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Abstract

In recent years, the Natural Language Infer-
ence (NLI) task has garnered significant atten-
tion, with new datasets and models achieving
near human-level performance on it. How-
ever, the full promise of NLI – particularly that
it learns knowledge that should be generaliz-
able to other downstream NLP tasks – has not
been realized. In this paper, we study this un-
fulfilled promise from the lens of two down-
stream tasks: question answering (QA), and
text summarization. We conjecture that a key
difference between the NLI datasets and these
downstream tasks concerns the length of the
premise; and that creating new long premise
NLI datasets out of existing QA datasets is a
promising avenue for training a truly generaliz-
able NLI model. We validate our conjecture by
showing competitive results on the task of QA
and obtaining the best reported results on the
task of Checking Factual Correctness of Sum-
maries.

1 Introduction

Natural Language Inference (NLI) is the task of
determining the relation between a given premise-
hypothesis text pair; and is critical for natural lan-
guage understanding. The availability of large-
scale, open NLI datasets (Bowman et al., 2015;
Williams et al., 2018) has recently resulted in the
development of bigger and more robust models for
solving the task of NLI. As some of these mod-
els close in on human-level performance, a natural
question arises: can models trained on these large-
scale NLI datasets be used for other downstream
NLP tasks? So far, efforts towards using NLI for
downstream tasks have had limited success (Trivedi
et al., 2019; Falke et al., 2019; Clark et al., 2018).

One potential reason for this lack of success
may be the inherent nature of the existing NLI

∗Equal contribution.

Passage/Premise/Full	text

The	first	time	my	father	and
I	ever	went	fishing	became
a	family	legend.	…	We	were
hot,	sticky,	and	mad	that	the
fish	refused	to	suck	up	our
night	crawlers	.	…	While
driving	out	we	saw	a	truck
with	a	boat	trailer	and	boat
that	was	stuck	in	the	mud.
…	my	dad	helped	pull	the
man	from	the	mud.	In	return,
this	fellow	gave	dad	some
fish	…	we	agreed	to	take	in
the	fish	as	if	we	had
caught	them.	…	As	we	got
up	to	do	the	dishes,	mom
cleared	her	throat.	"I	just
have	one	question	of	you
two	great	fishermen,	How
was	it	again	that	you	two
managed	to	not	only	clean
your	fish,	but	also	freeze
them	before	you	got
home."

Hypothesis	(NLI)

The	fishing	became	a
family	legend	because
they	make	themselves	a
fool	in	front	of	the	mother.

Question	(QA)

Why	did	fishing	become
a	family	legend?

They	make	themselves	a
fool	in	front	of	the	mother	

Answer

Summary	(Summarization)

The	father	and	son
pretended	catching	a	fish
which	was	given	to	them
making	a	fool	in	front	of
the	mother.	That	is	how
the	fishing	trip	became	a
family	legend.

Figure 1: The tasks of Question Answering and Check-
ing Factual Consistency of Text-Summaries can natu-
rally be transformed into the Natural Language Infer-
ence problem.

datasets. Specifically, most existing NLI datasets
consider one or at most a few sentences as the
premise; and hence, can be tackled successfully
by models that possess an understanding of only
local sentence-specific semantics (negation, quan-
tification, conditionals, monotonicity, etc.). On
the other hand, most downstream NLP tasks of in-
terest such as Question Answering (QA) and Text-
Summarization require reasoning over much longer
texts. While it has been posited that the capabilities
required for handling sentence-level inference are
very different from those required to perform infer-
ence on longer forms of text (Cooper et al., 1996;
Lai et al., 2017a), the effect of this on downstream



tasks has not been studied.
In order to investigate this, we need to evalu-

ate existing models – trained on sentence-level
NLI datasets – on datasets that feature NLI in-
stances with longer premises. However, current
NLI datasets do not exhibit long premises. QA
datasets (Rajpurkar et al., 2016; Lai et al., 2017b;
Khashabi et al., 2018; Sun et al., 2019; Huang et al.,
2019) on the other hand, encompass a variety of
multi-sentence semantic phenomena. We thus work
towards transforming these QA datasets into NLI
datasets with long premises. We evaluate models
trained on these transformed datasets on two down-
stream tasks - Multiple-Choice Reading Compre-
hensions (MCRC) in the QA domain and Checking
Factual Correctness of Summaries (CFCS) in the
text-summarization domain. Both of these tasks
can be reduced to an NLI form (Figure 1).

