω2
obs to the distribution of the CvM

statistic ω2
null computed under the null hypothesis. The p-value is given by

p-value = PH0

[
ω2

null ≥ ω2
obs

]
.

We reject H0 and conclude that the target and reference models are different if p-value < 0.05.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 SCORE FUNCTION SELECTION

The RUT requires a scalar score function f(y, x). To identify a function that best captures dis-
tributional differences between models, we consider five candidate functions. Log-likelihood:
log πref(y | x). Token rank: the average rank of response tokens in y, where a token’s rank is
its position in the vocabulary ordered by the πref’s next-token probabilities. Log-rank: the average
of the logarithm of the token rank. Entropy: predictive entropy for y under πref(x). Log-likelihood
log-rank ratio (LRR): the ratio between log-likelihood and log-rank. (Su et al., 2023).

0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57
AUROC

0

20

40

60

80

100 loglikelihood
rank
logrank
entropy
lrr

Figure 2: Distribution of AUROC scores for
five candidate score functions across 500 trials
comparing Gemma-2-9b-it and its 4-bit quantized
variant. Log-rank achieves the most separable dis-
tribution from the random level 0.5, indicating su-
perior power in distinguishing different models.

To identify the most discriminative score func-
tion, we conduct a Monte Carlo evaluation con-
sisting of 500 independent trials. In each trial,
we randomly select 10 prompts from the Wild-
Chat (Zhao et al., 2024) dataset and sample 50
completions per prompt from both πref and πtgt,
using a fixed temperature of 0.5 and a maxi-
mum length of 30 tokens. For each candidate
score function, we compute the average AU-
ROC (Bradley, 1997) across the 10 prompts for
each trial, yielding a distribution of 500 AU-
ROC scores per function. The full algorithm
to calculate per score function average AUROC
is included in Appendix A.1. Across different
model comparisons, we find that log-rank con-
sistently yields the most separable AUROC dis-
tribution from 0.5, indicating the strongest dis-
criminative power. Figure 2 shows an example
comparing Gemma-2-9b-it with its 4-bit quantized variant. Based on the results, we select log-rank
as the scoring function for RUT. Complete AUROC results are provided in Appendix A.2. We also
present a formal analysis of RUT’s statistical power with the log-rank score function under adver-
sarial perturbations in Appendix C.

5 EXPERIMENTS

In this section, we evaluate RUT across diverse model substitution scenarios, including quantiza-
tion (Section 5.2), jailbreaks (Section 5.3), SFT (Section 5.4), full model replacement (Section 5.5),
additional query domains (Section 5.6), and real-world API providers (Section 5.7). Detection per-
formance is compared against MMD and a KS baseline using statistical power AUC as the primary
metric. We also include a case study on detecting decoding parameter mismatch in Appendix B.6
and demonstrate that RUT remains robust across models and query domains.

5.1 EXPERIMENTAL SETUP

To evaluate detection performance under adversarial conditions, we simulate probabilistic substi-
tution attacks where a fraction q ∈ [0, 1] of API queries are routed to an alternative model (e.g.,
quantized or fine-tuned). For each value of q, we estimate the statistical power, defined as the proba-
bility of correctly rejecting the null hypothesis when substitution is present. We then summarize the
resulting power–substitution rate curve using the area under the curve (AUC) over q ∈ [0, 1]. The
AUC ranges from 0 to 1 and reflects the method’s ability to maintain high statistical power across
varying levels of substitution, serving as a measure of robustness to such attacks. Higher values
indicate more reliable and consistent detection performance. Figure 1 shows an example comparing
Gemma-2-9b-it and its 4-bit quantized variant. In the following experiments, we compute 95% con-
fidence intervals for AUCs using bootstrapping. The 95% wilson confidence intervals for statistical
powers are shown as shaded area on plots in Appendix B.

Data. We use the WildChat dataset (Zhao et al., 2024), which contains real-world conversations
between human users and ChatGPT. This dataset reflects authentic user behavior, ensuring the query
distribution represents typical API traffic.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Statistical power AUC for detecting quantized
variants. Bold = best method; gray = none reliable.

Model RUT MMD KS

Gemma–4bit 0.392
84− 103+

0.214
110− 112+

0.017
32− 34+

Gemma–8bit 0.049
59− 59+

0.043
62− 64+

0.001
08− 10+

Llama–4bit 0.642
84− 82+

0.625
89− 93+

0.474
88− 89+

Llama–8bit 0.132
82− 81+

0.158
110− 109+

0.005
17− 19+

Mistral–4bit 0.586
95− 94+

0.500
92− 97+

0.330
100− 102+

Mistral–8bit 0.049
56− 61+

0.090
77− 84+

0.006
20− 22+

(b) Statistical power AUC for detecting jail-breaking
prompts. Bold = most effective method per prompt.

Model Prompt RUT MMD KS

Mistral
Dan 0.895

46− 45+
0.802

63− 55+
0.873

37− 36+

Anti-Dan 0.893
00− 00+

0.781
00− 00+

0.872
00− 00+

Evil-Bot 0.892
44− 44+

0.766
56− 59+

0.873
37− 37+

Gemma
Dan 0.888

43− 44+
0.757

65− 68+
0.867

34− 36+

Anti-Dan 0.858
49− 53+

0.816
60− 52+

0.854
31− 31+

Evil-Bot 0.893
43− 42+

0.753
65− 63+

0.871
36− 36+

Table 2: Statistical-power AUCs. All confidence interval ranges are reported in ×10−4

Baseline. For the detection methods (Sun et al., 2025; Gao et al., 2025) that are compatible with
WildChat, We primarily focus on Maximum Mean Discrepancy (MMD) (Gao et al., 2025) as the
baseline, as Sun et al. (2025) is reported to fail to identify quantization (Cai et al., 2025). We also
tailor a Kolmogorov–Smirnov (KS) test baseline that uses the same information as RUT: it computes
the log-rank scores from the reference model on both the target and reference model responses and
applies the two-sample KS test (Darling, 1957) on these two sets of scores to estimate the p-value
between the target and reference distributions.

Test procedures. We apply a consistent sample budget constraint on all tests. The implementation
details of their test procedures are listed below:

• Rank-Based Uniformity Test (RUT): Each trial samples 100 prompts. We query each
prompt once to the target and 100 times to the reference model.

• Maximum Mean Discrepancy (MMD): We apply the MMD test based on the character-
level Hamming distance following Gao et al. (2025). Each trial uses 10 prompts, with 10
samples per prompt. We compute the MMD statistic and estimate the p-value via 500 random
permutations.

• Kolmogorov–Smirnov Test (KS): We use the same sampling setup as RUT: 100 prompts per
trial, 1 query to the target, and 100 to the reference model per prompt.

