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Abstract
Quantum Error Mitigation (QEM) has emerged
as a pivotal technique for enhancing the reli-
ability of noisy quantum devices in the Noisy
Intermediate-Scale Quantum (NISQ) era. Re-
cently, machine learning (ML)-based QEM ap-
proaches have demonstrated strong generaliza-
tion capabilities without sampling overheads com-
pared to conventional methods. However, evaluat-
ing these techniques is often hindered by a lack of
standardized datasets and inconsistent experimen-
tal settings across different studies. In this work,
we present QEM-Bench, a comprehensive bench-
mark suite of twenty-two datasets covering diverse
circuit types and noise profiles, which provides
a unified platform for comparing and advancing
ML-based QEM methods. We further propose a
refined ML-based QEM pipeline QEMFormer,
which leverages a feature encoder that preserves
local, global, and topological information, along
with a two-branch model that captures short-range
and long-range dependencies within the circuit.
Empirical evaluations on QEM-Bench illustrate
the superior performance of QEMFormer over
existing baselines, underscoring the potential of
integrated ML-QEM strategies.

1. Introduction
Quantum computing promises to revolutionize fields such
as cryptography (Gisin et al., 2002) and machine learn-
ing (Biamonte et al., 2017) by efficiently solving problems
that are intractable on classical hardware. However, during
the Noisy Intermediate-Scale Quantum (NISQ) era (Brooks,
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2019), noise significantly impedes the practical realization
of quantum systems, limiting their performance and relia-
bility. Quantum Error Mitigation (QEM) techniques have
therefore emerged to restore quantum advantages on noisy
hardware by algorithmically suppressing noise-induced bi-
ases via post-processing (Temme et al., 2017; Li & Ben-
jamin, 2017; Kandala et al., 2019; Huggins et al., 2021;
Czarnik et al., 2021; Bravyi et al., 2022; Daley et al., 2022).
While these strategies are crucial stepping stones toward
achieving near-term quantum utility beyond classical su-
percomputers, they often suffer from drawbacks such as
high sampling overheads (Cai et al., 2023) or large qubit
overheads in methods like virtual distillation (VD) (Huggins
et al., 2021). Moreover, some approaches rely heavily on
prior knowledge of the noise models (Liao et al., 2025),
limiting their generalization capabilities.

Machine learning (ML) has recently emerged as a promising
solution to these limitations, leveraging neural networks for
ideal outcome prediction without qubit or sampling over-
heads (Kim et al., 2020a; Liao et al., 2024). Nevertheless,
current ML-based methods face several challenges. First,
existing feature encoders either scale exponentially with the
number of qubits (Kim et al., 2020a) or focus on coarse
global information (e.g., counts of gates with rotation an-
gles between 0 and π

2 ) (Liao et al., 2024). Second, prevail-
ing architectures rarely capture multi-range dependencies.
Both Kim et al. (2020a) and Liao et al. (2024) adopt vanilla
MLP structures that fail to effectively encode circuit topol-
ogy. Although Liao et al. (2024) additionally explores GNN
architectures, this approach offers a less direct means of
learning node attributes, resulting in reduced performance.
Further, the ML-QEM field lacks standardized benchmarks:
current studies frequently employ distinct and narrowly fo-
cused experimental settings. Such variability in datasets
and evaluation protocols has led to a limited coverage of
diverse noise models, insufficient examination of general-
ization capabilities, and difficulties in comparison among
approaches.

To address these shortcomings, we unify a collection of
twenty-two ML-QEM datasets, named QEM-Bench, that
standardize key experimental factors and provide a compre-
hensive range of benchmarking scenarios. These datasets
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encompass diverse noise configurations (incoherent, coher-
ent, fake-provider, and real IBM devices) and various circuit
types (structured 1-D Ising models (Suzuki et al., 2013),
QAOA (Zhou et al., 2020), and random unstructured cir-
cuits), with qubit counts ranging from small (4 qubits) to
large (50 qubits). Furthermore, unlike Kim et al.; Liao et al.,
we propose an ML-QEM pipeline, named QEMFormer,
that encodes quantum circuits as directed acyclic graphs
(DAGs), preserving both gate-level information (node-based
features), circuit attributes (global-level features) and graph
topology. Simultaneously, in contrast to prior ML-based
QEM methods, we develop a two-branch model that lever-
ages both MLPs for capturing short-range gate-specific con-
text and Graph Transformers for modeling long-range de-
pendencies and topological structure, thereby offering a
more robust approach to error mitigation. Our contribu-
tions are:

1) Unifying and releasing datasets for QEM. We introduce
QEM-Bench, a collection of twenty-two ML-QEM datasets
for standardized evaluation: (i) nine standard datasets for
general-purpose testing, (ii) nine advanced datasets probing
generalization capabilities, and (iii) four large-scale datasets
with 50-qubit and 63-qubit circuits executed on real IBM
quantum devices.

2) The proposed QEMFormer approach. We propose a
pipeline that encodes quantum circuits as directed acyclic
graphs (DAGs), preserving both gate-level, global-level,
and topological information. Our two-branch model, QEM-
Former, integrates MLP modules for short-range context
and Graph Transformers for long-range dependencies.

3) Benchmarking baselines across datasets. We imple-
ment existing ML-based baselines and thoroughly compare
them against QEMFormer on QEM-Bench. QEMFormer
consistently outperforms other methods across the standard,
advanced, and large-scale real-device datasets.

2. Related Works
2.1. Quantum Device Noise

Quantum device noise can be classified into two categories,
Markovian and non-Markovian, based on whether the en-
vironment retains memory of system-environment interac-
tions (Zhang et al., 2024). Detailed descriptions of the noise
types considered in this study are provided in Appendix C.

A noise process is deemed Markovian if the system’s state
transformation ρ → ρ′ depends solely on the current state
ρ, independent of previous operations or temporal context.
Markovian errors can be further subdivided into two main
types. Incoherent (stochastic) errors include bit-flip er-
rors, which flip a single qubit state between |0⟩ and |1⟩,
phase-flip errors, which alter the relative phase without
changing the probability amplitudes, and depolarizing er-

rors, where a random Pauli operator is applied to each
qubit (Nielsen & Chuang, 2000). Coherent errors arise
from unintended or imperfect unitary rotations within quan-
tum circuits. These errors are typically associated with slow
noise processes (Huang et al., 2023; Beale et al., 2018). Ad-
ditionally, other physical errors such as amplitude damping
occur when energy is dissipated from the system into the
environment, leading to state decay (Blume-Kohout et al.,
2022). In contrast, non-Markovian errors exhibit memory
effects, where the noise depends on the system’s history. A
key indicator of non-Markovian noise is the oscillation of
a qubit’s coherence and purity over time. The purity p of a
qubit state, defined as p = Tr[ρ2], can reveal such memory
effects when it varies periodically (Agarwal et al., 2024).

