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ABSTRACT

With the rapid development of generative models, AI-generated images have
sparked significant concerns regarding their potential misuse for malicious pur-
poses, highlighting the urgent need for AI-generated image detection. Current
methods primarily focus on training a binary classifier to detect generated images.
However, the efficacy of these methods is critically dependent on the quantity and
quality of the collected AI-generated images. More importantly, they suffer from
a generalization challenge: the literature lacks sufficient exploration of whether
a binary classifier trained on images from a specific diffusion model can effec-
tively generalize to images generated by other models. In this work, we propose a
novel framework termed consistency verification (ConV) for AI-generated image
detection, providing a new approach that detects without requiring AI-generated
images. In particular, we introduce two functions and establish a principle for
designing them so that their outputs remain consistent for natural images but ex-
hibit significant inconsistency for AI-generated images. Our principle shows that
gradients of these two functions need to lie within two mutually orthogonal sub-
spaces. This enables a training-free detection approach: an image is identified
as AI-generated if transformation along its data manifold results in a substantial
change in the loss value of a self-supervised model pre-trained on natural images.
This detection framework leads to the unique advantage of ConV over existing
methods: ConV identifies AI-generated images by fitting the distribution of natu-
ral images rather than that of AI-generated images. Extensive experiments across
various benchmarks validate the effectiveness of the proposed ConV.

1 INTRODUCTION

Recent advances in generative models have revolutionized image generation, making it possible to
create highly realistic images (Rombach et al., 2022; Dhariwal & Nichol, 2021; Karras et al., 2019).
While these generative models offer impressive capabilities, they also introduce significant risks,
including the proliferation of deepfakes and other manipulated content. The realism achieved by
these technologies raises urgent concerns about their potential misuse in sensitive areas like politics
and economics. Moreover, if we simply use AI-generated images as part of the training data, the
trained model may largely degrade its quality Shumailov et al. (2024), so it is essential to distinguish
between natural images and AI-generated ones. To deal with these potentially dire risks, various AI-
generated image detection methods have been developed. In this regard, a common approach is
to consider generated image detection as a binary classification task. To train a binary classifier
for detecting generated images, current methods typically require to collect numerous natural and
generated images to construct a training dataset (Chai et al., 2020; Wang et al., 2020).

Although current methods have achieved exciting success, they often struggle to generalize well
to images generated by unknown generative models. To promote the generalization ability on im-
ages generated by unknown generative models, one possible approach is to construct a more ex-
tensive training dataset by collecting more natural and generated images for training the binary
classifier (Jeong et al., 2022; Tan et al., 2024). Besides collecting data, advanced methods propose
to introduce pre-trained models as priors to promote the generalization ability. Some works, inspired
by the recent success of large models, propose to detect generated images by leveraging features ex-
tracted by these large models (Ojha et al., 2023; Liu et al., 2024), such as CLIP (Radford et al., 2021).
Meanwhile, some works propose to leverage the reconstruction capabilities of pre-trained diffusion
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(a) (b)

Figure 1: Comparison of (a): the existing framework, and (b): our proposed ConV. The binary
classifier in (a) is trained using natural images xM and AI-generated images xg , thereby, its efficacy
relies on both the natural and generated data distributions. In contrast, the two functions in (b)
are trained on natural data distribution, leading to the advantage of ConV: identifying AI-generated
images by fitting the distribution of natural images rather than that of AI-generated images.

models (Wang et al., 2023a; Ricker et al., 2024). Although these methods have achieved outstand-
ing results, they require a lot of natural and generated images to train a binary classifier, making
the current methods computationally intensive. Moreover, sustaining robust detection performance
necessitates the continual collection of images generated by the latest generative models, which can
be costly or even infeasible due to the inaccessibility of potential models, e.g., Sora OpenAI (2024).

Hence, the major challenge for the existing methods is ensuring that the binary classifier generalizes
effectively across diverse unknown generative models. This stems from the fact that these binary
classifiers are trained over natural and generated images to distinguish between these two types
of images. Thus, the performance of these binary classifiers relies on the diversity of generated
data. Unfortunately, it is challenging to determine whether a binary classifier trained over images
generated by some diffusion models can generalize to those generated by other models. Their defects
of heavy dependence on generated image distribution underscore the necessity of exploring a novel
framework for generated image detection, where the detector’s performance relies on the natural
data distribution rather than the generated image distribution. However, this remains challenging,
because the literature has yet to determine whether models training merely on natural images can be
leveraged to distinguish between natural and generated images effectively, and if yes, how and why?

To address the challenge, we propose a novel framework for detecting generated images called
consistency verification (ConV). As shown in Figure 1, we introduce two functions, aiming to de-
tect generated images by ensuring that the outputs of these functions remain consistent for natural
images but exhibit significant inconsistency for generated images. To this end, we establish a prin-
ciple (see Eq. 6) to design these functions based on our theoretical analysis: outputs of these two
functions are the same on the natural distribution while their gradients need to lie within two mu-
tually orthogonal subspaces. This enables a training-free detection approach (see Eq. 12): if an
image transformed along its data manifold induces a substantial change in the loss value of a self-
supervised model pre-trained over natural images, it is identified as generated. The advantage of
ConV over existing methods is its reliance on fitting the natural data distribution rather than the dis-
tribution of generated images. Comprehensive experiments across various benchmarks for generated
image detection demonstrate the effectiveness of the proposed ConV (see Tables 1-3). To further
verify the effectiveness of the proposed ConV, we collect images generated by Sora OpenAI (2024)
and OpenSora Zheng et al. (2024) and compare ConV with baselines. The experiments demonstrate
the efficacy and robustness of ConV against variations in generative models (see Table 4).

We summarize our main contributions as follows:

• We highlight the generalization issue of existing works: it is challenging to determine
whether a detector trained over images generated by some diffusion models can general-
ize to those generated by other models. This motivates a promising direction to explore
detectors whose detection ability relies solely on fitting the natural data distribution.
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• We propose a novel framework for detecting AI-generated images called consistency
verification (ConV), which detects images by verifying the consistency of two functions.
The design of these two functions is guided by our orthogonality principle. Namely, gradi-
ents of these functions need to lie within two mutually orthogonal subspaces (Eq 6).