The main contributions of this paper are as fol-
lows: (1) We argue that models trained on exist-
ing NLI datasets lack the multi-sentence reasoning
capabilities that are needed for downstream tasks
such as Question Answering and Summarization.
(2) To train NLI models capable of multi-sentence
reasoning, we present and analyze three different
conversion methods to transform existing MCRC
datasets to multi-sentence NLI datasets. We vali-
date the quality of the converted datasets by show-
ing that models trained on them have performance
competitive to existing MCRC models. (3) Our
results and analysis show that due to the presence
of multi-sentence premises, models trained on the
converted NLI datsets perform better than those
trained on single-sentence NLI datasets, on both
MCRC and CFCS downstream tasks.

2 Related Work

NLI has gained significant attention due to the
availability of large scale datasets (Bowman et al.,
2015; Williams et al., 2018) that can be used to
train data-hungry deep learning models (Kapa-
nipathi et al., 2020; Wang and Jiang, 2015), in-
cluding transformer-based architectures (Devlin
et al., 2018). However, work relevant to the use
of these NLI models for downstream tasks has
been very limited and can be categorized into two
categories: (1) work focusing on using models
trained on sentence-level NLI datasets with fixed
or learned aggregation to perform a target down-
stream task (Falke et al., 2019; Trivedi et al., 2019);
and (2) work addressing the need for task-specific

NLI datasets (Kryściński et al., 2019; Demszky
et al., 2018; Welleck et al., 2019).

Recent efforts to apply models trained on
sentence-level NLI datasets on downstream NLP
tasks such as MCRC and CFCS have had lim-
ited success. Trivedi et al. (2019) use simple
rules to first cast the problem of MCRC to NLI.
and subsequently divide the long passage into
smaller sentence-level premises. They use a pre-
trained NLI model to obtain sentence-level rele-
vance scores with respect to a particular hypothesis
combined with a learned representation aggrega-
tion module to obtain the score for that hypothesis.
Falke et al. (2019) apply a similar approach for
the task of CFCS, and divide both the provided
summary as well as the source documents into
single-sentence premises and hypotheses. They
use a simple entailment score aggregation over all
sentence-level premise-hypothesis pairs to obtain
the factual correctness score for each provided sum-
mary. Both these works note that models trained
on sentence-level NLI datasets do not transfer well
to the task of MCRC and CFCS. We argue that
this divide and conquer approach is not ideal for
the problem, and highlight the need for a native
multi-sentence inference model.

To facilitate the direct use of NLI models on
downstream tasks like MCRC and CFCS, an in-
teresting alternate approach has been to re-cast
datasets from other tasks into NLI datasets. Khot
et al. (2018) use manual annotation to re-cast SciQ
(a QA dataset) to SciTail – an NLI dataset. How-
ever, Clark et al. (2018) show that an NLI model
trained on SciTail does not perform well on the
task of MCRC. Similarly, Kryściński et al. (2019)
create an automatically generated training dataset
for CFCS. Even though this data has premises con-
sisting of multiple sentences, the analysis done by
Zhang et al. (2020) finds that a model trained on
this data works well only for summaries having
high token overlap with the source. Demszky et al.
(2018) attempt to create an NLI dataset that re-
quires inter-sentence reasoning by converting sub-
sets of various QA datasets to NLI. They try two
approaches for the conversion – rule-based and neu-
ral. Their neural approach uses a trained seq2seq
BiLSTM-with-copy model (Gu et al., 2016) to con-
vert each 〈question, answer〉 pair into a hy-
pothesis sentence (the corresponding passage being
the premise). While their approach looks promis-
ing, they do not show the utility of these converted



datasets by training an NLI model on them. This
makes it unclear whether the NLI datasets gener-
ated by the conversion are useful for any down-
stream task. We posit that this direction of research
is promising and largely unexplored. Hence, in
our work, we attempt to leverage the broad spec-
trum of MCRC datasets by recasting them to NLI
datasets, and show their usefulness by performing
the downstream tasks of MCRC and CFCS.

3 NLI for Downstream Tasks

NLI is usually cast as a multi-class classification
problem, where given a premise and a hypothe-
sis, the model classifies the relation between them
as entails, contradicts, or neutral. It can also be
cast into a two-class problem, where the contra-
dicts and neutral classes are clubbed into a not-
entails class. For all our experiments and analysis,
we pose NLI as a two-class problem. We inves-
tigate the usefulness of NLI for the downstream
tasks of Multiple Choice Reading Comprehension
(MCRC) and Checking Factual Correctness of Text-
Summarization (CFCS).

MCRC can be cast as an NLI task by viewing the
given context as the premise, and the transformed
question-answer combinations as different hypothe-
ses (Trivedi et al., 2019). The multiple answer-
option setting can then be approached as: a) indi-
vidual option entailment tasks, where more than
one answer-option can be correct; or b) a multi-way
classification task by selecting the answer-option
which gets the highest entailment score from the
model, when only a single correct answer-option
exists.

CFCS can also be reduced to a two-class NLI
problem. A factually correct summary should be
entailed by the given source text – it should not
contain hallucinated facts, and it should also not
contradict facts present in the source text.