Across all models, we set the temperature to 0.5 and cap generation at 30 tokens. We use vLLM
(Kwon et al., 2023) on a single A6000 for all local inferences. To estimate statistical power, we
repeat each experiment over 500 Monte Carlo trials. Power is computed as the proportion of trials
in which the test correctly rejects the null hypothesis at a significant level of 0.05. All tests were run
with Intel Xeon Gold 6230R @ 2.10GHz and 16 GB RAM per job.

5.2 DETECTING QUANTIZATION

We consider the setting where the API provider uses a quantized variant to substitute the claimed
model. We evaluate three detection methods on quantized variants of Llama-3.2-3B-Instruct1,
Mistral-7B-Instruct-v0.32, and Gemma-2-9B-it3, comparing each model to its 4-bit and 8-bit quan-
tized counterparts. As shown in Table 2a, none of the methods succeed in reliably detecting substi-
tution for the 8-bit variants of Gemma and Mistral, where statistical power AUC remains near zero
across the board. In the remaining four settings, RUT outperforms MMD and the KS baseline in
three out of the four cases, demonstrating superior sensitivity to quantization-induced distributional
shifts. Full statistical power curves for AUCs are provided in Appendix B.1.

1https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
2https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
3https://huggingface.co/google/gemma-2-9b-it

7

https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/google/gemma-2-9b-it


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.3 DETECTING JAILBREAKS

We consider the setting where the API provider secretly appends a hidden jailbreaking system
prompt to user queries. To evaluate this scenario, we use two base models: Mistral-7B-Instruct-v0.3
and Gemma-2-9B-it. For each model, we construct a test using three representative jailbreaking
prompts Dan, Anti-Dan, and Evil-Bot adapted from Shen et al. (2024). As shown in Table 2b, all
jailbreak cases are reliably detected, with power AUCs consistently above 0.75. RUT achieves the
highest power in all 6 settings, demonstrating its superior sensitivity to model deviations caused by
hidden jailbreaking prompts. Full statistical power curves for AUCs are provided in Appendix B.2.

5.4 DETECTING SFT

We study the setting where the API provider fine-tunes a model on instruction-following data.
Specifically, we fine-tune two base models—Llama-3.2-3B-Instruct and Mistral-7B-Instruct-
v0.3—on benign and harmful instruction-following datasets. We use Alpaca (Taori et al., 2023)
as the benign dataset and BeaverTails (Ji et al., 2023) for harmful question answering. Each model
is fine-tuned on 500 samples from the respective dataset for 5 epochs using LoRA (Hu et al., 2021)
with rank 64 and α = 16, a batch size of 32, and a learning rate of 1× 10−4 on a single A100. For
each checkpoint, we compute the statistical power AUC of the detection methods.

As shown in Figure 3, RUT con-
sistently achieves higher power AUC
than both the KS and MMD base-
lines across all fine-tuning configura-
tions. Notably, our method detects
behavioral changes within the first
epoch of fine-tuning, demonstrating
strong sensitivity to early-stage distri-
butional shifts. While all methods im-
prove with additional training, RUT
remains the most robust across both
models and datasets. Full statistical
power curves for AUCs are provided
in Appendix B.3.

0.00

0.25

0.50

0.75

1.00
Llama + BeaverTails Llama + Alpaca

0 1 2 3 4 5
0.00

0.25

0.50

0.75

1.00
Mistral + BeaverTails

0 1 2 3 4 5

Mistral + Alpaca

Epoch

St
at

ist
ica

l P
ow

er
 A

UC
 (

)

RUT KS MMD

Figure 3: AUC to detect SFT checkpoints across epochs.

5.5 DETECTING FULL MODEL REPLACEMENT

Gem
ma-2

B

Gem
ma-9

B

Mistr
al-

7B

Lla
ma-3

B

Lla
ma-1

1B

Gemma-2B

Gemma-9B

Mistral-7B

Llama-3B

Llama-11B

Re
fe

re
nc

e

0.048 0.818 0.890 0.886 0.883

0.870 0.053 0.895 0.894 0.889

0.888 0.885 0.047 0.876 0.881

0.894 0.891 0.892 0.051 0.855

0.895 0.893 0.891 0.852 0.052

RUT

Gem
ma-2

B

Gem
ma-9

B

Mistr
al-

7B

Lla
ma-3

B

Lla
ma-1

1B

Target

0.019 0.658 0.771 0.741 0.765

0.660 0.019 0.776 0.759 0.728

0.774 0.780 0.024 0.783 0.800

0.730 0.751 0.746 0.028 0.704

0.766 0.712 0.758 0.734 0.026

MMD

Gem
ma-2

B

Gem
ma-9

B

Mistr
al-

7B

Lla
ma-3

B

Lla
ma-1

1B

0.007 0.749 0.877 0.864 0.866

0.799 0.000 0.869 0.863 0.863

0.870 0.786 0.004 0.852 0.855

0.871 0.869 0.868 0.002 0.762

0.877 0.873 0.874 0.774 0.003

KS

Figure 4: Statistical power AUC for detecting full model replacement. Each cell shows the AUC
score between a reference and a target model. Diagonal values represent self-comparisons.

We evaluate the setting where the API provider substitutes the claimed model with a completely
different one. To simulate this scenario, we conduct pairwise comparisons among five open-
source models: Llama-3.2-3B-Instruct, Llama-3.2-11B-Vision-Instruct4, Mistral-7B-Instruct-v0.3,

4https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct

8

https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Statistical power AUC for detecting quantized variants across query domains. Bold = best
method; gray = none reliable. See full power curves in Appendix B.5.

(a) BigCodeBench (Zhuo et al., 2024)

Model RUT MMD KS

Gemma–4bit 0.136 0.170 000
Gemma–8bit 0.048 0.052 000
Llama–4bit 0.593 0.353 0.524
Llama–8bit 0.093 0.143 0.021
Mistral–4bit 0.462 0.326 0.183
Mistral–8bit 0.041 0.058 0.011

(b) Math (Hendrycks et al., 2021)

Model RUT MMD KS

Gemma–4bit 0.297 0.237 0.059
Gemma–8bit 0.048 0.067 0.002
Llama–4bit 0.532 0.468 0.412
Llama–8bit 0.253 0.177 0.118
Mistral–4bit 0.360 0.216 0.160
Mistral–8bit 0.059 0.060 0.019

Gemma-2-2B-it5, and Gemma-2-9B-it. For each pair, one model serves as the reference model
while the other acts as the deployed target model. As shown in Figure 4, RUT consistently achieves
the highest statistical power AUC across model pairs, outperforming both the MMD and KS base-
lines. The results highlight the method’s sensitivity to full model substitutions. Full statistical power
curves for AUCs are provided in Appendix B.4.

