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ABSTRACT

As API access becomes a primary interface to large language models (LLMs),
users often interact with black-box systems that offer little transparency into the
deployed model. To reduce costs or maliciously alter model behaviors, API
providers may discreetly serve quantized or fine-tuned variants, which can de-
grade performance and compromise safety. Detecting such substitutions is diffi-
cult, as users lack access to model weights and, in most cases, even output logits.
To tackle this problem, we propose a Rank-based Uniformity Test (RUT) that can
verify the behavioral equality of a black-box LLM to a locally deployed authentic
model. Our method is accurate, query-efficient, and avoids detectable query pat-
terns, making it robust to adversarial providers that reroute or mix responses upon
the detection of testing attempts. We evaluate the approach across diverse query
domains and threat scenarios, including quantization, harmful fine-tuning, jail-
break prompts, and full model substitution, showing that it consistently achieves

superior detection power over prior methods under constrained query budgets.

1 INTRODUCTION

APIs have become a central access point for
large language models (LLMs) in consumer ap-
plications, enterprise tools, and research work-
flows (Anysphere Inc., 2025; Yun et al., 2025;
ResearchFlow, 2025). However, while users
can query black-box APISs, they have little to no
visibility into the underlying model implemen-
tation. Combined with the high cost of serv-
ing large models and the latency pressure to re-
duce time-to-first-token (TTFT), API providers
are incentivized to deploy smaller or quan-
tized variants of the original model to cut costs.
Such modifications, while opaque to end users,
can degrade model performance and introduce
safety risks (Egashira et al., 2024). In more
concerning cases, providers may incorporate
harmful fine-tuning, jailbreak-enabling system
prompts, or even misconfigured system compo-
nents without realizing it (mirpo, 2025).
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Figure 1: Statistical power of different meth-
ods in detecting substitution of the Gemma-2-
9b-it with its 4-bit quantized variant, as the pro-
portion of API responses from the quantized
model increases. Our method significantly out-
performs MMD (Gao et al., 2025) and the Kol-
mogorov—Smirnov (KS) baseline.

These risks highlight the need for LLM API auditing—the task of checking whether a deployed
model is as claimed. Yet this is particularly challenging in the black-box setting: users typically lack
access to model weights and receive only limited metadata (e.g., top-5 token log-probabilities). This
necessitates detection methods that rely solely on observed outputs. However, even such output-
level methods face potential evasion: if the detection relies on invoking an LLM API with specially
constructed query distributions, a dishonest API provider could detect the special pattern and reroute
those queries to the original model they claim to serve. Worse still, even without knowing the
detection strategy, an API provider could mix multiple models, making the response distribution

harder to distinguish.
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Following Gao et al. (2025), we formulate LLM API auditing as a model equality test: given query
access to a target LLM API and a certified reference model of the expected configurations, the goal
is to determine if the two produce statistically indistinguishable outputs on shared prompts.

We propose that a model equality test for auditing LLM APIs must satisfy three key criteria: ac-
curacy, query efficiency, and robustness to adversarial attacks. Accuracy reflects how reliably a
test can be used in practice. Query efficiency is critical for reducing operational overhead, which
incentivizes more audits to ensure API models’ integrity. Robustness is equally essential for real-
world deployment, where audits must both evade detection by adversarial API providers and remain
effective under targeted attacks.

While several methods have been proposed for model equality testing, they each fall short in one
or more of these criteria (Table 1). Existing methods include Maximum Mean Discrepancy (MMD)
(Gao et al., 2025), trained text classifiers (Sun et al., 2025), identity prompting (Huang et al., 2025),
and benchmark performance comparison (Chen et al., 2023a). However, Sun et al. (2025) require
prohibitively many API queries; Huang et al. (2025) fail to capture model variations such as size,
version, or quantization (Cai et al., 2025); and Gao et al. (2025) and Chen et al. (2023a) rely on
special query distributions that can be adversarially detected and circumvented by techniques such
as prompt caching (Gu et al., 2025).