Despite being ideally suited for reduction to NLI,
both MCRC and CFCS have proved to be difficult
to solve using models trained on single-sentence
NLI datasets (Trivedi et al., 2019; Falke et al.,
2019).

3.1 The Long Premise Conjecture

Datasets for the downstream MCRC and CFCS
tasks contain significantly longer texts than the
single-sentence NLI datasets (Table 1). This shift in
the text length brings about a fundamental change

Task Dataset
Word
Count
(Avg)

Sentence
Count
(Avg)

NLI
MultiNLI 22 1.1
SNLI 14 1.0

MCRC

RACE 271 18.5
MultiRC 252 14.3
DREAM 110 13.9
CosmosQA 75 3.8

CFCS
FactCC 546 28.5
Summary Reranking 738 29.5

Table 1: The average premise length in various datasets.
The key point to notice here is the sharp increase
in premise lengths from NLI datasets to MCRC and
CFCS datasets.

Task Dataset Dataset Size

MCRC

RACE 87866
MultiRC 27243
DREAM 6116
CosmosQA 23766

CFCS
FactCC 931
Summary Reranking 1000

Table 2: The number of annotated instances in MCRC
and CFCS datasets. MCRC is an extremely resource-
rich task whereas CFCS is considerably resource-
deficient.

in the nature of the NLI problem. Performing infer-
ence over longer forms of text requires a multitude
of additional reasoning skills like coreference res-
olution, event detection, dialogue understanding,
abductive reasoning etc. (Cooper et al., 1996;
Lai et al., 2017a; Demszky et al., 2018). These
are over and above the reasoning types needed to
perform inference locally at sentence level. Thus,
models trained on sentence-level NLI datasets are
incapable of performing multi-sentence inference,
which we posit as the main cause for their low
performance on downstream tasks like CFCS and
MCRC.

In order to train models capable of performing
multi-sentence inference, we need NLI datasets
that possess longer multi-sentence premises. The
challenge, however, is to obtain such datasets. The
paucity of multi-sentence NLI datasets can be over-
come by transforming large MCRC datasets into
NLI datasets through a quality preserving transfor-
mation procedure. While the task of CFCS also



provides a similar opportunity, the sheer lack of
annotated training instances inhibits its use. Ta-
ble 2 shows the abundance of training instances in
MCRC datasets, and highlights the deficiency in
CFCS datasets. Hence, in this work, we rely on
various MCRC datasets to provide this data.

In the following section, we present three meth-
ods to reformat MCRC datasets to create multi-
sentence NLI datasets. We then evaluate models
trained on these multi-sentence NLI datasets on the
tasks of MCRC and CFCS, and contrast their per-
formance with those trained on a single-sentence
NLI dataset.

4 Reformatting MCRC to NLI

As shown in Figure 1, we can convert MCRC
datasets into two-class NLI datasets by reusing the
passage as a premise and paraphrasing the ques-
tion along with each answer option as individual
hypothesis options. The following describes the
different conversion techniques we use for this.

4.1 Rule-based Conversion

In the rule-based method of conversion, we use
the Stanford CoreNLP package (Qi et al., 2018) to
generate the dependency parse of both the question
and the answer option, followed by the application
of conversion rules proposed by Demszky et al.
(2018) to generate a hypothesis sentence. However,
due to the limited coverage of rules and errors in
the dependency parse, some of the generated hy-
potheses sound unnatural (first example in Table 3).
In order to generate more natural and diverse hy-
potheses and to get broader coverage in conversion,
we implement a neural conversion strategy.

4.2 Neural Conversion

Due to the recent success of transformer-based
text generation models, we train a BART (Lewis
et al., 2019) model to generate a grammatically
coherent hypothesis from question + answer op-
tion (word/phrase) as input. We use a sequence
of datasets as a curriculum to finetune the BART
conversion model: (1) starting with CNN/Daily
Mail summarization dataset (Hermann et al., 2015),
which makes the generated sentences coherent; (2)
followed by Google’s sentence compression dataset
(Filippova and Altun, 2013), which limits the gen-
erated sequence to a single sentence; and (3) finally
the annotated dataset provided by Demszky et al.

(2018)∗ which has around 71000 (question-answer,
hypothesis) pairs from various QA datasets. Based
on manual inspection, we find that the hypothe-
ses generated by this method indeed sound more
natural and diverse than the ones produced by the
rule-based conversion†. In some cases, however,
the generated hypotheses either discard some cru-
cial information, or contain hallucinated facts that
do not convey the exact information in the source
question-answer pair (Table 3). We thus define a
hybrid conversion strategy, combining the desir-
able aspects of the rule-based conversion and the
neural conversion strategies.