5.6 DETECTING QUERY DOMAINS

We now evaluate the robustness of RUT across more query domains. Beyond WildChat which
reflects general conversational traffic, we consider two specialized datasets: BigCodeBench (Zhuo
et al., 2024) for programming tasks and MATH (Hendrycks et al., 2021) for mathematical problem
solving. We adopt the quantization setup in Section 5.2 as this setting is both challenging and
practically relevant.

As shown in Table 3, the overall detection powers mirror those observed in Section 5.2. Detection
remains difficult for 8-bit quantized Gemma and Mistral, where all methods fail to achieve meaning-
ful power. RUT consistently shows high detectability in the remaining cases, outperforming MMD
and KS in seven out of the eight cases. These results show that RUT remains effective in both math
and code domains, reinforcing its generalizability to diverse query distributions.

5.7 DETECTING REAL API PROVIDERS

Table 4: Statistical power for detecting differences
from the model deployed on an A6000 GPU. A100
denotes the same model run locally on an A100 GPU;
other entries are actual API providers. Values > 0.5
indicate significant behavioral deviation. Green = no
significant difference; Red = significant difference.

Model Provider RUT MMD KS

Llama A100 0.094 0.142 0.002
Llama Nebius 0.962 0.944 0.426
Llama Novita 0.988 0.996 0.530
Mistral A100 0.058 0.138 0.004
Mistral HF Inf. 0.188 1.00 0.000
Gemma A100 0.060 0.084 0.000
Gemma Nebius 0.312 0.432 0.008

We evaluate the methods on three
models—Llama-3.2-3B-Instruct, Mistral-
7B-Instruct-v0.3, and Gemma-2-9B-
it—each from multiple API providers.
Local inference on an A100 GPU serves
as the baseline. As shown in Table 4,
all tests correctly identify behavioral
equivalence in local deployments.

Across all settings, RUT and MMD gen-
erally agree in detecting significant devi-
ations across providers, offering mutual
validation for their behavioral sensitivity.
The KS test exhibits similar trends but
with notably lower sensitivity. An excep-
tion arises in the Mistral + HF Inference
setting, where MMD yields a power of 1.0
while other tests are below 0.2. We suspect the discrepancy is due to a tokenization mismatch: the
HF Inference API consistently omits the leading whitespace present in the reference outputs. Since
MMD uses string Hamming distance, the formatting difference inflates the score. After restoring
the missing space, the MMD score drops to 0.211, aligning with other tests. This illustrates the
robustness of RUT to minor decoding mismatches that can mislead string-based metrics.

5https://huggingface.co/google/gemma-2-2b-it

9

https://huggingface.co/google/gemma-2-2b-it


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 CONCLUSION

The stable increase in the size (Kaplan et al., 2020) and architectural complexity (Zhou et al., 2022)
of frontier LLMs has led to a rise in the popularity of API-based model access. To prevent per-
formance degradation and security risks from model substitution behind API interfaces, this work
proposes the rank-based uniformity test for model equality testing. We test the method against
a variety of different substitution attacks and demonstrate its consistent effectiveness in detecting
substitution and its superiority over existing methods.

Limitations and Future Work We have not empirically validated effectiveness of RUT against
an adversary with full knowledge of the auditing method. For example, an attacker could selectively
reroute prompts that are expected to produce atypical log-rank statistics. Assessing the method’s
robustness against more powerful adversaries is an important next step. In addition, RUT requires
access to a locally deployed authentic reference model, which limits its applicability to open-sourced
models. Exploring ways to relax this requirement would broaden the method’s applicability.

By developing an effective and stealthy API-based test for model equality, we hope to advance the
safety and security of LLM-based applications in the age of increasingly cloud-based deployment.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Artificial analysis, 2025. URL https://artificialanalysis.ai. 3

Saeif Alhazbi, Ahmed Mohamed Hussain, Gabriele Oligeri, and Panos Papadimitratos. Llms
have rhythm: Fingerprinting large language models using inter-token times and network traf-
fic analysis. ArXiv, abs/2502.20589, 2025. URL https://api.semanticscholar.org/
CorpusID:276725236. 3

Anysphere Inc. Cursor: The ai code editor, 2025. URL https://www.cursor.com/. Ac-
cessed: 2025-05-15. 1

Andrew P. Bradley. The use of the area under the roc curve in the evaluation of machine learn-
ing algorithms. Pattern Recognition, 30(7):1145–1159, 1997. ISSN 0031-3203. doi: https:
//doi.org/10.1016/S0031-3203(96)00142-2. URL https://www.sciencedirect.com/
science/article/pii/S0031320396001422. 6, 14

Will Cai, Tianneng Shi, Xuandong Zhao, and Dawn Song. Are you getting what you pay for? audit-
ing model substitution in llm apis, 2025. URL https://arxiv.org/abs/2504.04715.
2, 3, 7

Lingjiao Chen, Matei Zaharia, and James Zou. How is chatgpt’s behavior changing over time?,
2023a. URL https://arxiv.org/abs/2307.09009. 2

Lingjiao Chen, Matei Zaharia, and James Y. Zou. How is chatgpt’s behavior changing over
time? ArXiv, abs/2307.09009, 2023b. URL https://api.semanticscholar.org/
CorpusID:259951081. 3

Harald Cramér. On the composition of elementary errors. Scandinavian Actuarial Journal, 1928(1):
13–74, 1928. doi: 10.1080/03461238.1928.10416862. URL https://doi.org/10.1080/
03461238.1928.10416862. 2, 5

D. A. Darling. The kolmogorov-smirnov, cramér-von mises tests. The Annals of Mathematical
Statistics, 28(4):823–838, 1957. ISSN 00034851, 21688990. URL http://www.jstor.
org/stable/2237048. 7

F. N. David and N. L. Johnson. The probability integral transformation when parameters are
estimated from the sample. Biometrika, 35(1/2):182–190, 1948. ISSN 00063444. URL
http://www.jstor.org/stable/2332638. 4

Peter K. Dunn and Gordon K. Smyth. Randomized quantile residuals. Journal of Computational
and Graphical Statistics, 5(3):236–244, 1996. ISSN 10618600. URL http://www.jstor.
org/stable/1390802. 4

Kazuki Egashira, Mark Vero, Robin Staab, Jingxuan He, and Martin Vechev. Exploiting llm quan-
tization, 2024. URL https://arxiv.org/abs/2405.18137. 1

Sabri Eyuboglu, Karan Goel, Arjun Desai, Lingjiao Chen, Mathew Monfort, Chris Ré, and
James Zou. Model changelists: Characterizing updates to ml models. Proceedings of the
2024 ACM Conference on Fairness, Accountability, and Transparency, 2024. URL https:
//api.semanticscholar.org/CorpusID:270287160. 3