• Our proposed orthogonality principle enables a training-free approach to detecting AI-
generated images by leveraging the consistency of a pre-trained self-supervised model on
images before and after perturbations along the data manifold. Extensive experiments con-
ducted on various standard benchmarks and datasets collected from Sora demonstrate the
effectiveness and robustness of the proposed method (Tables 1-4).

2 CONSISTENCY VERIFICATION

In this section, we will give the motivation 2.1, objective 2.2, and realization 2.3 of consistency
verification proposed for AI-generated image detection.

2.1 MOTIVATION

Humans can distinguish AI-generated images from natural images through some types of indescrib-
able differences in patterns. Intuitively, humans know that if a natural image captures the same
content as a given AI-generated image, the natural image will be different. In contrast, if we de-
grade natural images along its data manifold, e.g., tiny affine transformation, the degraded natural
images are still discriminated as natural images.

Figure 2: Illustration of projecting a gener-
ated image xg onto the data manifold M.

To formally characterize this discrepancy, we
present the following notations. Let x ∈ X ⊂ Rd

denote the image, where d denotes the dimension of
images. To distinguish, we use xn and xg to denote
the natural and AI-generated image. In particular,
for a given generated image xg , even if it captures
similar content to a natural image xn, humans know
they are distinguishable in certain ways. This can
be formulated by projecting the generated image xg

onto the point xM(xg) on the data manifold M, i.e.,

xM(xg) = arg min
x′∈M

d(x′,xg), xM(xg) ∈ M, xg /∈ M, (1)

where xM(xg) stands for the point closest to xg on the data manifold of natural images M and d is
a metric. Namely, images on the data manifold M are considered natural, whereas those deviating
from M are regarded as AI-generated.

In this context, the data manifold perspective provides an intuitive framework for understanding the
difference. In particular, transforming natural image xM along the local tangent space T (xM),
leading to the fact that the degraded images are still on the data manifold. In contrast, even the
discrepancy d(xM(xg),xg) is minimal, xg is considered as generated, because xg departures from
the manifold. Intuitively, even a slight discrepancy between xM(xg) and xg allows us to identify
the difference between a generated image and the corresponding natural image on the data manifold.
Thus, we consider the discrepancy between a generated image and its closest natural image on the
data manifold to represent the direction of the fastest departure from the manifold. This means that

v⊤(xM(xg)− xg) = 0, v ∈ T (xM(xg)). (2)

This discrepancy inspires us to introduce two functions to detect generated images, where these two
functions are related to the tangent space and the space orthogonal to the tangent space, respectively.

2.2 OBJECTIVE

Aligning with the motivation, we introduce a two-function framework for generated image detection.
In particular, we propose a consistency verification framework where the two introduced functions
are devised to be consistent over natural images and inconsistent over AI-generated images. Namely,
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this framework detects generated images by verifying the consistency of the two functions. Specif-
ically, let f1(·) : Rd → R and f2(·) : Rd → R be the two functions. Then, the inconsistency
|f1(·) − f2(·)| between these two functions can be employed to detect generated images. Namely,
generated images can be detected by I(|f1(·)− f2(·)| > α) with the threshold α.

For images on the manifold, we make these two functions consistent by setting

δ(xM) = |f1(xM)− f2(xM)| = 0, (3)

where we denote xM(xg) as xM for simplicity. Then, the objective is to devise the two functions to
ensure that the inconsistency over generated images is larger than that over the natural images, i.e.,
δ(xg) ≥ δ(xM). In this regard, we show that (with more details in the appendix)

δ(xg) ≥ | |∇f1(xM)⊤(xg − xM)| − |∇f2(xM)⊤(xg − xM)| | ≥ 0 = δ(xM), (4)

where equality holds if, and only if, the absolute values of the two quantities are identical. Accord-
ing to Eq. 4, enlarging the difference between these two terms, i.e., |∇f1(xM)⊤(xg − xM)| and
|∇f2(xM)⊤(xg − xM)| will make the natural and generated images separable. Thus, the objective
of consistency verification is to maximize one term and minimize the other term while keeping the
output values of these two functions the same. This can be formalized by

min
f1,f2∈F

|∇f1(xM)⊤(xg − xM)| − |∇f2(xM)⊤(xg − xM)|, s.t. f1(xM) = f2(xM), (5)

where F denotes a hypothesis space.

However, learning these two functions using Eq. 5 still relies on the generated data, i.e., xg . To de-
couple function optimization from the generated data distribution, we leverage orthogonality priors
from the motivation 2.1 to provide design principles for these functions. According to the above
discussion, one straightforward approach to realizing f1 and f2 is to devise these functions such that
their gradients for the input lie in two orthogonal subspaces, i.e., the tangent space and the space
orthogonal to the tangent space. This orthogonality principle can be formalized as,

∇f1(xM) ∈ O(xM), ∇f2(xM) ∈ T (xM), f1(xM) = f2(xM) (6)

where O(xM) denotes the subspace orthogonal to the tangent space T (xM). Then, we have

δ(xg) ≥ ||∇f1(xM)⊤p| − |∇f2(xM)⊤p|| = |∇f1(xM)⊤p| > 0 = δ(xM), (7)

where p = xg − xM denotes the difference between a generated image and its corresponding point
on the data manifold, the equation holds due to the conclusion in Eq. 2, and the inequality holds
because the probability that two vectors in the same space are orthogonal is zero. Consequently,
the orthogonality principle ensures that these two functions are consistent on natural images, i.e.,
f1(xM) = f2(xM), while inconsistent on generated images, i.e., |δ(xg)| > |δ(xM)| = 0.

2.3 REALIZATION

In this work, we propose a training-free approach to construct these two functions. The reason is
twofold: i) our framework allows the training-free construction of these functions, and ii) we aim to
validate the effectiveness of the orthogonality principle without incurring significant energy costs,
as fitting the distribution of natural data requires a lot of data and computing power for training.

