

# 000 001 002 003 004 005 AUDITING BLACK-BOX LLM APIs WITH A RANK- 006 BASED UNIFORMITY TEST 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025

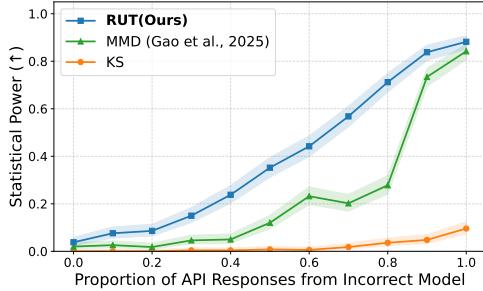
## ABSTRACT

026 As API access becomes a primary interface to large language models (LLMs),  
027 users often interact with black-box systems that offer little transparency into the  
028 deployed model. To reduce costs or maliciously alter model behaviors, API  
029 providers may discreetly serve quantized or fine-tuned variants, which can de-  
030 grade performance and compromise safety. Detecting such substitutions is diffi-  
031 cult, as users lack access to model weights and, in most cases, even output logits.  
032 To tackle this problem, we propose a Rank-based Uniformity Test (RUT) that can  
033 verify the behavioral equality of a black-box LLM to a locally deployed authentic  
034 model. Our method is accurate, query-efficient, and avoids detectable query pat-  
035 terns, making it robust to adversarial providers that reroute or mix responses upon  
036 the detection of testing attempts. We evaluate the approach across diverse query  
037 domains and threat scenarios, including quantization, harmful fine-tuning, jail-  
038 break prompts, and full model substitution, showing that it consistently achieves  
039 superior detection power over prior methods under constrained query budgets.  
040  
041

## 1 INTRODUCTION

042 APIs have become a central access point for  
043 large language models (LLMs) in consumer ap-  
044 plications, enterprise tools, and research work-  
045 flows (Anysphere Inc., 2025; Yun et al., 2025;  
046 ResearchFlow, 2025). However, while users  
047 can query black-box APIs, they have little to no  
048 visibility into the underlying model implemen-  
049 tation. Combined with the high cost of serv-  
050 ing large models and the latency pressure to re-  
051 duce time-to-first-token (TTFT), API providers  
052 are incentivized to deploy smaller or quan-  
053 tized variants of the original model to cut costs.  
054 Such modifications, while opaque to end users,  
055 can degrade model performance and introduce  
056 safety risks (Egashira et al., 2024). In more  
057 concerning cases, providers may incorporate  
058 harmful fine-tuning, jailbreak-enabling system  
059 prompts, or even misconfigured system compo-  
060 nents without realizing it (mirpo, 2025).

061 These risks highlight the need for *LLM API auditing*—the task of checking whether a deployed  
062 model is as claimed. Yet this is particularly challenging in the black-box setting: users typically lack  
063 access to model weights and receive only limited metadata (e.g., top-5 token log-probabilities). This  
064 necessitates detection methods that rely solely on observed outputs. However, even such output-  
065 level methods face potential evasion: if the detection relies on invoking an LLM API with specially  
066 constructed query distributions, a dishonest API provider could detect the special pattern and reroute  
067 those queries to the original model they claim to serve. Worse still, even without knowing the  
068 detection strategy, an API provider could mix multiple models, making the response distribution  
069 harder to distinguish.



070 Figure 1: Statistical power of different meth-  
071 ods in detecting substitution of the Gemma-2-  
072 9b-bit with its 4-bit quantized variant, as the pro-  
073 portion of API responses from the quantized  
074 model increases. Our method significantly out-  
075 performs MMD (Gao et al., 2025) and the Kol-  
076 mogorov–Smirnov (KS) baseline.

054 In this work, we focus on auditing API providers that serve **open-weight models**, and formulate  
 055 the LLM API auditing as a *model equality test* following Gao et al. (2025): given query access to a  
 056 target API and a certified reference model of the expected configurations, the goal is to determine  
 057 if the two produce statistically indistinguishable outputs on shared prompts. The auditor is assumed  
 058 to have full access to a faithful reference implementation of the claimed model, such as its decoding  
 059 parameters and logit outputs.

060 We propose that a model equality test for auditing LLM APIs must satisfy three key criteria: *ac-*  
 061 *curacy*, *query efficiency*, and *robustness* to adversarial attacks. Accuracy reflects how reliably a  
 062 test can be used in practice. Query efficiency is critical for reducing operational overhead, which  
 063 incentivizes more audits to ensure API models’ integrity. Robustness is equally essential for real-  
 064 world deployment, where audits must both evade detection by adversarial API providers and remain  
 065 effective under targeted attacks.

066 While several methods have been proposed for model equality testing, they each fall short in one  
 067 or more of these criteria (Table 1). Existing methods include Maximum Mean Discrepancy (MMD)  
 068 (Gao et al., 2025), trained text classifiers (Sun et al., 2025), identity prompting (Huang et al., 2025),  
 069 and benchmark performance comparison (Chen et al., 2023a). However, Sun et al. (2025) require  
 070 prohibitively many API queries; Huang et al. (2025) fail to capture model variations such as size,  
 071 version, or quantization (Cai et al., 2025); and Gao et al. (2025) and Chen et al. (2023a) rely on  
 072 special query distributions that can be adversarially detected and circumvented by techniques such  
 073 as prompt caching (Gu et al., 2025).

074 Driven by these limitations, we propose  
 075 a Rank-based Uniformity Test (RUT)—an  
 076 asymmetric two-sample hypothesis test that  
 077 addresses all three criteria simultaneously. In  
 078 RUT, we sample one response from the target  
 079 API and multiple responses from the reference  
 080 model for each prompt, then compute  
 081 the rank percentile of the API output within  
 082 the reference distribution. If the target and  
 083 reference models are identical, the percentiles  
 084 should follow a uniform distribution. We de-  
 085 tect deviations using the Cramér–von Mises test (Cramér, 1928). Our method requires only a single  
 086 API call per prompt, operates effectively on real-world, user-like queries, and avoids detectable  
 087 patterns that adversarial providers might exploit.

088 We evaluate RUT across a range of adversarial scenarios in which the API provider secretly substi-  
 089 tutes the claimed model with an alternative. In Section 5.2, we study the case where the substitute is  
 090 a quantized version of the original model. In Section 5.3, we test models augmented with a hidden  
 091 jailbreaking system prompt. In Section 5.4, we examine models finetuned on instruction-following  
 092 data. In Section 5.5, we consider substitution with a completely different model. Finally, in Section  
 093 5.6, we test the methods on additional query distributions of math and coding.

094 Under a fixed API query budget, we find RUT outperforms both MMD and a Kolmogorov–Smirnov  
 095 test (KS) baseline across all settings. It consistently achieves higher statistical power and shows  
 096 greater robustness to probabilistic substitution attacks (Figure 1). Moreover, when applied to five  
 097 real-world API-deployed models (Section 5.7), our method yields detection results closely aligned  
 098 with other methods and is more robust over string-based metrics on minor decoding mismatches.

099 To summarize, the main contributions of our work include:

- 100 **1. A novel test for auditing LLM APIs.** We propose RUT, an asymmetric two-sample-test that  
 101 needs only one API call per prompt and operates effectively on natural queries, achieving  
 102 query efficiency and by-design robustness to adversarial providers.
- 103 **2. Empirical validation across diverse threat models.** We validate the robustness of RUT  
 104 under diverse settings, including quantization, jailbreaking, SFT, and full model replacement.
- 105 **3. Cross-validated audit of live commercial endpoints.** We benchmark RUT side-by-side with  
 106 established tests (MMD and KS) on three major public LLM APIs and demonstrate its practi-  
 107 cality in real-world black-box settings.

108 

## 2 RELATED WORK

109

110 

**LLM fingerprinting.** Fingerprinting approaches focus on identifying LLMs by analyzing their out-  
111 puts. Active fingerprinting involves injecting backdoor-like behavior (Xu et al., 2024) into an LLM  
112 via finetuning, embedding watermarks (Kirchenbauer et al., 2023; Ren et al., 2023) into a model’s  
113 text generation process, or intentionally crafting prompts to elicit unique outputs from different  
114 LLMs (Pasquini et al., 2024). Passive fingerprinting, on the other hand, focuses on analyzing the  
115 inherent patterns in LLM-generated text (Su et al., 2023; Fu et al., 2025; Alhazbi et al., 2025). This  
116 builds on the observation that LLMs expose rich “idiosyncrasies”—distributional quirks that allow  
117 classifiers to identify a model (Sun et al., 2025). While related, fingerprinting aims to authenticate  
118 the origin of the model and prevent publisher overclaim. Consequently, fingerprints are designed  
119 to remain stable under fine-tuning or deployment changes. This is opposite to our auditing objec-  
120 tive. Prior work (Cai et al., 2025) also shows that fingerprinting methods fail to detect quantized  
121 substitutions.

122 

**Auditing LLM APIs.** A growing body of work investigates whether black-box APIs faithfully  
123 serve the advertised model. The most straightforward audit is to evaluate models’ benchmark per-  
124 formance (art, 2025; Eyuboglu et al., 2024; Chen et al., 2023b), but raw performance alone cannot  
125 expose covert substitutions or partial routing. Gao et al. (2025) formalizes the problem as *Model*  
126 *Equality Testing* and shows that a kernel-MMD test can already flag public endpoints that deviate  
127 from their open-weight checkpoints. Concurrently to our work, Cai et al. (2025) investigate the  
128 model substitution setting and show that API providers can evade detection through strategies such  
129 as model quantization, randomized substitution, and benchmark evasion. Building on these insights,  
130 we propose a method that is more robust to such attacks and extend the threat model to include a  
131 broader range of realistic scenarios, such as jailbroken or maliciously finetuned models.

132 

## 3 PROBLEM FORMULATION

133

134 

In this section, we formalize the LLM API auditing problem as a black-box model equality test  
135 between a target API and a fully accessible reference model.

136 

**Models.** We denote an LLM as a conditional distribution  $\pi(y|x; \varphi)$  over text output  $y \in \mathcal{Y}$  given  
137 an input prompt  $x \in \mathcal{X}$  and decoding parameters  $\varphi$  (e.g., temperature, top- $p$ ). In all experiments,  
138 we control the decoding parameters to be the same across models. Two such models are involved  
139 in the test. The *reference model*  $\pi_{\text{ref}}$  is fully accessible locally; the verifier can draw an unlimited  
140 number of samples  $y_{\text{ref}} \sim \pi_{\text{ref}}(\cdot | x; \varphi)$  for any  $x$  and obtain relevant logits. The *target model*  $\pi_{\text{tgt}}$  is  
141 exposed only through a remote API that returns exactly one completion  $y_{\text{tgt}} \sim \pi_{\text{tgt}}(\cdot | x; \varphi)$  per call  
142 and charges for every invocation. The total API budget is  $N$  prompts.

143 

**Hypotheses.** The model equality test is cast as a composite two-sample hypothesis test. The null  
144 hypothesis

145 
$$H_0 : \pi_{\text{tgt}}(\cdot | x; \varphi) = \pi_{\text{ref}}(\cdot | x; \varphi) \quad \forall x \in \mathcal{X} \quad (1)$$

146 

states that the deployed model is behaviorally identical to the declared one.

147 
$$H_1 : \exists x \in \mathcal{X} \text{ such that } \pi_{\text{tgt}}(\cdot | x; \varphi) \neq \pi_{\text{ref}}(\cdot | x; \varphi) \quad (2)$$

148 

captures any observable deviation, whether arising from quantization, fine-tuning, prompt injection,  
149 or full model replacement.

150 

**Adversarial model provider.** A dishonest model provider may attempt to evade detection through  
151 *probabilistic substitution*. We model this behaviour by

152 
$$\pi_{\text{tgt}}(\cdot | x; \varphi) = (1 - q(x)) \pi_{\text{ref}}(\cdot | x; \varphi) + q(x) \pi_{\text{alt}}(\cdot | x; \varphi), \quad (3)$$

153 

where  $\pi_{\text{alt}}$  is an arbitrary alternative model (e.g., quantized or adversarially finetuned version of  $\pi_{\text{ref}}$ )  
154 and  $q : \mathcal{X} \rightarrow [0, 1]$  is an unknown routing function that may depend on the prompt and even on past  
155 interaction history (e.g., routing based on prompt caching (Gu et al., 2025)). When  $q(x)$  is small  
156 but positive on a non-negligible fraction of typical prompts, the mixture in equation 3 significantly  
157 complicates discrimination; nevertheless, a sound detection procedure must retain statistical power  
158 under such adversarial conditions.

159 

**Detector and objectives.** A *detector* is a decision rule  $\varphi : \mathcal{D}_N \rightarrow \{0, 1\}$  whose output 1 means  
160 “reject  $H_0$ ”. Here,  $\mathcal{D}_N$  denotes the data collected with  $N$  API queries and many local model queries.

162 For a user-specified significance level  $\alpha \in (0, 1)$ , the detector must satisfy the type-I error constraint  
 163  $\Pr_{H_0}[\varphi(\mathcal{D}_N) = 1] \leq \alpha$ . Subject to this guarantee, the verifier seeks to maximize the statistical  
 164 power

$$165 \beta(q, \pi_{\text{alt}}) = \Pr_{H_1}[\varphi(\mathcal{D}_N) = 1],$$

166 uniformly over a broad class of substitution policies  $(q, \pi_{\text{alt}})$ ; to do so with as few costly API queries  
 167  $N$  as possible; and to employ prompts that are indistinguishable from ordinary user traffic, thereby  
 168 preventing the provider from detecting and rerouting “suspicious-looking” inputs.

## 170 4 METHOD

173 In this section, we introduce our rank-based uniformity test in Section 4.1 and empirically identify  
 174 the most discriminative score function to maximize the detection power in Section 4.2.

### 175 4.1 RANK-BASED UNIFORMITY TEST (RUT)

178 To determine whether the target model  $\pi_{\text{tgt}}$  is identical to the reference model  $\pi_{\text{ref}}$ , we propose a  
 179 *rank-based uniformity test*. This method assesses how typical the target model’s responses are under  
 180 the reference model’s generation distribution.

181 **Response score function.** To perform a statistical test, we first define a scalar-valued *score function*  
 182  $f : \mathcal{Y} \times \mathcal{X} \rightarrow \mathbb{R}$  that maps a model response and prompt to a real number. This function assigns a  
 183 score to each output given the prompt, i.e.,

$$184 s = f(y, x), \quad \text{where } x \in \mathcal{X}, y \in \mathcal{Y}, s \in \mathbb{R}.$$

186 An ideal score function  $f^*$  should induce an *injective* mapping  $y \mapsto f^*(y, x)$  for any fixed prompt  
 187  $x \in \mathcal{X}$ . Under this assumption, each distinct response corresponds to a unique score value, ensuring  
 188 that the score distribution fully characterizes the model’s outputs.

189 **Uniformity as a test signal.** For each prompt  $x \in \mathcal{X}$ , we sample a response  $y_{\text{tgt}} \sim \pi_{\text{tgt}}(\cdot | x; \varphi)$  and  
 190 compute its scalar score  $s_{\text{tgt}} = f(y_{\text{tgt}}, x)$ . To assess how typical this response is under the reference  
 191 model, we evaluate its rank in the reference model’s score distribution.