2.2. Quantum Error Mitigation

Among non-ML-based QEM techniques, Zero-Noise Ex-
trapolation (ZNE) is widely adopted. It estimates noise-
free expectation values by intentionally increasing the noise
levels and executing quantum circuits with measurements.
While enjoying the capability of generalization, ZNE de-
mands significant computational resources due to repeated
circuit executions. Clifford Data Regression (CDR) is an-
other prominent method (Czarnik et al., 2021). CDR ap-
proximates noise-free expectation values by replacing most
non-Clifford gates in the target circuit with Clifford gates,
which are efficiently classically simulable. This replace-
ment facilitates the generation of training data, enabling a
linear regression model to map noisy expectation values to
their ideal counterparts. Although CDR leverages the effi-
cient simulation of Clifford circuits, it requires a substantial
number of training samples and may not generalize well to
circuits with a high density of non-Clifford gates.

Machine Learning (ML)-based QEM approaches have re-
cently gained attention. For instance, (Kim et al., 2020b)
utilizes neural networks (NN) and concatenated neural net-
works to predict errors in the measurement outcomes of
quantum states. However, their approach faces scalability
issues as the input feature space, consisting of noisy mea-
surement outcomes, grows exponentially with the number
of qubits. Similarly, (Liao et al., 2024) evaluates several
ML models, including linear regression, random forests,
multi-layer perceptrons, and graph neural networks, aiming
to minimize the sum of squared errors between mitigated
and ideal expectation values. These models, however, often
struggle to capture both short-range and long-range depen-
dencies within quantum circuits, resulting in limited mitiga-
tion performance. Overall, while ML-based QEM methods
offer promising improvements in efficiency and scalability,
they are hindered by challenges in feature encoding and the
ability to model complex circuit dependencies, necessitating
further advancements to fully realize their potential.
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3. Building Benchmarking Datasets for QEM
This section begins by revisiting the definitions and nota-
tions of learning-based QEM in Sec. 3.1. The construction
of QEM-Bench, including circuit selection, noise configu-
rations, and dataset statistics is presented in Sec. 3.2 - 3.4.
Experimental settings are outlined in Sec. 3.5.

3.1. Problem Revisiting

We first provide a brief overview of the key concepts related
to Quantum Error Mitigation (QEM). For details about quan-
tum information and computing, please refer to the seminal
textbook (Nielsen & Chuang, 2000).

3.1.1. QUANTUM STATE VECTOR

A quantum state is described by a state vector (or ket) in
a complex Hilbert space. For a qubit, the state is: |ψ⟩ =
α|0⟩ + β|1⟩, where α, β ∈ C and |α|2 + |β|2 = 1. For an
n-qubit system, the state vector resides in a 2n-dimensional
Hilbert space: |ψ⟩ =

∑2n

i=1 αi |i⟩, satisfying
∑2n

i=1 |αi|2 =
1. Quantum states evolve via quantum circuits (QC), which
consist of applying quantum gates in sequence.

3.1.2. EXPECTATION VALUE IN QUANTUM CIRCUITS

Consider a quantum circuit represented by the unitary U
acting on an initial state |ψ0⟩. The ideal expectation value
of an observable O is: ⟨O⟩ideal = ⟨ψ0|U†OU |ψ0⟩. In prac-
tice, the measured value ⟨O⟩noisy deviates from the ideal
due to factors such as decoherence, gate imperfections, and
other noise sources (Cai et al., 2023). QEM aims to recover
⟨O⟩ideal from these noisy measurements ⟨O⟩noisy.

Observables, Pauli Operators, and Hamiltonians. Ob-
servables are typically represented by Hermitian operators,
with Pauli operators (e.g., X,Y,Z, I, also named as Pauli
matrices) serving as a fundamental basis for single-qubit
measurements. For multi-qubit systems, operators are often
expressed as tensor products of Pauli matrices, enabling
the decomposition of more complex observables. A Hamil-
tonian, another crucial Hermitian operator, specifies the
energy structure of a quantum system and governs its dy-
namics (Preskill, 2018). Many quantum applications, such
as quantum chemistry and materials science simulations,
involve estimating the expectation value of Hamiltonians
or sums of Pauli operators (e.g., in variational quantum
eigensolver (VQE) frameworks) (Peruzzo et al., 2014).

3.1.3. LEARNING-BASED QEM FORMULATION

For machine learning-based approaches, the problem can be
framed as a regression task. Specifically, we formulate the
prediction of the ideal expectation value ⟨O⟩ideal as a graph-
level regression task, although it is not strictly necessary to
use graph structures when employing models such as MLPs.

Let D = {(Gk,Xk,Ak, y
noisy
k , yk)}Nk=1 denote a dataset of

N quantum circuits, where each circuit Ck is represented
as a directed acyclic graph (DAG) Gk = (Vk, Ek). Nodes
and edges in the graph are associated with feature vectors
Xk ∈ R|Vk|×d and an adjacency matrix Ak ∈ R|Vk|×|Vk|,
respectively. The noisy and ideal expectation values are
denoted as ynoisy

k = ⟨O⟩noisy
k and yk = ⟨O⟩ideal

k .

The objective is to learn a graph transformer model f that
maps each circuit’s graph representation and its noisy mea-
surement to a prediction ŷk of the ideal expectation value:

ŷk = f(Gk,Xk,Ak, y
noisy
k ),

by minimizing the mean squared error (MSE) between pre-
dictions and true labels:

min
f

1

N

N∑
k=1

(
yk − ŷk

)2
.

Without loss of generality, we focus on a single sample(
G,X,A, ynoisy, y

)
for the remainder of the paper.

QEMFormer is divided into two major subsets: standard
datasets and challenging datasets. As the QEM benchmark
is constructed based on the quantum circuits, we first intro-
duce the circuits we used for the benchmark.

3.2. Circuit Selection

We evaluate our approach across three representative classes
of quantum circuits, each distinguished by unique structures
and parameters: (i) Trotterized one-dimensional transverse-
field Ising model (TFIM) circuits, (ii) randomly generated
circuits, and (iii) QAOA circuits designed for the MaxCut
problem. Each class is described in detail below.

