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Abstract

In recent years, semi-supervised learning (SSL) has gained significant attention
due to its ability to leverage both labeled and unlabeled data to improve model
performance, especially when labeled data is scarce. However, most current
SSL methods rely on heuristics or predefined rules for generating pseudo-labels
and leveraging unlabeled data. They are limited to exploiting loss functions and
regularization methods within the standard norm. In this paper, we propose a novel
Reinforcement Learning (RL) Guided SSL method, RLGSSL, that formulates
SSL as a one-armed bandit problem and deploys an innovative RL loss based
on weighted reward to adaptively guide the learning process of the prediction
model. RLGSSL incorporates a carefully designed reward function that balances
the use of labeled and unlabeled data to enhance generalization performance. A
semi-supervised teacher-student framework is further deployed to increase the
learning stability. We demonstrate the effectiveness of RLGSSL through extensive
experiments on several benchmark datasets and show that our approach achieves
consistent superior performance compared to state-of-the-art SSL methods.

1 Introduction

Semi-supervised learning (SSL) is a significant research area in the field of machine learning,
addressing the challenge of effectively utilizing limited labeled data alongside abundant unlabeled
data. SSL techniques bridge the gap between supervised and unsupervised learning, offering a
practical solution when labeling large amounts of data is prohibitively expensive or time-consuming.
The primary goal of SSL is to leverage the structure and patterns present within the unlabeled data to
improve the learning process, generalization capabilities, and overall performance of the prediction
model. Over the past few years, there has been considerable interest in developing various SSL
methods, and these approaches have found success in a wide range of applications, from computer
vision [1] to natural language processing [2] and beyond [3, 4].

Within the SSL domain, a range of strategies has been devised to effectively utilize the information
available in both labeled and unlabeled data. Broadly, SSL approaches can be categorized into
three key paradigms: regularization-based, mean-teacher-based, and pseudo-labeling methodologies.
Regularization-based approaches form a fundamental pillar of SSL [5–7]. These methods revolve
around the core idea of promoting model robustness against minor perturbations in the input data. A
quintessential example in this category is Virtual Adversarial Training (VAT) [5]. VAT capitalizes
on the introduction of adversarial perturbations to the input space, thereby ensuring the model’s
predictions maintain consistency. The second category, Mean-teacher based methods, encapsulates
a distinct class of SSL strategies that leverage the concept of temporal ensembling. This technique
aids in the stabilization of the learning process by maintaining an exponential moving average of
model parameters over training iterations. Mean Teacher [8] notably pioneered this paradigm with a
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Mean Teacher model, illustrating its efficacy across numerous benchmark tasks. Lastly, the category
of pseudo-labeling approaches has attracted attention due to its simplicity and effectiveness. These
methods employ the model’s own predictions on unlabeled data as “pseudo-labels” to augment the
training process. The MixMatch [1] framework stands as one of the leading representatives of this
category, demonstrating the potential of these methods in the low-data regime.

Despite these advancements, achieving high performance with limited labeled data continues to be
a significant challenge in SSL, often requiring intricate design decisions and careful coordination
of multiple loss functions. Recently RL has been increasingly used in fine-tuning complex models
with non-differentiable reward functions. This application establishes a reinforced alignment with
the learning objective and enhances generalization to standard supervised learning scenarios [9–12].
Enthusiastic about the potential of enhanced generalizability introduced by a non-differentiable RL
reward to SSL, we propose to approach SSL outside the conventional design norms by developing
a Reinforcement Learning Guided Semi-Supervised Learning (RLGSSL) method, which brings a
fresh perspective to SSL. We employ Reinforcement Learning (RL) to optimize the generation of
pseudo-labels in Semi-Supervised Learning (SSL). Conventional methods in SSL often face problems
such as overfitting and difficulties in creating accurate pseudo-labels. RL introduces advantages
in exploration capabilities and adeptly manages non-differentiable operations by considering the
predictor as a policy function.

In RLGSSL, we formulate SSL as a bandit problem, a special case of reinforcement learning, where
the prediction model serves as the policy function, and soft pseudo-labeling acts as the actions. We
define a simple reward function that balances the use of labeled and unlabeled data and improves
generalization capacity by leveraging linear data interpolation, while the prediction model is trained
under a policy gradient framework to maximize the policy-output weighted reward. Formulating the
SSL problem as such an RL task allows our approach to dynamically adapt and respond to the data.
Moreover, we further deploy a teacher-student learning framework to enhance the stability of learning.
Additionally, we integrate a supervised learning loss to improve and accelerate the learning process.
This new SSL framework has the potential to pave the way for more robust, flexible, and adaptive SSL
methods. We evaluate the proposed method through extensive experiments on benchmark datasets.
The contribution of this work can be summarized as follows:

• We propose RLGSSL, a novel Reinforcement Learning based approach that effectively
tackles SSL by leveraging RL’s power to learn effective strategies for generating pseudo-
labels and guiding the learning process.

• We design a prediction assessment reward function that encourages the learning of accurate
and reliable pseudo-labels while maintaining a balance between the usage of labeled and
unlabeled data.