Zhiyuan Fu, Junfan Chen, Hongyu Sun, Ting Yang, Ruidong Li, and Yuqing Zhang. Fdllm:
A text fingerprint detection method for llms in multi-language, multi-domain black-box envi-
ronments. ArXiv, abs/2501.16029, 2025. URL https://api.semanticscholar.org/
CorpusID:275921293. 3

Irena Gao, Percy Liang, and Carlos Guestrin. Model equality testing: Which model is this api
serving?, 2025. URL https://arxiv.org/abs/2410.20247. 1, 2, 3, 7

Chenchen Gu, Xiang Lisa Li, Rohith Kuditipudi, Percy Liang, and Tatsunori Hashimoto. Auditing
prompt caching in language model apis, 2025. URL https://arxiv.org/abs/2502.
07776. 2, 3

11

https://artificialanalysis.ai
https://api.semanticscholar.org/CorpusID:276725236
https://api.semanticscholar.org/CorpusID:276725236
https://www.cursor.com/
https://www.sciencedirect.com/science/article/pii/S0031320396001422
https://www.sciencedirect.com/science/article/pii/S0031320396001422
https://arxiv.org/abs/2504.04715
https://arxiv.org/abs/2307.09009
https://api.semanticscholar.org/CorpusID:259951081
https://api.semanticscholar.org/CorpusID:259951081
https://doi.org/10.1080/03461238.1928.10416862
https://doi.org/10.1080/03461238.1928.10416862
http://www.jstor.org/stable/2237048
http://www.jstor.org/stable/2237048
http://www.jstor.org/stable/2332638
http://www.jstor.org/stable/1390802
http://www.jstor.org/stable/1390802
https://arxiv.org/abs/2405.18137
https://api.semanticscholar.org/CorpusID:270287160
https://api.semanticscholar.org/CorpusID:270287160
https://api.semanticscholar.org/CorpusID:275921293
https://api.semanticscholar.org/CorpusID:275921293
https://arxiv.org/abs/2410.20247
https://arxiv.org/abs/2502.07776
https://arxiv.org/abs/2502.07776


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021. 9, 25

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration, 2020. URL https://arxiv.org/abs/1904.09751. 25

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685. 8

Yangsibo Huang, Milad Nasr, Anastasios Angelopoulos, Nicholas Carlini, Wei-Lin Chiang, Christo-
pher A. Choquette-Choo, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Ken Ziyu Liu, Ion
Stoica, Florian Tramer, and Chiyuan Zhang. Exploring and mitigating adversarial manipulation
of voting-based leaderboards, 2025. URL https://arxiv.org/abs/2501.07493. 2

Jiaming Ji, Mickel Liu, Juntao Dai, Xuehai Pan, Chi Zhang, Ce Bian, Chi Zhang, Ruiyang Sun,
Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via a
human-preference dataset. arXiv preprint arXiv:2307.04657, 2023. 8

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020. 10

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, 2023.
URL https://api.semanticscholar.org/CorpusID:256194179. 3

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023. 7

mirpo. [bug] lm studio’s api server ignores the requested model name in the api call when only
one model is running · issue #619 · lmstudio-ai/lmstudio-bug-tracker, 2025. URL https://
github.com/lmstudio-ai/lmstudio-bug-tracker/issues/619. 1

Dario Pasquini, Evgenios M. Kornaropoulos, and Giuseppe Ateniese. Llmmap: Fingerprint-
ing for large language models. ArXiv, abs/2407.15847, 2024. URL https://api.
semanticscholar.org/CorpusID:271328475. 3

Steven T. Piantadosi. Zipf’s word frequency law in natural language: A critical review and future
directions. Psychonomic Bulletin & Review, 21:1112 – 1130, 2014. URL https://api.
semanticscholar.org/CorpusID:14264582. 27

Jie Ren, Han Xu, Yiding Liu, Yingqian Cui, Shuaiqiang Wang, Dawei Yin, and Jiliang Tang. A
robust semantics-based watermark for large language model against paraphrasing. In NAACL-
HLT, 2023. URL https://api.semanticscholar.org/CorpusID:265213008. 3

ResearchFlow. Researchflow: Ai-powered research engine & visual knowledge mapping, 2025.
URL https://rflow.ai/. 1

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. ”do anything now”: Char-
acterizing and evaluating in-the-wild jailbreak prompts on large language models, 2024. URL
https://arxiv.org/abs/2308.03825. 8

Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. Detectllm: Leveraging log rank infor-
mation for zero-shot detection of machine-generated text, 2023. URL https://arxiv.org/
abs/2306.05540. 3, 5, 6

Mingjie Sun, Yida Yin, Zhiqiu Xu, J. Zico Kolter, and Zhuang Liu. Idiosyncrasies in large language
models, 2025. URL https://arxiv.org/abs/2502.12150. 2, 3, 7

12

https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2501.07493
https://api.semanticscholar.org/CorpusID:256194179
https://github.com/lmstudio-ai/lmstudio-bug-tracker/issues/619
https://github.com/lmstudio-ai/lmstudio-bug-tracker/issues/619
https://api.semanticscholar.org/CorpusID:271328475
https://api.semanticscholar.org/CorpusID:271328475
https://api.semanticscholar.org/CorpusID:14264582
https://api.semanticscholar.org/CorpusID:14264582
https://api.semanticscholar.org/CorpusID:265213008
https://rflow.ai/
https://arxiv.org/abs/2308.03825
https://arxiv.org/abs/2306.05540
https://arxiv.org/abs/2306.05540
https://arxiv.org/abs/2502.12150


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023. 8

Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei Koh, Chaowei Xiao, and Muhao Chen.
Instructional fingerprinting of large language models. ArXiv, abs/2401.12255, 2024. URL
https://api.semanticscholar.org/CorpusID:267095230. 3

Yuhui Yun, Huilong Ye, Xinru Li, Ruojia Li, Jingfeng Deng, Li Li, and Haoyi Xiong. Eicopilot:
Search and explore enterprise information over large-scale knowledge graphs with llm-driven
agents, 2025. URL https://arxiv.org/abs/2501.13746. 1

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat: 1m
chatgpt interaction logs in the wild, 2024. URL https://arxiv.org/abs/2405.01470.
6, 25

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103–7114, 2022. 10

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024. 9

13

https://github.com/tatsu-lab/stanford_alpaca
https://api.semanticscholar.org/CorpusID:267095230
https://arxiv.org/abs/2501.13746
https://arxiv.org/abs/2405.01470


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A AUROC

A.1 AUROC ALGORITHM

Algorithm 1: Average AUROC for score function evaluation
Input: Prompt set D; models πref, πtgt; decoding parameters φ = (τ, L),

where τ is temperature and L is the maximum generation length;
number of prompts n; number of completions per prompt per model
m; score functions {φ1, . . . , φK}.