192 We define the cumulative distribution function (CDF) of the reference model’s scores as:

$$194 F_{\pi_{\text{ref}}}(s | x) := \mathbb{P}_{y \sim \pi_{\text{ref}}(\cdot | x; \varphi)} [f(y, x) \leq s].$$

195 Since  $f(y, x)$  takes values in a discrete set,  $F_{\pi_{\text{ref}}}$  is a step function. To ensure the rank statistic is  
 196 continuously distributed under the null hypothesis, we apply a *randomized quantile residual* (Dunn  
 197 & Smyth, 1996) to extend the probability integral transform (David & Johnson, 1948) to discrete  
 198 distributions. Specifically, we define the *rank statistic* as

$$200 r_{\text{tgt}} := F_{\pi_{\text{ref}}}(s_{\text{tgt}}^-) + U \cdot \mathbb{P}(f(y, x) = s_{\text{tgt}}), \quad U \sim \text{Uniform}[0, 1], \quad (4)$$

201 where  $F_{\pi_{\text{ref}}}(s_{\text{tgt}}^-) := \mathbb{P}(f(y, x) < s_{\text{tgt}})$  is the left-limit of the CDF at  $s_{\text{tgt}}$ , and  $\mathbb{P}(f(y, x) = s_{\text{tgt}})$  is  
 202 the probability mass at  $s_{\text{tgt}}$ . Under the null hypothesis  $\pi_{\text{tgt}} = \pi_{\text{ref}}$ , this rank statistic  $r_{\text{tgt}} \in [0, 1]$  is  
 203 uniformly distributed.

204 Conversely, suppose that  $r_{\text{tgt}} \sim \text{Uniform}[0, 1]$  under the randomized quantile residual construction.  
 205 Since the CDF  $F_{\pi_{\text{ref}}}(\cdot | x)$  is stepwise and non-decreasing, a uniformly distributed  $r_{\text{tgt}}$  implies that  
 206 the score  $s_{\text{tgt}}$  follows the same discrete distribution as  $s_{\text{ref}}$ . By injectivity of  $f$ , this further implies  
 207 that  $y_{\text{tgt}} \sim \pi_{\text{ref}}(\cdot | x; \varphi)$ , and hence  $\pi_{\text{tgt}} = \pi_{\text{ref}}$ .

208 Thus, with an injective score function  $f$ , testing the uniformity of  $r_{\text{tgt}}$  as defined in equation 4 offers  
 209 a valid signal for distinguishing  $\pi_{\text{tgt}}$  from  $\pi_{\text{ref}}$ .

211 **Empirical approximation of  $F_{\pi_{\text{ref}}}$ .** In practice, it is intractable to build the true CDF  $F_{\pi_{\text{ref}}}(\cdot | x)$ .  
 212 Instead, we approximate it using an empirical CDF from  $m$  reference samples for each prompt.

213 Given a target response  $y_i \sim \pi_{\text{tgt}}(\cdot | x_i; \theta)$  and reference responses  $y_{ij} \sim \pi_{\text{ref}}(\cdot | x_i; \theta)$  for  $j =$   
 214  $1, \dots, m$ , we compute the scalar scores

$$215 s_i := f(y_i, x_i), \quad s_{ij} := f(y_{ij}, x_i).$$

216 We then define the *randomized rank statistics*  $r_i \in [0, 1]$  as  
 217

$$218 \quad 219 \quad 220 \quad r_i = \frac{1}{m} \left( \sum_{j=1}^m \mathbf{1}\{s_i > s_{ij}\} + U_i \cdot \sum_{j=1}^m \mathbf{1}\{s_i = s_{ij}\} \right),$$

221 where  $U_i \sim \text{Uniform}[0, 1]$  is an independent random variable to break ties uniformly, and ensure  $r_i$   
 222 is an unbiased estimator of  $r_{\text{tgt}}$  given the prompt  $x_i$ .  
 223

224 **Discriminative score function via empirical selection.** While an ideal *injective* score function  
 225 would guarantee sensitivity to any behavioral difference between  $\pi_{\text{tgt}}$  and  $\pi_{\text{ref}}$ , constructing such a  
 226 function for which we can calculate the CDF is generally infeasible in practice.

227 To ensure that our test remains practically effective, we instead require the score function to be  
 228 *sufficiently discriminative*, in the sense that it induces distinct score distributions whenever  $\pi_{\text{ref}} \neq$   
 229  $\pi_{\text{tgt}}$ . Formally, for fixed prompt  $x \in \mathcal{X}$ , let

$$230 \quad S_{\pi_{\text{ref}}} := f(y, x) \text{ with } y \sim \pi_{\text{ref}}(\cdot | x; \varphi), \quad \text{and} \quad S_{\pi_{\text{tgt}}} := f(y, x) \text{ with } y \sim \pi_{\text{tgt}}(\cdot | x; \varphi).$$

232 We say that  $f$  is sufficiently discriminative if the distributions of  $S_{\pi_{\text{ref}}}$  and  $S_{\pi_{\text{tgt}}}$  differ whenever  
 233  $\pi_{\text{ref}} \neq \pi_{\text{tgt}}$ , i.e.,

$$234 \quad \pi_{\text{ref}}(\cdot | x; \varphi) \neq \pi_{\text{tgt}}(\cdot | x; \varphi) \quad \Rightarrow \quad P_{S_{\pi_{\text{ref}}}} \neq P_{S_{\pi_{\text{tgt}}}}.$$

235 Under this condition, differences in response distributions are reflected in the score distributions,  
 236 causing the ranks to deviate from uniformity.

237 Thus, we aim to find the most discriminative score function among several promising candidates  
 238 through empirical experiments. In Section 4.2, we compare five candidate score functions—log-  
 239 likelihood, token rank, log-rank, entropy, and the log-likelihood log-rank ratio (Su et al., 2023)—and  
 240 find that log-rank is the most discriminative in practice for separating responses by  $\pi_{\text{ref}}$  and  $\pi_{\text{tgt}}$ , and  
 241 therefore adopt it in our uniformity test.

242 **Full test procedure.** We now present the full RUT procedure.

244 Let  $\{x_1, \dots, x_n\} \subset \mathcal{X}$  be a set of prompts. For each prompt  $x_i$ , we sample one response from the  
 245 target model,

$$246 \quad y_i \sim \pi_{\text{tgt}}(\cdot | x_i; \theta),$$

247 and  $m$  responses from the reference model,

$$248 \quad y_{ij} \sim \pi_{\text{ref}}(\cdot | x_i; \theta), \quad j = 1, \dots, m.$$

251 We compute the log-rank scores

$$252 \quad s_i := f(y_i, x_i), \quad s_{ij} := f(y_{ij}, x_i),$$

254 and the corresponding randomized rank statistics  $\{r_i\}_{i=1}^n$ .

255 We apply the Cramér–von Mises (CvM) test (Cramér, 1928) to assess the deviations between  
 256  $\{r_i\}_{i=1}^n$  and  $\text{Uniform}[0, 1]$ . The test evaluates the null hypothesis

$$257 \quad H_0 : r_i \sim \text{Uniform}[0, 1] \quad \text{for all } i.$$

259 The CvM test statistic is defined as

$$261 \quad 262 \quad \omega^2 = \frac{1}{12n} + \sum_{i=1}^n \left( \frac{2i-1}{2n} - r_{(i)} \right)^2,$$

263 where  $r_{(1)} \leq r_{(2)} \leq \dots \leq r_{(n)}$  are the ordered rank statistics.

265 To compute the  $p$ -value, we compare the observed statistic  $\omega_{\text{obs}}^2$  to the distribution of the CvM  
 266 statistic  $\omega_{\text{null}}^2$  computed under the null hypothesis. The  $p$ -value is given by

$$268 \quad p\text{-value} = \mathbb{P}_{H_0} [\omega_{\text{null}}^2 \geq \omega_{\text{obs}}^2].$$

269 We reject  $H_0$  and conclude that the target and reference models are different if  $p\text{-value} < 0.05$ .

270 4.2 SCORE FUNCTION SELECTION  
271

272 The RUT requires a scalar score function  $f(y, x)$ . To identify a function that best captures dis-  
273 tributional differences between models, we consider five candidate functions. **Log-likelihood:**  
274  $\log \pi_{\text{ref}}(y \mid x)$ . **Token rank:** the average rank of response tokens in  $y$ , where a token’s rank is  
275 its position in the vocabulary ordered by the  $\pi_{\text{ref}}$ ’s next-token probabilities. **Log-rank:** the average  
276 of the logarithm of the token rank. **Entropy:** predictive entropy for  $y$  under  $\pi_{\text{ref}}(x)$ . **Log-likelihood**  
277 **log-rank ratio (LRR):** the ratio between log-likelihood and log-rank. (Su et al., 2023).

278 To identify the most discriminative score function, we conduct a Monte Carlo evaluation con-  
279 sisting of 500 independent trials. In each trial, we randomly select 10 prompts from the Wild-  
280 Chat (Zhao et al., 2024) dataset and sample 50  
281 completions per prompt from both  $\pi_{\text{ref}}$  and  $\pi_{\text{tgt}}$ , using a fixed temperature of 0.5 and a max-  
282 imum length of 30 tokens. For each candidate  
283 score function, we compute the average AU-  
284 ROC (Bradley, 1997) across the 10 prompts for  
285 each trial, yielding a distribution of 500 AU-  
286 ROC scores per function. The full algorithm  
287 to calculate per score function average AUROC  
288 is included in Appendix A.1. Across different  
289 model comparisons, we find that **log-rank** con-  
290 sistently yields the most separable AUROC dis-  
291 tribution from 0.5, indicating the strongest dis-  
292 criminative power. Figure 2 shows an example  
293 comparing Gemma-2-9b-it with its 4-bit quantized  
294 variant. Based on the results, we select log-rank  
295 as the scoring function for RUT. Complete AUROC  
296 results are provided in Appendix A.2. We also  
297 present a formal analysis of RUT’s statistical power with the log-rank score function under ad-  
298 versarial perturbations in Appendix C.

299

300 5 EXPERIMENTS  
301

302 In this section, we evaluate RUT across diverse model substitution scenarios, including quantiza-  
303 tion (Section 5.2), jailbreaks (Section 5.3), SFT (Section 5.4), full model replacement (Section 5.5),  
304 additional query domains (Section 5.6), and real-world API providers (Section 5.7). Detection per-  
305 formance is compared against MMD and a KS baseline using statistical power AUC as the primary  
306 metric. We also include a case study on detecting decoding parameter mismatch in Appendix B.6  
307 and demonstrate that RUT remains robust across models and query domains.

308

309 5.1 EXPERIMENTAL SETUP  
310

311 To evaluate detection performance under adversarial conditions, we simulate probabilistic substi-  
312 tution attacks where a fraction  $q \in [0, 1]$  of API queries are routed to an alternative model (e.g.,  
313 quantized or fine-tuned). For each value of  $q$ , we estimate the statistical power, defined as the proba-  
314 bility of correctly rejecting the null hypothesis when substitution is present. We then summarize the  
315 resulting power–substitution rate curve using the area under the curve (AUC) over  $q \in [0, 1]$ . The  
316 AUC ranges from 0 to 1 and reflects the method’s ability to maintain high statistical power across  
317 varying levels of substitution, serving as a measure of robustness to such attacks. Higher values  
318 indicate more reliable and consistent detection performance. Figure 1 shows an example comparing  
319 Gemma-2-9b-it and its 4-bit quantized variant. In the following experiments, we compute 95% con-  
320 fidence intervals for AUCs using bootstrapping. The 95% wilson confidence intervals for statistical  
321 powers are shown as shaded area on plots in Appendix B.

322 **Data.** We use the WildChat dataset (Zhao et al., 2024), which contains real-world conversations  
323 between human users and ChatGPT. This dataset reflects authentic user behavior, ensuring the query  
distribution represents typical API traffic.

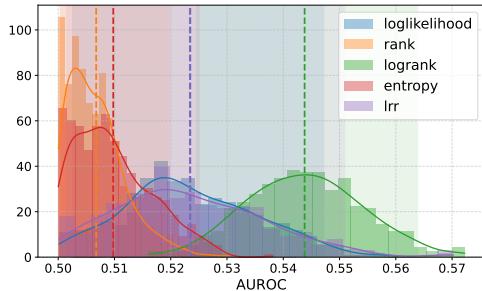


Figure 2: Distribution of AUROC scores for five candidate score functions across 500 trials comparing Gemma-2-9b-it and its 4-bit quantized variant. Log-rank achieves the most separable distribution from the random level 0.5, indicating superior power in distinguishing different models.

Based on the results, we select log-rank as the scoring function for RUT. Complete AUROC results are provided in Appendix A.2. We also present a formal analysis of RUT’s statistical power with the log-rank score function under adversarial perturbations in Appendix C.

6

324  
 325 (a) Statistical power AUC for detecting quantized  
 326 variants. **Bold** = best method; gray = none reliable.

| Model        | RUT                                                          | MMD                                                           | KS                                                     |
|--------------|--------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|
| Gemma-4bit   | <b>0.392</b><br><small>84<sup>-</sup>103<sup>+</sup></small> | <b>0.214</b><br><small>110<sup>-</sup>112<sup>+</sup></small> | 0.017<br><small>32<sup>-</sup>34<sup>+</sup></small>   |
| Gemma-8bit   | 0.049<br><small>59<sup>-</sup>59<sup>+</sup></small>         | 0.043<br><small>62<sup>-</sup>64<sup>+</sup></small>          | 0.001<br><small>08<sup>-</sup>10<sup>+</sup></small>   |
| Llama-4bit   | <b>0.642</b><br><small>84<sup>-</sup>82<sup>+</sup></small>  | <b>0.625</b><br><small>89<sup>-</sup>93<sup>+</sup></small>   | 0.474<br><small>88<sup>-</sup>89<sup>+</sup></small>   |
| Llama-8bit   | 0.132<br><small>82<sup>-</sup>81<sup>+</sup></small>         | <b>0.158</b><br><small>110<sup>-</sup>109<sup>+</sup></small> | 0.005<br><small>17<sup>-</sup>19<sup>+</sup></small>   |
| Mistral-4bit | <b>0.586</b><br><small>95<sup>-</sup>94<sup>+</sup></small>  | 0.500<br><small>92<sup>-</sup>97<sup>+</sup></small>          | 0.330<br><small>100<sup>-</sup>102<sup>+</sup></small> |
| Mistral-8bit | 0.049<br><small>56<sup>-</sup>61<sup>+</sup></small>         | 0.090<br><small>77<sup>-</sup>84<sup>+</sup></small>          | 0.006<br><small>20<sup>-</sup>22<sup>+</sup></small>   |

327  
 328 (b) Statistical power AUC for detecting jail-breaking  
 329 prompts. **Bold** = most effective method per prompt.

| Model   | Prompt   | RUT                                                         | MMD                                                  | KS                                                   |
|---------|----------|-------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Mistral | Dan      | <b>0.895</b><br><small>46<sup>-</sup>45<sup>+</sup></small> | 0.802<br><small>63<sup>-</sup>55<sup>+</sup></small> | 0.873<br><small>37<sup>-</sup>36<sup>+</sup></small> |
|         | Anti-Dan | <b>0.893</b><br><small>00<sup>-</sup>00<sup>+</sup></small> | 0.781<br><small>00<sup>-</sup>00<sup>+</sup></small> | 0.872<br><small>00<sup>-</sup>00<sup>+</sup></small> |
|         | Evil-Bot | <b>0.892</b><br><small>44<sup>-</sup>44<sup>+</sup></small> | 0.766<br><small>56<sup>-</sup>59<sup>+</sup></small> | 0.873<br><small>37<sup>-</sup>37<sup>+</sup></small> |
| Gemma   | Dan      | <b>0.888</b><br><small>43<sup>-</sup>44<sup>+</sup></small> | 0.757<br><small>65<sup>-</sup>68<sup>+</sup></small> | 0.867<br><small>34<sup>-</sup>36<sup>+</sup></small> |
|         | Anti-Dan | <b>0.858</b><br><small>49<sup>-</sup>53<sup>+</sup></small> | 0.816<br><small>60<sup>-</sup>52<sup>+</sup></small> | 0.854<br><small>31<sup>-</sup>31<sup>+</sup></small> |
|         | Evil-Bot | <b>0.893</b><br><small>43<sup>-</sup>42<sup>+</sup></small> | 0.753<br><small>65<sup>-</sup>63<sup>+</sup></small> | 0.871<br><small>36<sup>-</sup>36<sup>+</sup></small> |

330  
 331 Table 2: Statistical-power AUCs. All confidence interval ranges are reported in  $\times 10^{-4}$

332  
 333  
 334  
 335  
 336  
**Baseline.** For the detection methods (Sun et al., 2025; Gao et al., 2025) that are compatible with WildChat, We primarily focus on Maximum Mean Discrepancy (MMD) (Gao et al., 2025) as the baseline, as Sun et al. (2025) is reported to fail to identify quantization (Cai et al., 2025). We also tailor a Kolmogorov–Smirnov (KS) test baseline that uses the same information as RUT: it computes the log-rank scores from the reference model on both the target and reference model responses and applies the two-sample KS test (Darling, 1957) on these two sets of scores to estimate the  $p$ -value between the target and reference distributions.