Driven by these limitations, we propose Taple 1: Comparison of LLM auditing methods by
a Rank-based Uniformity Test (RUT)—an accuracy (Acc.), query-efficiency (Q-Eff.), and ro-

asymmetric two-sam.ple. hypothesis test that  py smess to adversarial providers (Rob.).
addresses all three criteria simultaneously. In

RUT, we sample one response from the tar- Method Acc. Q-Eff. Rob.

get API and multiple responses from the ref- RUT (Ours) v v v

erence model for each prompt, then compute MMD (Gao et al., 2025) v 4 X
. . . 1 N 9 bl 5

the rank percentile of the API output within Classifier (Sun et al, 2029) xoox v
R . entity-prompting (Huang et al., 2025) X v X

the reference distribution. If the target and Benchmark (Chen et al., 2023a) X x X

reference models are identical, the percentiles
should follow a uniform distribution. We de-
tect deviations using the Cramér—von Mises test (Cramér, 1928). Our method requires only a single
API call per prompt, operates effectively on real-world, user-like queries, and avoids detectable
patterns that adversarial providers might exploit.

We evaluate RUT across a range of adversarial scenarios in which the API provider secretly substi-
tutes the claimed model with an alternative. In Section 5.2, we study the case where the substitute is
a quantized version of the original model. In Section 5.3, we test models augmented with a hidden
jailbreaking system prompt. In Section 5.4, we examine models finetuned on instruction-following
data. In Section 5.5, we consider substitution with a completely different model. Finally, in Section
5.6, we test the methods on additional query distributions of math and coding.

Under a fixed API query budget, we find RUT outperforms both MMD and a Kolmogorov—Smirnov
test (KS) baseline across all settings. It consistently achieves higher statistical power and shows
greater robustness to probabilistic substitution attacks (Figure 1). Moreover, when applied to five
real-world API-deployed models (Section 5.7), our method yields detection results closely aligned
with other methods and is more robust over string-based metrics on minor decoding mismatches.

To summarize, the main contributions of our work include:

1. A novel test for auditing LLM APIs. We propose RUT, an asymmetric two-sample-test that
needs only one API call per prompt and operates effectively on natural queries, achieving
query efficiency and by-design robustness to adversarial providers.

2. Empirical validation across diverse threat models. We validate the robustness of RUT
under diverse settings, including quantization, jailbreaking, SFT, and full model replacement.

3. Cross-validated audit of live commercial endpoints. We benchmark RUT side-by-side with
established tests (MMD and KS) on three major public LLM APIs and demonstrate its practi-
cality in real-world black-box settings.
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2 RELATED WORK

LLM fingerprinting. Fingerprinting approaches focus on identifying LLMs by analyzing their
outputs. Active fingerprinting involves injecting backdoor-like behavior (Xu et al., 2024) into an
LLM via finetuning, embedding watermarks (Kirchenbauer et al., 2023; Ren et al., 2023) into a
model’ s text generation process, or intentionally crafting prompts to elicit unique outputs from dif-
ferent LLMs (Pasquini et al., 2024). Passive fingerprinting, on the other hand, focuses on analyzing
the inherent patterns in LLM-generated text (Su et al., 2023; Fu et al., 2025; Alhazbi et al., 2025).
This builds on the observation that LLMs expose rich “idiosyncrasies”—distributional quirks that
allow classifiers to identify a model (Sun et al., 2025). While passive fingerprinting is relevant for
LLM auditing, many such methods rely on training classifiers and require substantial labeled data,
making them suboptimal for auditing LLM APIs. Prior work (Cai et al., 2025) also shows they are
ineffective in detecting quantized model substitution.

Auditing LLM APIs. A growing body of work investigates whether black-box APIs faithfully
serve the advertised model. The most straightforward audit is to evaluate models’ benchmark per-
formance (art, 2025; Eyuboglu et al., 2024; Chen et al., 2023b), but raw performance alone cannot
expose covert substitutions or partial routing. Gao et al. (2025) formalizes the problem as Model
Equality Testing and shows that a kernel-MMD test can already flag public endpoints that deviate
from their open-weight checkpoints. Concurrently to our work, Cai et al. (2025) investigate the
model substitution setting and show that API providers can evade detection through strategies such
as model quantization, randomized substitution, and benchmark evasion. Building on these insights,
we propose a method that is more robust to such attacks and extend the threat model to include a
broader range of realistic scenarios, such as jailbroken or maliciously finetuned models.

3 PROBLEM FORMULATION

In this section, we formalize the LLM API auditing problem as a black-box model equality test
between a target API and a fully accessible reference model.