• We develop an innovative RL loss that allows reward from pseudo-labels to be incorpo-
rated into SSL as a non-differentiable signal in a reinforced manner, promoting better
generalization performance.

• We conduct a novel investigation on integration frameworks that combine the power of both
RL loss and standard semi-supervised loss, providing a brand new approach that has the
potential to lead to more accurate and robust SSL models.

• Extensive experiments demonstrate that our proposed method outperforms state-of-the-art
SSL approaches and validate the integration of RL strengths in SSL.

2 Related Work

2.1 Semi-Supervised Learning

Existing SSL approaches can be broadly classified into three primary categories: regularization-based
methods, teacher-student-based methods, and pseudo-labeling techniques.

2.1.1 Regularization-Based Methods

A prevalent research direction in SSL focuses on regularization-based methods, which introduce
additional terms to the loss function to promote specific properties of the model. For instance,
the Π-model [6] and Temporal-Ensemble [6] incorporate consistency regularization into the loss
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function, with the latter employing the exponential moving average of model predictions. Virtual
Adversarial Training (VAT) [5] is yet another regularization-based technique that aims to make deep
neural networks robust to adversarial perturbations. In a similar vein, Consistency Regularization
for Generative Adversarial Networks (CR-GAN) [7] integrates a generative adversarial network
(GAN) with a consistency regularization term, facilitating the effective generation of pseudo-labels
for unlabeled data.

2.1.2 Teacher-Student-Based Methods

Teacher-student-based methods offer an alternative approach in SSL research. These techniques
train a student network to align its predictions with those of a teacher network on unlabeled data.
Mean Teacher (MT) [8], a prominent example in this category, leverages an exponential moving
average (EMA) of successive weights from the student model to obtain the teacher model. To enhance
performance, MT + Fast SWA [13] combines Mean Teacher with Fast Stochastic Weight Averaging.
Smooth Neighbors on Teacher Graphs (SNTG) [14] takes a different approach, utilizing a graph for
the teacher to regulate the distribution of features in unlabeled samples. Meanwhile, Interpolation
Consistency Training (ICT) [15] aims to promote consistent predictions across interpolated data
points by ensuring that a model’s predictions on an interpolated set of unlabeled data points remain
consistent with the interpolation of the predictions on those points.

2.1.3 Pseudo-Labeling Methods

Pseudo-labeling is an effective way to extend the labeled set when the number of labels is limited.
Pseudo-Label [16] produces labels for unlabeled data using model predictions and filters out low-
confidence predictions. MixMatch [1] employs data augmentation to create multiple input versions,
obtaining predictions for each and averaging them to generate pseudo-labels. In contrast, works
such as ReMixMatch [17], UDA [18], and FixMatch [19] apply confidence thresholds to produce
pseudo-labels for weakly augmented samples, which subsequently serve as annotations for strongly
augmented samples. Label propagation methods, including TSSDL [20] and LPD [21], assign pseudo-
labels based on local neighborhood density. DASO [22] combines confidence-based and density-based
pseudo-labels in varying ways for each class. Approaches such as Dash [23] and FlexMatch [24]
dynamically adjust confidence thresholds in a curriculum learning manner to generate pseudo-labels.
Meta Pseudo-Labels [25] uses a bi-level optimization strategy, deriving the teacher update rule from
student feedback, to learn from limited labeled data. Co-Training [26] is an early representative of
pseudo-lableing which involves training two classifiers on distinct subsets of unlabeled data and
using confident predictions to produce pseudo-labels for one another. Similarly, Tri-Training [27]
trains three classifiers on separate unlabeled data subsets and generates pseudo-labels based on the
disagreements between their predictions.

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a field of study that focuses on optimizing an agent’s decision-making
abilities by maximizing the cumulative reward obtained through interactions with its environment [28].
RL methodology has been widely applied to solve many other learning problems, including searching
for optimized network architectures [29], training sequence models for text generation by receiving
reward signals [30, 31], and solving online planning problems [32]. Recently, RL has been applied to
fine-tune complex models that typically fail to align with users’ preferences. Moreover, based on RL
from Human Feedback (RLHF; [9–11]), ChatGPT achieves great success in dialogue generation by
fine-tuning Large Language Models (LLM) [33]. It frames the training of LLM as a bandit problem,
specifically a one-armed bandit problem [28], where the objective is to determine the optimal action
(dialogue generation) for a given state (user prompt) within a single step, demonstrating the capacity
of RL for prediction tasks.

The bandit problem was originally described as a statistical decision model used by agents to optimize
their decision-making process [34]. In this problem, an agent receives a reward upon taking an action
and learns to make the best decision by maximizing the given reward. The bandit problem found
its application in economics and has been widely used in market learning, specifically in finding
the optimal market demands or prices to maximize expected profits [35]. Bergemann et al. [36] and
Lattimore et al. [37] have extensively discussed the literature and modern applications of the bandit
problem. Additionally, Mortazavi et al. [38] introduced a Single-Step Markov Decision Process
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Figure 1: Overview of the RLGSSL Framework. The prediction networks (student θS , teacher θT )
serve as the policy functions, and the soft pseudo-labeling (PθT (X

u)) acts as the actions. The model
has three loss terms in total: RL loss (Lrl), supervised loss (Lsup), and consistency loss (Lcons). The
teacher policy function is used to execute the actions and compute the consistency loss, while the
student policy function is used for all other aspects.