337  
 338 **Test procedures.** We apply a consistent sample budget constraint on all tests. The implementation  
 339 details of their test procedures are listed below:

340  
 341 • **Rank-Based Uniformity Test (RUT):** Each trial samples 100 prompts. We query each  
 342 prompt once to the target and 100 times to the reference model.

343  
 344 • **Maximum Mean Discrepancy (MMD):** We apply the MMD test based on the character-  
 345 level Hamming distance following Gao et al. (2025). Each trial uses 10 prompts, with 10  
 346 samples per prompt. We compute the MMD statistic and estimate the  $p$ -value via 500 random  
 347 permutations.

348  
 349 • **Kolmogorov–Smirnov Test (KS):** We use the same sampling setup as RUT: 100 prompts per  
 350 trial, 1 query to the target, and 100 to the reference model per prompt.

351  
 352 Across all models, we set the temperature to 0.5 and cap generation at 30 tokens. We use vLLM  
 353 (Kwon et al., 2023) on a single A6000 for all local inferences. To estimate statistical power, we  
 354 repeat each experiment over 500 Monte Carlo trials. Power is computed as the proportion of trials  
 355 in which the test correctly rejects the null hypothesis at a significant level of 0.05. All tests were run  
 356 with Intel Xeon Gold 6230R @ 2.10GHz and 16 GB RAM per job.

## 357 5.2 DETECTING QUANTIZATION

358  
 359 We consider the setting where the API provider uses a quantized variant to substitute the claimed  
 360 model. We evaluate three detection methods on quantized variants of Llama-3.2-3B-Instruct<sup>1</sup>,  
 361 Mistral-7B-Instruct-v0.3<sup>2</sup>, and Gemma-2-9B-it<sup>3</sup>, comparing each model to its 4-bit and 8-bit quantized  
 362 counterparts. As shown in Table 2a, none of the methods succeed in reliably detecting substitution  
 363 for the 8-bit variants of Gemma and Mistral, where statistical power AUC remains near zero  
 364 across the board. In the remaining four settings, RUT outperforms MMD and the KS baseline in  
 365 three out of the four cases, demonstrating superior sensitivity to quantization-induced distributional  
 366 shifts. Full statistical power curves for AUCs are provided in Appendix B.1.

367  
 368 <sup>1</sup><https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct>

369 <sup>2</sup><https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3>

370 <sup>3</sup><https://huggingface.co/google/gemma-2-9b-it>

378 5.3 DETECTING JAILBREAKS  
379

380 We consider the setting where the API provider secretly appends a hidden jailbreaking system  
381 prompt to user queries. To evaluate this scenario, we use two base models: Mistral-7B-Instruct-v0.3  
382 and Gemma-2-9B-it. For each model, we construct a test using three representative jailbreaking  
383 prompts *Dan*, *Anti-Dan*, and *Evil-Bot* adapted from [Shen et al. \(2024\)](#). As shown in Table 2b, all  
384 jailbreak cases are reliably detected, with power AUCs consistently above 0.75. RUT achieves the  
385 highest power in all 6 settings, demonstrating its superior sensitivity to model deviations caused by  
386 hidden jailbreaking prompts. Full statistical power curves for AUCs are provided in Appendix B.2.

387 388 5.4 DETECTING SFT  
389

390 We study the setting where the API provider fine-tunes a model on instruction-following data.  
391 Specifically, we fine-tune two base models—Llama-3.2-3B-Instruct and Mistral-7B-Instruct-  
392 v0.3—on benign and harmful instruction-following datasets. We use Alpaca ([Taori et al., 2023](#))  
393 as the benign dataset and BeaverTails ([Ji et al., 2023](#)) for harmful question answering. Each model  
394 is fine-tuned on 500 samples from the respective dataset for 5 epochs using LORA ([Hu et al., 2021](#))  
395 with rank 64 and  $\alpha = 16$ , a batch size of 32, and a learning rate of  $1 \times 10^{-4}$  on a single A100. For  
396 each checkpoint, we compute the statistical power AUC of the detection methods.

397 As shown in Figure 3, RUT consistently achieves higher power AUC  
398 than both the KS and MMD base-  
399 lines across all fine-tuning config-  
400 urations. Notably, our method detects  
401 behavioral changes within the first  
402 epoch of fine-tuning, demon-  
403 strating strong sensitivity to early-stage  
404 distributional shifts. While all methods im-  
405 prove with additional training, RUT  
406 remains the most robust across both  
407 models and datasets. Full statistical  
408 power curves for AUCs are provided  
409 in Appendix B.3.

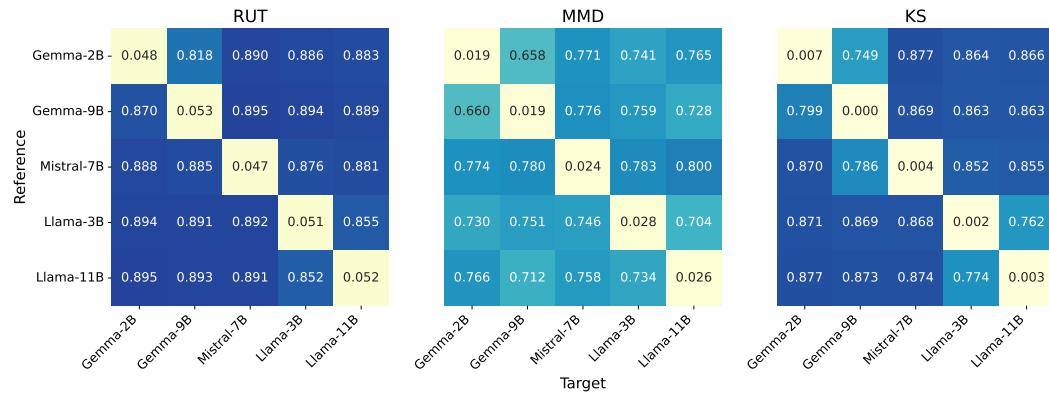
410 411 5.5 DETECTING FULL MODEL REPLACEMENT  
412

Figure 3: AUC to detect SFT checkpoints across epochs.

425 Figure 4: Statistical power AUC for detecting full model replacement. Each cell shows the AUC  
426 score between a reference and a target model. Diagonal values represent self-comparisons.  
427

428 We evaluate the setting where the API provider substitutes the claimed model with a completely  
429 different one. To simulate this scenario, we conduct pairwise comparisons among five open-  
430 source models: Llama-3.2-3B-Instruct, Llama-3.2-11B-Vision-Instruct<sup>4</sup>, Mistral-7B-Instruct-v0.3,  
431

<sup>4</sup><https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct>

432 Table 3: Statistical power AUC for detecting quantized variants across query domains. **Bold** = best  
 433 method; gray = none reliable. See full power curves in Appendix B.5.

| (a) BigCodeBench (Zhuo et al., 2024) |              |              |       | (b) Math (Hendrycks et al., 2021) |              |       |       |
|--------------------------------------|--------------|--------------|-------|-----------------------------------|--------------|-------|-------|
| Model                                | RUT          | MMD          | KS    | Model                             | RUT          | MMD   | KS    |
| Gemma-4bit                           | 0.136        | <b>0.170</b> | 0.00  | Gemma-4bit                        | <b>0.297</b> | 0.237 | 0.059 |
| Gemma-8bit                           | 0.048        | 0.052        | 0.00  | Gemma-8bit                        | 0.048        | 0.067 | 0.002 |
| Llama-4bit                           | <b>0.593</b> | 0.353        | 0.524 | Llama-4bit                        | <b>0.532</b> | 0.468 | 0.412 |
| Llama-8bit                           | 0.093        | <b>0.143</b> | 0.021 | Llama-8bit                        | <b>0.253</b> | 0.177 | 0.118 |
| Mistral-4bit                         | <b>0.462</b> | 0.326        | 0.183 | Mistral-4bit                      | <b>0.360</b> | 0.216 | 0.160 |
| Mistral-8bit                         | 0.041        | 0.058        | 0.011 | Mistral-8bit                      | 0.059        | 0.060 | 0.019 |

445 Gemma-2-2B-it<sup>5</sup>, and Gemma-2-9B-it. For each pair, one model serves as the reference model  
 446 while the other acts as the deployed target model. As shown in Figure 4, RUT consistently achieves  
 447 the highest statistical power AUC across model pairs, outperforming both the MMD and KS base-  
 448 lines. The results highlight the method’s sensitivity to full model substitutions. Full statistical power  
 449 curves for AUCs are provided in Appendix B.4.

## 450 5.6 DETECTING QUERY DOMAINS

451 We now evaluate the robustness of RUT across more query domains. Beyond WildChat which  
 452 reflects general conversational traffic, we consider two specialized datasets: BigCodeBench (Zhuo  
 453 et al., 2024) for programming tasks and MATH (Hendrycks et al., 2021) for mathematical problem  
 454 solving. We adopt the quantization setup in Section 5.2 as this setting is both challenging and  
 455 practically relevant.

456 As shown in Table 3, the overall detection powers mirror those observed in Section 5.2. Detection  
 457 remains difficult for 8-bit quantized Gemma and Mistral, where all methods fail to achieve mean-  
 458 ingful power. RUT consistently shows high detectability in the remaining cases, outperforming MMD  
 459 and KS in seven out of the eight cases. These results show that RUT remains effective in both math  
 460 and code domains, reinforcing its generalizability to diverse query distributions.

## 463 5.7 DETECTING REAL API PROVIDERS

464 We evaluate the methods on three  
 465 models—Llama-3.2-3B-Instruct, Mistral-  
 466 7B-Instruct-v0.3, and Gemma-2-9B-  
 467 it—each from multiple API providers.  
 468 Local inference on an A100 GPU serves  
 469 as the baseline. As shown in Table 4,  
 470 all tests correctly identify behavioral  
 471 equivalence in local deployments.

472 Across all settings, RUT and MMD gen-  
 473 erally agree in detecting significant devi-  
 474 tions across providers, offering mutual  
 475 validation for their behavioral sensitivity.  
 476 The KS test exhibits similar trends but  
 477 with notably lower sensitivity. An excep-  
 478 tion arises in the Mistral + HF Inference  
 479 setting, where MMD yields a power of 1.0

480 while other tests are below 0.2. We suspect the discrepancy is due to a tokenization mismatch: the  
 481 HF Inference API consistently omits the leading whitespace present in the reference outputs. Since  
 482 MMD uses string Hamming distance, the formatting difference inflates the score. After restoring  
 483 the missing space, the MMD score drops to 0.211, aligning with other tests. This illustrates the  
 484 robustness of RUT to minor decoding mismatches that can mislead string-based metrics.

485 Table 4: Statistical power for detecting differences  
 486 from the model deployed on an A6000 GPU. A100  
 487 denotes the same model run locally on an A100 GPU;  
 488 other entries are actual API providers. Values  $> 0.5$   
 489 indicate significant behavioral deviation. **Green** = no  
 490 significant difference; **Red** = significant difference.

| Model   | Provider | RUT          | MMD          | KS           |
|---------|----------|--------------|--------------|--------------|
| Llama   | A100     | <b>0.094</b> | <b>0.142</b> | <b>0.002</b> |
| Llama   | Nebius   | <b>0.962</b> | <b>0.944</b> | <b>0.426</b> |
| Llama   | Novita   | <b>0.988</b> | <b>0.996</b> | <b>0.530</b> |
| Mistral | A100     | <b>0.058</b> | <b>0.138</b> | <b>0.004</b> |
| Mistral | HF Inf.  | <b>0.188</b> | <b>1.00</b>  | <b>0.000</b> |
| Gemma   | A100     | <b>0.060</b> | <b>0.084</b> | <b>0.000</b> |
| Gemma   | Nebius   | <b>0.312</b> | <b>0.432</b> | <b>0.008</b> |

<sup>5</sup><https://huggingface.co/google/gemma-2-2b-it>

## 486 6 CONCLUSION 487

488 The stable increase in the size (Kaplan et al., 2020) and architectural complexity (Zhou et al., 2022)  
489 of frontier LLMs has led to a rise in the popularity of API-based model access. To prevent per-  
490 formance degradation and security risks from model substitution behind API interfaces, this work  
491 proposes the rank-based uniformity test for model equality testing. We test the method against  
492 a variety of different substitution attacks and demonstrate its consistent effectiveness in detecting  
493 substitution and its superiority over existing methods.

494 **Limitations and Future Work** We have not empirically validated effectiveness of RUT against  
495 an adversary with full knowledge of the auditing method. For example, an attacker could selectively  
496 reroute prompts that are expected to produce atypical log-rank statistics. Assessing the method’s  
497 robustness against more powerful adversaries is an important next step. In addition, RUT requires  
498 access to a locally deployed authentic reference model, which limits its applicability to open-sourced  
499 models. Exploring ways to relax this requirement would broaden the method’s applicability.

500 By developing an effective and stealthy API-based test for model equality, we hope to advance the  
501 safety and security of LLM-based applications in the age of increasingly cloud-based deployment.