Output: Mean AUROC per score function, denoted µAUROC(δ).
1 Draw {x1, . . . , xn} ∼ Uniform(D);
2 for i ∈ {1, . . . , n} do
3 {y(j)ref }mj=1 ∼ πref(· | xi;φ);

4 {y(j)tgt }mj=1 ∼ πtgt(· | xi;φ);

5 Yi ← {y(j)ref } ∪ {y
(j)
tgt };

6 Li ← {0}m ∪ {1}m;
7 for δ ∈ {φ1, . . . , φK} do
8 Si ← {δ(y) | y ∈ Yi};
9 Store Aδ

i ← AUROC(Si, Li);

10 for δ ∈ {φ1, . . . , φK} do
11 µAUROC(δ)← 1

n

∑n
i=1 A

δ
i ;

Note. AUROC(S,L) denotes the standard binary AUROC (Bradley, 1997).

A.2 AUROC SCORE DISTRIBUTIONS

We present the AUROC score distributions from the score function selection experiment described
in Section 4.2. Specifically, we evaluated Gemma-2-9B-it, LLaMA-3.2-3B-Instruct, and Mistral-
7B-Instruct, and visualized the distributions when distinguishing the original model outputs from
three types of variants: (1) quantized versions, (2) models subjected to jailbreaking prompts, and (3)
models served by A100 or external API providers.

0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57
AUROC

0

20

40

60

80

100

auroc_Gemma9B_4bit
loglikelihood
rank
logrank
entropy
lrr

0.500 0.505 0.510 0.515 0.520 0.525 0.530 0.535
AUROC

0

20

40

60

80

100

120
auroc_Gemma9B_8bit

loglikelihood
rank
logrank
entropy
lrr

0.50 0.51 0.52 0.53 0.54 0.55
AUROC

0

20

40

60

80

100

auroc_Gemma9B_a100
loglikelihood
rank
logrank
entropy
lrr

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
AUROC

0

20

40

60

80

100

auroc_Gemma9B_Anti_Dan

loglikelihood
rank
logrank
entropy
lrr

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0.6 0.7 0.8 0.9 1.0
AUROC

0

5

10

15

20

25

30

auroc_Gemma9B_Dan
loglikelihood
rank
logrank
entropy
lrr

0.70 0.75 0.80 0.85 0.90 0.95 1.00
AUROC

0

50

100

150

200

250

auroc_Gemma9B_Evil_Bot

loglikelihood
rank
logrank
entropy
lrr

0.50 0.51 0.52 0.53 0.54 0.55
AUROC

0

20

40

60

80

100

auroc_Gemma9B_Nebius
loglikelihood
rank
logrank
entropy
lrr

0.500 0.525 0.550 0.575 0.600 0.625 0.650 0.675 0.700
AUROC

0

5

10

15

20

25
auroc_Llama3B_4bit

loglikelihood
rank
logrank
entropy
lrr

0.50 0.51 0.52 0.53 0.54 0.55 0.56
AUROC

0

20

40

60

80

100

120

auroc_Llama3B_8bit
loglikelihood
rank
logrank
entropy
lrr

0.50 0.51 0.52 0.53 0.54 0.55
AUROC

0

20

40

60

80

100

auroc_Llama3B_a100
loglikelihood
rank
logrank
entropy
lrr

0.50 0.52 0.54 0.56 0.58 0.60 0.62
AUROC

0

20

40

60

80

100
auroc_Llama3B_Nebius

loglikelihood
rank
logrank
entropy
lrr

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64
AUROC

0

20

40

60

80

100

auroc_Llama3B_Novita
loglikelihood
rank
logrank
entropy
lrr

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66
AUROC

0

10

20

30

40

50

60

70
auroc_Mistral7B_4bit

loglikelihood
rank
logrank
entropy
lrr

0.50 0.51 0.52 0.53 0.54 0.55 0.56
AUROC

0

20

40

60

80

100

auroc_Mistral7B_8bit
loglikelihood
rank
logrank
entropy
lrr

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0.50 0.51 0.52 0.53 0.54
AUROC

0

20

40

60

80

100

auroc_Mistral7B_a100
loglikelihood
rank
logrank
entropy
lrr

0.75 0.80 0.85 0.90 0.95 1.00
AUROC

0

50

100

150

200

250
auroc_Mistral7B_Anti_Dan

loglikelihood
rank
logrank
entropy
lrr

0.75 0.80 0.85 0.90 0.95 1.00
AUROC

0

20

40

60

80

100

auroc_Mistral7B_Dan
loglikelihood
rank
logrank
entropy
lrr

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
AUROC

0

50

100

150

200

250

300

350

auroc_Mistral7B_Evil_Bot
loglikelihood
rank
logrank
entropy
lrr

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66
AUROC

0

10

20

30

40

50
auroc_Mistral7B_HFInference

loglikelihood
rank
logrank
entropy
lrr

B STATISTIC POWER CURVES

B.1 FULL STATISTIC POWER CURVES FOR DETECTING QUANTIZATION

We present the full statistical power curves, showing the relationship between substitution rate and
detection power, corresponding to the experiments on detecting quantized model substitutions de-
scribed in Section 5.2. These curves are used to compute the power AUC values reported in the main
paper and illustrate each method’s detection power across different levels of substitution.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma-4bit
RUT (Ours)
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma-8bit
RUT (Ours)
MMD
KS

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama-4bit
RUT (Ours)
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama-8bit
RUT (Ours)
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral-4bit
RUT (Ours)
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral-8bit
RUT (Ours)
MMD
KS

B.2 FULL STATISTIC POWER CURVES FOR DETECTING JAILBREAKING

We present the full statistical power curves, showing the relationship between substitution rate and
detection power, corresponding to the experiments on detecting jailbreak prompts described in Sec-
tion 5.3. These curves are used to compute the power AUC values reported in the main paper and
illustrate each method’s detection power across different levels of substitution.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma_Dan
RUT (Ours)
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma_Anti_Dan
RUT (Ours)
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma_Evil_Bot
RUT (Ours)
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_Dan
RUT (Ours)
MMD
KS

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_Anti_Dan
RUT (Ours)
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_Evil_Bot
RUT (Ours)
MMD
KS

B.3 FULL STATISTIC POWER CURVES FOR DETECTING SFT

We present the full statistical power curves, showing the relationship between substitution rate and
detection power, corresponding to the experiments on detecting SFT described in Section 5.4. These
curves are used to compute the power AUC values reported in the main paper and illustrate each
method’s detection power across different levels of substitution.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_Alpaca_1
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_Alpaca_2
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_Alpaca_3
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_Alpaca_4
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_Alpaca_5
RUT
MMD
KS