It shows that well-trained models are typically insensitive to the transformation along the data man-
ifold Simard et al. (1991); Bengio et al. (2013); Rifai et al. (2011). This can be formalized as,

(v − xM)⊤
∂ℓ(xM)

∂xM
≈ 0, v ∈ T (xM), (8)

where v stands for the point sampled from the tangent space T (xM) and ℓ(·) is the loss function of
a model. This implies that ∂ℓ(xM)

∂xM
is orthogonal to the tangent space T (xM), which is consistent

with the direction p = xg − xM, as shown in Eq 2. Hence, we propose to realize f1(·) using a
well-trained neural network. This means that both ∂ℓ(xM)

∂xM
and p lies in the subspace orthogonal to

tangent space T (xM). This is consistent with the principle, i.e., ∇f1(xM) ∈ O(x). We have

|∇f1(xM)⊤p| = |∂ℓ(xM)

∂xM

⊤
p| =

∥∥∥∥∂ℓ(xM)

∂xM

∥∥∥∥ ∥p∥ | cos(∂ℓ(xM)

∂xM
,p)| > 0, (9)
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where p = xg − xM is the difference between natural and generated images, and the last inequal-
ity holds because the probability that two vectors in the same space are orthogonal is zero. We
propose to realize f1(·) using models trained with self-supervised learning, which would avoid the
reliance on image labels used in classification tasks. This is because obtaining the loss value of a
classification model requires labels that could be hard to obtain in many practical scenarios.

For the second term, we will realize it using the orthogonality such that ∇f2(xM) ∈ T (xM) or
|∇f2(xM)⊤p| = 0. We achieve this by introducing the local tangent space into ∇f2(x). To this
end, we propose to realize f2 using a composite function: f2 := f1 ◦ h. This leads to the fact that

∇f2(xM) = Jh(xM)
∂f1(h(xM))

∂h(xM)
, (10)

where Jh(xM) is the Jacobian matrix of the function h(xM). If h(·) models the transformation
along local data manifold, Jh(xM) models the tangent space at point xM. Then, we have

∇f2(xM)⊤p =
∂f1(h(xM))

∂h(xM)

⊤
J⊤
h(xM)p = 0, (11)

where J⊤
h(x) denotes the tangent space orthogonal to the vector p = xg − xM, see Eq. 2.

For the last term in the orthogonality principle, we should ensure that f1(xM) = f2(xM) :=
f1(h(xM)). There are numerous approaches to realize h(·). In this regard, we propose to leverage
data transformation functions used in the training phase to realize h(·), because self-supervised
models are trained to be insensitive to these transformations along local data manifold under various
self-supervised learning scenarios (Yu et al., 2023; Jaderberg et al., 2015). Thus, for a given input
image x, we can determine whether it is generated by calculating the consistency δ(x),

δ(x) = |f1(x)− f1(h(x))|
{
= 0, x ∈ M,

> 0, x /∈ M.
(12)

Technically, our training-free realization is equal to verifying the robustness of a pre-trained self-
supervised model f1(·) against the data transformations h(·). Here, f1(·) merely fits the natural data
distribution, avoiding the reliance on the distribution of AI-generated images.

2.4 OVERVIEW

Figure 3: Framework of the proposed consistency verification.

An overview of the
proposed consistency
verification is presented
in Figure 3. As shown in
the figure, our method is
training-free and seam-
lessly deployed in practical
scenarios. Specifically, we
merely download a neural
network pre-trained with
a self-supervised learning
task over a large-scale
dataset. Subsequently, we obtain the loss values of both the original and transformed images.
Ultimately, images are identified as generated if the difference between loss values exceeds a pre-
determined threshold. We can apply multiple random transformations and compute corresponding
loss function values if computational resources allow. Intuitively, this would result in more accurate
detection performance, which is fortunately consistent with our experiments, see Figure 4.

Negative samples are widely used in self-supervised learning, which could increase the computa-
tional cost of generated image detection. Inspired by a recent work Oquab et al. (2024), we calculate
the similarity of representation r = ϕ(x), where ϕ(·) is the feature extractor of a self-supervised
model. The feasibility results from the objective function used in self-supervised learning,

logP (x) = log
e(r

⊤rh/τ)∑
z−

e(r⊤r−/τ) + e(r⊤rh/τ)
= log

1∑
z−

e(r⊤r−/τ)−(r⊤rh/τ) + 1
, (13)
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Table 1: AI-generated image detection performance on ImageNet. Values are percentages. Bold
numbers are superior results and the underlined italicized values are the second-best performance.

Models
ADM ADMG LDM DiT BigGAN GigaGAN StyleGAN XL RQ-Transformer Mask GIT Average

Methods
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC (↑) AP (↑)

Training-based Methods
CNNspot 62.25 63.13 63.28 62.27 63.16 64.81 62.85 61.16 85.71 84.93 74.85 71.45 68.41 68.67 61.83 62.91 60.98 61.69 67.04 66.78
Ojha 83.37 82.95 79.60 78.15 80.35 79.71 82.93 81.72 93.07 92.77 87.45 84.88 85.36 83.15 85.19 84.22 90.82 90.71 85.35 84.25
DIRE 51.82 50.29 53.14 52.96 52.83 51.84 54.67 55.10 51.62 50.83 50.70 50.27 50.95 51.36 55.95 54.83 52.58 52.10 52.70 52.18
NPR 85.68 80.86 84.34 79.79 91.98 86.96 86.15 81.26 89.73 84.46 82.21 78.20 84.13 78.73 80.21 73.21 89.61 84.15 86.00 80.84

Training-free Methods
AEROBLADA 55.61 54.26 61.57 56.58 62.67 60.93 85.88 87.71 44.36 45.66 47.39 48.14 47.28 48.54 67.05 67.69 48.05 48.75 57.87 57.85
RIGID 87.00 85.29 81.22 77.90 74.60 69.51 70.22 67.17 87.81 86.23 85.54 84.39 86.58 86.41 90.66 89.89 89.94 88.41 83.73 81.69
ConV 88.89 86.60 82.46 79.83 78.94 75.88 75.25 70.11 92.83 92.05 91.89 90.93 92.15 91.82 93.02 91.26 88.79 87.88 87.13 85.15

Table 2: AI-generated image detection performance on LSUN-BEDROOM. Bold numbers are su-
perior results and the underlined italicized values are the second-best performance.