502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539

540 REFERENCES  
541

542 Artificial analysis, 2025. URL <https://artificialanalysis.ai>. 3

543 Saeif Alhazbi, Ahmed Mohamed Hussain, Gabriele Olinger, and Panos Papadimitratos. Llms  
544 have rhythm: Fingerprinting large language models using inter-token times and network traf-  
545 fic analysis. *ArXiv*, abs/2502.20589, 2025. URL <https://api.semanticscholar.org/CorpusID:276725236>. 3

546

547 Anysphere Inc. Cursor: The ai code editor, 2025. URL <https://www.cursor.com/>. Ac-  
548 cessed: 2025-05-15. 1

549

550 Andrew P. Bradley. The use of the area under the roc curve in the evaluation of machine learn-  
551 ing algorithms. *Pattern Recognition*, 30(7):1145–1159, 1997. ISSN 0031-3203. doi: [https://doi.org/10.1016/S0031-3203\(96\)00142-2](https://doi.org/10.1016/S0031-3203(96)00142-2). URL <https://www.sciencedirect.com/science/article/pii/S0031320396001422>. 6, 14

551

552

553

554 Will Cai, Tianneng Shi, Xuandong Zhao, and Dawn Song. Are you getting what you pay for? audit-  
555 ing model substitution in llm apis, 2025. URL <https://arxiv.org/abs/2504.04715>.  
556 2, 3, 7

557

558 Lingjiao Chen, Matei Zaharia, and James Zou. How is chatgpt’s behavior changing over time?,  
559 2023a. URL <https://arxiv.org/abs/2307.09009>. 2

560

561 Lingjiao Chen, Matei Zaharia, and James Y. Zou. How is chatgpt’s behavior changing over  
562 time? *ArXiv*, abs/2307.09009, 2023b. URL <https://api.semanticscholar.org/CorpusID:259951081>. 3

563

564 Harald Cramér. On the composition of elementary errors. *Scandinavian Actuarial Journal*, 1928(1):  
565 13–74, 1928. doi: 10.1080/03461238.1928.10416862. URL <https://doi.org/10.1080/03461238.1928.10416862>. 2, 5

566

567 D. A. Darling. The kolmogorov-smirnov, cramér-von mises tests. *The Annals of Mathematical  
568 Statistics*, 28(4):823–838, 1957. ISSN 00034851, 21688990. URL <http://www.jstor.org/stable/2237048>. 7

569

570

571 F. N. David and N. L. Johnson. The probability integral transformation when parameters are  
572 estimated from the sample. *Biometrika*, 35(1/2):182–190, 1948. ISSN 00063444. URL  
573 <http://www.jstor.org/stable/2332638>. 4

574

575 Peter K. Dunn and Gordon K. Smyth. Randomized quantile residuals. *Journal of Computational  
576 and Graphical Statistics*, 5(3):236–244, 1996. ISSN 10618600. URL <http://www.jstor.org/stable/1390802>. 4

577

578 Kazuki Egashira, Mark Vero, Robin Staab, Jingxuan He, and Martin Vechev. Exploiting llm quan-  
579 tization, 2024. URL <https://arxiv.org/abs/2405.18137>. 1

580

581 Sabri Eyuboglu, Karan Goel, Arjun Desai, Lingjiao Chen, Mathew Monfort, Chris Ré, and  
582 James Zou. Model changelists: Characterizing updates to ml models. *Proceedings of the  
583 2024 ACM Conference on Fairness, Accountability, and Transparency*, 2024. URL <https://api.semanticscholar.org/CorpusID:270287160>. 3

584

585 Zhiyuan Fu, Junfan Chen, Hongyu Sun, Ting Yang, Ruidong Li, and Yuqing Zhang. Fdllm:  
586 A text fingerprint detection method for llms in multi-language, multi-domain black-box envi-  
587 ronments. *ArXiv*, abs/2501.16029, 2025. URL <https://api.semanticscholar.org/CorpusID:275921293>. 3

588

589 Irena Gao, Percy Liang, and Carlos Guestrin. Model equality testing: Which model is this api  
590 serving?, 2025. URL <https://arxiv.org/abs/2410.20247>. 1, 2, 3, 7

591

592 Chenchen Gu, Xiang Lisa Li, Rohith Kuditipudi, Percy Liang, and Tatsunori Hashimoto. Auditing  
593 prompt caching in language model apis, 2025. URL <https://arxiv.org/abs/2502.07776>. 2, 3

594 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,  
 595 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,  
 596 2021. 9, 25

597

598 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text  
 599 degeneration, 2020. URL <https://arxiv.org/abs/1904.09751>. 25

600 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,  
 601 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>. 8

602

603 Yangsibo Huang, Milad Nasr, Anastasios Angelopoulos, Nicholas Carlini, Wei-Lin Chiang, Christo-  
 604 pher A. Choquette-Choo, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Ken Ziyu Liu, Ion  
 605 Stoica, Florian Tramer, and Chiyuan Zhang. Exploring and mitigating adversarial manipulation  
 606 of voting-based leaderboards, 2025. URL <https://arxiv.org/abs/2501.07493>. 2

607

608 Jiaming Ji, Mickel Liu, Juntao Dai, Xuehai Pan, Chi Zhang, Ce Bian, Chi Zhang, Ruiyang Sun,  
 609 Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via a  
 610 human-preference dataset. *arXiv preprint arXiv:2307.04657*, 2023. 8

611

612 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,  
 613 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language  
 614 models. *arXiv preprint arXiv:2001.08361*, 2020. 10

615

616 John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A  
 617 watermark for large language models. In *International Conference on Machine Learning*, 2023.  
 618 URL <https://api.semanticscholar.org/CorpusID:256194179>. 3

619

620 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.  
 621 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model  
 622 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating  
 Systems Principles*, 2023. 7

623

624 mirpo. [bug] lm studio's api server ignores the requested model name in the api call when only  
 625 one model is running · issue #619 · lmstudio-ai/lmstudio-bug-tracker, 2025. URL <https://github.com/lmstudio-ai/lmstudio-bug-tracker/issues/619>. 1

626

627 Dario Pasquini, Evgenios M. Kornaropoulos, and Giuseppe Ateniese. Llmmmap: Fingerprinting  
 628 for large language models. *ArXiv*, abs/2407.15847, 2024. URL <https://api.semanticscholar.org/CorpusID:271328475>. 3

629

630 Steven T. Piantadosi. Zipf's word frequency law in natural language: A critical review and future  
 631 directions. *Psychonomic Bulletin & Review*, 21:1112 – 1130, 2014. URL <https://api.semanticscholar.org/CorpusID:14264582>. 27

632

633 Jie Ren, Han Xu, Yiding Liu, Yingqian Cui, Shuaiqiang Wang, Dawei Yin, and Jiliang Tang. A  
 634 robust semantics-based watermark for large language model against paraphrasing. In *NAACL-HLT*,  
 635 2023. URL <https://api.semanticscholar.org/CorpusID:265213008>. 3

636

637 ResearchFlow. Researchflow: Ai-powered research engine & visual knowledge mapping, 2025.  
 638 URL <https://rflow.ai/>. 1

639

640 Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. "do anything now": Char-  
 641 acterizing and evaluating in-the-wild jailbreak prompts on large language models, 2024. URL  
 642 <https://arxiv.org/abs/2308.03825>. 8

643

644 Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. Detectllm: Leveraging log rank infor-  
 645 mation for zero-shot detection of machine-generated text, 2023. URL <https://arxiv.org/abs/2306.05540>. 3, 5, 6

646

647 Mingjie Sun, Yida Yin, Zhiqiu Xu, J. Zico Kolter, and Zhuang Liu. Idiosyncrasies in large language  
 648 models, 2025. URL <https://arxiv.org/abs/2502.12150>. 2, 3, 7

648 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy  
649 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.  
650 [https://github.com/tatsu-lab/stanford\\_alpaca](https://github.com/tatsu-lab/stanford_alpaca), 2023. 8  
651

652 Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei Koh, Chaowei Xiao, and Muhaoy Chen.  
653 Instructional fingerprinting of large language models. *ArXiv*, abs/2401.12255, 2024. URL  
654 <https://api.semanticscholar.org/CorpusID:267095230>. 3  
655

656 Yuhui Yun, Hui long Ye, Xinru Li, Ruojia Li, Jingfeng Deng, Li Li, and Haoyi Xiong. Eicopilot:  
657 Search and explore enterprise information over large-scale knowledge graphs with llm-driven  
658 agents, 2025. URL <https://arxiv.org/abs/2501.13746>. 1  
659

660 Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat: 1m  
661 chatgpt interaction logs in the wild, 2024. URL <https://arxiv.org/abs/2405.01470>. 6, 25  
662

663 Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V  
664 Le, James Laudon, et al. Mixture-of-experts with expert choice routing. *Advances in Neural*  
665 *Information Processing Systems*, 35:7103–7114, 2022. 10  
666

667 Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,  
668 Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-  
669 marking code generation with diverse function calls and complex instructions. *arXiv preprint*  
670 *arXiv:2406.15877*, 2024. 9  
671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A AUROC**  
703704 **A.1 AUROC ALGORITHM**  
705707 **Algorithm 1:** Average AUROC for score function evaluation

708 **Input:** Prompt set  $\mathcal{D}$ ; models  $\pi_{\text{ref}}, \pi_{\text{tgt}}$ ; decoding parameters  $\varphi = (\tau, L)$ ,  
709 where  $\tau$  is temperature and  $L$  is the maximum generation length;  
710 number of prompts  $n$ ; number of completions per prompt per model  
711  $m$ ; score functions  $\{\varphi_1, \dots, \varphi_K\}$ .

712 **Output:** Mean AUROC per score function, denoted  $\mu_{\text{AUROC}}(\delta)$ .

```

713 1 Draw  $\{x_1, \dots, x_n\} \sim \text{Uniform}(\mathcal{D})$ ;
714 2 for  $i \in \{1, \dots, n\}$  do
715   3  $\{y_{\text{ref}}^{(j)}\}_{j=1}^m \sim \pi_{\text{ref}}(\cdot | x_i; \varphi)$ ;
716   4  $\{y_{\text{tgt}}^{(j)}\}_{j=1}^m \sim \pi_{\text{tgt}}(\cdot | x_i; \varphi)$ ;
717   5  $\mathcal{Y}_i \leftarrow \{y_{\text{ref}}^{(j)}\} \cup \{y_{\text{tgt}}^{(j)}\}$ ;
718   6  $L_i \leftarrow \{0\}^m \cup \{1\}^m$ ;
719   7 for  $\delta \in \{\varphi_1, \dots, \varphi_K\}$  do
720     8  $S_i \leftarrow \{\delta(y) | y \in \mathcal{Y}_i\}$ ;
721     9 Store  $A_i^\delta \leftarrow \text{AUROC}(S_i, L_i)$ ;
722
723 10 for  $\delta \in \{\varphi_1, \dots, \varphi_K\}$  do
724   11  $\mu_{\text{AUROC}}(\delta) \leftarrow \frac{1}{n} \sum_{i=1}^n A_i^\delta$ ;

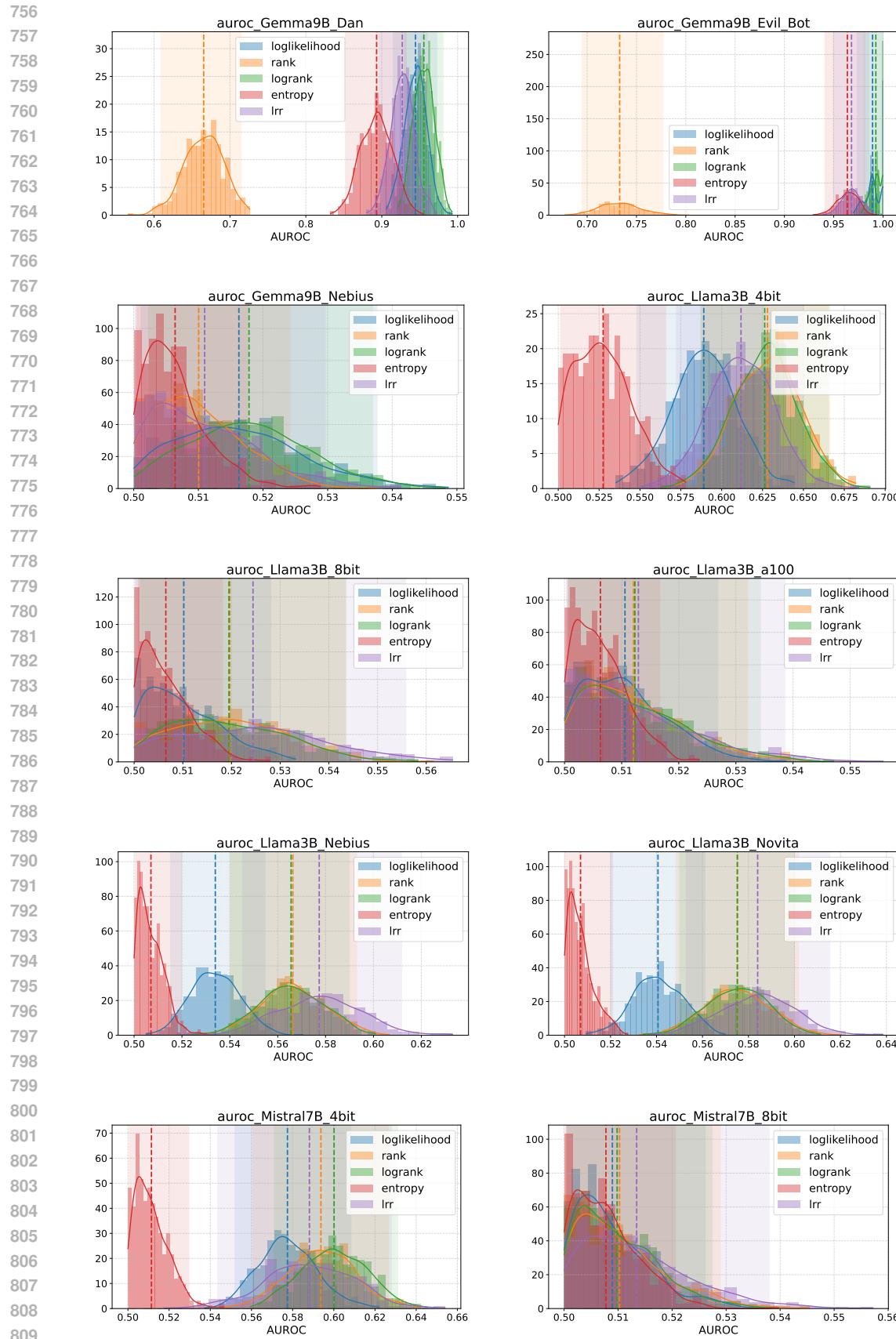
```

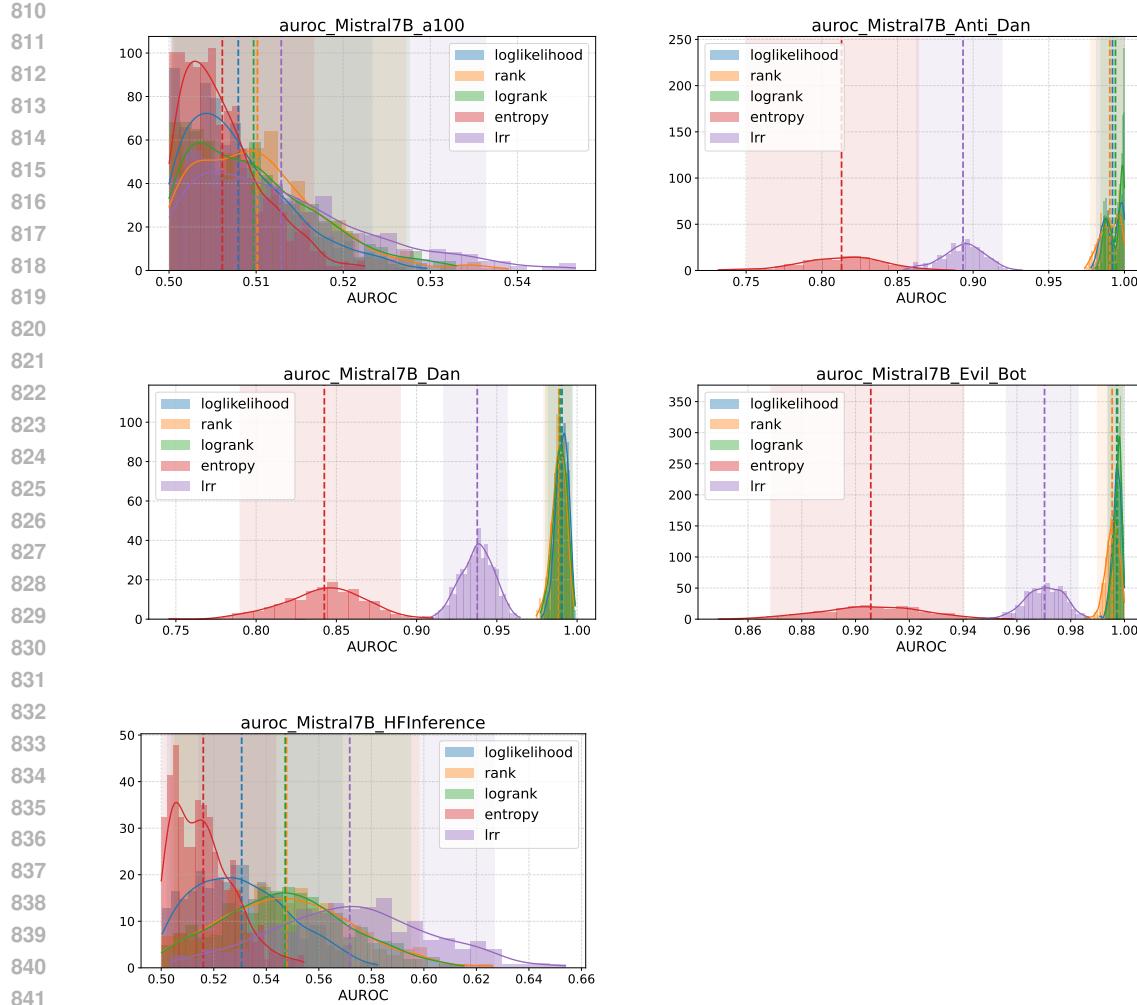
725 *Note.* AUROC( $S, L$ ) denotes the standard binary AUROC (Bradley, 1997).