(SSMDP) to formulate the bandit problem in a manner that aligns with modern RL techniques. This
advancement enables the utilization of standard RL methods on conventional bandit problems.

3 The Proposed Method

We consider the following semi-supervised learning setting: the training data consist of a small
number of labeled samples, Dl = (X l, Y l) = {(xl

i,y
l
i)}N

l

i=1, and a large number of unlabeled
samples, Du = Xu = {xu

i }N
u

i=1, with Nu ≫ N l, where xl
i (or xu

i ) denotes the input instance and yl
i

denotes the one-hot label vector with length C. The goal is to train a C-class classifier fθ : X → Y
that generalizes well to unseen test data drawn from the same distribution as the training data.

In this section, we present the proposed RLGSSL method, which formulates SSL as a one-armed
bandit problem with a continuous action space, and deploys a novel RL loss to guide the SSL process
based on a reward function specifically designed for semi-supervised data. Moreover, we further
incorporate a semi-supervised teacher-student framework to augment the RL loss with a supervised
loss and a prediction consistency regularization loss, aiming to enhance the learning stability and
efficacy. Figure 1 illustrates the overall framework of the proposed RLGSSL, and the following
subsections will elaborate on the approach.

3.1 Reinforcement Learning Formulation for SSL

We treat SSL as a special one-armed bandit problem with a continuous action space. One-armed
bandit problem can be considered a single-step Markov Decision Process (MDP) [38]. In this
problem, the agent takes a single action and receives a reward based on that action. The state of the
environment is not affected by the action. The one-armed bandit problem involves selecting an action
to maximize an immediate reward, which can be regarded as learning a policy function under the RL
framework. Formulating SSL as a one-armed bandit problem within the RL framework and deploying
RL techniques to guide SSL requires defining the following key components: state space S, action
space A, a policy function π : S → A, and a reward function R : S ×A → R. The objective is to
learn an optimal policy π⋆ that maximizes the expected one-time reward R(s, π(·|s)) in the given
environment (state s): π⋆ = argmaxπ Jr(π) =

∑
a π(a|s)R(s, a).

State The state encapsulates the provided knowledge about the environment and is used as input
for the policy function. As the action does not affect the state of the environment under one-armed
bandit problem, we use the observed data from the SSL problem as the state, i.e., s = (X l, Y l, Xu).
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Action and Policy Function As the goal of SSL is to learn an optimal classifier fθ (i.e., prediction
network parameterized with θ), we use the classifier fθ, usually denoted by its parameters θ, as the
policy function πθ to unify the goals of RL and SSL. In particular, we consider a probabilistic policy
function/prediction network πθ(·) = Pθ(·). Since a policy function is used to project a mapping
from the state s to the action space, a = πθ(·|s), by using a probabilistic prediction network as the
policy function, it naturally determines a continuous action space A. Specifically, given the fixed
state s, taking an action is equivalent to making probabilistic predictions on the unlabeled data in s:
Y u = Pθ(X

u) = πθ(·|s), as the labeled data already has labels. For each unlabeled instance xu
i , the

action is a probability vector produced as yu
i = Pθ(x

u
i ), which can be regarded as soft pseudo-labels

in the SSL setting. This links the action of RL to the pseudo-labeling in SSL.

3.1.1 Reward Function

The reward function serves as feedback to evaluate the performance of the action (prediction) provided
by the policy. It needs to be thoughtfully crafted to maximize the model’s ability to extract useful
information from both labeled and unlabeled data, which is central to the SSL paradigm. The
underlying motivation is to guide the learning process to induce a more generalizable and robust
prediction model. To this end, we adopt a data mixup [39] strategy to produce new data points from the
given labeled data (X l, Y l) and pseudo-labeled data (Xu, Y u), which together form the state-action
pair (s, a), through linear data interpolation, and assess the prediction model’s generalization ability
on such data points as the reward signal. This decision is inspired by the proven effectiveness of
mixup in enhancing model performance in various tasks. The idea of data mixup is to generate virtual
training examples by creating convex combinations of pairs of input data and their corresponding
labels. This technique encourages the model to learn more fluid decision boundaries, leading to
improved generalization capabilities.

Specifically, we propose to generate new data points by performing inter-mixup between labeled and
unlabeled data points, aiming to maintain a balanced utilization of both labeled and unlabeled data.
In order to address the size discrepancy between the labeled dataset Dl and the unlabeled dataset
Du with Nu ≫ N l, we replicate the labeled dataset Dl by a factor of r = ⌈Nu

N l ⌉ times, resulting
in an extended labeled dataset D̃l. After shuffling the data points in each set, we generate a mixup
data point by mixing an unlabeled point xu

i ∈ Du with a labeled point xl
i ∈ D̃l along with their

corresponding pseudo-label yu
i ∈ Du and label yl

i ∈ D̃l:

xm
i = µxu

i + (1− µ)xl
i, ym

i = µyu
i + (1− µ)yl

i (1)

where the mixing parameter µ is sampled from a Beta distribution, Beta(1,1). With this procedure,
we can generate Nm = Nu mixup samples by mixing all the unlabeled samples with the samples in
the extended labeled set.