Models
ADM DDPM iDDPM Diffusion GAN Projected GAN StyleGAN Unleashing Transformer Average

Methods
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC (↑) AP (↑)

Training-based Methods
CNNspot 64.83 64.24 79.04 80.58 76.95 76.28 88.45 87.19 90.80 89.94 95.17 94.94 93.42 93.11 84.09 83.75
Ojha 71.26 70.95 79.26 78.27 74.80 73.46 84.56 82.91 82.00 78.42 81.22 78.08 83.58 83.48 79.53 77.94
DIRE 57.19 56.85 61.91 61.35 59.82 58.29 53.18 53.48 55.35 54.93 57.66 56.90 67.92 68.33 59.00 58.59
NPR 75.43 72.60 91.42 90.89 89.49 88.25 76.17 74.19 75.07 74.59 68.82 63.53 84.39 83.67 80.11 78.25

Training-free Methods
AEROBLADA 57.05 58.37 61.57 61.49 59.82 61.06 47.12 48.25 45.98 46.15 45.63 47.06 59.71 57.34 53.85 54.25
RIGID 69.76 68.31 88.35 88.82 84.15 84.54 91.85 92.28 92.65 93.18 78.09 76.54 91.94 92.28 85.25 85.13
ConV 73.71 71.52 87.74 86.59 82.96 81.79 93.79 93.87 94.73 94.74 84.10 82.35 93.75 93.51 87.25 86.34

where rh is the representation of h(x) and r− denotes the representation of negative samples. Thus,
we can employ the similarity between representations, i.e., r⊤rh, as a surrogate of loss value. This
avoids the use of negative samples. Note that applying a softmax function to the representation r
leads to the objective function used in previous works Caron et al. (2021); Oquab et al. (2024). In
this context, the high similarity between the representation of images and transformed images means
the consistency between functions, i.e., detected as natural images.

3 EXPERIMENTS

This section aims to verify the effectiveness of the proposed ConV, especially for practical scenarios
with unknown generative models. Before that, we will detail the experimental setups.

3.1 EXPERIMENT SETUP

Datasets and generative models. We evaluate the performance of ConV and baseline methods on
widely used benchmarks: ImageNet (Deng et al., 2009) and LSUN-BEDROOM (Yu et al., 2015)
with generated images provided by (Stein et al., 2023). For ImageNet, fake images are generated
with ADM (Dhariwal & Nichol, 2021), ADM-G, LDM (Rombach et al., 2022), DiT-XL2 (Peebles
& Xie, 2023), BigGAN (Brock et al., 2019), GigaGAN (Kang et al., 2023), StyleGAN (Karras
et al., 2019), RQ-Transformer (Lee et al., 2022), and MaskGIT (Chang et al., 2022). For LSUN-
BEDROOM, fake images are generated with ADM, DDPM (Ho et al., 2020), iDDPM (Nichol &
Dhariwal, 2021), Diffusion Projected GAN (Wang et al., 2023b), Projected GAN (Wang et al.,
2023b), StyleGAN (Karras et al., 2019) and Unleasing Transformer (Bond-Taylor et al., 2022).
We further evaluate methods using GenImage Dataset (Zhu et al., 2023), which primarily employs
diffusion models for image generation with generators including Stable Diffusion V1.4 (Rom-
bach et al., 2022), Stable Diffusion V1.5 (Rombach et al., 2022), GLIDE, VQDM (Gu et al.,
2022), Wukong (Wukong), BigGAN, ADM, and Midjourney (Midjourney). This dataset contains
1, 331, 167 natural and 1, 350, 000 AI-generated images.

Current advancements in generative technology have significantly enhanced the realism of synthetic
videos (Khachatryan et al., 2023; Blattmann et al., 2023), thereby raising substantial concerns re-
garding trust in digital media. Moreover, the inaccessibility of their parameters and even their archi-
tectures underscores the necessity of verifying the generalization capability of newly proposed de-
tection methods over these generative models. To verify whether the proposed ConV generalizes to
these challenging scenarios, we download videos generated by these models and detect images sam-
pled from these videos. Since we currently cannot access the generative model used in Sora (Ope-
nAI, 2024), we gathered several publicly available videos and extracted 1, 000 frames. Additionally,
we generate 100 videos through the open-source OpenSora project (Zheng et al., 2024), extracting

6
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Table 3: AI-generated image detection performance on GenImage. Except for ConV and RIGID, all
methods require training on images generated by SD V1.4.

Models

Methods Midjourney SD V1.5 ADM GLIDE Wukong VQDM BigGAN Avg ACC(%)
Training-based Methods

ResNet-50 54.90 99.70 53.50 61.90 98.20 56.60 52.00 68.11
DeiT-S 55.60 99.80 49.80 58.10 98.90 56.90 53.50 67.51
Swin-T 62.10 99.80 49.80 67.60 99.10 62.30 57.60 71.19
CNNspot 52.80 95.90 50.10 39.80 78.60 53.40 46.80 58.63
Spec 52.00 99.20 49.70 49.80 94.80 55.60 49.80 64.41
F3Net 50.10 99.90 49.90 50.00 99.90 49.90 49.90 64.22
GramNet 54.20 99.10 50.30 54.60 98.90 50.80 51.70 65.66
DIRE 60.20 99.80 50.90 55.00 99.20 50.10 50.20 66.49
Ojha 73.20 84.00 55.20 76.90 75.60 56.90 80.30 71.73
LaRE 66.40 87.10 66.70 81.30 85.50 84.40 74.00 77.91

Training-free Methods
RIGID 82.07 68.53 73.33 86.23 68.80 80.63 93.13 78.96
ConV 85.13 74.53 73.80 72.97 80.00 87.57 89.94 80.56

5, 000 frames. With these images used as generated images and Laion serving as natural images, we
further evaluate ConV’s performance and compare it with baselines.