728 **A.2 AUROC SCORE DISTRIBUTIONS**  
729

730 We present the AUROC score distributions from the score function selection experiment described  
731 in Section 4.2. Specifically, we evaluated Gemma-2-9B-it, LLaMA-3.2-3B-Instruct, and Mistral-  
732 7B-Instruct, and visualized the distributions when distinguishing the original model outputs from  
733 three types of variants: (1) quantized versions, (2) models subjected to jailbreaking prompts, and (3)  
734 models served by A100 or external API providers.



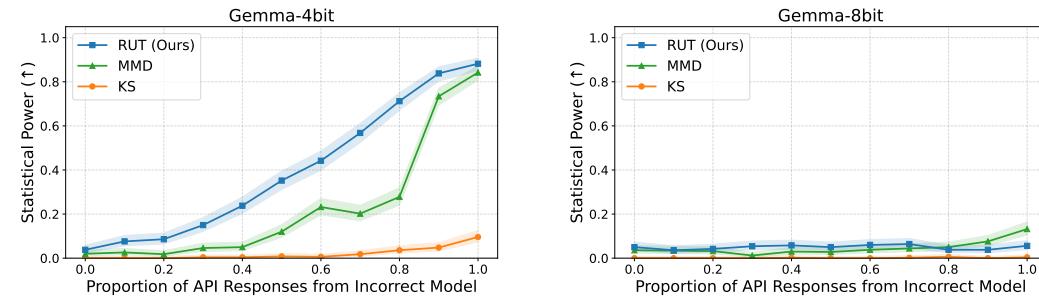


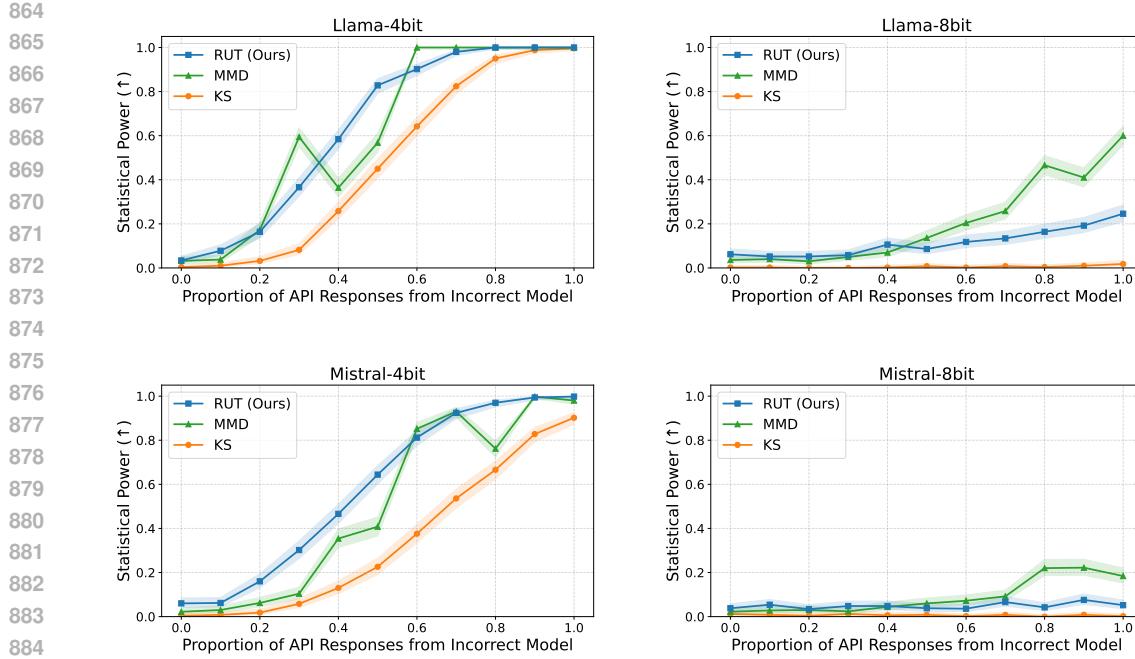


## B STATISTIC POWER CURVES

### B.1 FULL STATISTIC POWER CURVES FOR DETECTING QUANTIZATION

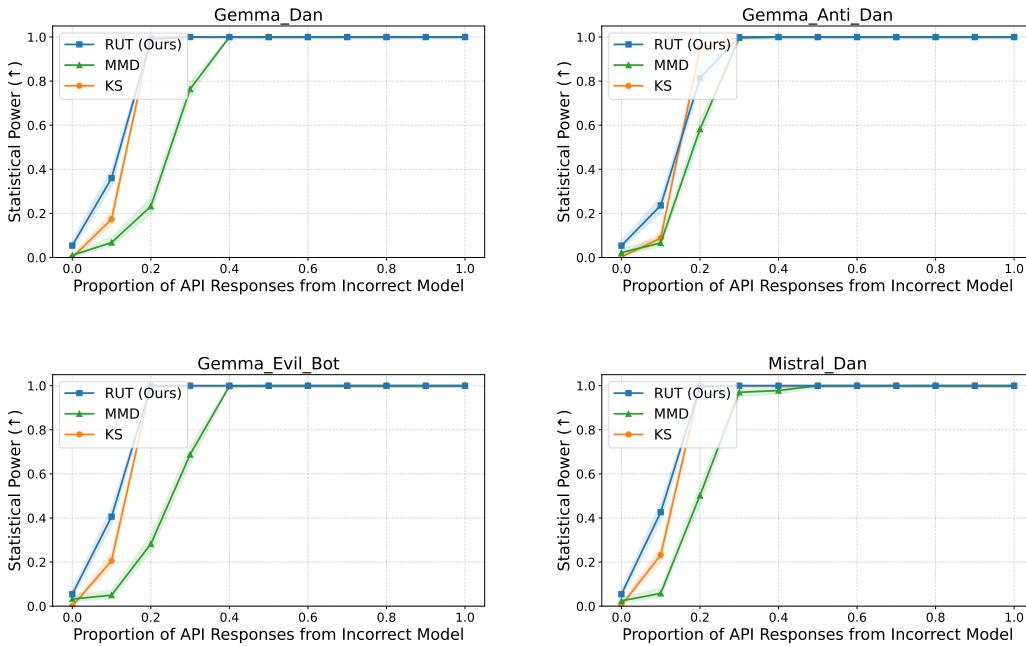
We present the full statistical power curves, showing the relationship between substitution rate and detection power, corresponding to the experiments on detecting quantized model substitutions described in Section 5.2. These curves are used to compute the power AUC values reported in the main paper and illustrate each method’s detection power across different levels of substitution.

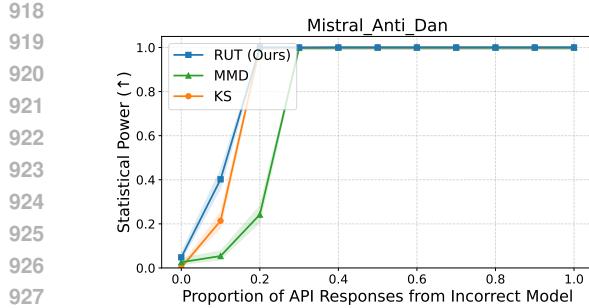




## B.2 FULL STATISTIC POWER CURVES FOR DETECTING JAILBREAKING

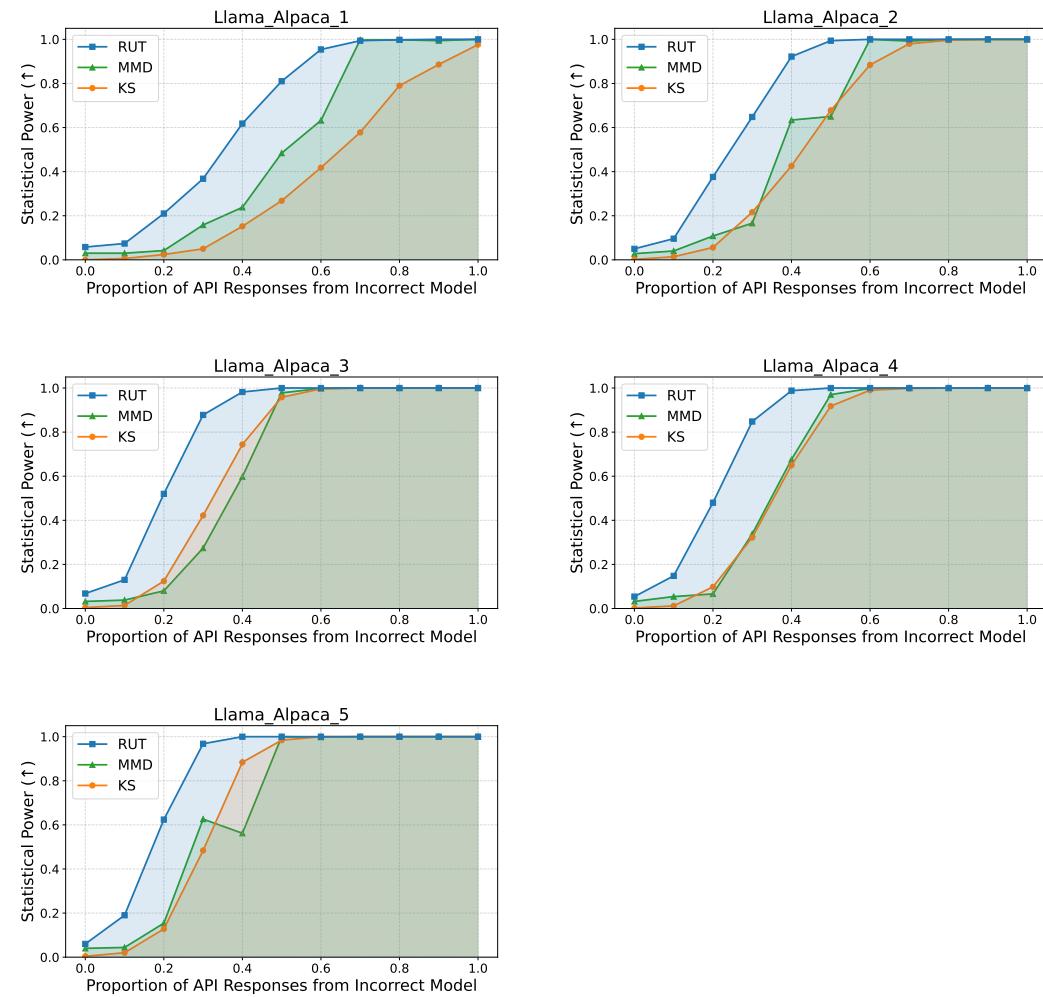
We present the full statistical power curves, showing the relationship between substitution rate and detection power, corresponding to the experiments on detecting jailbreak prompts described in Section 5.3. These curves are used to compute the power AUC values reported in the main paper and illustrate each method’s detection power across different levels of substitution.