We then define the reward function to measure the negative mean squared error (MSE) between the
model’s prediction Pθ(x

m
i ) and the mixup label ym

i for each instance in the mixup set. This results in
a single, comprehensive metric that quantifies the overall negative disagreement between the model’s
predictions and the mixup labels over a large set of interpolated data points:

R(s, a; sg[θ]) = R(X l, Y l, Xu, Y u; sg[θ]) = − 1

C ·Nm

∑Nm

i=1
||Pθ(x

m
i )− ym

i ||22 (2)

where C denotes the number of classes and sg[·] is the stop gradient operator which stops the flow
of gradients during the backpropagation process. This ensures that the reward function is solely
employed for model assessment, rather than being directly utilized for model updating, enforcing the
working mechanisms of RL. Mixup labels capture both the supervision information in the labeled
data and the uncertainty in the pseudo-labels of unlabeled data. With the designed reward function, a
good reward value can only be returned when the prediction model not only exhibits strong alignment
with the labeled data but also delivers accurate predictions on the unlabeled data. Consequently,
through RL, this reward function will not only promote accurate predictions but also enhance the
model’s robustness and generalizability.

3.1.2 Reinforcement Learning Loss

By deploying the probabilistic predictions on the unlabeled data, Y u = πθ(X
u) = Pθ(X

u), as the
action, we adopt a deterministic policy. Following the principle of one-armed bandit problem on
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maximizing the expected one-time reward w.r.t. the policy output, we introduce a weighted negative
reward based on the deterministic policy’s output as the RL loss for the proposed RLGSSL, thereby
exploiting non-differentiable reward signals while enabling policy gradient with a deterministic policy.
Specifically, we treat the output of the policy network, Y u, as a uniform distribution over the set of
Nu probability vectors, {yu

1 , · · · ,yu
Nu}, predicted for the unlabeled instances. Let e = 1/C denote

a discrete uniform distribution vector with length C—the number of classes. We design the following
KL-divergence weighted negative reward as the RL loss:

Lrl(θ) = −Eyu
i ∼πθ

KL(e,yu
i )R(s, a; sg[θ]) = −Exu

i ∈Du
KL(e, Pθ(x

u
i ))R(s, a; sg[θ]) (3)

where the KL-divergence term measures the distance of each label prediction probability vector yu
i

from a uniform distribution vector; R(s, a; sg[θS ]) is treated as a non-differentiable reward function.
Given that a uniform probability distribution signifies the least informative prediction outcome, the
expected KL-divergence captures the level of informativeness in the policy output and hence serves
as a meaningful weight for the reward, which inherently encourages the predictions to exhibit greater
discrimination.

The minimization of this loss function over the prediction network parameterized by θ is equivalent
to learning an optimal policy function πθ by maximizing the KL-divergence weighted reward, which
aims at an optimal policy function (also the probabilistic classifier Pθ) that not only maximizes the
reward signal but is also discriminative. From the perspective of SSL, the utilization of this novel RL
loss introduces a fresh approach to designing prediction loss functions. Instead of directly optimizing
the alignment between predictions and targets, it offers a gradual learning process guided by reward
signals. This innovative approach presents a more adaptive and flexible solution for complex data
scenarios, where traditional optimization-based methods may fall short.

3.2 Teacher-Student Framework

Teacher-student models [8] have been popularly deployed to exploit unlabeled data for SSL, improving
the learning stability. We extend this mechanism to provide a teacher-student framework for RL-
guided SSL by maintaining a dual set of model parameters: the student policy/model parameters θS ,
and the teacher policy/model parameters θT . The student model is directly updated through training,
whereas the teacher model is updated via an exponential moving average (EMA) of the student model.
The update is conducted as follows:

θT = β θT + (1− β) θS (4)

where β denotes a hyperparameter that modulates the EMA’s decay rate. The utilization of the
EMA update method ensures a stable and smooth transfer of knowledge from the student model
to the teacher model. This leads to a teacher model with consistent and reliable parameter values
that are not susceptible to random or erratic fluctuations during the training process. Leveraging
this desirable characteristic, we propose to employ the teacher model for executing actions within
the RL framework described in the section 3.1 above; that is, Y u = PθT (X

u), while retaining the
student model for other aspects. By doing so, we ensure that stable actions are taken, reducing the
impact of random noise in the pseudo-labels and enhancing the accuracy of reward evaluation and
reinforcement strength.