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_BeaverTails_1
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_BeaverTails_2
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_BeaverTails_3
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_BeaverTails_4
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_BeaverTails_5
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_Alpaca_1
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_Alpaca_2
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_Alpaca_3
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_Alpaca_4
RUT
MMD
KS

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_Alpaca_5
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_BeaverTails_1
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_BeaverTails_2
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_BeaverTails_3
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_BeaverTails_4
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_BeaverTails_5
RUT
MMD
KS

B.4 FULL STATISTIC POWER CURVES FOR DETECTING FULL MODEL REPLACEMENT

We present the full statistical power curves, showing the relationship between substitution rate and
detection power, corresponding to the experiments on detecting full model replacements described
in Section 5.5. These curves are used to compute the power AUC values reported in the main paper
and illustrate each method’s detection power across different levels of substitution.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma2B-Gemma2B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma2B-Gemma9B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma2B-Llama3B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma2B-Llama11B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma2B-Mistral7B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma9B-Gemma2B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma9B-Gemma9B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma9B-Llama3B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma9B-Llama11B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma9B-Mistral7B
RUT
MMD
KS

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama3B-Gemma2B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama3B-Gemma9B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama3B-Llama3B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama3B-Llama11B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama3B-Mistral7B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama11B-Gemma2B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama11B-Gemma9B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama11B-Llama3B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama11B-Llama11B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama11B-Mistral7B
RUT
MMD
KS

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral7B-Gemma2B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral7B-Gemma9B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral7B-Llama3B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral7B-Llama11B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral7B-Mistral7B
RUT
MMD
KS

B.5 FULL STATISTIC POWER CURVES FOR DETECTING MORE QUERY DOMAINS

We present the full statistical power curves, showing the relationship between substitution rate and
detection power, corresponding to the experiments on detecting quantized model in extra domains
described in Section 5.6. These curves are used to compute the power AUC values reported in the
main paper and illustrate each method’s detection power across different levels of substitution.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

gemma-4bit - bigcodebench
RUT (Ours)
MMD
KS Test

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

gemma-4bit - math
RUT (Ours)
MMD
KS Test

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

gemma-4bit - wildchat
RUT (Ours)
MMD
KS Test

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

gemma-8bit - bigcodebench
RUT (Ours)
MMD
KS Test

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

gemma-8bit - math
RUT (Ours)
MMD
KS Test

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

gemma-8bit - wildchat
RUT (Ours)
MMD
KS Test

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

llama-4bit - bigcodebench
RUT (Ours)
MMD
KS Test

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

llama-4bit - math
RUT (Ours)
MMD
KS Test

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

llama-4bit - wildchat
RUT (Ours)
MMD
KS Test

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

llama-8bit - bigcodebench
RUT (Ours)
MMD
KS Test

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

llama-8bit - math
RUT (Ours)
MMD
KS Test

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

llama-8bit - wildchat
RUT (Ours)
MMD
KS Test

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

mistral-4bit - bigcodebench
RUT (Ours)
MMD
KS Test

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

mistral-4bit - math
RUT (Ours)
MMD
KS Test

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

mistral-4bit - wildchat
RUT (Ours)
MMD
KS Test

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

mistral-8bit - bigcodebench
RUT (Ours)
MMD
KS Test

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

mistral-8bit - math
RUT (Ours)
MMD
KS Test

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

mistral-8bit - wildchat
RUT (Ours)
MMD
KS Test

B.6 CASE STUDY ON DETECTING DECODING PARAMETERS

Setup. As a case study, we test whether detection methods can identify changes in decoding pa-
rameters, focusing on sampling temperature and top-p for nucleus sampling (Holtzman et al., 2020).
We compare responses generated under different parameter settings against the default configuration
of temperature=0.5 and top-p=1.

Findings. We perform the experiments across Gemma-2-9B-it and Llama-3.2-3B-Instruct on
MATH (Hendrycks et al., 2021) and WildChat (Zhao et al., 2024). Based on the results in Fig-
ure 5, RUT achieves consistently higher detection power across decoding configurations compared
to MMD and KS. This sensitivity is desirable in practice, since when the API providers expose de-
coding controls to users, a reliable detection method should be able to flag deviations arising not
only from model substitution but also from anomalous decoding configurations.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0.5
0

0.7
5

0.9
0

1.0
0

0.
50

0.
75

1.
00

Te
m

p.

0.649 0.495 0.225 0.003

0.631 0.086 0.246 0.650

0.504 0.303 0.721 0.797

RUT

0.5
0

0.7
5

0.9
0

1.0
0

Top-P

0.611 0.288 0.061 0.032

0.483 0.067 0.106 0.177

0.383 0.189 0.332 0.424

MMD

0.5
0

0.7
5

0.9
0

1.0
0

0.172 0.098 0.014 0.001

0.169 0.004 0.044 0.407

0.042 0.042 0.537 0.681

KS

(a) Gemma-2-9B-it on MATH

0.5
0

0.7
5

0.9
0

1.0
0

0.
50

0.
75

1.
00

Te
m

p.

0.645 0.521 0.213 0.044

0.609 0.094 0.221 0.592

0.387 0.379 0.696 0.825

RUT

0.5
0

0.7
5

0.9
0

1.0
0

Top-P

0.651 0.234 0.073 0.030

0.537 0.059 0.097 0.162

0.291 0.180 0.272 0.388

MMD

0.5
0

0.7
5

0.9
0

1.0
0

0.145 0.076 0.018 0.009

0.130 0.009 0.032 0.296

0.027 0.093 0.511 0.730

KS

(b) Llama-3.2-3B-Instruct on MATH

0.5
0

0.7
5

0.9
0

1.0
0

0.
50

0.
75

1.
00

Te
m

p.

0.561 0.452 0.233 0.053

0.545 0.056 0.310 0.680

0.154 0.541 0.791 0.839

RUT

0.5
0

0.7
5

0.9
0

1.0
0

Top-P

0.667 0.247 0.075 0.023

0.480 0.079 0.093 0.177

0.268 0.189 0.363 0.403

MMD

0.5
0

0.7
5

0.9
0

1.0
0

0.022 0.027 0.003 0.003

0.015 0.003 0.019 0.335

0.003 0.134 0.549 0.732

KS

(c) Gemma-2-9B-it on WildChat

0.5
0

0.7
5

0.9
0

1.0
0

0.
50

0.
75

1.
00

Te
m

p.