Models. We denote an LLM as a conditional distribution 7 (y|x; ¢) over text output y € ) given
an input prompt z € X and decoding parameters ¢ (e.g., temperature, top-p). In all experiments,
we control the decoding parameters to be the same across models. Two such models are involved
in the test. The reference model s is fully accessible locally; the verifier can draw an unlimited
number of samples Yrer ~ Tref( - | 2; ) for any x and obtain relevant logits. The target model mgy is
exposed only through a remote API that returns exactly one completion g ~ g (- | 2; @) per call
and charges for every invocation. The total API budget is N prompts.

Hypotheses. The model equality test is cast as a composite two-sample hypothesis test. The null
hypothesis

Ho: mg(-|x9) = met( - |25) Ve ek (1)
states that the deployed model is behaviorally identical to the declared one.
Hy: 3z € X suchthat mg (- | 2;¢) # Tet(- | 25¢) )

captures any observable deviation, whether arising from quantization, fine-tuning, prompt injection,
or full model replacement.

Adversarial model provider. A dishonest model provider may attempt to evade detection through
probabilistic substitution. We model this behaviour by

Tig(- | 250) = (1= q(@)) mei(- | 250) + q(@) ma( - | 2590), 3)

where 7y is an arbitrary alternative model (e.g., quantized or adversarially finetuned version of 7rf)
and ¢ : X — 0, 1] is an unknown routing function that may depend on the prompt and even on past
interaction history (e.g., routing based on prompt caching (Gu et al., 2025)). When ¢(x) is small
but positive on a non-negligible fraction of typical prompts, the mixture in equation 3 significantly
complicates discrimination; nevertheless, a sound detection procedure must retain statistical power
under such adversarial conditions.

Detector and objectives. A detector is a decision rule ¢ : Dy — {0,1} whose output 1 means
“reject Hy”. Here, D denotes the data collected with N API queries and many local model queries.
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For a user-specified significance level a € (0, 1), the detector must satisfy the type-I error constraint
Pry, [¢(Dn) = 1] < . Subject to this guarantee, the verifier seeks to maximize the statistical

power
ﬂ(qv ﬂ-ﬂlt) = Ef[so(DN) = 1}7

uniformly over a broad class of substitution policies (g, 7,y ); to do so with as few costly API queries
N as possible; and to employ prompts that are indistinguishable from ordinary user traffic, thereby
preventing the provider from detecting and rerouting “suspicious-looking” inputs.

4 METHOD

In this section, we introduce our rank-based uniformity test in Section 4.1 and empirically identify
the most discriminative score function to maximize the detection power in Section 4.2.

4.1 RANK-BASED UNIFORMITY TEST (RUT)

To determine whether the target model 7y is identical to the reference model mr, we propose a
rank-based uniformity test. This method assesses how typical the target model’s responses are under
the reference model’s generation distribution.

Response score function. To perform a statistical test, we first define a scalar-valued score function
f Y x X — R that maps a model response and prompt to a real number. This function assigns a
score to each output given the prompt, i.e.,

s= f(y,x), wherexe X, yel, seR.

An ideal score function f* should induce an injective mapping y — f*(y,x) for any fixed prompt
x € X. Under this assumption, each distinct response corresponds to a unique score value, ensuring
that the score distribution fully characterizes the model’s outputs.

Uniformity as a test signal. For each prompt 2 € X', we sample a response Yo ~ mige(- | 2; @) and
compute its scalar score Sg = f(Ygr, ). To assess how typical this response is under the reference
model, we evaluate its rank in the reference model’s score distribution.

We define the cumulative distribution function (CDF) of the reference model’s scores as:
Fmef(s | LE) = PyNTrref(~\w;tp) [.f(y; :ZZ) < S] .

Since f(y, ) takes values in a discrete set, Fy,, is a step function. To ensure the rank statistic is
continuously distributed under the null hypothesis, we apply a randomized quantile residual (Dunn
& Smyth, 1996) to extend the probability integral transform (David & Johnson, 1948) to discrete
distributions. Specifically, we define the rank statistic as

Tigt i = Fry (i) + U -P(f(y,7) = siq), U ~ Uniform[0, 1], 4)

where Frr . (si) = P (f(y, %) < sig) is the left-limit of the CDF at sy, and P(f(y,z) = sig) is
the probability mass at s;. Under the null hypothesis 7 = ey, this rank statistic rg € [0,1] is
uniformly distributed.

Conversely, suppose that 7 ~ Uniform[0, 1] under the randomized quantile residual construction.
Since the CDF Fy (- | x) is stepwise and non-decreasing, a uniformly distributed 7, implies that
the score sy, follows the same discrete distribution as s.. By injectivity of f, this further implies
that e ~ Trer(- | 3 ), and hence T = Trer.