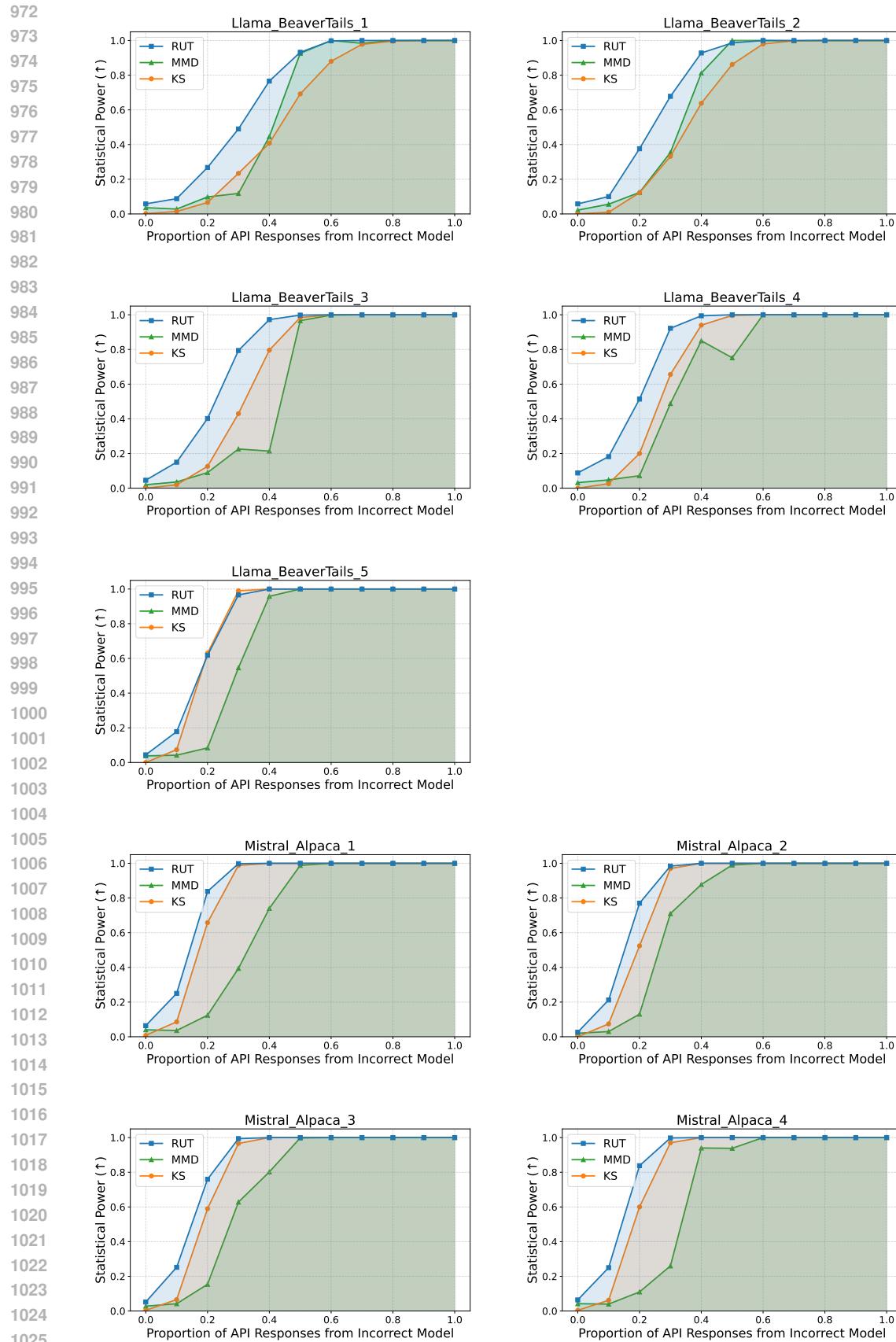


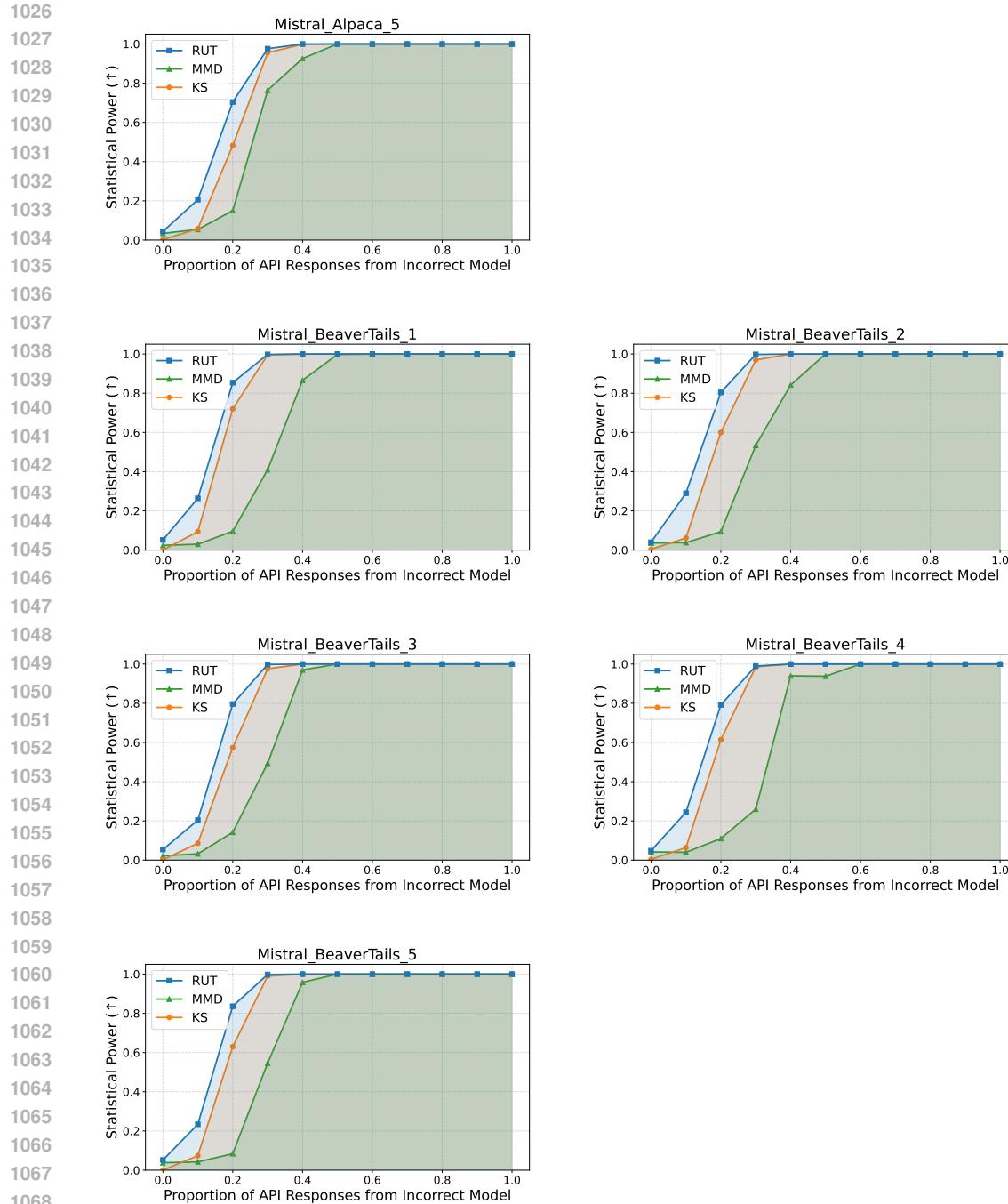


### B.3 FULL STATISTIC POWER CURVES FOR DETECTING SFT

We present the full statistical power curves, showing the relationship between substitution rate and detection power, corresponding to the experiments on detecting SFT described in Section 5.4. These curves are used to compute the power AUC values reported in the main paper and illustrate each method’s detection power across different levels of substitution.

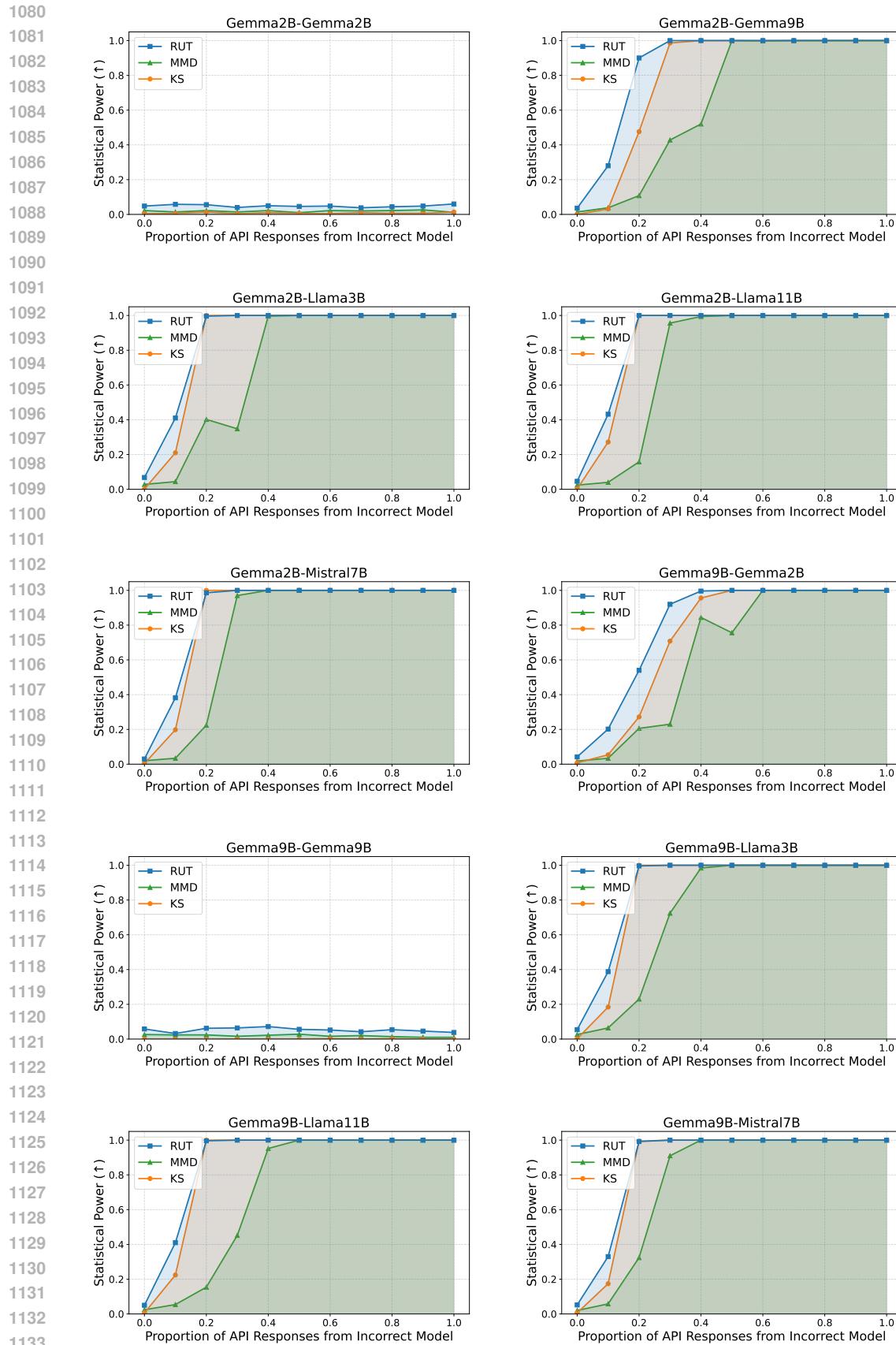


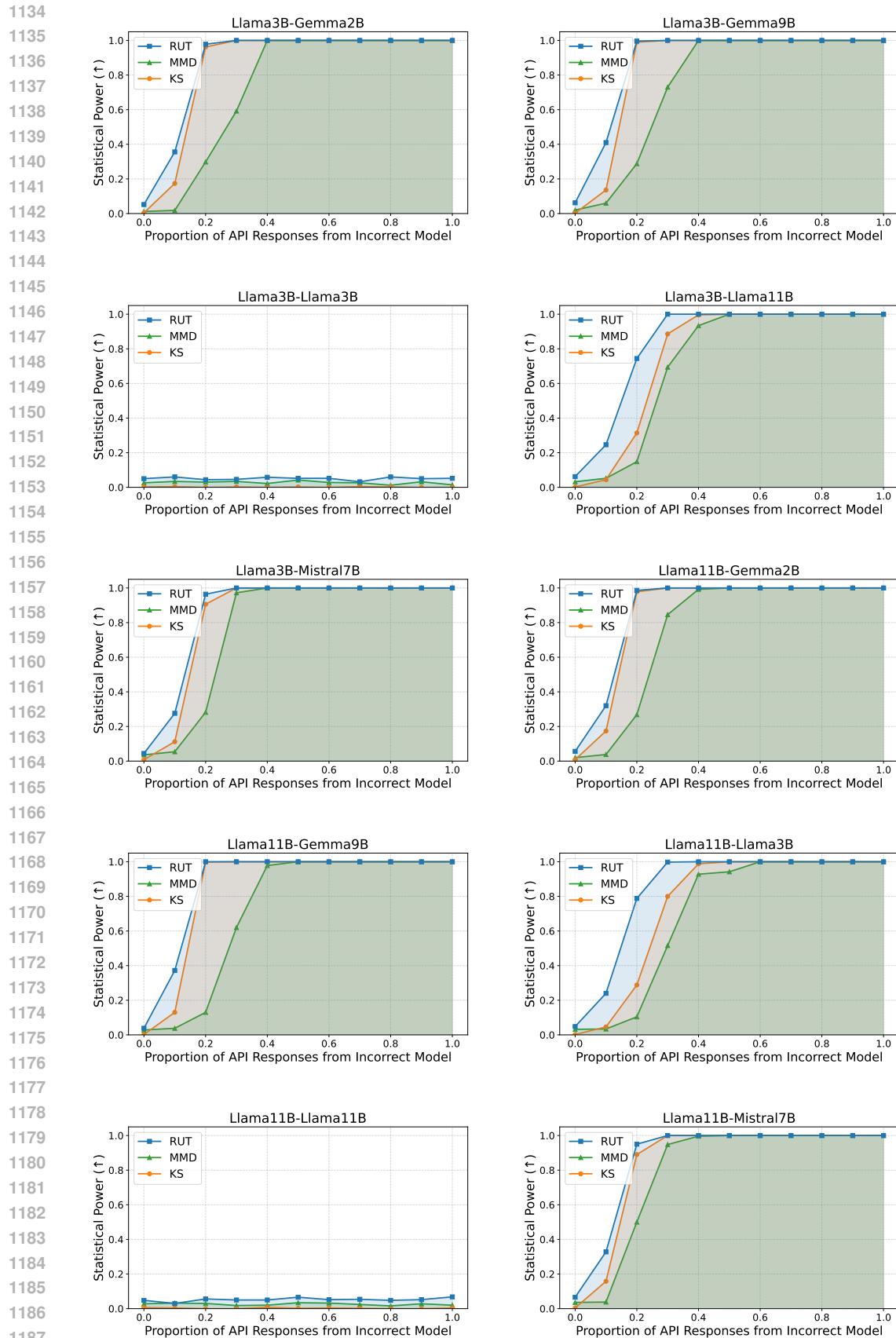


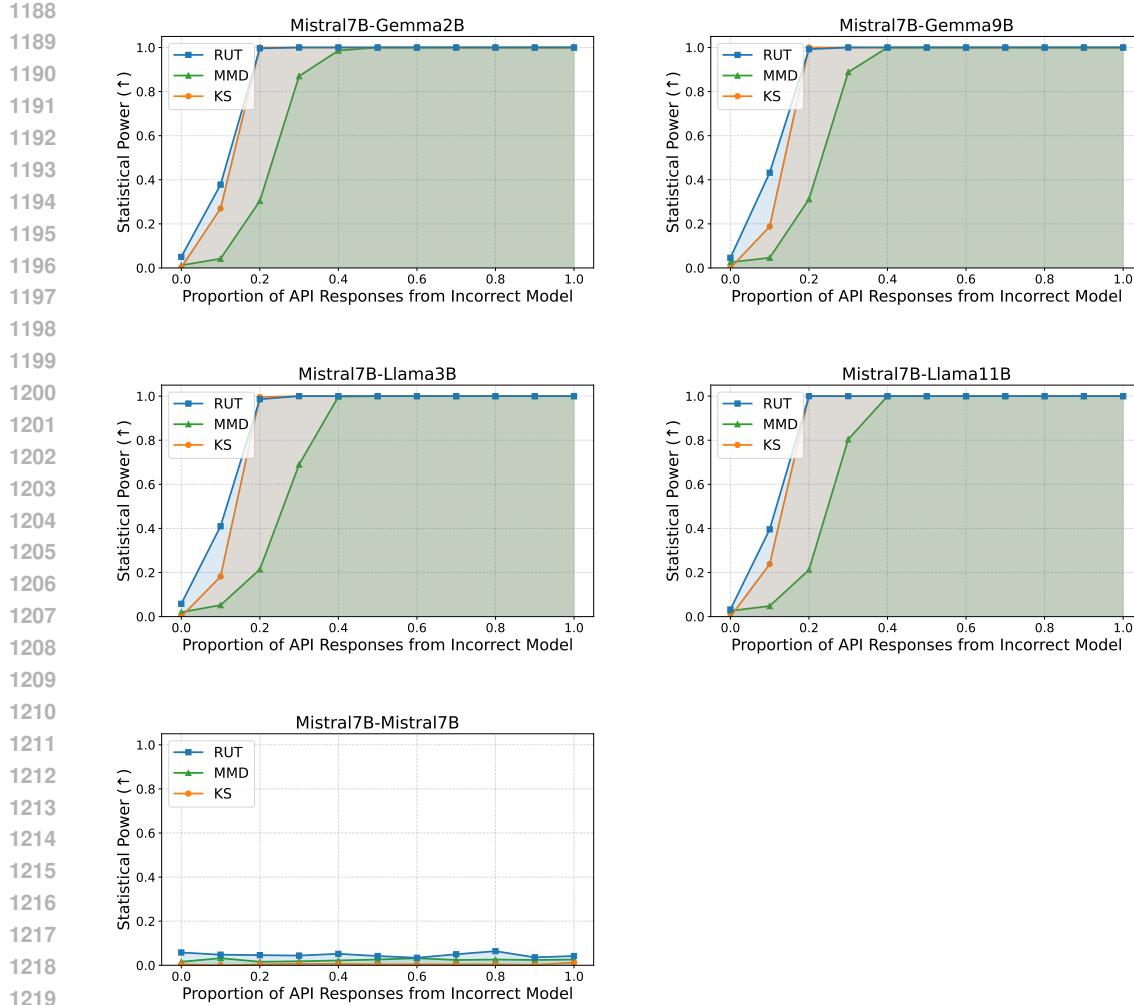


#### B.4 FULL STATISTIC POWER CURVES FOR DETECTING FULL MODEL REPLACEMENT

We present the full statistical power curves, showing the relationship between substitution rate and detection power, corresponding to the experiments on detecting full model replacements described in Section 5.5. These curves are used to compute the power AUC values reported in the main paper and illustrate each method’s detection power across different levels of substitution.