4.3 Hybrid Conversion
We design a heuristic to compose a hybrid dataset
to overcome the caveats in the neural conversion.
We use the number of words in the question-answer
concatenation as a proxy for the expected length of
the hypothesis. We target the problems of halluci-
nation and missing information in the neural con-
versions by accepting only those neural-generated
hypotheses that lie in the range of 0.8 and 1.2 times
the length of the question-answer concatenation.
We replace the rejected neural hypotheses with the
rule-based hypothesis, if rule-based conversion is
feasible; or with the question-answer concatena-
tion otherwise; as seen in Table 3. The selection
policy is driven by the need to get more natural and
coherent conversions without compromising on the
accuracy and preservation of factual information
in the question and answer option. The choice of
the specific range is purely empirical in nature. In
Section 7, we discuss in detail the effectiveness of
the heuristically combined dataset.

5 A Transferable NLI model

In order to use pretrained NLI models for the tasks
of MCRC and CFCS, we need the model to be ag-
nostic to the peculiarities of the downstream task.
This can be achieved by dividing the model archi-
tecture into two parts : (1) a transferable entailment
scorer; and (2) a weight-free comparator on top
of that scorer. Each premise-hypothesis pair is en-
coded as a single sequence pair and passed through
the transferable entailment scorer to produce an
entailment score. Depending on the problem setup,
the comparator can either be a sigmoid function
∗We refer to the annotated dataset provided by Demszky

et al. (2018) as QA2D.
†More examples of conversion results are presented in

Appendix B.



Rule-based Neural Hybrid

Q: What building were
the four captives in-
side on Tuesday?
A: CNN headquarters

The four captives inside on
Tuesday were CNN headquar-
ters.

The four captives were inside
CNN headquarters on Tues-
day.

The four captives were inside
CNN headquarters on Tues-
day.

Q: How do suburban
commuters travel to and
from the city in Copen-
hagen at present?
A: About one third of
the suburban commuters
travel by bike.

Suburban commuters travel to
about one third of the subur-
ban commuters travel by bike
and from the city in Copen-
hagen at present.

Suburban commuters travel to
and from the city in Copen-
hagen at present by bike

Suburban commuters travel to
about one third of the subur-
ban commuters travel by bike
and from the city in Copen-
hagen at present.

Table 3: Examples of Rule-based, Neural and Hybrid Conversions

(for a two-class entailment problem) as shown in
Figure 2; or a softmax function (for multiple choice
classification) as shown in Figure 3. This logical
segmentation of the model makes it easy to transfer
the model weights across different tasks. For the
entailment scorer, we use a 2-layer feed-forward
network on top of the [CLS] token of pretrained
RoBERTa ‡.

In our experiments evaluating the transferabil-
ity of the entailment model, we perform various
zero-shot evaluations. This requires interpreting
the entailment scores a bit differently for each task.
To transfer the weights from a multiple choice clas-
sification model (Figure 3) to a two class entail-
ment model (Figure 2), we copy the weights of
the transferable entailment scorer as-is, and cali-
brate a threshold using a dev set to interpret the
outputs from the sigmoid comparator for binary
classification. Since the softmax comparator does
not need any calibration, the transfer in the other
direction, i.e., from a two class entailment model
to a multiple choice classification model is more
straightforward – we simply copy the weights of
the transferable entailment scorer.

6 Datasets

For our experiments, we use 4 MCRC datasets and
their transformed NLI versions; 2 CFCS datasets;
and 1 single-sentence NLI dataset. These datasets
are qualitatively described below:

Single-sentence NLI Dataset:
MultiNLI (Williams et al., 2018) is chosen as the
single-sentence NLI dataset as it is widely used to
learn and evaluate sentence-level NLI models.

MCRC Datasets:
‡The RoBERTa model is pretrained on the masked lan-

guage modelling objective as described in Liu et al. (2019).
We obtain it from the HuggingFace library (Wolf et al., 2019).

RACE (Lai et al., 2017b) broadly covers detail
reasoning, whole-picture reasoning, passage sum-
marization, and attitude analysis.

MultiRC (Khashabi et al., 2018) mainly contains
questions which require multi-hop reasoning and
coreference resolution.

DREAM (Sun et al., 2019) is a dialogue-based
MCRC dataset, where the context is a multi-turn,
multi-party dialogue.

CosmosQA (Huang et al., 2019) focuses more on
commonsense and inductive reasoning, which re-
quire reading between the lines.§

CFCS Datasets:
FactCC (Kryściński et al., 2019) consists of tuples
of the form 〈article, sentence〉, where the
articles are taken from the CNN/DailyMail corpus,
and sentences come from the summaries for these
articles generated using several state-of-the-art ab-
stractive summarization models.
Ranking Summaries for Correctness (evalua-
tion set) (Falke et al., 2019) consists of articles
and a set of summary alternatives for each article,
where some of the provided summaries are factu-
ally inconsistent w.r.t the article.