Thus, with an injective score function f, testing the uniformity of r, as defined in equation 4 offers
a valid signal for distinguishing 7 from 7.

Empirical approximation of F ,. In practice, it is intractable to build the true CDF Fy (- | x).
Instead, we approximate it using an empirical CDF from m reference samples for each prompt.

Given a target response y; ~ T (- | 2;;6) and reference responses y;; ~ Tref(- | @;;6) for j =
1,...,m, we compute the scalar scores

S5 1= f(yz',l“i), Sij = f(yijaxz‘)-
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We then define the randomized rank statistics v; € [0, 1] as

m

1 m
P = — 1{s; > 85} +U; - 1{s; = 545} |,
" Z {si > sij} + ; {si = si;}

j=1

where U; ~ Uniform[0, 1] is an independent random variable to break ties uniformly, and ensure r;
is an unbiased estimator of 7 given the prompt x;.

Discriminative score function via empirical selection. While an ideal injective score function
would guarantee sensitivity to any behavioral difference between 7 and 7, constructing such a
function for which we can calculate the CDF is generally infeasible in practice.

To ensure that our test remains practically effective, we instead require the score function to be
sufficiently discriminative, in the sense that it induces distinct score distributions whenever s #
gt Formally, for fixed prompt x € X, let

Sre = [y, @) with y ~ mee(- | 259), and S, = f(y,2) with y ~ mig(- | z50).

We say that f is sufficiently discriminative if the distributions of S
Tref 7é 7Ttgt, i-e~;

and Sy, differ whenever

ref

Tret (- | 23 0) # 7Ttgt(' | rp) = PS7rref * Psmgl-

Under this condition, differences in response distributions are reflected in the score distributions,
causing the ranks to deviate from uniformity.

Thus, we aim to find the most discriminative score function among several promising candidates
through empirical experiments. In Section 4.2, we compare five candidate score functions—Ilog-
likelihood, token rank, log-rank, entropy, and the log-likelihood log-rank ratio (Su et al., 2023)—and
find that log-rank is the most discriminative in practice for separating responses by s and g, and
therefore adopt it in our uniformity test.

Full test procedure. We now present the full RUT procedure.

Let {x1,...,2,} C X be a set of prompts. For each prompt x;, we sample one response from the
target model,

Yi ~ tht(' | $7‘,§9)a

and m responses from the reference model,

ylj ~ 7Tref(' | Z‘i;e), ]: 1a" -, M.

We compute the log-rank scores
si = f(yi, ), Sij = f(Yij,24),
and the corresponding randomized rank statistics {r;} ;.

We apply the Cramér—von Mises (CvM) test (Cramér, 1928) to assess the deviations between
{r;}?_, and Uniform[0, 1]. The test evaluates the null hypothesis

Hy : r; ~ Uniform[0, 1] for all 4.

The CvM test statistic is defined as

where r(1) < r(z) < -+ <7y are the ordered rank statistics.

To compute the p-value, we compare the observed statistic w2 to the distribution of the CvM

obs
statistic w2, computed under the null hypothesis. The p-value is given by

2 2
p-value = Pry, [wayy > W) -

We reject Hy and conclude that the target and reference models are different if p-value < 0.05.
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4.2 SCORE FUNCTION SELECTION

The RUT requires a scalar score function f(y,x). To identify a function that best captures dis-
tributional differences between models, we consider five candidate functions. Log-likelihood:
log mer(y | x). Token rank: the average rank of response tokens in y, where a token’s rank is
its position in the vocabulary ordered by the m.¢’s next-token probabilities. Log-rank: the average
of the logarithm of the token rank. Entropy: predictive entropy for y under 7¢(z). Log-likelihood
log-rank ratio (LRR): the ratio between log-likelihood and log-rank. (Su et al., 2023).