Within the teacher-student framework, we further propose to augment the RL loss with a supervised
loss Lsup on the labeled data and a consistency regularization loss Lcons on the unlabeled data. We
adopt a standard cross-entropy loss function ℓCE to compute the supervised loss, promoting accurate
predictions on Dl where the ground-truth labels are available:

Lsup(θS) = E(xl,yl)∈Dl

[
ℓCE

(
PθS (x

l),yl
)]

(5)

This loss can enhance effective exploitation of the ground-truth label information, providing a solid
basis for exploring the parameter space via RL. The consistency loss Lcons is deployed to encourage
prediction consistency between the student and teacher models on the unlabeled data Du:

Lcons(θS) = Exu∈Du [KL (PθS (x
u), PθT (x

u))] (6)

where KL(·, ·) denotes the Kullback-Leibler divergence between two probability distributions. By
enforcing consistency, this loss encourages the student model to make more confident and reliable
predictions, reducing the impact of random or misleading information in the training set. It also acts
as a form of regularization, discouraging the student model from overfitting the labeled data.

6



Algorithm 1 Pseudo-Label Based Policy Gradient Descent

Input: Dl,Du, and extended D̃l; initialized θS , θT ; hyperparameters
for iteration = 1 to maxiters do

for xu
i ∈ Du do

Compute soft pseudo-label vector yu
i = PθT (x

u
i ) to form (xu

i ,y
u
i )

end for
Generate mixup data Dm =(Xm, Y m) on Du and D̃l using Eq.(1) with shuffling
for step = 1 to maxsteps do

Draw a batch of data B = {(xm
i ,ym

i )} from Dm

Calculate the reward function R(·; sg[θS ]) using the batch B
Compute the objective in Eq.(7)
Update the policy parameters θS via gradient descent
Update teacher model θT via EMA in Eq.(4)

end for
end for

Table 1: Performance of RLGSSL and state-of-the-art SSL algorithms with the CNN-13 network.
We report the average test errors and the standard deviations of 5 trials.

Dataset CIFAR-10 CIFAR-100
Number of Labeled Samples 1000 2000 4000 4000 10000
Supervised 39.95(0.75) 27.67(0.12) 20.42(0.21) 58.31(0.89) 44.56(0.30)
Supervised + MixUp [39] 31.83(0.65) 24.22(0.15) 17.37(0.35) 54.87(0.07) 40.97(0.47)
Π-model [6] 28.74(0.48) 17.57(0.44) 12.36(0.17) 55.39(0.55) 38.06(0.37)
Temp-ensemble [6] 25.15(1.46) 15.78(0.44) 11.90(0.25) - 38.65(0.51)
Mean Teacher[8] 21.55(0.53) 15.73(0.31) 12.31(0.28) 45.36(0.49) 35.96(0.77)
VAT [5] 18.12(0.82) 13.93(0.33) 11.10(0.24) - -
SNTG [14] 18.41(0.52) 13.64(0.32) 10.93(0.14) - 37.97(0.29)
Learning to Reweight [40] 11.74(0.12) - 9.44(0.17) 46.62(0.29) 37.31(0.47)
MT + Fast SWA [13] 15.58(0.12) 11.02(0.23) 9.05(0.21) - 33.62(0.54)
ICT [15] 12.44(0.57) 8.69(0.15) 7.18(0.24) 40.07(0.38) 32.24(0.16)
RLGSSL (Ours) 9.15(0.57) 6.90(0.11) 6.11(0.10) 36.92(0.45) 29.12(0.20)

3.3 Training Algorithm for RL-Guided SSL

The learning objective for the RLGSSL approach is formed by combining the reinforcement learning
loss Lrl with the two augmenting loss terms, the supervised loss Lsup and the consistency loss Lcons,
using hyperparameters λ1 and λ2:

L(θS) = Lrl + λ1Lsup + λ2Lcons (7)

By deploying such a joint loss, the RLGSSL framework can benefit from the strengths of both
reinforcement exploration and semi-supervised learning. The RL component, in particular, introduces
a dynamic aspect to the learning process, enabling the model to improve iteratively based on its own
experiences. This innovative combination of losses allows the model to effectively learn from limited
labeled data while still exploiting the abundance of unlabeled data.

We develop a stochastic batch-wise gradient descent algorithm to minimize the joint objective in
Eq. (7) for RL-guided semi-supervised training. The procedure of this algorithm is summarized in
Algorithm 1.

4 Experiments

4.1 Experimental Setup

Datasets We conducted comprehensive experiments on four image classification benchmarks:
CIFAR-10, CIFAR-100 [43], SVHN [44], and STL-10 [45]. We adhere to the conventional dataset
splits used in the literature. Consistent with previous works, on each dataset we preserved the labels
of a randomly selected subset of training samples with an equal number of samples for each class, and
left the remaining samples unlabeled. In order to compare with previous works in the same settings,
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Table 2: Performance of RLGSSL and state-of-the-art SSL algorithms with the CNN-13 network.
We report the average test errors and the standard deviations of 5 trials.