Baselines and evaluation metrics. We use training-free and training-based methods as baselines.
For training-free methods, we take RIGID (He et al., 2024) and AEROBLADE (Ricker et al., 2024)
as baselines. For training-based methods, we take DIRE (Wang et al., 2023a), CNNspot (Wang
et al., 2020), Ojha (Ojha et al., 2023) and NPR (Tan et al., 2024) as baselines. For some baselines,
we get the results reproted in their papers, including Frank (Frank et al., 2020), Durall (Durall et al.,
2020), Patchfor (Chai et al., 2020), F3Net (Qian et al., 2020), SelfBland (Shiohara & Yamasaki,
2022), GANDetection (Mandelli et al., 2022), LGrad (Tan et al., 2023), ResNet-50 (He et al., 2016),
DeiT-S (Touvron et al., 2021), Swin-T (Liu et al., 2021b), Spec (Zhang et al., 2019), LaRE2 (Luo
et al., 2024) and GramNet (Liu et al., 2020).

Following previous works, we mainly use the following metrics: (1) the average precision (AP) and
(2) the area under the receiver operating characteristic curve (AUROC). Reproducing all baselines’
results on some datasets with the same setting requires significant resources. Thus, we directly
leverage the corresponding papers’ results and report the classification accuracy (ACC).

Implementation details. In our experiments, we use the DINOv2 to instantiate f1(·) and DINOv2’s
transformation1 to realize h(·), as it is trained over a large-scale natural image dataset. There are
four pre-trained DINOv2 models, i.e., ViT-S/14, ViT-B/14, ViT-L/14, and ViT-g/14, achieving ex-
citing AUROC performance on ImageNet benchmark: 62.84, 78.58, 87.13, and 85.97, respectively.

Figure 4: ConV with multiple forward passes.

To balance detection performance and effi-
ciency, we use DINOv2 ViT-L/14 in the follow-
ing experiments. Meanwhile, We leverage data
augmentations used in the training phase to re-
alize the function h(·) in f2 = f1 ◦h, including
geometric augmentation, color jitter, and Gaus-
sian blur. Since data augmentation is random-
ized, to enhance performance, we can apply the
function n times to a single test image. As illus-
trated in Figure 4, increasing n correlates with
improved detection performance. However, to
maintain detection efficiency, we set n = 20 in
our experiments2. In practical applications, if
multiple machines are available, we can lever-
age parallel processing to implement multiple
transformations in a single forward pass to achieve better detection performance. In our experi-
ments, we report the average results under five different random seeds.

1Details can be found in Appendix A.3
2For a fair comparison, we also set n = 20 for our baseline method, RIGID.
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Table 4: AI-generated image detection performance on Sora.
Methods

CNNspot Ojha NPR AEROBLADA RIGID ConVModels
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

Sora 52.85 53.29 77.06 80.69 51.92 50.25 57.13 58.00 84.22 81.98 87.74 88.85
Open Sora 50.14 51.38 67.05 68.67 50.25 51.84 55.79 62.37 73.12 75.56 82.84 85.24
Average 51.50 52.84 72.06 74.68 51.09 51.05 56.46 60.19 78.67 78.77 85.29 87.05

3.2 MAIN RESULT

Comparison on public benchmarks. We conduct comparative experiments across a comprehensive
suite of standard benchmarks. As shown in Tables 1, 2, and 3, ConV achieves the best results under
various scenarios, demonstrating its effectiveness and robustness. Note that ConV, as a train-free
approach, outperforms the existing training-based methods that are typically trained using numerous
natural and generated images. Moreover, on the large-scale benchmark GenImage, these training-
based methods exhibit relatively poor generalization capability, while ConV can detect generated
images effectively, illustrating the effectiveness of the generalization ability of the proposed method.

Comparison on Sora. We further evaluate ConV’s performance on videos generated by unknown
models. As shown in Table 4, ConV demonstrates the best performance on images generated by
these unknown generative models, outperforming training-based methods. These results highlight
the effectiveness and robustness of the proposed ConV.

Figure 5: t-SNE visualization of features ex-
tracted by DINOv2.

Illustration of the effectiveness. We visual-
ize the features of natural/real image xn and
generated/fake image xg as well as the features
of their augmented versions, i.e., h(xr) and
h(xg). We extract features of xn, xg , h(xn)
and h(xg) using DINOv2 and use t-SNE to vi-
sualize these features. To avoid the effect of
class, all images are sampled from the same
class for visualization. As shown in Figure 5,
the conclusions are mainly twofold. First, the
features of natural (xn) and augmented (h(xn))
images can be distinguished from those of gen-
erated images and their augmented versions,
showing DINOv2’s ability to differentiate be-
tween real and generated images. This provides
a promising direction to leverage DINOv2 for
AI-generated image detection. Second, the separation between a generated image and its augmented
version in the representation space is more pronounced than that of real images. The feature of h(xn)
is similar to that of xn, i.e., features of h(xn) substantially overlap with those of the natural image
xn. In contrast, the features of h(xg) generally fail to fully encompass those of the generated images
xg . Aligning with this characteristic, ConV effectively distinguishes natural and generated images
by calculating feature similarity between the original and augmented images. This is consistent with

(a) (b) (c)

Figure 6: Cosine similarity between features of original image x and the transformed version h(x),
where fake images are generated by a) BigGAN, b) ADM, and c) DDPM.
the conclusion from Figure 6 showing the similarity between features of x and h(x).
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(a) (b) (c)

Figure 7: AI-generated image detection performance under various practical perturbations, i.e., (a):
JPEG compression; (b): Gaussian blur; and (c) Gaussian noise.