Trotterized TFIM Circuits. Consider time-evolution cir-
cuits for the one-dim TFIM, governed by the Hamiltonian:

Ĥ = −J
∑

j ẐjẐj+1 + h
∑

j X̂j = −J ĤZZ + h ĤX , (1)

where J is the nearest-neighbor exchange coupling and h
is the transverse field strength (Suzuki et al., 2013). To
simulate the time evolution over an interval t, one applies
the unitary U(t) = exp

(
−i Ĥ t

)
. In practice, we use the

first-order Trotter-Suzuki decomposition:

U(t) ≈
(
e−i (−J ĤZZ)∆t e−i (h ĤX)∆t

)NTrot

, (2)

where ∆t = t/NTrot and NTrot is the number of Trotter
steps. Each term in Eq. 2 is further decomposed into ele-
mentary gates (e.g., CNOT and single-qubit rotations). We
randomly sample J , h, and t, varying NTrot from 1 to 20 to
produce circuits of different depths.

Random Unstructured Circuits. To evaluate the generality
of models, we also construct randomized quantum circuits.
Then, each gate in the circuit is selected uniformly from:
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Table 1. Overview of datasets in QEM-Bench

Setting Type Train/Validation Test Qubit Num

# (Train/Val) Key Parameters # Key Parameters #

Trotter-Standard 800/100 Steps 1–20 300 Steps 1–20 10
Random-Standard 800/100 Size 10–150, θ ∈ [0, 2π] 300 Size 10–150, θ ∈ [0, 2π] 3-6
QAOA-Standard 800/100 Layers 12–18 300 Layers 12–18 6

Trotter-Step Zero-Shot 765/135 Steps 1–15, Pauli-Z 300 Steps 16–20, Pauli-Z 10
Random-Size Zero-Shot 658/117 ≤100 gates, Pauli-Z 425 100–150 gates, Pauli-Z 3-6
Unseen Pauli-Basis Obs 800/200 Steps 1–20, random Pauli-basis obs 200 Steps 1–20, New Pauli-basis obs 4

Kyiv Pre 400/78 Trotter Circs; extreme outlier filtered 113 Trotter Circs; extreme outlier filtered 50
Kyiv Raw 467/50 Trotter Circs 100 Trotter Circs 50

Brisbane Pre 500/61 Trotter Circs; extreme outlier filtered 148 Trotter Circs; extreme outlier filtered 63
Brisbane Raw 800/100 Trotter Circs 300 Trotter Circs 63

One-Qubit-Gate
Two-Qubit-Gate
Three-Qubit-Gate

(a)

Zero-Params-Gate
One-Params-Gate
Two-Params-Gate
Three-Params-Gate

(b)

MC = 1
MC = 2
MC = 3
MC = 4
MC = 5

MC = 6
MC = 7
MC = 8
MC = 9

(c)
Figure 1. Distribution of gate types in the quantum circuit among
datasets. (a) Proportions of one-, two-, and three-qubit gates in the
random circuit dataset. (b) Distribution of zero-parameter, one-,
two-, and three-parameter gates in the random circuit dataset. (c)
Distribution of the maximum cut solutions for QAOA circuits in
the QAOA dataset, grouped by solution value (MC = 1 to 9).

1) Single-qubit gates: {id, u1, u2, u3, x, y, z, h, s, sdg,
t, tdg, rx, ry, rz}

2) Two-qubit gates: {cx, cy, cz, ch, crz, cu1, cu3,
swap, rzz}

3) Three-qubit gates: {ccx, cswap}.

For parameterized gates (e.g. u3,rx,ry,rz), rotation an-
gles are sampled from [0, 2π]. The qubit(s) upon which a
gate acts are chosen uniformly among the available qubits.

For the random circuits, we set the max qubit number over
teh This procedure yields a diverse ensemble of circuits with
varying structures and depths.

QAOA Circuits for MaxCut. The Quantum Approximate
Optimization Algorithm (QAOA) (Farhi et al., 2014; Har-
rigan & Sung, 2021) is designed to solve combinatorial
optimization problems by encoding the objective function
into a cost Hamiltonian. We focus on QAOAs for MaxCut
in this paper, where one seeks to partition the vertices of a
graph G = (V,E) into two subsets to maximize the number
of edges between them. Labeling each vertex i ∈ V with a
binary variable zi ∈ {+1,−1}, the objective can be written
as (Guerreschi & Matsuura, 2019):

max
{zi}

1

2

∑
(i,j)∈E

(
1− zi zj

)
. (3)

QAOA encodes this objective into the cost of Hamiltonian

HC = 1
2

∑
(i,j)∈E

(
Î − Ẑi Ẑj

)
, (4)

where Ẑi is the Pauli-Z operator acting on qubit i. The
QAOA circuit alternates between phase-separation unitaries
UC(γ) = exp

(
−i γ HC

)
and mixing unitaries UB(β) =

exp
(
−i β HB

)
, where HB =

∑|V |
j=1 X̂j , and {γ, β} are

variational parameters.

3.3. Circuit Set Statistics

We construct three distinct sets of quantum circuits. Statis-
tics for each set of circuits are presented in Tab. 1. Each
dataset comprises 1,200 unique circuits.

For the randomized circuits, the distributions of single-,
two-, and three-qubit gates are illustrated in Fig. 1(a), and
the distribution of gates requiring zero, one, two, or three
rotation parameters is depicted in Fig. 1(b).

For QAOAs, we fix the number of qubits to 6, targeting the
MaxCut: Nq = 6. Each circuit corresponds to a randomly
generated 6-node graph G = (V,E), where |V | = 6. The
number of QAOA layers p for each circuit is randomly set
from the integer range [12, 18]. The distribution of MaxCut
values across generated graphs is given in Fig. 1(c).

3.4. Noise Configurations

We consider three primary noise configurations:

Fake Providers. To emulate the noise characteristics of
real quantum devices, We utilize FakeHanoiV2 and
FakeWashington.

Incoherent Errors. Incoherent noise is simulated by apply-
ing Pauli-X and depolarizing errors to all gates, based on the
Sycamore quantum device (Arute et al., 2019). The error
rates are set as follows: single-qubit gate error at 0.16%,
two-qubit gate error at 0.62%, and read-out error at 3.8%.

Coherent Errors. To further examine models’ capabilities
among types of noises, coherent noise is introduced by
adding systematic over-rotation errors to two-qubit gates
(CX, CY, CZ, and Swap) with an average over-rotation angle
of 0.02π, in combination with the noise model derived from
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Figure 2. The structure of proposed QEMFormer.

the FakeWashington provider.

Real Quantum Devices. For experiments of large-scale
circuits, we executed circuits on IBM Kyiv and IBM
Brisbane, two 127-qubit quantum computers provided
by IBM.

3.5. Experimental Settings

We construct a total of 22 datasets by combining three main
setting types (standard, advanced, and large-scale) with
three circuit families (QAOA, random, Trotter) and three
noise configurations (incoherent, all noise, provider). Each
dataset is partitioned into training, validation, and test sets.