VAT [5] Π-model [6] Temp-ensemble [6] MT [8] ICT [15] SNTG [14] RLGSSL (Ours)
SVHN/500 - 6.65(0.53) 5.12(0.13) 4.18(0.27) 4.23(0.15) 3.99(0.24) 3.12(0.07)

SVHN/1000 5.42(0.00) 4.82(0.17) 4.42(0.16) 3.95(0.19) 3.89(0.04) 3.86(0.27) 3.05(0.04)

Table 3: Comparison results in terms of mean test error and standard deviation using WRN-28-2 as
the backbone on CIFAR-10 and SVHN and using WRN-28-8 as the backbone on CIFAR-100.

Dataset CIFAR-10 CIFAR-100 SVHN
Number of Labeled Samples 250 1000 4000 2500 10000 1000
Mean Teacher [8] 32.32(2.30) 17.32(4.00) 10.36(0.25) 53.91(0.57) 35.83(0.24) 5.65(0.45)
ICT [15] - - 7.66(0.17) - - 3.53(0.07)
MixMatch [1] 11.05(0.15) 7.75(0.32) 6.24(0.06) 39.94(0.37) 28.31(0.33) 3.27(0.31)
ReMixMatch [17] 5.44(0.05) 6.27(0.34) 6.24(0.06) 27.14(0.23) 23.78(0.12) 3.27(0.31)
FixMatch [19] 5.07(0.35) - 4.26(0.05) 28.29(0.11) 22.60(0.12) 2.28(0.11)
Meta-Semi [41] - 7.34(0.22) 6.10(0.10) - - -
Meta Pseudo-Labels [25] - - 3.89(0.07) - - 1.99(0.07)
MarginMatch [42] 4.73(0.12) - 3.98(0.02) 23.71(0.13) 21.39(0.12) 1.93(0.01)
RLGSSL (Ours) 5.01(0.27) 4.92(0.25) 3.52(0.06) 23.18(0.43) 20.15(0.34) 1.92(0.05)

we performed experiments on CIFAR-10 with various numbers (N l ∈ {250, 1, 000, 2, 000, 4, 000})
of labeled samples, on CIFAR-100 with 2,500, 10,000 and 4,000 labeled samples, on SVHN with
1,000 and 500 labeled samples, and on STL-10 with 1,000 labeled images.

Implementation Details We conducted experiments using four different network architectures used
in the literature: a 13-layer Convolutional Neural Network (CNN-13), a Wide-Residual Network with
28 layers and a widening factor of 2 (WRN-28-2), a Wide-RestNet-28-8 (WRN-28-8) and a Wide-
RestNet-37-2 (WRN-37-2). For training the CNN-13 architecture, we employed the SGD optimizer
with a Nesterov momentum of 0.9. We used an L2 regularization coefficient of 1e-4 for CIFAR-10
and CIFAR-100, and 5e-5 for SVHN. The initial learning rate was set to 0.1, and the cosine learning
rate annealing technique proposed in previous studies [46, 15] was utilized. For the WRN-28-2
architecture, we followed the suggestion from MixMatch [1] and used an L2 regularization coefficient
of 4e-4. For WRN-37-2, the training configuration includes the SGD optimizer, an L2 regularization
coefficient of 5e-4, and an initial learning rate of 0.01. Finally, the training configuration for the
WRN-28-8 model includes using the SGD optimizer, an L2 regularization coefficient of 0.001, and
starting with a learning rate of 0.01. To compute the parameters of the teacher model, we employed the
EMA method with a decay rate β = 0.999. We selected all hyperparameters and training techniques
based on relevant studies to ensure a fair comparison between our approach and the existing methods.
Specifically for RLGSSL, we set the batch size to 128, and set λ1 = λ2 = 0.1. We first pre-train the
model for 50 epochs using the Mean-Teacher algorithm and then proceed to the training procedure of
RLGSSL for 400 epochs. We ran each experiment five times and reported the mean test errors with
their standard deviations.

4.2 Comparison Results

We compare RLGSSL with a great number of SSL algorithms, including Supervised + MixUp [39],
Π-model [6], Temp-ensemble [6], Mean Teacher [8], VAT [5], SNTG [14], Learning to Reweight
[40], MT + Fast SWA [13], MixMatch [1], ReMixMatch [17], FixMatch [19], MarginMatch [42],
Meta-Semi [41], Meta Pseudo-Labels [25], and ICT [15], using CNN-13, WRN-28-2, WRN-28-8 or
WRN-37-2 as the backbone network.

Table 1 reports the comparison results on CIFAR-10 with 4,000, 2,000, and 1,000 labeled samples
and on CIFAR-100 with 10,000 and 4,000 labeled samples when CNN-13 is used as the backbone
network. On CIFAR-10, RLGSSL outperforms all the other compared methods across all settings
with different numbers of labeled samples. With 1,000 labeled samples, RLGSSL surpasses the
second best method, Learning to Reweight, by a significant margin of 2.59% on CIFAR-10, achieving
an average test error of 9.15%. This pattern of outperformance continues with different numbers
(2,000 and 4,000) of labeled samples, where RLGSSL yields lowest test error rates and outperforms
ICT—the second best method—by a margin of 1.79% and 1.07% respectively. The results on the
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Table 4: Comparison results in terms of mean test error and standard deviation using WRN-37-2 as
the backbone on STL-10.