0.698 0.572 0.352 0.051

0.577 0.055 0.570 0.787

0.185 0.793 0.851 0.884

RUT

0.5
0

0.7
5

0.9
0

1.0
0

Top-P

0.645 0.213 0.069 0.018

0.309 0.097 0.098 0.153

0.146 0.255 0.337 0.447

MMD

0.5
0

0.7
5

0.9
0

1.0
0

0.382 0.175 0.048 0.006

0.159 0.005 0.293 0.667

0.053 0.703 0.811 0.858

KS

(d) Llama-3.2-3B-Instruct on WildChat

Figure 5: Statistical power AUC for detecting decoding parameter mismatches (temperature, top-p)
across models and datasets. Each cell compares outputs under a specific decoding configuration
against the default (0.5, 1.0); higher values indicate stronger detectability.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

C THERORETICAL ANALYSIS OF RUT

In this section, we provide a formal analysis to characterize the statistical power of RUT and its
sample efficiency under principled assumptions about language model output distributions and ad-
versarial perturbations.

We model two basic attack types: (1) reparameterization attack, which preserve ranking of tokens
but smoothly alter token probabilities via a small parameter shift s 7→ s + ϵ; and (2) reordering
attack, which randomly samples a token t according to the distribution, and then swaps t with the
highest-probability token, thereby making t the new top-1 token. Real-world attacks almost always
combine both, and tend to easier to detect than either alone.

Throughout the proof, we assume that RUT uses the log-rank score function. Based on the famous
Zip’s law in statistical linguistics (Piantadosi, 2014), we assume that the output token distributions
at any position follows a Zeta distribution with parameter s, where s ∈ (1,+∞) reflects the heavy-
tailedness of the distribution.

It can be easily shown that the FPR of RUT is α, the significance level that we choose. Below, we
focus on type II error: the probability of missing an attack when one exists.
Lemma C.1. Let the rank of a token be a random variable K on Z+ with probability mass function
p(k) = k−α/ζ(α) for α > 1. Let x = log k. The survival function S(x) = P (logK ≥ x), for
large k = ex, has the asymptotic form

S(x) =
e(1−α)x

ζ(α)(α− 1)
(1 + o(1))

Proof. The survival function is the probability that the rank K is greater than or equal to some value
m. By definition, this is the sum of the probabilities of all ranks from m to infinity.

S(logm) = P (K ≥ m) =

∞∑
k=m

p(k) =
1

ζ(α)

∞∑
k=m

k−α

For large m, this sum can be approximated by its corresponding integral. The leading term of the
Euler-Maclaurin formula shows that the sum and integral are asymptotically equivalent.

∞∑
k=m

k−α =

∫ ∞

m

t−αdt+O(m−α)

=

[
t−α+1

1− α

]∞
m

+O(m−α)

= 0− m1−α

1− α
+O(m−α)

=
m1−α

α− 1
+O(m−α)

=
m1−α

α− 1
(1 +O(m−1))

=
m1−α

α− 1
(1 + o(1))

Substituting this result back into the expression for the survival function, we obtain

S(logm) =
m1−α

ζ(α)(α− 1)
(1 + o(1))

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

The analysis is performed on the distribution of the log-rank score, x = log k. We therefore let
x = logm, which implies m = ex. Substituting this into the expression above yields the final
asymptotic form for the survival function of the log-rank.

S(x) =
(ex)1−α

ζ(α)(α− 1)
(1 + o(1)) =

e(1−α)x

ζ(α)(α− 1)
(1 + o(1))

For the remainder of this analysis, we denote this survival function, which serves as the CDF for our
rank-based test, by F (x, α).

Lemma C.2. For a hypothesis test using the Cramér-von Mises (CvM) statistic to distinguish a null
hypothesis H0 from an alternative hypothesis H1 with a fixed significance level αerr and a fixed
statistical power 1 − βerr, the required sample size n is assymptotically inversely proportional to
the CvM distance ω2

∞ between the two distributions, i.e.

n = Θ

(
1

ω2
∞

)
, as ω2

+∞ → 0,

where the constant coefficient is given by (1).

Proof. Let the ranks ri for i = 1, . . . , n be drawn from a distribution with CDF F (x). The hypoth-
esis test is H0 : F (x) = U(x) versus H1 : F (x) = F1(x), where U(x) = x is the CDF of the
Uniform[0,1] distribution. The CvM test statistic is

ω2 = n

∫ 1

0

(Fn(x)− U(x))2dx

where Fn(x) is the empirical CDF. The test rejects H0 if the observed statistic ω2 exceeds a critical
value cα. The power of the test is 1 − βerr = PH1

(ω2 > cα). The analysis of this power requires
the distribution of ω2 under H1.

While the distribution of ω2 under H0 is a non-normal, weighted sum of chi-squared variables, its
distribution under a fixed alternative H1 is asymptotically normal as n → ∞. As a standard result
in statistics, this follows from the central limit theorems of U-statistics, which establish that the
standardized statistic converges in distribution to a standard normal variable:

ω2 − EH1 [ω
2]√

VarH1
(ω2)

d−→ N(0, 1)

The expected value EH1
[ω2] contains a non-centrality parameter that grows linearly with n, such

that EH1
[ω2] = n · ω2

∞ +O(1), where the CvM distance ω2
∞ is defined as

ω2
∞ =

∫ 1

0

(F1(x)− U(x))2dx

The standard deviation,
√
V arH1

(ω2), grows slower than the mean, and the standardized deviation
σ1 =

√
VarH1

(ω2)/n is asymptotically O(1). We then analyze the power for large n:

1− βerr = P

(
Z >

cα − (n · ω2
∞ +O(1))

σ1

)
where Z is a standard normal variable. For the power to be a desired constant, the argument to the
probability function must also be a constant, denoted −zβ .

cα − n · ω2
∞ +O(1)

σ1
= −zβ

Solving this equation for n gives

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

n · ω2
∞ = cα + zβσ1 +O(1) = Θ(1) (1)

Since the right-hand side consists of terms that are constant for a fixed significance level and power,
it follows that n · ω2

∞ must be constant. This implies the inverse proportionality n ∝ 1/ω2
∞.

Theorem C.1. Consider a reparameterization attack that perturbs the token rank distribution’s
Zipfian parameter α by an amount ϵ. For RUT to achieve a constant Type II error rate:

• When α → 1+ (moderate heavy-tailedness), a target sample size of n = Θ(ϵ−2(α − 1)2)
is sufficient.

• When α → +∞ (extreme heavy-tailedness), a target sample size of n = Θ(ϵ−2α5) is
sufficient.