7 Experiments and Results

In this section, we discuss the quality of the con-
verted datasets, and the ability of models trained on
these datasets to transfer knowledge to the down-
stream tasks of MCRC and CFCS. We contrast the
performance of these models with a model trained
on MultiNLI to assert the utility of the converted
datasets on long premise downstream tasks; and in
this process evaluate the long premise conjecture.

§Questions where the answer is “None of the above” are
removed from the CosmosQA dataset.



Figure 2: Two class entaiment model.
Figure 3: Multiple choice classification model.

7.1 Evaluating Conversion Quality

In order to evaluate the quality of conversion, we
compare the NLI models trained on the converted
datasets to their corresponding MCRC QA models.
For this, we finetune RoBERTa in the multiple-
choice classification setting (Figure 3) on each of
the converted datasets. In order to set the perfor-
mance bar, we also train RoBERTa Q+A concatena-
tion models¶ on each of the corresponding MCRC
datasets.

Dataset
Dataset Format

(conversion method)

QA
(Q+A)

NLI
(Neural)

NLI
(Hybrid)

RACE 84.33 82.89 83.99
DREAM 84.22 82.41 83.29
MultiRC 85.19 80.60 81.22
CosmosQA 85.58 83.34 83.89

Table 4: Test set accuracy of models trained on con-
verted forms of different MCRC datasets, formed using
the three conversion strategies described in Section 4.

Table 4 shows that models trained on the con-
verted datasets achieve performance comparable to
the corresponding Q+A models for each of the four
MCRC datasets. From this result, we can infer that
the conversion mechanism captures most of the in-
formation from the MCRC datasets. Further, the
models trained on the datasets formed by the hybrid
conversion strategy perform consistently better in
comparison to their pure neural counterparts. This

¶Q+A concatenation form follows the work of Liu et al.
(2019) and sets a very strong quality bar.

substantiates the motivation for performing the hy-
brid conversion strategy as discussed in Section
4.3, and shows that the resulting hybrid conversion
approach does produce better quality conversions
than neural or rule-based alone. Hence, we only
use the NLI dataset obtained using the hybrid con-
version technique for our analysis in the subsequent
experiments.

Having ascertained the quality of the converted
NLI datasets, we discuss the experiments per-
formed to substantiate our long premise conjecture
by performing the task of MCRC and CFCS.

7.2 Long Premise Conjecture
To validate the long premise conjecture, we per-
form the tasks of MCRC and CFCS using pre-
trained NLI models. Specifically, we analyze and
contrast the performance of NLI models trained
on the sentence-level NLI dataset - MultiNLI, with
those trained on multi-sentence NLI datasets ob-
tained by converting the four MCRC datasets using
the hybrid conversion strategy described in Sec-
tion 4. We compare the zero-shot performance of
these models on the MCRC and CFCS datasets de-
scribed in Section 6. All MCRC evaluations are
performed using the transformed NLI version of
the data. Since MultiNLI is a single-sentence NLI
dataset, the model trained on MultiNLI is evaluated
in two ways: (1) by passing the entire premise; and
(2) by segmenting the premise into individual sen-
tences and aggregating the entailment score with
respect to all the segments.

7.2.1 Evaluation on MCRC
We evaluate each of the five models on all the
MCRC datasets (in NLI form) and discuss the per-
formances here. The results of these evaluations



Model
Dataset† RACE MultiRC DREAM CosmosQA

(271) (252) (110) (75)

Random Guess 25.00 50.00 33.33 33.33

MultiNLI 44.34 60.58 67.76 38.11
MultiNLISegmented 41.01 61.71 42.28 43.28
RACEHybrid

x 77.43 83.58 73.58
MultiRCHybrid 58.02 x 67.12 43.65
DREAMHybrid 65.01 71.08 x 61.00
CosmosQAHybrid 49.27 48.80 72.46 x

† Datasets are in NLI form created using hybrid conversion method
(Section 4.3) for the hybrid models
x These numbers are not presented as they are not the result of zero-
shot evaluation. Refer Table 4 for them.

Table 5: Zero-shot evaluation accuracies achieved
by models trained on converted NLI datasets and
MultiNLI on other MCRC datasets (in NLI form) us-
ing the transferable model architecture described in
Section 5. The numbers in the parenthesis of the col-
umn headers denote the average premise lengths of the
datasets.

are presented in Table 5. We show that, in most
cases, the models trained on the converted NLI
datasets outperform the MultiNLI model on all
other ‖ MCRC datasets. We assert that this differ-
ence in performance can be attributed to the differ-
ence in premise lengths of the converted datasets
and MultiNLI.