3.5.1. STANDARD SETTINGS

The 9 standard datasets are derived from all possible com-
binations of (circuit family) × (noise configuration). Each
standard dataset contains circuits with fixed depth/size and
a predefined set of measurement operators (e.g., all Pauli-
Z) that have been previously introduced. These datasets
serve as a baseline evaluation for error mitigators under
well-controlled conditions.

3.5.2. ADVANCED SETTINGS

To examine generalization beyond the configurations seen
in training, we introduce three advanced benchmarks, each
paired with the same set of three noise configurations. This
results in a total of 9 advanced datasets:

Trotter-Step Zero-Shot: Trains on Trotter circuits with
shallower depths, then tests on circuits with deeper (previ-
ously unseen) Trotter steps.

Random-Size Zero-Shot: Trains on random circuits up
to a certain gate-count threshold, and tests on larger, more
complex circuits outside the training distribution.

Unseen Pauli-Basis Observables: Trains on random n-
qubit observables drawn from the set {I,X,Y,Z}⊗n. Dur-
ing testing, each circuit is paired with an observable that
was not included in the training set, thereby challenging the
model to generalize to novel measurement operators.

3.5.3. LARGE-SCALE SETTINGS

We curate 4 datasets: two comprising 50-qubit Trotterized
circuits run on IBM Kyiv and two comprising 63-qubit
Trotterized circuits run on IBM Brisbane. In the Raw
variants (Kyiv Raw, Brisbane Raw), noisy expectation values
are taken directly from the measurement outcomes. In the
corresponding Pre variants (Kyiv Pre, Brisbane Pre), we
remove only the most extreme outliers that reflect severe
noise corruption.

By incorporating standard, advanced, and large-scale
datasets, QEM-Bench offers a comprehensive and multi-
faceted evaluation of error mitigators. Standard datasets
assess their general performance, advanced datasets exam-
ine their ability to extrapolate to new depths, sizes, and
observables, and large-scale datasets evaluate their potential
for practical application.

4. Proposed QEMFormer
To address the limitations of existing ML-based QEM meth-
ods, we introduce QEMFormer to enhance feature extrac-
tion and leverage the topology of quantum circuits. It en-
codes quantum circuits as directed acyclic graphs (DAGs),
enabling the extraction of both local (gate-level) and global
(circuit-level) features. Our architecture (presented in Fig. 2)
employs a two-branch design: one branch utilizes multi-
layer perceptrons (MLPs) to capture short-range gate con-
texts, while the other leverages graph transformers with
self-attention mechanisms to model long-range dependen-
cies within the circuit. This integrated approach facilitates
the effective interpretation of multi-ranged contextual infor-
mation, leading to improved prediction of EVs.

4.1. Feature Encoder

Let C be a given quantum circuit operating on Nq qubits. In
line with (Moflic et al., 2023; He et al., 2023), we construct
a directed acyclic graph G = (V, E) from C, where each
node vi ∈ V represents a quantum operation (or a special
“start”/“end” symbol for each qubit), and edges (vi → vj) ∈
E signify the directed flow of operations along qubits in C.

4.1.1. NODE-LEVEL FEATURES

Let N = |V| be the total number of nodes. We endow each
node vi with a feature vector zi ∈ Rd, where

xi =
[
gi, qi, ϕi

]
.

Here: gi ∈ {0, 1}Ntype is a one-hot vector representing the
type of the i-th gate (e.g., CNOT,RX,H, . . .). The dimen-
sion Ntype equals the total number of unique gate types in
the dataset. qi ∈ {0, 1}Nq is a multi-hot encoding that in-
dicates which qubits are operated on by the gate associated
with node vi. ϕi ∈ Rdϕ encodes all possible continuous
parameters for parameterized gates (e.g., rotation angles).
Specifically, if the dataset includes up to dϕ parameters, e.g.,
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each gate might have zero/single/multiple rotation angles,
then ϕi reserves one entry for each rotation angle. In this
way, xi captures gate properties from diverse perspectives.

4.1.2. GLOBAL-LEVEL FEATURES

Besides local gate-level features, we also extract a global
feature vector u ∈ Rdu to capture circuit-wide properties.
This consists of two parts:

Circuit Statistics. We first extract the count of single-, two-,
and three-qubit gates; we also gather the binned rotation an-
gles including the number of gates whose rotation angle(s)
lie in each of the intervals [0, π2 ), [

π
2 , π), [π,

3π
2 ), [ 3π2 , 2π);

and additionally we count the total number of gate opera-
tions within each circuit. We then normalize these circuit-
related features to [0, 1].

Multiple Pauli-Basis Expectation Values. For a quantum
circuit with Nq qubits, we measure the expectation values
of single-qubit Pauli operators X, Y, and Z on each qubit,
while applying the identity operator I to all other qubits.
For each qubit i ∈ {1, . . . , Nq} and each Pauli operator
P ∈ {X,Y,Z}, the measurement operator is defined as

Pi = I⊗(i−1) ⊗P⊗ I⊗(Nq−i).

We then obtain the expectation values ⟨Pi⟩ for all combina-
tions of i and P , resulting in a total of 3Nq measurements.
These expectation values provide a comprehensive character-
ization of the global noise affecting the quantum hardware
from the qubit level. Formally, let

u =
[
c, m, ynoisy

]
∈ R8+3Nq+1,

where c ∈ R8 aggregates circuit-level statistics, including
counts and binned angle distributions, m ∈ R3Nq contains
the noisy expectation values of the {X,Y,Z} observables
measured acrossNq qubits, and ynoisy ∈ R is the raw noisy
expectation value of the target observable to predict.

Overall, each node vi in the graph G is associated with a
local feature vector xi ∈ Rd, and the entire circuit C is
denoted by a global feature vector u ∈ R8+3Nq+1. This
encoding scheme via graph effectively captures local gate
interactions, circuit topology, and global context, offering
a rich and scalable representation for QEM tasks. Also, it
maintains an acceptable dimensionality compared to tradi-
tional encoders, ensuring computational efficiency.

4.2. Model Architecture

We adopt a two-branch design, to capture the short-range
context, the long-range information, and the topological
structure of quantum circuits. Denote by X ∈ RN×din

the initial node features for N nodes (gates) in the circuit
graph, and by u ∈ Rdu the global (circuit-level) feature
vector. Our model processes X in two parallel branches: an

MLP branch and a Graph Transformer branch. The outputs
of these branches are then concatenated together with u,
forming an aggregated representation that is passed through
an additional 2-layer MLP to predict the expectation value.