Proof. A reparameterization attack shifts the distribution parameter from α to α′ = α+ϵ. The CvM
distance ω2

∞ is proportional to ϵ2 and the integral of the squared derivative of the log-rank CDF,
F (x, α), with respect to α. First, we derive the asymptotic form of this derivative. Let F (x, α) =
e(1−α)xD(α)−1, where D(α) = ζ(α)(α− 1). The partial derivative is

∂F (x, α)

∂α
=

∂

∂α

(
e(1−α)xD(α)−1

)
= −xe(1−α)xD(α)−1 − e(1−α)xD(α)−2D′(α)

= −e(1−α)x

(
x

D(α)
+

D′(α)

D(α)2

)
where

D′(α) =
d

dα
(ζ(α)(α− 1)) = ζ ′(α)(α− 1) + ζ(α)

As α→∞, we have the known asymptotic behaviors ζ(α) = 1+o(1) and ζ ′(α) = o(1). Therefore,

D(α) = ζ(α)(α− 1) = (1 + o(1))(α− 1) = (α− 1)(1 + o(1))

D′(α) = ζ ′(α)(α− 1) + ζ(α) = o(1)(α− 1) + (1 + o(1)) = 1 + o(1)

Substituting these into the expression for the derivative gives

∂F (x, α)

∂α
= −e(1−α)x

(
x

(α− 1)(1 + o(1))
+

1 + o(1)

(α− 1)2(1 + o(1))2

)
= −e(1−α)x

(
x

α− 1
(1 + o(1)) +

1

(α− 1)2
(1 + o(1))

)
= −e(1−α)xΘ

(
α−1x+ α−2

)
The CvM distance ω2

∞ is proportional to

ϵ2
∫ ∞

0

(
∂F

∂α
)2p(x)dx

The probability density function is p(x) = −∂F (x,α)
∂x = e(1−α)x

ζ(α) .

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

ω2
∞ = Θ

(
ϵ2
∫ ∞

0

(
−e(1−α)x(α−1x+ α−2)

)2 e(1−α)x

ζ(α)
dx

)
(2)

= Θ

(
ϵ2

ζ(α)

∫ ∞

0

e2(1−α)x
(
α−2x2 + 2α−3x+ α−4

)
e(1−α)xdx

)
= Θ

(
ϵ2

ζ(α)

∫ ∞

0

e3(1−α)x(α−2x2 +O(α−3x) + α−4)dx

)
We now analyze this integral expression in two asymptotic regimes. As α→ 1+, let k = 3(α−1)→
0+. The integral becomes

∫∞
0

e−kx(α−2x2 + O(α−3x) + α−4)dx. We use the standard identity∫∞
0

e−kttndt = n!/kn+1.

Integral = α−2

∫ ∞

0

e−kxx2dx+ α−4

∫ ∞

0

e−kxdx+O

(∫ ∞

0

e−kxxdx

)
= α−2 2!

k3
+ α−4 0!

k1
+O(k−2)

=
2α−2

(3(α− 1))3
+

α−4

3(α− 1)
+O((α− 1)−2) (3)

As α→ 1+, the dominant term is Θ((α− 1)−3). Since ζ(α)−1 = Θ(α− 1), the CvM distance is

ω2
∞ = Θ

(
ϵ2 · (α− 1) · (α− 1)−3

)
= Θ

(
ϵ2(α− 1)−2

)
By Lemma C.2, the required sample size is n = Θ(ϵ−2(α− 1)2).

As α → +∞, a re-calculation results in (2) being of order Θ(α−5); note that (3) no longer apply
due to change in the limiting condition. Since ζ(α) = 1 + o(1), we have

ω2
∞ = Θ

(
ϵ2 · α−5

)
By Lemma C.2, the sample size is n = Θ

(
ϵ−2α5

)
.

Theorem C.2. Consider a reordering attack where a sampled token is made the new top-1 token.
For RUT to achieve a constant Type II error rate:

• When α→ 1+ (moderate heavy-tailedness), a target sample size of n = Θ(1) is sufficient.

• When α→ +∞ (extreme heavy-tailedness), a target sample size of n = Θ(2α) is sufficient.

Proof. For a reordering attack, the CvM distance ω2
∞ is the expected squared difference in the log-

rank scores, given by

ω2
∞ =

+∞∑
k=1

k−α(1− k−α) log k

ζ(α)2

Expanding the numerator and splitting the expression into two sums yields

ω2
∞ =

1

ζ(α)2

( ∞∑
k=1

log k

kα
−

∞∑
k=1

log k

k2α

)

Using the identity ζ ′(s) = −
∑∞

k=1 k
−s log k, we obtain

ω2
∞ =

1

ζ(α)2
((−ζ ′(α))− (−ζ ′(2α))) = ζ ′(2α)− ζ ′(α)

ζ(α)2

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

We analyze this closed-form expression. As α→ 1+, we use the Laurent series expansions ζ(α) =
(α− 1)−1 + γ+O(α− 1) and ζ ′(α) = −(α− 1)−2 + γ1 +O(α− 1), where γ and γ1 are Stieltjes
constants. The term ζ ′(2α) converges to the finite constant ζ ′(2). The numerator is dominated by
−ζ ′(α), so

ω2
∞ =

−(α− 1)−2 +O(1)

((α− 1)−1 +O(1))2
=
−(α− 1)−2(1 +O((α− 1)2))

(α− 1)−2(1 +O(α− 1))2
= 1 +O(α− 1) = Θ(1)

By Lemma C.2, a sample size of n = Θ(1) is sufficient.

As α → +∞, we have ζ(α) = 1 + o(1). The derivative is dominated by its leading term from the
series expansion, ζ ′(α) = −2−α ln 2(1 + o(1)). The term ζ ′(2α) = −4−α ln 2(1 + o(1)) is of a
lower order. Therefore,

ω2
∞ =

−ζ ′(α)(1− ζ ′(2α)/ζ ′(α))

(ζ(α))2

=
−(−2−α ln 2(1 + o(1)))(1− −4−α ln 2(1+o(1))

−2−α ln 2(1+o(1)) )

(1 + o(1))2

=
2−α ln 2(1 + o(1))(1− 2−α(1 + o(1)))

(1 + o(1))2

= 2−α ln 2(1 + o(1)) = Θ(2−α)

By Lemma C.2, the required sample size is n = Θ(2α).

31


	Introduction
	Related Work
	Problem Formulation
	Method
	Rank-Based Uniformity Test (RUT)
	Score Function Selection

	Experiments
	Experimental Setup
	Detecting Quantization
	Detecting Jailbreaks
	Detecting SFT
	Detecting Full Model Replacement
	Detecting Query Domains
	Detecting Real API Providers

	Conclusion
	AUROC
	AUROC Algorithm
	AUROC Score Distributions

	Statistic Power Curves
	Full Statistic Power Curves for Detecting Quantization
	Full Statistic Power Curves for Detecting Jailbreaking
	Full Statistic Power Curves for Detecting SFT
	Full Statistic Power Curves for Detecting Full Model Replacement
	Full Statistic Power Curves for Detecting More Query Domains
	Case Study on Detecting Decoding Parameters

	Theroretical Analysis of RUT