To identify the most discriminative score func-

tion, we conduct a Monte Carlo evaluation con- 100 loglikelihood
sisting of 500 independent trials. In each trial, ::g;nk
we randomly select 10 prompts from the Wild- 80 entropy

Irr

Chat (Zhao et al., 2024) dataset and sample 50
completions per prompt from both 7 and g,
using a fixed temperature of 0.5 and a maxi- 40
mum length of 30 tokens. For each candidate
score function, we compute the average AU-

ROC (Bradley, 1997) across the 10 prompts for 0
each trial, yielding a distribution of 500 AU- AUROC

ROC scores per function. The full algorithm Figure 2: Distribution of AUROC scores for
to calculate per score function average AUROC  five candidate score functions across 500 trials
is included in Appendix A.l. Across different comparing Gemma-2-9b-it and its 4-bit quantized
model comparisons, we find that log-rank con-  variant. Log-rank achieves the most separable dis-
sistently yields the most separable AUROC dis-  tribution from the random level 0.5, indicating su-
tribution from 0.5, indicating the strongest dis-  perior power in distinguishing different models.
criminative power. Figure 2 shows an example

comparing Gemma-2-9b-it with its 4-bit quantized variant. Based on the results, we select log-rank
as the scoring function for RUT. Complete AUROC results are provided in Appendix A.2.

60

20

5 EXPERIMENTS

In this section, we evaluate RUT across diverse model substitution scenarios, including quantiza-
tion (Section 5.2), jailbreaks (Section 5.3), SFT (Section 5.4), full model replacement (Section 5.5),
additional query domains (Section 5.6), and real-world API providers (Section 5.7). Detection per-
formance is compared against MMD and a KS baseline using statistical power AUC as the primary
metric. We also include a case study on detecting decoding parameter mismatch in Appendix B.6
and demonstrate that RUT remains robust across models and query domains.

5.1 EXPERIMENTAL SETUP

To evaluate detection performance under adversarial conditions, we simulate probabilistic substi-
tution attacks where a fraction ¢ € [0, 1] of API queries are routed to an alternative model (e.g.,
quantized or fine-tuned). For each value of ¢, we estimate the statistical power, defined as the proba-
bility of correctly rejecting the null hypothesis when substitution is present. We then summarize the
resulting power—substitution rate curve using the area under the curve (AUC) over g € [0,1]. The
AUC ranges from 0 to 1 and reflects the method’s ability to maintain high statistical power across
varying levels of substitution, serving as a measure of robustness to such attacks. Higher values
indicate more reliable and consistent detection performance. Figure | shows an example comparing
Gemma-2-9b-it and its 4-bit quantized variant.

Data. We use the WildChat dataset (Zhao et al., 2024), which contains real-world conversations
between human users and ChatGPT. This dataset reflects authentic user behavior, ensuring the query
distribution represents typical API traffic.

Baseline. For the detection methods (Sun et al., 2025; Gao et al., 2025) that are compatible with
WildChat, We primarily focus on Maximum Mean Discrepancy (MMD) (Gao et al., 2025) as the
baseline, as Sun et al. (2025) is reported to fail to identify quantization (Cai et al., 2025). We also
tailor a Kolmogorov—Smirnov (KS) test baseline that uses the same information as RUT: it computes
the log-rank scores from the reference model on both the target and reference model responses and
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(a) Statistical power AUC for detecting quantized (b) Statistical power AUC for detecting jail-breaking

variants. Bold = best method; gray = none reliable. prompts. Bold = most effective method per prompt.

Model RUT MMD KS Model  Prompt RUT MMD  KS

Gemma—4bit 0.392 0.214 0.017 . Dan 0.895 0.802 0.873
Gemma-8bit 0.040 0.043 0.001 Mistral ~ Anti-Dan  0.893  0.781 0.872
Llama—4bit  0.642 0.625 0.474 Evil-Bot  0.892 0766 0.873
Llama-8bit  0.132 0.158 0.005 Dan 0.888 0.757 0.867
Mistral-4bit  0.586 0.500 0.330 Gemma Anti-Dan 0.858 0.816 0.854
Mistral-8bit  0.049  0.090  0.006 Evil-Bot 0.893 0.753 0.871

Table 2: Statistical-power AUCs. Left: quantized variants; right: jail-breaking prompts.

applies the two-sample KS test (Darling, 1957) on these two sets of scores to estimate the p-value
between the target and reference distributions.

Test procedures. We apply a consistent sample budget constraint on all tests. The implementation
details of their test procedures are listed below:

* Rank-Based Uniformity Test (RUT): Each trial samples 100 prompts. We query each
prompt once to the target and 100 times to the reference model.

¢ Maximum Mean Discrepancy (MMD): We apply the MMD test based on the character-
level Hamming distance following Gao et al. (2025). Each trial uses 10 prompts, with 10
samples per prompt. We compute the MMD statistic and estimate the p-value via 500 random
permutations.