(1) MLP Branch. In this branch, we first perform global
mean-pooling on the node features to obtain a single vector:

x =
1

N

N∑
i=1

xi ∈ Rdin . (5)

We then feed x into a multi-layer perceptron (MLP) com-
posed of K sequential layers with bath normalization (BN):

x(0) = x, k = 1, . . . ,K.

x(k) = Dropout
(
ReLU

(
BN

(
x(k−1)W

(k)
mlp + b

(k)
mlp

)))
,

(6)

At the final layer, we obtain the MLP branch output:

Zmlp = x(K) ∈ Rdmlp . (7)

(2) Graph Transformer Branch. In parallel, we process
the node features X via a Graph Transformer, which gener-
alizes the self-attention mechanism (Vaswani et al., 2017;
Devlin et al., 2019) to graph-structured data. For each Graph
Transformer layer l = 0, . . . , L−1, we compute multi-head
attention as follows: for the c-th head (c = 1, . . . , C),

q
(l)
c,i =W (l)

c,q x
(l)
i + b(l)

c,q, k
(l)
c,j =W

(l)
c,k x

(l)
j + b

(l)
c,k,

α
(l)
c,ij =

exp
( ⟨q(l)

c,i,k
(l)
c,j⟩√

d

)
∑

u∈N (i) exp
( ⟨q(l)

c,i,k
(l)
c,u⟩√

d

) , (8)

where x(l)
i is the feature of node i at layer l, and d is the head

dimension. We then aggregate messages from neighbors:

v
(l)
c,j =W (l)

c,v x
(l)
j + b(l)

c,v,

x̂
(l+1)
i =

∥∥∥∥Cc=1

[ ∑
j∈N (i)

α
(l)
c,ij v

(l)
c,j

]
,

(9)

where ∥Cc=1[·] denotes concatenation along the head dimen-
sion. To further stabilize training, we employ a gated resid-
ual connection with layer normalization (LN):

r
(l)
i =W (l)

r x
(l)
i + b(l)

r ,

β
(l)
i = σ

(
W (l)

g

[
x̂
(l+1)
i ; r

(l)
i ; x̂

(l+1)
i − r

(l)
i

])
, (10)

x
(l+1)
i = ReLU

(
LN

(
(1− β

(l)
i ) x̂

(l+1)
i + β

(l)
i r

(l)
i

))
.

After L layers, we obtain X(L) = {x(L)
1 , . . . ,x

(L)
N }. To

produce a circuit-level representation for the final layer, we
apply a global readout (e.g., mean-pooling):

Zatt =
1

N

N∑
i=1

x
(L)
i ∈ Rdatt . (11)
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Table 2. RMSE comparison over different settings and noise models (our method: QEMFormer). The best-performing method is
highlighted in red, while the second-best is highlighted in blue. Lower RMSE values indicate better performance.

Method Random Size Zero Shots Trotter Step Zero Shots Unseen Obs
Incoherent Coherent Provider Incoherent Coherent Provider Incoherent Coherent Provider

Noisy 0.179 ± 0.117 0.125 ± 0.081 0.131 ± 0.091 0.313 ± 0.101 0.498 ± 0.147 0.535 ± 0.170 0.134 ± 0.113 0.118 ± 0.097 0.134 ± 0.112
QEMFormer 0.090 ± 0.061 0.113 ± 0.078 0.069 ± 0.050 0.025 ± 0.015 0.151 ± 0.121 0.099 ± 0.051 0.098 ± 0.074 0.080 ± 0.057 0.096 ± 0.073
MLP 0.116 ± 0.073 0.119 ± 0.080 0.105 ± 0.074 0.049 ± 0.030 0.183 ± 0.148 0.117 ± 0.058 0.139 ± 0.110 0.146 ± 0.109 0.116 ± 0.093
GNN 0.200 ± 0.132 0.162 ± 0.105 0.074 ± 0.054 0.024 ± 0.017 0.179 ± 0.148 0.123 ± 0.062 0.102 ± 0.078 0.124 ± 0.099 0.104 ± 0.078
OLS 0.259 ± 0.151 0.164 ± 0.098 0.155 ± 0.093 0.026 ± 0.018 0.215 ± 0.141 0.098 ± 0.056 0.131 ± 0.087 0.090 ± 0.061 0.125 ± 0.089
ZNE 0.175 ± 0.114 0.157 ± 0.110 0.120 ± 0.090 0.255 ± 0.057 0.479 ± 0.159 0.279 ± 0.115 0.154 ± 0.133 0.111 ± 0.090 0.117 ± 0.100
CDR 0.080 ± 0.049 0.119 ± 0.082 0.072 ± 0.049 0.039 ± 0.032 0.293 ± 0.228 0.153 ± 0.128 0.119 ± 0.100 0.109 ± 0.092 0.123 ± 0.105
RF 0.113 ± 0.075 0.122 ± 0.082 0.086 ± 0.066 0.064 ± 0.044 0.206 ± 0.173 0.244 ± 0.100 0.131 ± 0.105 0.100 ± 0.076 0.110 ± 0.085
GTranQEM 0.103 ± 0.065 0.118 ± 0.080 0.073 ± 0.053 0.037 ± 0.023 0.183 ± 0.152 0.165 ± 0.095 0.100 ± 0.078 0.080 ± 0.061 0.113 ± 0.084

Table 3. RMSE for various circuit types and noise models. Multiple implementations of ZNE, CDR, and RF consistently performed
weakly on QAOA circuits and are therefore excluded from the mitigation results to ensure a fair comparison.

Method Random QAOA Trotter
Incoherent Coherent Provider Incoherent Coherent Provider Incoherent Coherent Provider

Noisy 0.192 ± 0.132 0.132 ± 0.091 0.129 ± 0.090 0.186 ± 0.106 0.174 ± 0.092 0.147 ± 0.072 0.278 ± 0.139 0.455 ± 0.217 0.414 ± 0.216
QEMFormer 0.087 ± 0.055 0.095 ± 0.064 0.054 ± 0.036 0.054 ± 0.035 0.061 ± 0.039 0.033 ± 0.021 0.024 ± 0.015 0.189 ± 0.145 0.062 ± 0.041
MLP 0.093 ± 0.061 0.139 ± 0.094 0.063 ± 0.046 0.056 ± 0.038 0.068 ± 0.043 0.047 ± 0.028 0.032 ± 0.023 0.200 ± 0.139 0.082 ± 0.055
GNN 0.111 ± 0.075 0.096 ± 0.064 0.080 ± 0.059 0.063 ± 0.042 0.070 ± 0.045 0.055 ± 0.037 0.037 ± 0.035 0.190 ± 0.156 0.080 ± 0.054
OLS 0.217 ± 0.132 0.153 ± 0.097 0.117 ± 0.076 0.100 ± 0.061 0.123 ± 0.078 0.066 ± 0.040 0.054 ± 0.039 0.200 ± 0.155 0.090 ± 0.066
ZNE 0.188 ± 0.136 0.146 ± 0.103 0.116 ± 0.088 - - - 0.247 ± 0.144 0.438 ± 0.220 0.213 ± 0.108
CDR 0.063 ± 0.043 0.101 ± 0.077 0.059 ± 0.044 - - - 0.175 ± 0.162 0.222 ± 0.182 0.405 ± 0.315
RF 0.127 ± 0.093 0.120 ± 0.085 0.111 ± 0.090 - - - 0.059 ± 0.035 0.185 ± 0.151 0.096 ± 0.066
GTranQEM 0.089 ± 0.060 0.103 ± 0.069 0.066 ± 0.046 0.054 ± 0.037 0.070 ± 0.044 0.045 ± 0.030 0.033 ± 0.023 0.198 ± 0.157 0.051 ± 0.033