To present further evidence in support of our
claim, we analyse the performance of the mod-
els trained on the hybrid conversion of RACE
(RACEHybrid) and MultiNLI, with varying premise
length. For the purpose of this experiment, we
combine all the MCRC dev datasets described in
Section 6 into a single large dev set, and plot the
performance with respect to the number of words
in the premise in buckets of size 50. Figure 4
shows the sharp decline in the performance of the
MultiNLI model as the length of the premise in-
creases beyond 150 words, whereas RACEHybrid is
much more robust to increases in premise length.

7.2.2 Evaluation on CFCS
We show the utility of long-premise NLI datasets
by performing the CFCS task, which can be set up
in the following two ways:

(1) CFCS as classification
In this form, given a document and a corresponding
summary sentence, the model needs to identify if
the sentence is factually correct with respect to the
document (is entailed) or not. In order to perform
the classification, we first obtain our entailment
‖Other refers to all the MCRC datasets (shown in Section

6) except the one on which the model is trained.

Figure 4: The graphs show the performance of mod-
els trained on RACEHyrbid and MultiNLI at different
premise lengths on a combined evaluation set of all the
MCRC datasets mentioned in Section 6. . The accu-
racy at length x denotes the accuracy of the models on
the examples with premise length in [x, x+50) words.

scorer by fine-tuning the multiple choice classifi-
cation model (Figure 3) on the NLI form of the
RACE dataset and use the dev set∗∗ to calibrate a
threshold†† as described in Section 5 to obtain the
two-class entailment model (Figure 2).

(2) CFCS as ranking
Given a source document and a set of five‡‡

machine generated summaries, the model is re-
quired to rank at least one factually correct sum-
mary above all incorrect summary alternatives.
We also solve the auxiliary diagnostic task of
sentence-pair ranking, where the premise docu-
ment D = {d1, d2, . . .} as well as the summary
S = {s1, s2, . . .} are divided into individual sen-
tences and the model is required to decide if di
entails sj or not.
Table 6 and Table 7 present the results for CFCS
as classification and CFCS as ranking, respectively.
As can be seen, the model performances steadily
increase as the premise lengths in the training data
increase. The model trained on RACEHybrid which
has the longest average premise length (c.f. Table
1), outperforms all the models trained on datasets
having comparatively shorter premises. Moreover,
it also outperforms the FactCC model which uses
the automatically generated long-premise training
data (Kryściński et al., 2019). Another insightful
∗∗We use the dev and test dataset provided by Kryściński

et al. (2019) for this task.
††Balanced accuracy is used to find the best threshold.
‡‡A variable number of these five machine generated sum-

maries can be factually correct. However, there is always at
least one incorrect summary in this set.



Model Balanced
Accuracy F1-score

BERT+FactCCautogen
∗ # 74.15 0.51

RoBERTa 54.76 0.30
RoBERTa+MultiNLI 51.92 0.15
RoBERTa+MultiNLISegmented 69.87 0.70
RoBERTa+CosmosQAHyrbid 55.96 0.52
RoBERTa+DREAMHyrbid 75.69 0.69
RoBERTa+MultiRCHyrbid 82.03 0.72
RoBERTa+RACEHyrbid 86.55 0.73
∗ These results are reported from Kryściński et al. (2019).
# FactCCautogen is the automatically generated training data used by
Kryściński et al. (2019).

Table 6: Balanced accuracy and macro F1 score on the test
set∗∗ for the task of CFCS posed as a classification problem.

Model
% Correct

Sentence-pair
Ranking

Summary
Ranking

ESIM + SNLI ∗ 67.60% 60.70%
BERT+FactCCautogen

† # 70.00% -
QAGS‡ 72.10% -
RoBERTa 56.03% 50.47%
RoBERTa+MultiNLI 81.76% 49.53%
RoBERTa+MultiNLISegmented 81.23% 66.36%
RoBERTa+CosmosQAHyrbid 76.41% 49.53%
RoBERTa+DREAMHyrbid 78.28% 68.22%
RoBERTa+MultiRCHyrbid 72.21% 67.23%
RoBERTa+RACEHyrbid 86.59% 75.70%
∗ † ‡ Reported from Falke et al. (2019), Kryściński et al.
(2019) and Wang et al. (2020), respectively.
# FactCCautogen is the automatically generated training data
for their model.

Table 7: Performance of various models on the CFCS
on the sentence-ranking and summary-ranking tasks.
The numbers denote the fraction of highest ranked sum-
maries which are labelled factually correct.

observation is that the model trained on MultiNLI
performs the short-premise task of sentence-pair
ranking reasonably well, but is unable to translate
this to the task of summary ranking (which has
long premises).

We also repeat the experiment of evaluating
the models on examples with varying premise
lengths by using a combination of all the CFCS
dev datasets described in Section 6. Figure 5
shows the considerably steeper decline in the per-
formance of the MultiNLI model as compared to
the RACEHybrid model as the premise length in-
creases beyond 200, similar to the trend observed
on the task of MCRC (Figure 4).