3.3 DISCUSSION

When deploying a detector to identify generated images, it is crucial to consider practical envi-
ronments or even a threat model. Specifically, images are often perturbed in practical scenarios,
affecting detection performance. For instance, JPEG compression is a common mechanism due to
the spread of images on the Internet. Moreover, AI-generated images may undergo post-processing
to evade detection mechanisms. If a detection method is sensitive to some perturbations, the vul-
nerability would limit the applications in many practical scenarios. Thus, robustness to various
perturbations is an essential metric in generated image detection. To verify the robustness of the
proposed ConV, we process both natural and generated images by introducing some degradation
mechanisms. Unless otherwise stated, experiments are conducted on the ImageNet dataset.

Following previous works (Ricker et al., 2024; He et al., 2024), we evaluate the robustness of de-
tectors in three perturbations, including JPEG compression (with quality q), Gaussian blur, and
Gaussian noise (both with standard deviation σ). The results are given in Figure 7. We can see that
ConV achieves the best performance. We find that training-free methods usually show better robust-
ness than training-based methods. In particular, although NPR achieves promising results on clean
images, its performance degrades drastically when the perturbation increases level. This may stem
from its reliance on the relationship between pixels. Namely, various small perturbations can change
its features, causing its performance to degrade drastically. In contrast, ConV leverages the gener-
alization ability of the pre-trained self-supervised model and is robust under various perturbations,
which makes it suitable for a wider range of applications.

We verify the efficacy of the proposed method using more pre-trained models with results in Ap-
pendix A.7. The results demonstrate that our method can be applied for various pre-trained models.

4 RELATED WORKS

Our work focuses on AI-generated image detection. Thus, we first discuss the achievement of previ-
ous works. Then, we introduce some basic concepts of manifold learning used in our orthogonality
principle. Our method is inherently related to self-supervised learning, which is also discussed.

Generated images detection. With the rapid advancements in generative models (Brock et al.,
2019; Ho et al., 2020), the generation of highly realistic images has become increasingly feasible,
thereby creating an urgent demand for effective algorithms to detect such generated images. Previ-
ous work (Frank et al., 2020; Marra et al., 2018) has usually focused on training a specialized binary
classification neural network to distinguish between natural and generated images. CNNspt (Wang
et al., 2020) finds that with specific data augmentation, a standard image classifier trained on Pro-
GAN is able to generalize to other architectures. However, UniversalFakeDetect (Ojha et al., 2023)
shows that the generalizability does not extend to unseen families of generative models. To this
end, they propose to train classifiers in CLIP’s (Radford et al., 2021) representation space to obtain
stronger generalisability. DIRE (Wang et al., 2023a) uses the reconstruction error of an image on a
diffusion model to train the classifier. NPR (Tan et al., 2024) leverages neighboring pixel relation-
ships to elucidate the differences between natural and generated images. However, training-based
approaches often suffer from generalizability issues and high computational costs. To address these
limitations, several training-free methods have recently been proposed. AEROBLADE (Tan et al.,
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2024) performs the detection by calculating the reconstruction error with the autoencoder used in
latent diffusion models (Rombach et al., 2022). However, understanding the underlying mecha-
nisms that enable these approaches to perform well on images generated by unknown generative
models remains challenging. On the contrary, our method explicitly maps how the generated images
are detected. Thus, exhibiting good generalization performance on images generated by unknown
models is in line with expectations. Fortunately, our experiments on images generated by Sora and
OpenSora provide effective support, see Table 4.

Manifold learning. Manifold learning Cayton et al. (2008) assumes that real-world data presented
in high dimensional spaces are expected to concentrate in the vicinity of a manifold M of much
lower dimensionality, embedded in high dimensional space. Namely, the probability mass tends to
concentrate in regions with significantly lower dimensionality than the original space in which the
data resides Bengio et al. (2013). In this context, tangent directions/spaces of the manifold. The
tangent space of the manifold changes as the point-of-interest moves on the manifold, as shown in
Figure 2. The local tangent space at a point on the manifold can be considered as capturing locally
valid transformations, i.e., transformed points are still on the data manifold. Intuitively, a well-
trained model is invariant to transformations along the tangent space Simard et al. (1991), which is
mathematically equal to the orthogonality between vectors from the tangent space and the gradient
of the model’s loss with respect to the input, i.e., Eq. 8.

Self-supervised learning. Self-supervised learning Liu et al. (2021a) leverages input data as su-
pervision, aiming to extract representations benefiting downstream tasks. In this regard, con-
trastive learning has become a dominant component in self-supervised learning. As a classical
method (Becker & Hinton, 1992), contrastive learning aims to match the representations of the orig-
inal and augmented images. Contrastive predictive coding (Oord et al., 2018) is one of the pioneering
approaches to including contrastive learning in self-supervised learning. SimCLR (Chen et al., 2020)
demonstrates the importance of large batches and negative pairs, while BYOL (Grill et al., 2020) re-
moves the need for negative samples through self-distillation. SwAV (Caron et al., 2020) introduces
a clustering-based approach, improving learning without explicit pairings. MoCo (He et al., 2020)
enhances efficiency with a memory bank for negative sampling. DINO (Caron et al., 2021) further
refined this by leveraging self-distillation and attention mechanisms, leading to stronger represen-
tations. DINOv2 (Oquab et al., 2024) pushed these advancements with large amount curated data
from diverse sources. These methods have shown success in modeling the natural data distribution,
especially for the robustness against data transformations. Thus, ConV exploits the property of per-
forming contrastive learning on a large amount of natural data to realize the introduced functions.
In this work, we mainly leverage DINOv2 (Oquab et al., 2024) as the introduced function f1(·).

5 CONCLUSION AND LIMITATION

In this work, we propose ConV, a novel framework for detecting AI-generated images. Unlike
existing methods that rely heavily on substantial datasets of natural and generated images, Conv
relies solely on the natural image distribution. This is achieved by designing two functions whose
outputs exhibit consistency for natural images but significant inconsistency for generated images.
Extensive experiments on diverse benchmarks and images generated by a currently inaccessible
model, i.e., Sora, have demonstrated ConV’s superior performance.