(3) Feature Concatenation and Regressor. Let Zmlp ∈
Rdm be the MLP branch output from Eq. 6, and Zatt ∈ Rdh

be the final Graph Transformer output. We concatenate
these two vectors with the global feature u ∈ Rdu :

Zmerged =
[
Zmlp, Zatt, u

]
Wmerge ∈ Rdmerge , (12)

where Wmerge ∈ R(dmlp+datt+du)×dmerge is trainable.

Finally, we feed Zmerged into an additional 2-layer MLPs
(with batch normalization, dropout, nonlinear activation) to
obtain the final prediction of the ideal expectation value:

ŷ = MLPreg

(
Zmerged

)
, (13)

where ŷ denotes the error-mitigated expectation value. This
two-branch design enables the model to simultaneously
focus on gate features (via MLPs) and explore long-range
patterns as well as circuit topology (via Graph Transformer),
ultimately enhancing the predictive accuracy for QEM.

5. Benchmark Experiments
5.1. Setups and Evaluation Metrics

The quantum circuits in our experiments are simulated and
executed on IBM’s backend, and the 50-qubit circuits are
executed on the IBM Kyiv device. See details for system
and model configurations in Appendix A.

Table 4. Results of various QEM techniques on real-device
datasets. Best entries are red, second-best entries are blue.

Method Kyiv Pre Kyiv Raw Brisbane Pre Brisbane Raw
MAE RMSE STD MAE RMSE STD MAE RMSE STD MAE RMSE STD

Noisy 0.057 0.069 0.039 0.132 0.238 0.198 0.219 0.263 0.145 0.597 0.760 0.470
OLS 0.037 0.045 0.026 0.103 0.233 0.209 0.120 0.182 0.136 0.154 0.280 0.235
QEMFormer 0.018 0.026 0.020 0.098 0.223 0.208 0.098 0.164 0.131 0.123 0.272 0.242
MLP 0.020 0.029 0.020 0.151 0.226 0.167 0.163 0.203 0.122 0.144 0.277 0.236
GNN 0.035 0.045 0.029 0.114 0.237 0.208 0.118 0.179 0.135 0.248 0.340 0.233
ZNE 0.047 0.076 0.060 0.123 0.245 0.212 0.191 0.386 0.335 0.419 0.640 0.483
RF 0.030 0.037 0.022 0.100 0.237 0.215 0.073 0.174 0.158 0.165 0.297 0.247
GTranQEM 0.019 0.027 0.019 0.108 0.235 0.200 0.107 0.171 0.133 0.160 0.292 0.244

RMSE. The Root Mean Squared Error (RMSE) quantifies
the square root of the average squared differences between
the predicted values and the actual ground truth values. A
lower RMSE indicates higher prediction accuracy, reflecting
the model’s effectiveness in minimizing prediction errors.

AE and MAE. The Absolute Error (AE) for each prediction
measures the absolute difference between the predicted and
actual values, i.e., ŷ and y, and the Mean Absolute Error
(MAE) is the average of these absolute errors among dataset.
Formulas are provided in Appendix D.

5.2. Compared Methods

We evaluate several baseline methods for quantum error
mitigation, encompassing machine learning approaches and
classical statistical models. Below, we briefly describe each
method. For ML-based methods, we implement:

Vanilla MLPs. We adopt the standard MLP architecture
utilized in Kim et al. (2020a) and Liao et al. (2024), a two-
layer MLP with ReLU activation and batch normalization.
The second layer concatenates the noisy expectation value
to predict the ideal one.

GNNs. Following Liao et al. (2024), we implement a GNN
that begins with a linear projection of the input features
and then applies multiple Transformer-based convolutional
layers interleaved with adaptive pooling operations. The
layer-wise representations are combined using a Jumping
Knowledge mechanism to capture multi-scale information.
Finally, the aggregated embedding is concatenated with
the noisy EV and passed through fully connected layers to
produce the ideal EV.

Random Forest (RF). An ensemble of 100 decision trees
trained on bootstrap samples, each split selecting a random

7



QEM-Bench: Benchmarking Learning-based Quantum Error Mitigation and QEMFormer as a Baseline

Nois
y

QEM
For

mer ZNE
CDR

GNN
MLP OLS RF

GTra
nQ

EM
0

10 1

100
AE

Standard - Trotter - Incoherent

Nois
y

QEM
For

mer ZNE
CDR

GNN
MLP OLS RF

GTra
nQ

EM
0

10 1

100

Standard - Random - Provider

Nois
y

QEM
For

mer
GNN

MLP OLS

GTra
nQ

EM
0

10 1

Standard - QAOAs - Coherent 

Nois
y

QEM
For

mer ZNE
CDR

GNN
MLP OLS RF

GTra
nQ

EM
0

10 1

100

Advanced - Trotter Step Zero Shot - Incoherent

Nois
y

QEM
For

mer ZNE
CDR

GNN
MLP OLS RF

GTra
nQ

EM
0

10 1

100

AE

Advanced - Random Size Zero Shot - Provider

Nois
y

QEM
For

mer ZNE
CDR

GNN
MLP OLS RF

GTra
nQ

EM
0

10 1

100

Advanced - Unseen Pauli Basis Obs - Coherent 

Nois
y

QEM
For

mer ZNE
GNN

MLP OLS RF

GTra
nQ

EM
0

10 1

100

IBM Kyiv - Trotter - Pre

Nois
y

QEM
For

mer ZNE
GNN

MLP OLS RF

GTra
nQ

EM
0

10 1

100

IBM Brisbane - Trotter - Raw

Figure 3. Distribution of Absolute Errors across 8 settings, with setting names, circuit types, and noise types indicated above each figure.
Lower AE values (closer to 0) represent better performance.
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Figure 4. AE over circuit size for random circuits (left) and Trotter
steps for Trotterized circuits (right) in the zero-shot task. The
training uses circuits with sizes < 100 or Trotter steps < 15.

subset of features and using mean squared error reduction
as the criterion (Liao et al., 2024). The final prediction is
the average of all tree outputs, allowing for the modeling of
complex, nonlinear dependencies.