The results of evaluations on both the down-
stream tasks provide sufficient evidence supporting
our long premise conjecture. Moreover, since the

Figure 5: The graphs show the performance of mod-
els trained on RACEHyrbid and MultiNLI at different
premise lengths on a combined evaluation set of all the
CFCS datasets mentioned in Section 6. . The accuracy
at length x denotes the accuracy of the models on the
examples with premise length in [x, x+ 50) words.

models trained on the converted data outperform
all the reported results on the task of CFCS, they
can act as a rich resource for the community for
this task.

8 Conclusion

The difficulty of transferring entailment knowledge
to downstream NLP tasks can be largely attributed
to the difference in data distributions, specifically
the premise lengths. Models trained on single-
sentence NLI datasets are incapable of perform-
ing the multi-sentence inference required for the
downstream tasks.

We experiment with three conversion strategies –
rule-based, neural, and hybrid – to recast existing
MCRC datasets into NLI datasets. We discuss the
trade-off between structure and grammatical coher-
ence in the context of the conversion, and perform
experiments to identify the hybrid conversion strat-
egy as the best. Recasting MCRC datasets into NLI
using this strategy can result in broadly useful NLI
datasets. Models trained on these multi-sentence
NLI datasets perform better than models trained
on existing single-sentence NLI datasets, in the
context of the long-premise downstream tasks of
MCRC and CFCS. These datasets can be a use-
ful resource for creating truly generalizable NLI
models.
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A Reproducibility Checklist

A.1 Details of the datasets used
Table 8 gives the train/dev/test splits of the various
source datasets used in this work. We follow the
same splits after the conversion to NLI form. Since
the test datasets are not openly available for Mul-
tiRC and CosmosQA, we use the corresponding
dev sets to report our results.

Dataset
Number of examples

Train Dev Test
RACE 87866 4887 4934
MultiRC 27243 4848 -
DREAM 6116 2040 2041
CosmosQA 6116 2040 -
FactCC - 931 503
Sentence Ranking - 746 -
Summary Ranking - 2555 530

Table 8: Number of examples in each of the datasets.

Table 9 shows the proportion (absolute numbers)
of neural, rule-based and Q+A examples in the final
hybrid datasets.

A.2 Neural Conversion
We use the following training sequence to obtain
the final neural conversion model:

1. Obtain the pre-trained BART model (Lewis
et al., 2019) fine-tuned on CNN/Dailymail
from HuggingFace library.∗

2. Fine-tune the model using the hyperparame-
ters mentioned in Table 10 on google-sentence

∗https://huggingface.co/facebook/bart-large-cnn

Dataset Split Neural Rule-based Q+A

RACE
Train 314448 16808 20208
Dev 17447 912 1189
Test 18284 580 872

MultiRC
Train 23613 3630 0
Dev 4156 692 0

DREAM
Train 16708 1530 110
Dev 5531 531 58
Test 5588 495 40

CosmosQA
Train 7298 848 32
Dev 60009 10889 400

Table 9: The proportion (absolute numbers) of neural,
rule-based and Q+A examples in the hybrid datasets.

completion dataset (Filippova and Altun,
2013)†

3. Further fine-tune the model on the QA2D
datatset (Demszky et al., 2018).‡

Hyperparam Dataset/fine-tune curriculum step

Google-sentence
compression

QA2D

learning rate 1e-5 1e-5
weight decay 0.01 0.01
adam epsilon 1e-8 1e-8
max. grad. norm 1.0 1.0
warmup steps 1125 600
batch size 24 32
max epochs 3 5
max seq. len 50 50
lower-case False False

Runtime metrics

Python 3.7.4 3.7.4
GPU Type GeForce RTX 2080 Ti GeForce RTX 2080 Ti
Num. GPUs 1 1

Table 10: Hyperparameters and runtime metrics for
training the neural conversion model

A.2.1 Experiments
• The hyperparams for the models used through-

out the Section 7 are shown in Table 11. These
were obtained using minimal manual tuning.

• The threshold for CFCS as classification
experiments (Section 7.2.2 (1)) we calculated
by tuning for best balanced accuaracy
https://scikit-learn.org/stable/

modules/generated/sklearn.metrics.

balanced_accuracy_score.html.

B Conversion examples

Tables 12, 13 and 14 show examples of rule-based
and neural conversions on RACE, MultiRC and
DREAM respectively.