Π Model [6] MeanTeacher [8] MixMatch [1] UDA [2] RLGSSL (Ours)
STL-10 / 1000 26.23(0.82) 21.43(2.39) 10.41(0.61) 7.66(0.56) 6.12(0.52)

Table 5: Ablation study results on CIFAR-100 using 10000 and 4000 labels with CNN-13 as the
backbone. The average test errors and standard deviations over 5 trials are reported.

RLGSSL −w/o Lrl −w/o Lsup −w/o Lcons −w/o EMA −w/o mixup
CIFAR-100/4000 36.92(0.45) 44.92(0.55) 39.52(0.58) 38.78(0.48) 43.12(0.52) 40.12(0.51)
CIFAR-100/10000 29.12(0.20) 33.12(0.52) 32.67(0.45) 31.48(0.32) 32.84(0.45) 31.48(0.32)

RLGSSL R = 1 R : µ = 0 R(MSE → KL) R(MSE → JS) R : w/o sg[θ]
CIFAR-100/4000 36.92(0.45) 39.52(0.63) 39.54(0.33) 38.02(0.42) 39.52(0.45) 40.62(0.55)
CIFAR-100/10000 29.12(0.20) 31.25(0.62) 32.37(0.57) 31.12(0.52) 31.39(0.68) 32.12(0.62)

CIFAR-100 dataset are similarly impressive. For 4,000 labeled samples, RLGSSL again outperforms
ICT, the second best method, with a margin of 3.15%. As the number of labeled samples escalates to
10,000, RLGSSL maintains its performance edge, outperforming the second best method ICT by a
margin of 3.12%.

Table 2 reports the comparison results on the SVHN dataset with CNN-13 as the backbone network.
Our method, RLGSSL, surpasses all the other compared SSL techniques for both settings. Specifically,
for 500 labeled samples, RLGSSL achieves the lowest test error of 3.12%, which is 0.87% lower
than the second-best method, SNTG. For 1,000 labeled samples, RLGSSL also shows superior
performance with a test error of 3.05%, outperforming the second-best method, SNTG, by 0.81%.

Table 3 presents the comparative outcomes across three datasets, utilizing WRN-28-2 as the backbone
network for CIFAR-10 and SVHN, and WRN-28-8 for CIFAR-100. On CIFAR-10, with the number
of labeled samples increasing from 250 to 4,000, RLGSSL showed better performance compared
to the other methods in most cases. For 1,000 labeled samples, our method improved over the best
competing method, ReMixMatch, by a margin of 1.35%. Additionally, for 4,000 labeled samples
RLGSSL outperforms Meta Pseudo-labels which is the second best method. On CIFAR-100, with
2,500 and 10,000 labeled samples, RLGSSL surpassed the state-of-the-art MarginMatch. Moreover,
on SVHN with 1,000 labeled samples, RLGSSL also outperformed the MarginMatch. This confirms
the robustness of RLGSSL across various settings, even when the labeled data is limited in quantity.

Table 4 presents the comparison results of various SSL methods on the STL-10 dataset, utilizing WRN-
37-2 as the backbone network. With a fixed number of 1,000 labeled samples, RLGSSL achieves
remarkable performance with a mean test error of 6.12%, which outperforms previous state-of-the-art
methods, including MixMatch and UDA, showcasing the effectiveness of our RLGSSL.

4.3 Ablation Study

In order to evaluate the significance of various components of our RLGSSL approach, we conducted
an ablation study on the CIFAR-100 dataset using the CNN-13 network. In particular, we compared
the full model RLGSSL with the following variants: (1) “−w/o Lrl”, which drops the RL loss Lrl;
(2) “−w/o Lsup”, which excludes the supervised loss; (3) “−w/o Lcons”, which does not include the
consistency loss; (4) “−w/o EMA”, which drops the teacher model by disabling the EMA update;
and (5) “−w/o mixup”, which only uses unlabelled data in the reward function (µ = 1), and the
mixup operation is excluded. The ablation results are reported in the top section of Table 5. The full
model, RLGSSL, achieved the lowest test errors, confirming the overall effectiveness of our method.
The most significant observation from our study lies in the removal of the RL loss Lrl. Upon removal
of this component, we witness a substantial increase in test errors, which highlights the indispensable
role played by the RL component in our model. The ablation study further illustrates the importance
of each component by analyzing the performance of the model when the component is removed. In
each of these cases, we observe that the removal of any individual component consistently leads to an
increase in test errors. This finding underpins the notion that each component of the RLGSSL model
plays a significant role in the overall performance of the model.