GTranQEM. A quantum error mitigation framework that
employs a non-message-passing graph transformer architec-
ture, as introduced in (Bao et al., 2025).

For non-ML-based mitigators, we implement:

OLS. Ordinary Least Squares (OLS) regression model (Liao
et al., 2024) is an approach assuming a linear relationship
between the target variable and the input features. This
model identifies optimal coefficients by minimizing the sum
of squared residuals between observed and predicted values.

CDRs. Clifford Data Regression (CDR) (Czarnik et al.,
2021) is trained on circuits modified with Clifford gate
replacements and is evaluated on the original circuits. CDR
leverages this data to learn corrections for error mitigation.

For reference, we also report results from Zero-Noise Ex-
trapolation (ZNE) (Temme et al., 2017; Li & Benjamin,
2017), a cornerstone non-ML technique in QEM.

5.3. Experimental Results Analysis

On Standard Settings. Tab. 3 presents the RMSE across
nine standard datasets. QEMFormer consistently achieves
top or second-best performance across configurations. For
instance, on random circuits with fake providers, QEM-
Former attains the lowest RMSE of 0.054, compared to

MLP’s RMSE of 0.063 and GNN’s RMSE of 0.080. Simi-
larly, for Trotter circuits with incoherent noise, QEMFormer
exhibits the best performance with an RMSE of 0.024.

On Advanced Settings. QEMFormer also shows strong
performance in advanced settings, generalizing and extrapo-
lating over circuit size, Trotter steps, and unseen Pauli-basis
observables (see Tab. 2). For example, under the Trotter
step zero-shot setting with incoherent noise, QEMFormer
achieves an RMSE of 0.025, outperforming other methods.
Furthermore, it consistently performs best under the co-
herent noise setting, which is more complex compared to
incoherent and fake provider settings.

On Large-Scale Circuits. Tab. 4 reports results for 50-
qubit circuits on IBM Kyiv and 63-qubit circuits on IBM
Brisbane. QEMFormer attains the lowest errors on both
platforms—achieving an MAE of 0.018 and RMSE of 0.026
on the Kyiv Pre, and an MAE of 0.123 and RMSE of 0.272
on the Brisbane Raw—thereby demonstrating its robustness
to real-device noise, with or without outlier filtering.

We employ violin plots to illustrate the distribution of AE
across test sets for comprehensive evaluation (see Fig. 3)
and examine how AE varies with circuit size and Trotter
steps in random and trotter zero-shot settings, respectively
(see Fig. 4), demonstrating the stability of QEMFormer
performance. Overall, these three categories of experi-
ments demonstrate that our approach offers (a) superior
or near-best accuracy across varied circuit types and noise
conditions, (b) stable performance that generalizes to new
operations or circuit sizes, and (c) strong real-hardware
applicability on large-scale circuits.

6. Conclusion and Outlook
We have presented a comprehensive benchmark, QEM-
Bench for quantum error mitigation, as well as a strong
baseline QEMFormer. All resources will be released and
the benchmark would be updated continuously.
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Impact Statement
Quantum computing holds transformative potential for AI
and beyond, yet its practical realization is hindered by quan-
tum noise. This paper establishes a standardized benchmark
for evaluating quantum error mitigation (QEM) techniques,
addressing the need for fair and transparent comparisons.
Additionally, we propose a novel QEM method, rigorously
validated through extensive experiments. By facilitating
open benchmarking, we believe that our work potentially
fosters the development of hardware-agnostic error mitiga-
tion strategies, accelerating progress toward fault-tolerant
quantum computation and advancing the broader quantum
ecosystem.
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A. System and model configuration details
Our pipeline QEMFormer is implemented on a system running Ubuntu 20.04.4, with CUDA 12.2, PyTorch 1.13.0, and
PyTorch Geometric 2.3.1. Most experiments are conducted on a server with 8 NVIDIA GeForce RTX 4090 GPUs with 24
GB CUDA memory, two AMD Ryzen Threadripper 3970X 32-Core Processors at 3.70 GHz and 128 GB RAM.

Additionally, detailed model hyper-parameters are presented in Tab. 7.

B. Circuit Structure Visualization
Visualization of examples of different types of quantum circuits is shown in Fig. 5.
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Figure 5. Examples of three types of quantum circuits.

C. Quantum Errors
Quantum error sources pose significant challenges to the advancement of quantum computing. These errors can be catego-
rized as coherent or incoherent and as systematic or random, arising from factors such as imperfect qubit control, unwanted
interactions, and measurement inaccuracies. In this work, we conduct quantum error mitigation (QEM) experiments targeting
incoherent errors, coherent errors, and readout errors.

C.1. Incoherent Errors

Incoherent errors result from stochastic interactions between qubits and their environment, leading to non-unitary dynamics
that cause decoherence and the loss of quantum information. These errors are typically modeled as random Pauli operators
acting on the physical qubits under the assumption of a memoryless environment. We consider two primary types of
incoherent errors: bit-flip errors and depolarizing errors.

Bit-Flip Errors. A bit-flip channel induces transitions between the computational basis states |0⟩ and |1⟩ with a probability
of 1− p. This channel is described by the Kraus operators:

E0 =
√
p I =

√
p

[
1 0
0 1

]
, (14)

E1 =
√
1− pX =

√
1− p

[
0 1
1 0

]
, (15)

where X is the Pauli-X operator. The action of the bit-flip channel on a quantum state ρ is given by:

ΦBF[ρ] = p ρ+ (1− p)XρX. (16)

Depolarizing Errors. The depolarizing channel represents a scenario where a single qubit is replaced by the maximally
mixed state I

2 with probability p, while remaining unchanged with probability 1 − p. Mathematically, the depolarizing
channel ΦDE acts on a state ρ as:

ΦDE[ρ] =
p

2
I + (1− p) ρ. (17)

11
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Table 5. Mean Absolute Error (MAE) across different circuit types and noise models for the standard setting. Lower MAE values indicate
better performance. Multiple implementations of ZNE and CDR consistently performed weakly on QAOA circuits and are therefore
excluded from the mitigation results to ensure a fair comparison.