Limitation. 1) Although the proposed orthogonal principle provides an approach for designing
various types of functions and its validity is widely supported by extensive empirical studies, we
have not provided formal proof of the convergence of the generalization risk within the context of
AI-generated image detection. Thus, our future work will focus on establishing the theoretical foun-
dations of the generalization of our approach. 2) Although we consider a threat model to verify the
robustness of detectors, we have not provided an aggressive scenario where generative models are
trained to minimize the inconsistency between f1 and f2 = f1 ◦ h. Thus, we will investigate the
potential of integrating effective, robust, and efficient detection methods into the training process of
generative models to make the generated images more realistic. 3) Despite numerous empirical stud-
ies validating the effectiveness of the proposed CONV, the impact of scaling up the self-supervised
model on the performance of detecting generated images remains to be explored since collecting a
larger dataset and training an expanded self-supervised model are beyond the scope of this study.
Moreover, future work is needed to explore how the performance of ConV will be affected if self-
supervised models are trained on AI-generated images.
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practices to data set releases, potentially harmful insights, methodologies and applications, poten-
tial conflicts of interest and sponsorship, discrimination/bias/fairness concerns, privacy and security
issues, legal compliance, and research integrity issues.

REPRODUCIBILITY STATEMENT

We summarize our efforts below to facilitate reproducible results:

• Theoretical results. A clear statement of the theoretical results can be found in Ap-
pendix A.1.

• Datasets. We use publicly available datasets, which are described in detail in Ap-
pendix A.4.

• Open Source. Code will be available once the paper is accepted.
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A APPENDIX

A.1 DERIVATION FOR INCONSISTENCY

Here, we give the detailed derivation of Eq. 4. We expand these two functions at x := xM(xg) for
a given generated image xg ,

f1(xg) = f1(x) +∇f1(x)
⊤(xg − x), f2(xg) = f2(x) +∇f2(x)

⊤(xg − x), (14)

where we neglect the higher-order approximation error.

The inconsistency between generated images can be formalized by,

δ(xg) = |f1(x)−f2(x)+(∇f1(x)−∇f2(x))
⊤(xg−x)| = |(∇f1(x)−∇f2(x))

⊤(xg−x)|, (15)

where the equation holds because of δ(x) = f1(x)− f2(x) = 0. Then, we have

δ(xg) = |(∇f1(x)−∇f2(x))
⊤(xg − x)| ≥ ||∇f1(x)

⊤(xg − x)| − |∇f2(x)
⊤(xg − x)||. (16)

A.2 SOFTWARE AND HARDWARE

We use python 3.8.16 and Pytorch 1.12.1, and seveal NVIDIA GeForce RTX-3090 GPU and
NVIDIA GeForce RTX-4090 GPU.

A.3 DETAILS OF TRANSFORMATIONS

We follow the data augmentation strategy used when training DINOv2 with a combination of
HorizontalFlip, ColorJitter, and GaussianBlur. For ColorJitter, brightness, contrast, saturation,
and hue are randomly adjusted with a factor in the ranges of [0.88,1.12],[0.88,1.12],[0.94,1.06],
and[0.97,1.03], respectively. For GaussianBlur, the kernel size is set to 9×9, and the variance is
randomly selected in [0.7,1].

A.4 DETAILS OF DATASETS

IMAGENET. The real images and generated images can be obtained at https://github.com/
layer6ai-labs/dgm-eval. The images are provided by (Stein et al., 2023). The resolution
of real images and generated images are 256 × 256. We crop the image randomly to 224 × 224
resolution. The generated images include:

• ADM, FID = 11.84.
• ADMG, FID = 5.58.
• BigGAN, FID = 7.94.
• DiT-XL-2, FID = 2.80.
• GigaGAN, FID=4.16.
• LDM, FID=4.29.
• StyleGAN-XL, FID=2.91.
• RQ-Transformer, FID=9.71.
• Mask-GIT, FID=5.63.

LSUN-BEDROOM. The real images and generated images can be obtained at https://
github.com/layer6ai-labs/dgm-eval. The images are provided by (Stein et al., 2023).
The resolution of real images and generated images are 256× 256. We crop the image randomly to
224× 224 resolution. The generated images include:

• ADM, FID=2.20.
• DDPM, FID=5.18.
• iDDPM, FID=4.54.
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Table 5: AI-generated image detection performance on ImageNet.
Models

ADM ADMG LDM DiT BigGAN GigaGAN StyleGAN XL RQ-Transformer Mask GIT Average
Methods

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC (↑) AP (↑)

Random rotation (-90-90 degrees) 74.43 75.23 67.44 66.45 65.60 65.12 65.47 65.71 75.20 76.89 71.72 74.41 74.66 77.13 76.36 77.62 71.21 72.95 71.34 72.39
Random rotation (-45-45 degrees) 79.91 79.12 71.61 68.80 69.65 66.87 70.03 68.12 82.11 81.95 79.21 79.65 83.09 83.58 82.79 82.03 77.91 77.54 77.37 76.41

• StyleGAN, FID=2.65.
• Diffusion-Projected GAN, FID=1.79.
• Projected GAN, FID=2.23.
• Unleashing Transformers, FID=3.58.

GenImagThe real images and generated images can be obtained at https://github.com/
GenImage-Dataset/GenImage. The images are provided by (Zhu et al., 2023). The real
images come from ImageNet, and different images have different resolutions. Following (Stein
et al., 2023),we resize the image to 256× 256 resolution and adjust its format to keep the same with
the generated images, then we randomly crop it to 224 × 224 resolution to extract features. The
generated images include:

• Midjourney. The resolution of images generated by Midjourney is 1024 × 1024, and we
randomly crop them to 224× 224 resolution.

• SD V1.4. The resolution of images generated by SD V1.4 is 512× 512, and we randomly
crop them to 224× 224 resolution.

• SD V1.5. The resolution of images generated by SD V1.5 is 512× 512, and we randomly
crop them to 224× 224 resolution.

• ADM. The resolution of images generated by SD V1.5 is 256×256, and we randomly crop
them to 224× 224 resolution.

• GLIDE. The resolution of images generated by SD V1.5 is 256 × 256, and we randomly
crop them to 224× 224 resolution.