¢ Kolmogorov-Smirnov Test (KS): We use the same sampling setup as RUT: 100 prompts per
trial, 1 query to the target, and 100 to the reference model per prompt.

Across all models, we set the temperature to 0.5 and cap generation at 30 tokens. We use vLLM
(Kwon et al., 2023) on a single A6000 for all local inferences. To estimate statistical power, we
repeat each experiment over 500 Monte Carlo trials. Power is computed as the proportion of trials
in which the test correctly rejects the null hypothesis at a significant level of 0.05. All tests were run
with Intel Xeon Gold 6230R @ 2.10GHz and 16 GB RAM per job.

5.2 DETECTING QUANTIZATION

We consider the setting where the API provider uses a quantized variant to substitute the claimed
model. We evaluate three detection methods on quantized variants of Llama-3.2-3B-Instruct’,
Mistral-7B-Instruct-v0.3”, and Gemma-2-9B-it’, comparing each model to its 4-bit and 8-bit quan-
tized counterparts. As shown in Table 2a, none of the methods succeed in reliably detecting substi-
tution for the 8-bit variants of Gemma and Mistral, where statistical power AUC remains near zero
across the board. In the remaining four settings, RUT outperforms MMD and the KS baseline in
three out of the four cases, demonstrating superior sensitivity to quantization-induced distributional
shifts. Full statistical power curves for AUCs are provided in Appendix B.1.

5.3 DETECTING JAILBREAKS

We consider the setting where the API provider secretly appends a hidden jailbreaking system
prompt to user queries. To evaluate this scenario, we use two base models: Mistral-7B-Instruct-v0.3
and Gemma-2-9B-it. For each model, we construct a test using three representative jailbreaking
prompts Dan, Anti-Dan, and Evil-Bot adapted from Shen et al. (2024). As shown in Table 2b, all
jailbreak cases are reliably detected, with power AUCs consistently above 0.75. RUT achieves the
highest power in all 6 settings, demonstrating its superior sensitivity to model deviations caused by
hidden jailbreaking prompts. Full statistical power curves for AUCs are provided in Appendix B.2.

'https://huggingface.co/meta-1lama/Llama-3.2-3B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
3https ://huggingface.co/google/gemma-2-9b-it
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5.4 DETECTING SFT

We study the setting where the API provider fine-tunes a model on instruction-following data.
Specifically, we fine-tune two base models—ILlama-3.2-3B-Instruct and Mistral-7B-Instruct-
v0.3—on benign and harmful instruction-following datasets. We use Alpaca (Taori et al., 2023)
as the benign dataset and BeaverTails (Ji et al., 2023) for harmful question answering. Each model
is fine-tuned on 500 samples from the respective dataset for 5 epochs using LoRA (Hu et al., 2021)
with rank 64 and o = 16, a batch size of 32, and a learning rate of 1 X 10~%ona single A100. For
each checkpoint, we compute the statistical power AUC of the detection methods.

As shown in Figure 3, RUT con-

sistently achieves hlgher pOWCI‘ AUC oo Llama + BeaverTails Llama + Alpaca

than both the KS and MMD base- o

lines across all fine-tuning configura- 5

tions. Notably, our method detects —<°%

behavioral changes within the first £°* _ _ _

epoch Of ﬁne-tuning, demonstrating E oo Mistral + BeaverTails Mistral + Alpaca

strong sensitivity to early-stage distri- Zo7s

butional shifts. While all methods im- ~ #oso

prove with additional training, RUT  °*

remains the most robust across both  ** % 1 : 3 & s o 1 2 3 a4 s
models and datasets. Full statistical Epoch

power curves for AUCs are provided = = =

in Appendix B.3. Figure 3: AUC to detect SFT checkpoints across epochs.

5.5 DETECTING FULL MODEL REPLACEMENT
RUT MMD

Gemma-2B

Mistral-7B

Reference

Llama-3B

Llama-11B

Target

Figure 4: Statistical power AUC for detecting full model replacement. Each cell shows the AUC
score between a reference and a target model. Diagonal values represent self-comparisons.