Method Random QAOA Trotter
Incoherent Coherent Provider Incoherent Coherent Provider Incoherent Coherent Provider

Noisy 0.140 0.096 0.092 0.154 0.147 0.128 0.241 0.401 0.354
QEMFormer 0.067 0.071 0.036 0.039 0.047 0.026 0.019 0.102 0.047
MLP 0.073 0.103 0.042 0.041 0.053 0.037 0.023 0.145 0.061
GNN 0.082 0.072 0.054 0.047 0.054 0.040 0.023 0.110 0.059
OLS 0.172 0.118 0.089 0.080 0.096 0.052 0.038 0.126 0.061
ZNE 0.130 0.103 0.076 - - - 0.245 0.379 0.184
CDR 0.047 0.079 0.042 - - - 0.066 0.129 0.255
RF 0.086 0.085 0.065 - - - 0.048 0.108 0.069
GTranQEM 0.074 0.076 0.048 0.040 0.054 0.034 0.024 0.122 0.038

Table 6. MAE across different circuit types and noise models

Method Random Size Zero Shot Trotter Step Zero Shot Unseen Obs
Incoherent Coherent Provider Incoherent Coherent Provider Incoherent Coherent Provider

Noisy 0.135 0.095 0.095 0.296 0.476 0.507 0.072 0.067 0.074
QEMFormer 0.077 0.088 0.048 0.017 0.090 0.058 0.060 0.050 0.062
MLP 0.091 0.093 0.074 0.039 0.107 0.101 0.085 0.097 0.069
GNN 0.151 0.123 0.051 0.018 0.100 0.107 0.065 0.075 0.068
OLS 0.210 0.132 0.123 0.019 0.162 0.081 0.098 0.066 0.087
ZNE 0.132 0.112 0.078 0.296 0.451 0.254 0.078 0.064 0.072
CDR 0.087 0.088 0.057 0.022 0.184 0.083 0.072 0.061 0.073
RF 0.084 0.090 0.055 0.046 0.112 0.222 0.078 0.064 0.069
GTranQEM 0.080 0.095 0.050 0.029 0.101 0.135 0.070 0.052 0.076

Recognizing that for any ρ,
I

2
=
ρ+XρX + Y ρY + ZρZ

4
,

we can express the depolarizing channel as:

ΦDE[ρ] =

(
1− 3p

4

)
ρ+

p

4
(XρX + Y ρY + ZρZ) . (18)

This formulation reveals that the depolarizing channel comprises the operators
{√

1− 3p
4 I,

√
p

2 X,
√
p

2 Y,
√
p

2 Z

}
.

C.2. Coherent Errors

Coherent errors stem from unintended or imperfect unitary operations within quantum circuits. These errors can be modeled
by unitary operators of the form:

U(θ) = e−
i
2 θσ, (19)

where θ = (θ1, . . . , θ4Nq ) quantifies the magnitude of the coherent error across the 4Nq Pauli basis operators. Coherent
errors transform pure quantum states into other pure states while maintaining quantum coherence due to their unitary nature.
Despite preserving the purity of states, coherent errors can significantly undermine the reliability and accuracy of multi-qubit
quantum computations.

D. Evaluation Metrics

In this section, we provide a comprehensive overview of the evaluation metrics employed in this manuscript. These metrics
are essential for interpreting and assessing the performance of the proposed error mitigation techniques.
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D.1. Root Mean Square Error (RMSE)

Root Mean Square Error (RMSE) is a widely used metric that measures the average magnitude of the prediction errors. It
provides insight into the model’s accuracy by penalizing larger discrepancies more heavily than smaller ones. Mathematically,
RMSE is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)
2

where:

• N is the total number of quantum circuits evaluated,

• ŷi represents the predicted value for the i-th circuit,

• yi denotes the actual ground truth value for the i-th circuit.

RMSE provides a single scalar value that summarizes the model’s predictive performance, making it easier to compare
different error mitigation strategies.

D.2. Absolute Error (AE)

Absolute Error (AE) quantifies the absolute difference between the predicted and actual values for each data point. Unlike
RMSE, AE does not square the errors, thus treating all errors uniformly regardless of their direction or magnitude. It is
defined as:

AEi = |ŷi − yi|

where:

• ŷi is the predicted value for the i-th circuit,

• yi is the actual ground truth value for the i-th circuit.

AE provides a straightforward measure of prediction accuracy for each quantum circuit, highlighting the exact deviation
without emphasizing larger errors disproportionately.

D.3. Mean Absolute Error (MAE)

Mean Absolute Error (MAE) aggregates the absolute errors across all data points to provide an overall measure of prediction
accuracy. It offers an interpretable average of the absolute discrepancies between predicted and actual values. MAE is
mathematically expressed as:

MAE =
1

N

N∑
i=1

AEi =
1

N

N∑
i=1

|ŷi − yi|

where:

• N is the total number of quantum circuits evaluated,

• AEi is the absolute error for the i-th circuit.

MAE provides an easily interpretable metric that reflects the average prediction error across all evaluated circuits, facilitating
the comparison of different error mitigation techniques in terms of their overall accuracy.
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Figure 6. Violin plot depicting the distribution of AE. The setting names, circuit types, and noise configurations are annotated at the top of
each figure.

D.4. Discussion of Metric Selection

The chosen metrics—RMSE, AE, and MAE—collectively offer a robust framework for evaluating the performance of error
mitigation methods. RMSE emphasizes larger errors, making it suitable for identifying models that may have occasional
significant deviations. AE provides a granular view of individual prediction errors, while MAE offers a balanced average
that is less sensitive to outliers compared to RMSE. Together, these metrics ensure a comprehensive assessment of the error
mitigators’ effectiveness across various scenarios.

E. Additional Experimental Results
We present additional supplementary results alongside those in Section 5.3. Specifically, we summarize the Mean Absolute
Error (MAE) for both the standard and advanced settings in Tabs 5 and 6, respectively. QEMFormer consistently outperforms
other baselines, achieving the best or second-best results across both datasets. Furthermore, we include a violin plot
illustrating the distribution of AE in Fig. 6, complementing the violin plots presented in Fig. 3 of the main text. Together,
the tables and violin plots demonstrate the efficacy of QEMFormer compared to other baselines, highlighting its strong
generalization capabilities and potential for handling large-scale circuits executed on real quantum devices.
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Table 7. Model architecture configurations for different experimental settings.
Setting MLP Layers Graph Trans Conv Layers Hidden Dim

Real Pre 3 1 128
Real Raw 4 2 128
QAOA-Coherent 3 1 128
QAOA-Incoherent 3 1 128
QAOA-Provider 4 1 128
Random-Coherent 3 1 128
Random-Provider 3 1 128
Random-Incoherent 3 1 256
Random-Size-Zero-Shot-Coherent 4 1 512
Random-Size-Zero-Shot-Incoherent 4 2 512
Random-Size-Zero-Shot-Provider 3 1 512
Trotter-Coherent 4 2 128
Trotter-Incoherent 4 1 64
Trotter-Provider 3 2 64
Trotter-Step-Zero-Shot-Coherent 3 1 128
Trotter-Step-Zero-Shot-Incoherent 4 1 64
Trotter-Step-Zero-Shot-Provider 4 2 128
Unseen-Obs-Incoherent 4 1 128
Unseen-Obs-Coherent 4 1 64
Unseen-Obs-Provider 4 1 128
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