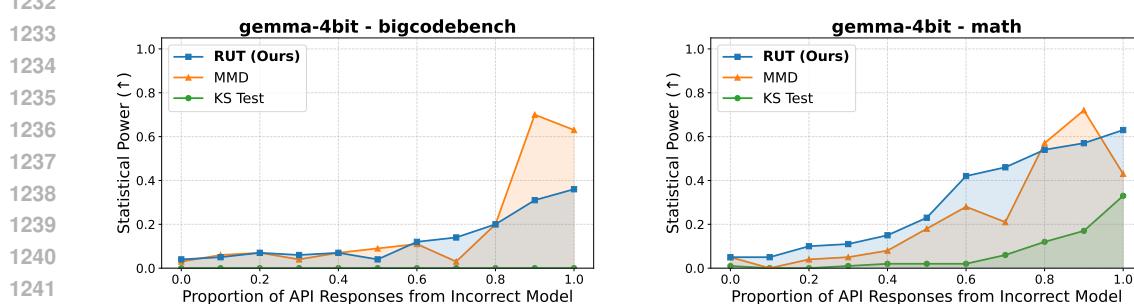


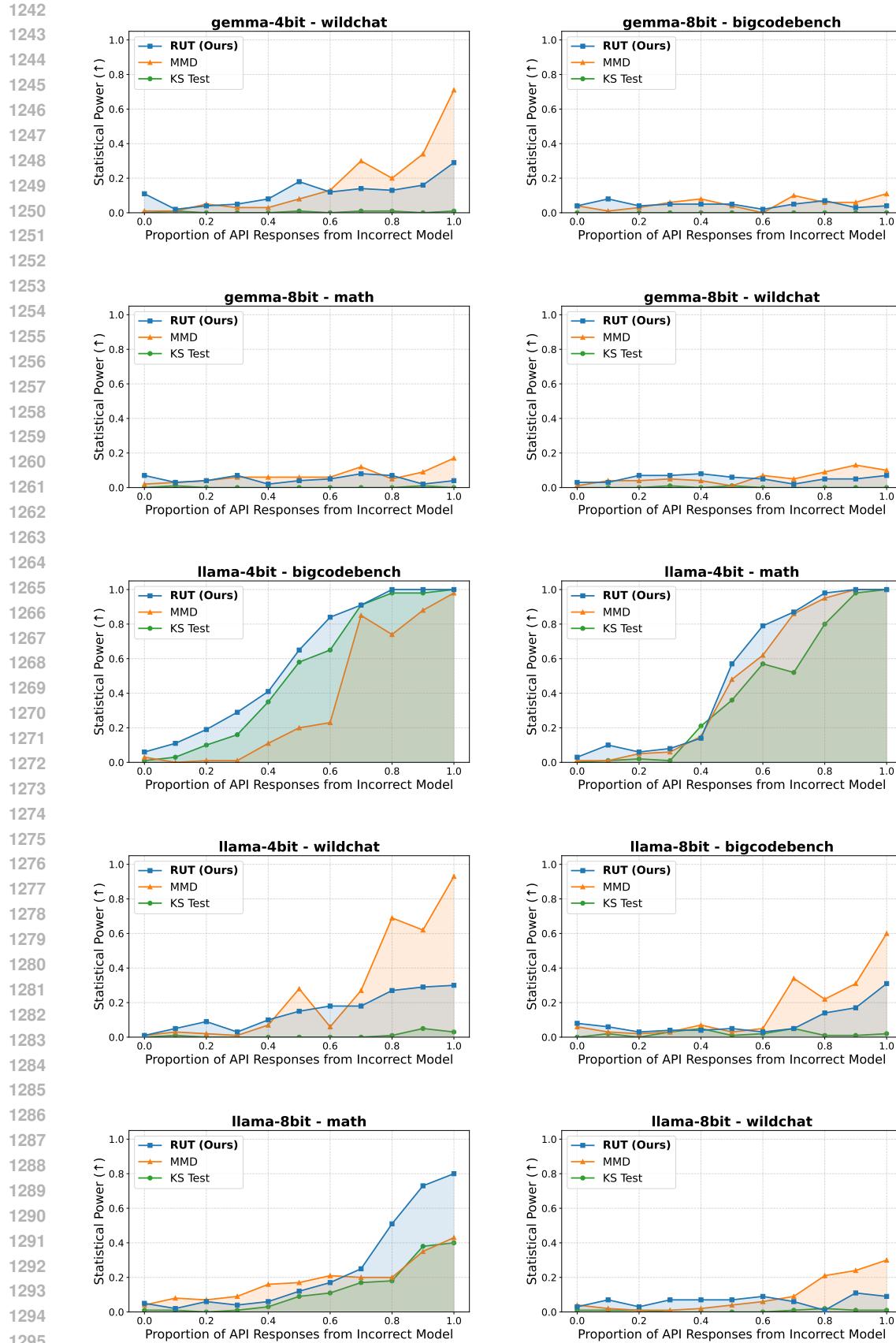


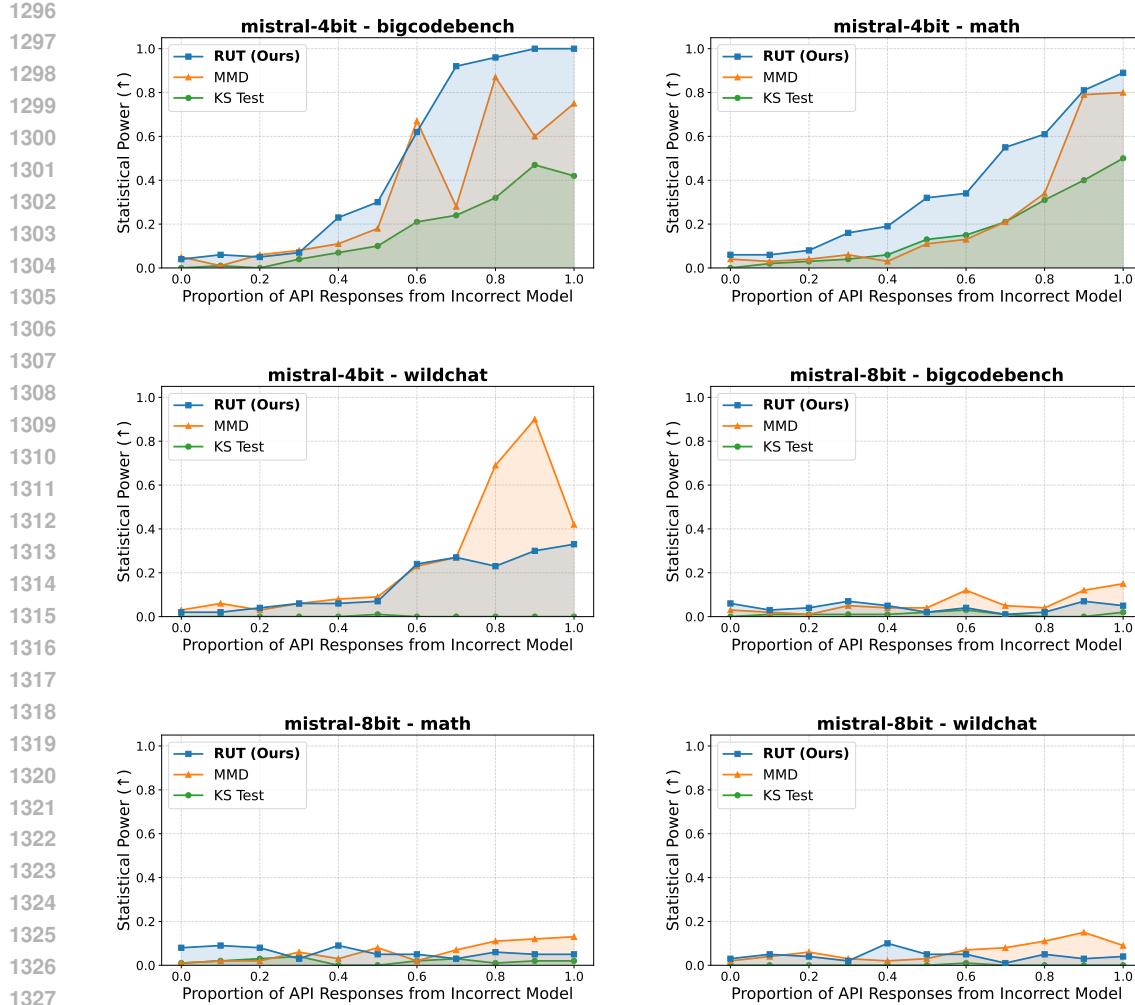


## B.5 FULL STATISTIC POWER CURVES FOR DETECTING MORE QUERY DOMAINS

We present the full statistical power curves, showing the relationship between substitution rate and detection power, corresponding to the experiments on detecting quantized model in extra domains described in Section 5.6. These curves are used to compute the power AUC values reported in the main paper and illustrate each method's detection power across different levels of substitution.







## B.6 CASE STUDY ON DETECTING DECODING PARAMETERS

**Setup.** As a case study, we test whether detection methods can identify changes in decoding parameters, focusing on sampling temperature and top- $p$  for nucleus sampling (Holtzman et al., 2020). We compare responses generated under different parameter settings against the default configuration of temperature=0.5 and top- $p$ =1.

**Findings.** We perform the experiments across Gemma-2-9B-it and Llama-3.2-3B-Instruct on MATH (Hendrycks et al., 2021) and WildChat (Zhao et al., 2024). Based on the results in Figure 5, RUT achieves consistently higher detection power across decoding configurations compared to MMD and KS. This sensitivity is desirable in practice, since when the API providers expose decoding controls to users, a reliable detection method should be able to flag deviations arising not only from model substitution but also from anomalous decoding configurations.

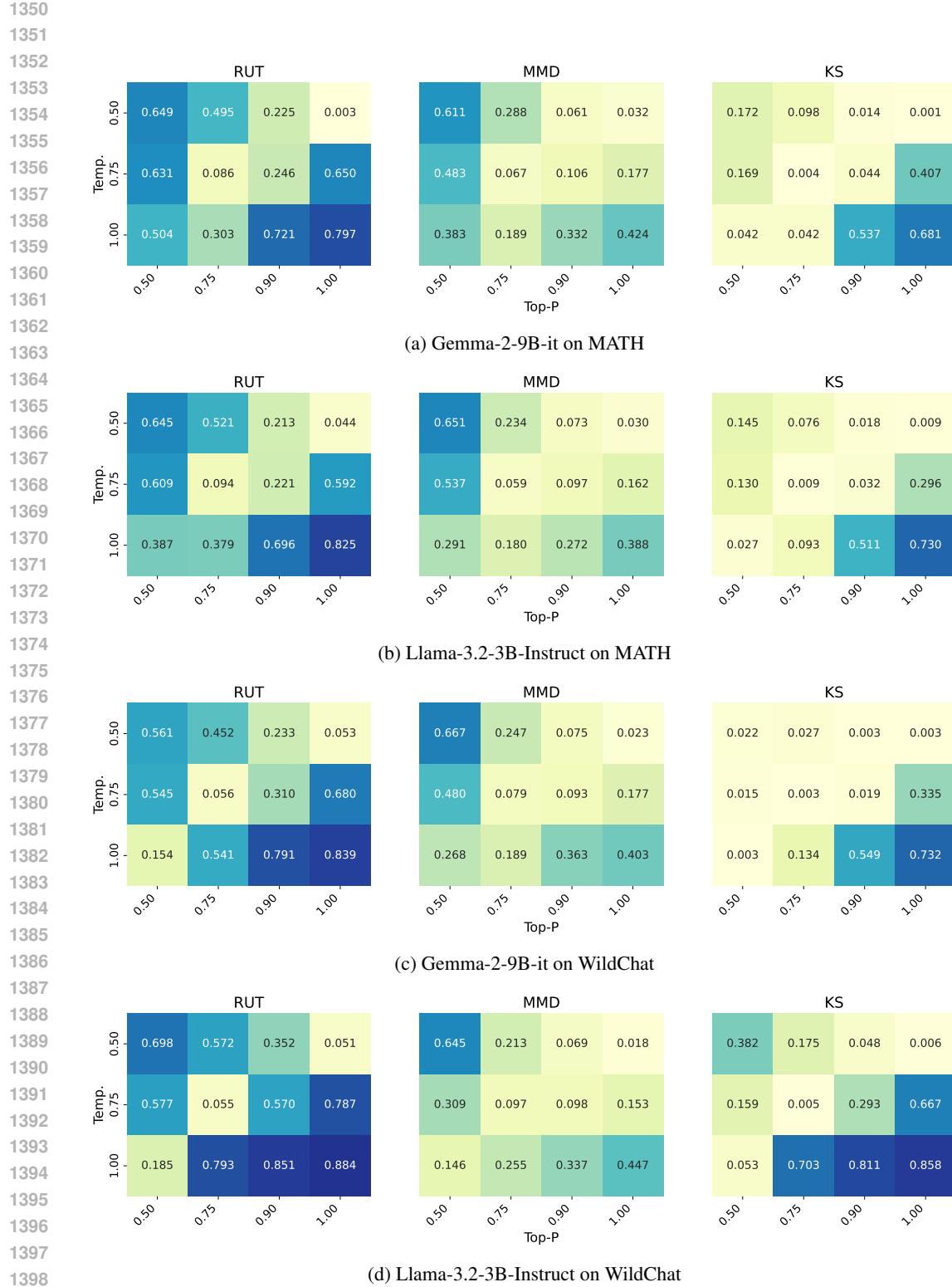


Figure 5: Statistical power AUC for detecting decoding parameter mismatches (temperature, top-p) across models and datasets. Each cell compares outputs under a specific decoding configuration against the default (0.5, 1.0); higher values indicate stronger detectability.

1404

1405

1406

1407

## C THERORETICAL ANALYSIS OF RUT

1408

1409

1410

1411

In this section, we provide a formal analysis to characterize the statistical power of RUT and its sample efficiency under principled assumptions about language model output distributions and adversarial perturbations.

1412

1413

1414

1415

1416

We model two basic attack types: (1) **reparameterization attack**, which preserve ranking of tokens but smoothly alter token probabilities via a small parameter shift  $s \mapsto s + \epsilon$ ; and (2) **reordering attack**, which randomly samples a token  $t$  according to the distribution, and then swaps  $t$  with the highest-probability token, thereby making  $t$  the new top-1 token. Real-world attacks almost always combine both, and tend to easier to detect than either alone.

1417

1418

1419

1420

Throughout the proof, we assume that RUT uses the **log-rank** score function. Based on the famous Zip's law in statistical linguistics (Piantadosi, 2014), we assume that the output token distributions at any position follows a Zeta distribution with parameter  $s$ , where  $s \in (1, +\infty)$  reflects the heavy-tailedness of the distribution.

1421

1422

It can be easily shown that the FPR of RUT is  $\alpha$ , the significance level that we choose. Below, we focus on type II error: the probability of missing an attack when one exists.

1423

1424

1425

**Lemma C.1.** *Let the rank of a token be a random variable  $K$  on  $\mathbb{Z}^+$  with probability mass function  $p(k) = k^{-\alpha}/\zeta(\alpha)$  for  $\alpha > 1$ . Let  $x = \log k$ . The survival function  $S(x) = P(\log K \geq x)$ , for large  $k = e^x$ , has the asymptotic form*

1426

$$S(x) = \frac{e^{(1-\alpha)x}}{\zeta(\alpha)(\alpha-1)}(1+o(1))$$

1430

1431

*Proof.* The survival function is the probability that the rank  $K$  is greater than or equal to some value  $m$ . By definition, this is the sum of the probabilities of all ranks from  $m$  to infinity.