• Wukong. The resolution of images generated by SD V1.5 is 512 × 512, and we randomly
crop them to 224× 224 resolution.

• VQDM. The resolution of images generated by SD V1.5 is 256 × 256, and we randomly
crop them to 224× 224 resolution.

• BigGAN. The resolution of images generated by SD V1.5 is 128 × 128, and we fill them
with zero pixels to 224× 224 resolution.

Note that, in the original GenImage dataset, the natural images are all saved in jpg format, while
the generated images are all saved in png format, and this unwanted bias will result in unrealistic
detection performance. This is also discussed in AEROBLADE (Ricker et al., 2024). Therefore, we
follow (Stein et al., 2023) to convert all the natural images to png format and pre-scaled the images
to 256×256. Since the generated images are already in png format, we don’t do anything with them
beforehand.

A.5 RESULTS OF USING OTHER DATA TRANSFORMATIONS.

In our experiments, we leverage data augmentations used in the training phase, including geometric
augmentations, color jitter, and Gaussian blur. We further conduct comparison experiments using
data augmentations which is not used during training, such as random rotation. The experiments
are conducted on the ImageNet benchmark. As shown Table 5, using data transformations not seen
during training does not result in good detection performance. Since the rotations were not used for
data augmentation during training, using them to perform ConV during testing could not achieve
good detection performance.

A.6 RESULTS ON CLIP

In our paper, we use DINOv2 for all of our experiments. We further use CLIP for comparison
experiments. We note that the authors only used randomly crop as data augmentation when training
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Table 6: AI-generated image detection performance on ImageNet.
Models

ADM ADMG LDM DiT BigGAN GigaGAN StyleGAN XL RQ-Transformer Mask GIT Average
Methods

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC (↑) AP (↑)

Training-based Methods
CNNspot 62.25 63.13 63.28 62.27 63.16 64.81 62.85 61.16 85.71 84.93 74.85 71.45 68.41 68.67 61.83 62.91 60.98 61.69 67.04 66.78
Ojha 83.37 82.95 79.60 78.15 80.35 79.71 82.93 81.72 93.07 92.77 87.45 84.88 85.36 83.15 85.19 84.22 90.82 90.71 85.35 84.25
DIRE 51.82 50.29 53.14 52.96 52.83 51.84 54.67 55.10 51.62 50.83 50.70 50.27 50.95 51.36 55.95 54.83 52.58 52.10 52.70 52.18
NPR 85.68 80.86 84.34 79.79 91.98 86.96 86.15 81.26 89.73 84.46 82.21 78.20 84.13 78.73 80.21 73.21 89.61 84.15 86.00 80.84

Training-free Methods
AEROBLADA 55.61 54.26 61.57 56.58 62.67 60.93 85.88 87.71 44.36 45.66 47.39 48.14 47.28 48.54 67.05 67.69 48.05 48.75 57.87 57.85
RIGID 87.00 85.29 81.22 77.90 74.60 69.51 70.22 67.17 87.81 86.23 85.54 84.39 86.58 86.41 90.66 89.89 89.94 88.41 83.73 81.69
ConV-DINOv2 88.89 86.60 82.46 79.83 78.94 75.88 75.25 70.11 92.83 92.05 91.89 90.93 92.15 91.82 93.02 91.26 88.79 87.88 87.13 85.15
ConV-CLIP-unimodal 76.64 76.52 69.36 68.86 70.29 69.73 70.03 69.73 76.59 79.27 72.97 73.05 70.82 70.35 77.27 77.49 72.95 73.20 72.99 72.98
ConV-CLIP-multimodal 80.76 79.77 72.31 71.21 72.03 71.22 72.73 72.12 80.73 76.60 79.59 77.47 77.46 75.17 80.83 78.86 74.34 70.45 76.75 74.76

Table 7: AI-generated image detection performance with different pre-trained models.
Models

MoCo SwAV DINO CLIP DINOv2Methods
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

RIGID 58.67 57.05 61.88 61.41 67.98 66.14 66.50 65.32 83.73 81.69
ConV 68.43 67.65 74.71 73.48 71.91 69.46 72.99 72.98 87.13 85.15

CLIP. Therefore, when implementing ConV with CLIP, we also only use random crop. As shown
in Table 6, using CLIP to implement ConV does not achieve good performance. We speculate that
this difference comes from the training methodology.CLIP learns features using image captions as
supervision, which may make the features more focused on semantic information, whereas DINOv2
learns features only from images, which makes it more focused on the images themselves, and thus
better able to capture the subtle differences between the real image and the generated image. In
addition to this, the fact that CLIP only uses random crop as data augmentation may also contribute
to the poor performance of ConV.

The results show that our method performs relatively worse when using CLIP. To overcome this lim-
itation, we revisit our methodology, i.e., verifying the consistency between outputs of two functions.

As shown in Eq. (13), we derive the cosine similarity metric between image features from a self-
supervised learning objective function. However, CLIP employs a different objective function,
namely, calculating the similarity between text and image features. Thus, the proposed cosine
similarity between image features may not be a good realization of these two functions’ output,
limiting the generalization capability for generated image detection. We conjecture the difference
between the projection of the visual features of the original image and the visual features of the
transformed image on their corresponding text features would be a good metric. The reason is as
follows: The function to calculate the similarity between text and image features can be regarded
as a function. Thus, we should calculate the difference in inter-modality similarity rather than the
similarity between original and transformed images. To verify the point, we conduct experiments
using the corrected realization of f1 and f2, i.e., a corrected metric to verify the consistency. The
results below show that the modified approach outperforms the original metric.

These results show that using the modified metric for detection greatly improves the performance
of CLIP-based methods model, achieving performance comparable with Dinov2-based methods.
Hence, we believe our work provides a novel approach to calculating the difference between two
functions without focusing on the differences in similarities between two image features.

A.7 RESULT ON MORE PRE-TRAINED MODELS

Besides CLIP, we conduct experiments using the MoCo (He et al., 2020), SwAV (Caron et al.,
2020), and DINO (Caron et al., 2021). The results are reported in Table 7. These results show that
our method can be applied to various backbones.
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