We evaluate the setting where the API provider substitutes the claimed model with a completely
different one. To simulate this scenario, we conduct pairwise comparisons among five open-
source models: Llama-3.2-3B-Instruct, Llama-3.2-11B-Vision-Instruct*, Mistral-7B-Instruct-v0.3,
Gemma-2-2B-it’, and Gemma-2-9B-it. For each pair, one model serves as the reference model
while the other acts as the deployed target model. As shown in Figure 4, RUT consistently achieves
the highest statistical power AUC across model pairs, outperforming both the MMD and KS base-
lines. The results highlight the method’s sensitivity to full model substitutions. Full statistical power
curves for AUCs are provided in Appendix B.4.

5.6 DETECTING QUERY DOMAINS

We now evaluate the robustness of RUT across more query domains. Beyond WildChat which
reflects general conversational traffic, we consider two specialized datasets: BigCodeBench (Zhuo

*nttps://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
Shttps://huggingface.co/google/gemma-2-2b-it
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Table 3: Statistical power AUC for detecting quantized variants across query domains. Bold = best
method; gray = none reliable. See full power curves in Appendix B.5.

(a) BigCodeBench (Zhuo et al., 2024) (b) Math (Hendrycks et al., 2021)
Model RUT MMD KS Model RUT MMD KS
Gemma—4bit 0.136 0.170 0.000 Gemma—4bit 0.297 0.237 0.059
Gemma-8bit 0.048 0.052  0.000 Gemma-8bit 0.048 0.067 0.002
Llama—4bit  0.593 0.353 0.524 Llama—4bit  0.532 0.468 0.412
Llama—8bit 0.093 0.143 0.021 Llama—8bit 0.253 0.177 0.118
Mistral-4bit  0.462 0.326 0.183 Mistral-4bit  0.360 0.216 0.160
Mistral-8bit ~ 0.041  0.058 0.011 Mistral-8bit ~ 0.059  0.060 0.019

et al., 2024) for programming tasks and MATH (Hendrycks et al., 2021) for mathematical problem
solving. We adopt the quantization setup in Section 5.2 as this setting is both challenging and
practically relevant.

As shown in Table 3, the overall detection powers mirror those observed in Section 5.2. Detection
remains difficult for 8-bit quantized Gemma and Mistral, where all methods fail to achieve meaning-
ful power. RUT consistently shows high detectability in the remaining cases, outperforming MMD
and KS in seven out of the eight cases. These results show that RUT remains effective in both math
and code domains, reinforcing its generalizability to diverse query distributions.

5.7 DETECTING REAL API PROVIDERS

We evaluate the methods on three
models—Llama-3.2-3B-Instruct, Mistral-
7B-Instruct-v0.3, and Gemma-2-9B-
it—each from multiple API providers.
Local inference on an A100 GPU serves
as the baseline. As shown in Table 4,
all tests correctly identify behavioral

Table 4: Statistical power for detecting differences
from the model deployed on an A6000 GPU. A100
denotes the same model run locally on an A100 GPU;
other entries are actual API providers. Values > 0.5
indicate significant behavioral deviation. Green = no
significant difference; Red = significant difference.

equivalence in local deployments. Model Provider RUT MMD KS

Across all settings, RUT and MMD gen- I]jama ﬁll())O 8823 8é3i 82%
. : S . ama ebius . . .

o T ph e ohaviomal & mufu Mistral  A100 0.058  0.138  0.004

validation for t el.r. € ay19ra sensitivity. Mistral HF Inf. 0.188 1.000 0.000

The KS test exhibits s.1r.m.1ar trends but Gemma A100 0.060 0.084 0.000

with notably lower sensitivity. An excep- Gemma Nebius 0.312 0.432 0.008

tion arises in the Mistral + HF Inference
setting, where MMD yields a power of 1.0
while other tests are below 0.2. We suspect the discrepancy is due to a tokenization mismatch: the
HF Inference API consistently omits the leading whitespace present in the reference outputs. Since
MMD uses string Hamming distance, the formatting difference inflates the score. After restoring
the missing space, the MMD score drops to 0.211, aligning with other tests. This illustrates the
robustness of RUT to minor decoding mismatches that can mislead string-based metrics.

6 CONCLUSION

The stable increase in the size (Kaplan et al., 2020) and architectural complexity (Zhou et al., 2022)
of frontier LLMs has led to a rise in the popularity of API-based model access. To prevent per-
formance degradation and security risks from model substitution behind API interfaces, this work
proposes the rank-based uniformity test for model equality testing. We test the method against
a variety of different substitution attacks and demonstrate its consistent effectiveness in detecting
substitution and its superiority over existing methods. By developing an effective and stealthy API-
based test for model equality, we hope to advance the safety and security of LLM-based applications
in the age of increasingly cloud-based deployment.
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A AUROC

A.1 AUROC ALGORITHM

Algorithm 1: Average AUROC for score function evaluation

Input: Prompt set D; models 7f, iy ; decoding parameters ¢ = (r,L),
where 7 is temperature and L is the maximum generation length;
number of prompts n; number of completions per prompt per model
m; score functions {1, ..., K}

Output: Mean AUROC per score function, denoted pauroc(9).