1432

1433

$$S(\log m) = P(K \geq m) = \sum_{k=m}^{\infty} p(k) = \frac{1}{\zeta(\alpha)} \sum_{k=m}^{\infty} k^{-\alpha}$$

1434

1435

1436

For large  $m$ , this sum can be approximated by its corresponding integral. The leading term of the Euler-Maclaurin formula shows that the sum and integral are asymptotically equivalent.

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

$$\begin{aligned} \sum_{k=m}^{\infty} k^{-\alpha} &= \int_m^{\infty} t^{-\alpha} dt + O(m^{-\alpha}) \\ &= \left[ \frac{t^{-\alpha+1}}{1-\alpha} \right]_m^{\infty} + O(m^{-\alpha}) \\ &= 0 - \frac{m^{1-\alpha}}{1-\alpha} + O(m^{-\alpha}) \\ &= \frac{m^{1-\alpha}}{\alpha-1} + O(m^{-\alpha}) \\ &= \frac{m^{1-\alpha}}{\alpha-1} (1 + O(m^{-1})) \\ &= \frac{m^{1-\alpha}}{\alpha-1} (1 + o(1)) \end{aligned}$$

Substituting this result back into the expression for the survival function, we obtain

$$S(\log m) = \frac{m^{1-\alpha}}{\zeta(\alpha)(\alpha-1)} (1 + o(1))$$

1458 The analysis is performed on the distribution of the log-rank score,  $x = \log k$ . We therefore let  
 1459  $x = \log m$ , which implies  $m = e^x$ . Substituting this into the expression above yields the final  
 1460 asymptotic form for the survival function of the log-rank.

$$1461 \\ 1462 S(x) = \frac{(e^x)^{1-\alpha}}{\zeta(\alpha)(\alpha-1)}(1+o(1)) = \frac{e^{(1-\alpha)x}}{\zeta(\alpha)(\alpha-1)}(1+o(1))$$

1463 For the remainder of this analysis, we denote this survival function, which serves as the CDF for our  
 1464 rank-based test, by  $F(x, \alpha)$ .  $\square$

1465 **Lemma C.2.** *For a hypothesis test using the Cramér-von Mises (CvM) statistic to distinguish a null  
 1466 hypothesis  $H_0$  from an alternative hypothesis  $H_1$  with a fixed significance level  $\alpha_{err}$  and a fixed  
 1467 statistical power  $1 - \beta_{err}$ , the required sample size  $n$  is asymptotically inversely proportional to  
 1468 the CvM distance  $\omega_\infty^2$  between the two distributions, i.e.*

$$1469 \\ 1470 n = \Theta\left(\frac{1}{\omega_\infty^2}\right), \text{ as } \omega_\infty^2 \rightarrow 0,$$

1471 where the constant coefficient is given by (1).

1472 *Proof.* Let the ranks  $r_i$  for  $i = 1, \dots, n$  be drawn from a distribution with CDF  $F(x)$ . The hypothesis  
 1473 test is  $H_0 : F(x) = U(x)$  versus  $H_1 : F(x) = F_1(x)$ , where  $U(x) = x$  is the CDF of the  
 1474 Uniform[0,1] distribution. The CvM test statistic is

$$1475 \\ 1476 \omega^2 = n \int_0^1 (F_n(x) - U(x))^2 dx$$

1477 where  $F_n(x)$  is the empirical CDF. The test rejects  $H_0$  if the observed statistic  $\omega^2$  exceeds a critical  
 1478 value  $c_\alpha$ . The power of the test is  $1 - \beta_{err} = P_{H_1}(\omega^2 > c_\alpha)$ . The analysis of this power requires  
 1479 the distribution of  $\omega^2$  under  $H_1$ .

1480 While the distribution of  $\omega^2$  under  $H_0$  is a non-normal, weighted sum of chi-squared variables, its  
 1481 distribution under a fixed alternative  $H_1$  is asymptotically normal as  $n \rightarrow \infty$ . As a standard result  
 1482 in statistics, this follows from the central limit theorems of U-statistics, which establish that the  
 1483 standardized statistic converges in distribution to a standard normal variable:

$$1484 \\ 1485 \frac{\omega^2 - E_{H_1}[\omega^2]}{\sqrt{\text{Var}_{H_1}(\omega^2)}} \xrightarrow{d} N(0, 1)$$

1486 The expected value  $E_{H_1}[\omega^2]$  contains a non-centrality parameter that grows linearly with  $n$ , such  
 1487 that  $E_{H_1}[\omega^2] = n \cdot \omega_\infty^2 + O(1)$ , where the CvM distance  $\omega_\infty^2$  is defined as

$$1488 \\ 1489 \omega_\infty^2 = \int_0^1 (F_1(x) - U(x))^2 dx$$

1490 The standard deviation,  $\sqrt{\text{Var}_{H_1}(\omega^2)}$ , grows slower than the mean, and the standardized deviation  
 1491  $\sigma_1 = \sqrt{\text{Var}_{H_1}(\omega^2)}/n$  is asymptotically  $O(1)$ . We then analyze the power for large  $n$ :

$$1492 \\ 1493 1 - \beta_{err} = P\left(Z > \frac{c_\alpha - (n \cdot \omega_\infty^2 + O(1))}{\sigma_1}\right)$$

1494 where  $Z$  is a standard normal variable. For the power to be a desired constant, the argument to the  
 1495 probability function must also be a constant, denoted  $-z_\beta$ .

$$1496 \\ 1497 \frac{c_\alpha - n \cdot \omega_\infty^2 + O(1)}{\sigma_1} = -z_\beta$$

1498 Solving this equation for  $n$  gives

1512

1513

$$n \cdot \omega_\infty^2 = c_\alpha + z_\beta \sigma_1 + O(1) = \Theta(1) \quad (1)$$

1514

1515

Since the right-hand side consists of terms that are constant for a fixed significance level and power, it follows that  $n \cdot \omega_\infty^2$  must be constant. This implies the inverse proportionality  $n \propto 1/\omega_\infty^2$ .  $\square$

1516

1517

**Theorem C.1.** *Consider a reparameterization attack that perturbs the token rank distribution's*

*Zipfian parameter  $\alpha$  by an amount  $\epsilon$ . For RUT to achieve a constant Type II error rate:*

1518

1519

1520

- When  $\alpha \rightarrow 1^+$  (moderate heavy-tailedness), a target sample size of  $n = \Theta(\epsilon^{-2}(\alpha - 1)^2)$  is sufficient.
- When  $\alpha \rightarrow +\infty$  (extreme heavy-tailedness), a target sample size of  $n = \Theta(\epsilon^{-2}\alpha^5)$  is sufficient.

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

$$\begin{aligned} \frac{\partial F(x, \alpha)}{\partial \alpha} &= \frac{\partial}{\partial \alpha} \left( e^{(1-\alpha)x} D(\alpha)^{-1} \right) \\ &= -x e^{(1-\alpha)x} D(\alpha)^{-1} - e^{(1-\alpha)x} D(\alpha)^{-2} D'(\alpha) \\ &= -e^{(1-\alpha)x} \left( \frac{x}{D(\alpha)} + \frac{D'(\alpha)}{D(\alpha)^2} \right) \end{aligned}$$

where

$$D'(\alpha) = \frac{d}{d\alpha} (\zeta(\alpha)(\alpha - 1)) = \zeta'(\alpha)(\alpha - 1) + \zeta(\alpha)$$

As  $\alpha \rightarrow \infty$ , we have the known asymptotic behaviors  $\zeta(\alpha) = 1 + o(1)$  and  $\zeta'(\alpha) = o(1)$ . Therefore,

$$D(\alpha) = \zeta(\alpha)(\alpha - 1) = (1 + o(1))(\alpha - 1) = (\alpha - 1)(1 + o(1))$$

$$D'(\alpha) = \zeta'(\alpha)(\alpha - 1) + \zeta(\alpha) = o(1)(\alpha - 1) + (1 + o(1)) = 1 + o(1)$$

Substituting these into the expression for the derivative gives

$$\begin{aligned} \frac{\partial F(x, \alpha)}{\partial \alpha} &= -e^{(1-\alpha)x} \left( \frac{x}{(\alpha - 1)(1 + o(1))} + \frac{1 + o(1)}{(\alpha - 1)^2(1 + o(1))^2} \right) \\ &= -e^{(1-\alpha)x} \left( \frac{x}{\alpha - 1} (1 + o(1)) + \frac{1}{(\alpha - 1)^2} (1 + o(1)) \right) \\ &= -e^{(1-\alpha)x} \Theta(\alpha^{-1}x + \alpha^{-2}) \end{aligned}$$

The CvM distance  $\omega_\infty^2$  is proportional to

$$\epsilon^2 \int_0^\infty \left( \frac{\partial F}{\partial \alpha} \right)^2 p(x) dx$$

The probability density function is  $p(x) = -\frac{\partial F(x, \alpha)}{\partial x} = \frac{e^{(1-\alpha)x}}{\zeta(\alpha)}$ .

$$\begin{aligned}
1566 \quad \omega_\infty^2 &= \Theta \left( \epsilon^2 \int_0^\infty \left( -e^{(1-\alpha)x} (\alpha^{-1}x + \alpha^{-2}) \right)^2 \frac{e^{(1-\alpha)x}}{\zeta(\alpha)} dx \right) \quad (2) \\
1567 \quad &= \Theta \left( \frac{\epsilon^2}{\zeta(\alpha)} \int_0^\infty e^{2(1-\alpha)x} (\alpha^{-2}x^2 + 2\alpha^{-3}x + \alpha^{-4}) e^{(1-\alpha)x} dx \right) \\
1568 \quad &= \Theta \left( \frac{\epsilon^2}{\zeta(\alpha)} \int_0^\infty e^{3(1-\alpha)x} (\alpha^{-2}x^2 + O(\alpha^{-3}x) + \alpha^{-4}) dx \right) \\
1569 \quad & \\
1570 \quad & \\
1571 \quad & \\
1572 \quad & \\
1573 \quad & \\
1574 \quad & \\
\end{aligned}$$

1575 We now analyze this integral expression in two asymptotic regimes. As  $\alpha \rightarrow 1^+$ , let  $k = 3(\alpha-1) \rightarrow 1576 0^+$ . The integral becomes  $\int_0^\infty e^{-kx} (\alpha^{-2}x^2 + O(\alpha^{-3}x) + \alpha^{-4}) dx$ . We use the standard identity 1577  $\int_0^\infty e^{-kt} t^n dt = n! / k^{n+1}$ .

$$\begin{aligned}
1578 \quad \text{Integral} &= \alpha^{-2} \int_0^\infty e^{-kx} x^2 dx + \alpha^{-4} \int_0^\infty e^{-kx} dx + O \left( \int_0^\infty e^{-kx} x dx \right) \\
1579 \quad &= \alpha^{-2} \frac{2!}{k^3} + \alpha^{-4} \frac{0!}{k^1} + O(k^{-2}) \\
1580 \quad &= \frac{2\alpha^{-2}}{(3(\alpha-1))^3} + \frac{\alpha^{-4}}{3(\alpha-1)} + O((\alpha-1)^{-2}) \quad (3) \\
1581 \quad & \\
1582 \quad & \\
1583 \quad & \\
1584 \quad & \\
1585 \quad & \\
\end{aligned}$$

1586 As  $\alpha \rightarrow 1^+$ , the dominant term is  $\Theta((\alpha-1)^{-3})$ . Since  $\zeta(\alpha)^{-1} = \Theta(\alpha-1)$ , the CvM distance is 1587

$$1588 \quad \omega_\infty^2 = \Theta(\epsilon^2 \cdot (\alpha-1) \cdot (\alpha-1)^{-3}) = \Theta(\epsilon^2 (\alpha-1)^{-2})$$

1589 By Lemma C.2, the required sample size is  $n = \Theta(\epsilon^{-2}(\alpha-1)^2)$ .

1590 As  $\alpha \rightarrow +\infty$ , a re-calculation results in (2) being of order  $\Theta(\alpha^{-5})$ ; note that (3) no longer apply 1591 due to change in the limiting condition. Since  $\zeta(\alpha) = 1 + o(1)$ , we have

$$1592 \quad \omega_\infty^2 = \Theta(\epsilon^2 \cdot \alpha^{-5})$$

1593 By Lemma C.2, the sample size is  $n = \Theta(\epsilon^{-2}\alpha^5)$ .  $\square$

1594 **Theorem C.2.** Consider a reordering attack where a sampled token is made the new top-1 token. 1595 For RUT to achieve a constant Type II error rate:

- 1596 • When  $\alpha \rightarrow 1^+$  (moderate heavy-tailedness), a target sample size of  $n = \Theta(1)$  is sufficient.
- 1597 • When  $\alpha \rightarrow +\infty$  (extreme heavy-tailedness), a target sample size of  $n = \Theta(2^\alpha)$  is sufficient.

1600 *Proof.* For a reordering attack, the CvM distance  $\omega_\infty^2$  is the expected squared difference in the log- 1601 rank scores, given by

$$1602 \quad \omega_\infty^2 = \sum_{k=1}^{+\infty} \frac{k^{-\alpha} (1 - k^{-\alpha}) \log k}{\zeta(\alpha)^2}$$

1603 Expanding the numerator and splitting the expression into two sums yields

$$1604 \quad \omega_\infty^2 = \frac{1}{\zeta(\alpha)^2} \left( \sum_{k=1}^{\infty} \frac{\log k}{k^\alpha} - \sum_{k=1}^{\infty} \frac{\log k}{k^{2\alpha}} \right)$$

1605 Using the identity  $\zeta'(s) = -\sum_{k=1}^{\infty} k^{-s} \log k$ , we obtain

$$1606 \quad \omega_\infty^2 = \frac{1}{\zeta(\alpha)^2} ((-\zeta'(\alpha)) - (-\zeta'(2\alpha))) = \frac{\zeta'(2\alpha) - \zeta'(\alpha)}{\zeta(\alpha)^2}$$

1620 We analyze this closed-form expression. As  $\alpha \rightarrow 1^+$ , we use the Laurent series expansions  $\zeta(\alpha) =$   
 1621  $(\alpha - 1)^{-1} + \gamma + O(\alpha - 1)$  and  $\zeta'(\alpha) = -(\alpha - 1)^{-2} + \gamma_1 + O(\alpha - 1)$ , where  $\gamma$  and  $\gamma_1$  are Stieltjes  
 1622 constants. The term  $\zeta'(2\alpha)$  converges to the finite constant  $\zeta'(2)$ . The numerator is dominated by  
 1623  $-\zeta'(\alpha)$ , so

1624

1625

$$1626 \omega_\infty^2 = \frac{-(\alpha - 1)^{-2} + O(1)}{((\alpha - 1)^{-1} + O(1))^2} = \frac{-(\alpha - 1)^{-2}(1 + O((\alpha - 1)^2))}{(\alpha - 1)^{-2}(1 + O(\alpha - 1))^2} = 1 + O(\alpha - 1) = \Theta(1)$$

1627

1628

1629

By Lemma C.2, a sample size of  $n = \Theta(1)$  is sufficient.

1630

1631

1632

As  $\alpha \rightarrow +\infty$ , we have  $\zeta(\alpha) = 1 + o(1)$ . The derivative is dominated by its leading term from the  
 1633 series expansion,  $\zeta'(\alpha) = -2^{-\alpha} \ln 2(1 + o(1))$ . The term  $\zeta'(2\alpha) = -4^{-\alpha} \ln 2(1 + o(1))$  is of a  
 lower order. Therefore,

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

By Lemma C.2, the required sample size is  $n = \Theta(2^\alpha)$ .  $\square$

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673