In addition, we also conducted another set of ablation study centered on the proposed RL loss and the
reward function. We compared the full model RLGSSL with the following variants: (1) “R = 1”,
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(a) λ1 (b) λ2

Figure 2: Sensitivity analysis for hyper-parameters λ1 and λ2 on CIFAR-100 using 10000 labeled
samples.

which drops RL by setting the reward as a constant 1; (2) “R : µ = 0”, which only uses labeled data
to compute the reward by setting µ = 0; (3) “R(MSE → KL)”, which replaces the mean squared
error of the reward function in Eq. (2) with the KL-divergence loss; (4) “R(MSE → JS)”, which
replaces the mean squared error of the reward function in Eq. (2) with the JS-divergence loss; and (5)
“R : w/o sg[θ]”, which removes the stop-gradient operator from the reward function and makes the
reward function differentiable w.r.t θ. The ablation results are reported in the bottom section of Table
5. We can see that all these variants with altered reward functions produced degraded performance
comparing to the full model with the proposed reward function. In particular, the performance
degradation of “R = 1” and “R : w/o sg[θ]” that drop RL in different manners further validates the
contribution of the proposed framework of guiding SSL with RL.

4.4 Hyper-parameter Analysis

We conduct sensitivity analysis over the two hyper-parameters of the proposed RLGSSL: λ1—the
trade-off parameter for the supervised loss, and λ2—the trade-off parameter for the consistency loss.
The results are reported in Figure 2. In the case of λ1, lower values (e.g., 1e-4 and 1e-3) result in less
emphasis on the supervised loss term in the objective function. As a result, the model might not learn
effectively from the limited available labeled data, leading to increased test error rates. Conversely,
higher values of λ1 (e.g., 0.2 and 0.3) may overemphasize the supervised loss term, potentially
causing the model to overfit the labeled data and ignore useful information from the unlabeled data.
The sweet spot lies in the middle (around 0.1), attaining a balance between learning from labeled
data and leveraging information from unlabeled data. Regarding λ2, very low values (e.g., 1e-4 and
1e-3) may not enforce sufficient consistency in the model predictions on unlabeled data, resulting in
a model that fails to generalize well. However, if λ2 is too high (e.g., 0.2 and 0.3), the model may
overemphasize the consistency constraint, possibly leading to a model that is too rigid to capture
the diverse patterns in the data. An optimal value of λ2 (around 0.1 in our experiments) ensures a
good balance between encouraging prediction consistency and allowing the model to adapt to the
diverse patterns in the data. The optimal value choice for hyperparameters λ1 and λ2 (around 0.1)
also validates that the RL loss is the main leading term, while the supervised loss and consistency
loss are augmenting terms.

5 Conclusion

In this paper, we presented Reinforcement Learning-Guided Semi-Supervised Learning (RLGSSL), a
unique approach that integrates the principles of RL to tackle the challenges inherent in SSL. This
initiative was largely driven by the limitations of conventional SSL techniques. RLGSSL employs
a distinctive strategy where an RL-optimized reward function is utilized. This function adaptively
promotes better generalization performance through more effectively leveraging both labeled and
unlabeled data. We also further incorporated a student-teacher framework to integrate the strengths
of RL and SSL. Extensive evaluations were conducted on multiple benchmark datasets, comparing
RLGSSL to existing state-of-the-art SSL techniques, and various ablation variants. RLGSSL consis-
tently outperformed these other techniques across all the datasets, which attests to the effectiveness
and generalizability of our approach. The results underline the potential of integrating RL principles
into SSL, and the RLGSSL method introduced in this paper is a significant stride in this direction.
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A Computer Resources

Our experiments were performed on setups featuring CPUs with 8 Intel Core processors and 64 GB
of RAM. For graphics processing units, we utilized NVIDIA GeForce RTX 3060 cards, each offering
12 GB of VRAM.

B Limitation

While our RLGSSL method demonstrates significant improvements in semi-supervised learning tasks,
we acknowledge certain limitations that can be addressed in future work. Our current formulation
assumes that the unlabeled data is drawn from the same distribution as the labeled data. This
assumption might not hold in certain real-world scenarios where labeled and unlabeled data come
from different, albeit related, distributions. Future extensions could consider a domain adaptation
strategy to handle such scenarios.

Despite these limitations, the proposed work provides a promising direction for integrating reinforce-
ment learning with semi-supervised learning, paving the way for more adaptive and versatile machine
learning algorithms.

C Broader Impacts

The proposed Reinforcement Learning Guided Semi-Supervised Learning (RLGSSL) method has
significant positive social impacts, particularly in access to advanced machine learning techniques and
enabling more efficient use of data resources. By effectively leveraging both labeled and unlabeled
data, RLGSSL can reduce the dependency on extensive and expensive labeled datasets, making
high-performing machine learning models more accessible to organizations with limited labeling
resources. This can particularly benefit fields such as healthcare, education, and environmental
monitoring, where acquiring labeled data can be challenging and costly.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the main claims in the abstract and introduction accurately reflect the
paper’s contributions and scope, highlighting the proposal of a novel RL-Guided SSL
method (RLGSSL), its innovative reward function, and the integration of a teacher-student
framework, validated by extensive experiments showing superior performance over state-of-
the-art SSL methods.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to Limitation Section in Appendix B

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] .
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper includes detailed descriptions of the experimental setup and parame-
ters. Additionally, the paper includes the algorithm to aid reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code is currently not shared.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4.1 for details about training settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All experiments were conducted five times, with the average results and
standard deviations reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information about computer resources are provided in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Broader Impacts Section in Appendix C.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets used in our research are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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