†https://github.com/
google-research-datasets/
sentence-compression
‡https://worksheets.

codalab.org/worksheets/
0xd4ebc52cebb84130a07cbfe81597aaf0/

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://github.com/google-research-datasets/sentence-compression
https://github.com/google-research-datasets/sentence-compression
https://github.com/google-research-datasets/sentence-compression
https://worksheets.codalab.org/worksheets/0xd4ebc52cebb84130a07cbfe81597aaf0/
https://worksheets.codalab.org/worksheets/0xd4ebc52cebb84130a07cbfe81597aaf0/
https://worksheets.codalab.org/worksheets/0xd4ebc52cebb84130a07cbfe81597aaf0/


Model
Hyperparam RoBERTa+RACE RoBERTa+DREAM RoBERTa+MultiRC RoBERTa+CosmosQA RoBERTa+MultiNLI
learning rate 1e-5 1e-5 1e-5 1e-5 1e-5
weight decay 0.001 0.1 0.001 0.1 0.01
max. grad. norm. 1.0 1.0 1.0 1.0 1.0
warmup steps 1300 500 300 500 1200
batch size 24 32 32 24 48
max epochs 4 10 4 4 4
Runtime metrics
Python 3.7.3 3.7.3 3.7.3 3.7.3 3.7.3
GPU type m40 m40 m40 m40 Titan X
Num. GPUs 1 1 1 1 1

Final dev accuracy
83.08 (Q+A)
82.02(Neural)
84.00(Hybrid)

84.36 (Q+A)
84.07 (Neural)
84.12 (Hybrid)

84.28 (Q+A)
80.16(Neural)
79.94 (Hybrid)

85.33 (Q+A)
83.65 (Neural)
83.91 (Hybrid)

93.44

Table 11: Hyperparam setting for the models trained on MCRC datasets and MultiNLI (same for Q+A, Neural,
and Hybrid from). These are common for all models in the experiments (Section 7).

Rule-based Neural
Q: How do suburban com-
muters travel to and from the
city in Copenhagen at present?
A: About one third of the suburban
commuters travel by bike.

Suburban commuters travel to about
one third of the suburban commuters
travel by bike and from the city in
Copenhagen at present.

Suburban commuters travel to and
from the city in Copenhagen at present
by bike

Q: What’s the best ti-
tle of the passage?
A: Blame! Blame! Blame!

The best title of the passage’s blame. The best title of the passage is Blame!
Blame! blame! blamage!

Q: What influence did the exper-
iment have on Alexander ?
A: He realized that slowing down his
life speed could bring him more con-
tent.

The experiment had he realized that
slowing down his life speed could
bring him more content on Alexander.

The experiment influenced Alexander
to realize that slowing down his life
speed could bring him more content.

Q: Which of the following is
TRUE about the report findings?
A: The reading scores among older
children have improved.

The reading scores among older chil-
dren have improved is TRUE.

It is true that the reading scores among
older children have improved.

Table 12: Examples of Rule-based and Neural Conversions on RACE.

Rule-based Neural
Q: Timothy likes to spend his time af-
ter school doing what and with who?
A: Timothy likes to play sports.

Timothy likes to spend his time after
school doing what and with Timothy
likes to play sports.

Timothy likes to play sports after
school.

Q: What building were the four
captives inside on Tuesday?
A: CNN headquarters

The four captives inside on Tuesday
were CNN headquarters.

The four captives were inside CNN
headquarters on Tuesday.

Q: How might Air New Zealand’s
video partner benefited from
helping to make this video?
A: Coincides with the 50th anniver-
sary of Sports Illustrated’s Swimsuit
franchise

Air New Zealand’s video partner might
benefited from helping to make this
video by coincides with the 50th an-
niversary of Sports Illustrated’s Swim-
suit franchise.

Air New Zealand’s video partner bene-
fited from helping to make this video
because it coincides with the 50th an-
niversary of Sports Illustrated’s Swim-
suit franchise.

Q: Did Alexander set out to se-
cure his northern fronts and was
he able to accomplish this goal?
A: Yes and yes.

〈 Unable to Convert 〉 Alexander set out to secure his north-
ern fronts and was he able to accom-
plish this goal.

Table 13: Examples of Rule-based and Neural Conversions on MultiRC



Rule-based Neural
Q: What is one method of treatment
the dentist does NOT mention?
A: doing a root canal

Doing a root canal is one method of
treatment the dentist NOT mentions.

One method of treatment the dentist
does NOT mention is doing a root
canal.

Q: How often does the
woman see her parents?
A: Once a week.

The woman sees her parents once a
week.

The woman sees her parents once a
week.

Q: What does the man think of
the woman’s idea at first?
A: He strongly opposes it.

The man thinks he strongly opposes it
of the woman’s idea at first.

The man strongly opposes the
woman’s idea at first.

Q: What does the man
think of the teacher?
A: She’s from Asia.

The man thinks she’s from Asia of the
teacher.

The man thinks the teacher is from
Asia.

Table 14: Examples of Rule-based and Neural Conversions on DREAM