1 Draw {z1,...,z,} ~ Uniform(D);

2 forie{l,....,n} do

3 {yr(ejf) T~ et (- | 245 9);

o | {ud Y~ mal | se):

S| Ve o (v

6 L; + {0} u{1}™;

7 | ford € {p1,...,0x} do

J Si«{0(y) |y € Vi}s

9 Store A? < AUROC(S;, L;);

for o € {p1,..., 0K} do
n | pavroc(d) < & 200, A

—
>

Note. AUROC(S, L) denotes the standard binary AUROC (Bradley, 1997).

A.2 AUROC SCORE DISTRIBUTIONS

We present the AUROC score distributions from the score function selection experiment described
in Section 4.2. Specifically, we evaluated Gemma-2-9B-it, LLaMA-3.2-3B-Instruct, and Mistral-
7B-Instruct, and visualized the distributions when distinguishing the original model outputs from
three types of variants: (1) quantized versions, (2) models subjected to jailbreaking prompts, and (3)

models served by A100 or external API providers.
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B STATISTIC POWER CURVES

B.1 FULL STATISTIC POWER CURVES FOR DETECTING QUANTIZATION

We present the full statistical power curves, showing the relationship between substitution rate and
detection power, corresponding to the experiments on detecting quantized model substitutions de-
scribed in Section 5.2. These curves are used to compute the power AUC values reported in the main
paper and illustrate each method’s detection power across different levels of substitution.
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B.2 FULL STATISTIC POWER CURVES FOR DETECTING JAILBREAKING

We present the full statistical power curves, showing the relationship between substitution rate and
detection power, corresponding to the experiments on detecting jailbreak prompts described in Sec-
tion 5.3. These curves are used to compute the power AUC values reported in the main paper and
illustrate each method’s detection power across different levels of substitution.
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B.3 FULL STATISTIC POWER CURVES FOR DETECTING SFT

We present the full statistical power curves, showing the relationship between substitution rate and
detection power, corresponding to the experiments on detecting SFT described in Section 5.4. These
curves are used to compute the power AUC values reported in the main paper and illustrate each
method’s detection power across different levels of substitution.
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FULL STATISTIC POWER CURVES FOR DETECTING FULL MODEL REPLACEMENT

We present the full statistical power curves, showing the relationship between substitution rate and
detection power, corresponding to the experiments on detecting full model replacements described
in Section 5.5. These curves are used to compute the power AUC values reported in the main paper
and illustrate each method’s detection power across different levels of substitution.
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B.5 FULL STATISTIC POWER CURVES FOR DETECTING MORE QUERY DOMAINS

We present the full statistical power curves, showing the relationship between substitution rate and
detection power, corresponding to the experiments on detecting quantized model in extra domains
described in Section 5.6. These curves are used to compute the power AUC values reported in the
main paper and illustrate each method’s detection power across different levels of substitution.
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B.6 CASE STUDY ON DETECTING DECODING PARAMETERS

Setup. As a case study, we test whether detection methods can identify changes in decoding pa-
rameters, focusing on sampling temperature and top-p for nucleus sampling (Holtzman et al., 2020).
We compare responses generated under different parameter settings against the default configuration

of temperature=0.5 and top-p=1.

Findings.

We perform the experiments across Gemma-2-9B-it and Llama-3.2-3B-Instruct on

MATH (Hendrycks et al., 2021) and WildChat (Zhao et al., 2024). Based on the results in Fig-
ure 5, RUT achieves consistently higher detection power across decoding configurations compared
to MMD and KS. This sensitivity is desirable in practice, since when the API providers expose de-
coding controls to users, a reliable detection method should be able to flag deviations arising not
only from model substitution but also from anomalous decoding configurations.
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Figure 5: Statistical power AUC for detecting decoding parameter mismatches (temperature, top-p)
across models and datasets. Each cell compares outputs under a specific decoding configuration
against the default (0.5, 1.0); higher values indicate stronger detectability.
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