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Abstract

In this study, we introduce a unified neural network architecture, the Deep Equilib-
rium Density Functional Theory Hamiltonian (DEQH) model, which incorporates
Deep Equilibrium Models (DEQs) for predicting Density Functional Theory (DFT)
Hamiltonians. The DEQH model inherently captures the self-consistency nature
of Hamiltonian, a critical aspect often overlooked by traditional machine learning
approaches for Hamiltonian prediction. By employing DEQ within our model
architecture, we circumvent the need for DFT calculations during the training phase
to introduce the Hamiltonian’s self-consistency, thus addressing computational
bottlenecks associated with large or complex systems. We propose a versatile
framework that combines DEQ with off-the-shelf machine learning models for
predicting Hamiltonians. When benchmarked on the MD17 and QH9 datasets,
DEQHNet, an instantiation of the DEQH framework, has demonstrated a signifi-
cant improvement in prediction accuracy. Beyond a predictor, the DEQH model
is a Hamiltonian solver, in the sense that it uses the fixed-point solving capability
of the deep equilibrium model to iteratively solve for the Hamiltonian. Ablation
studies of DEQHNet further elucidate the network’s effectiveness, offering insights
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into the potential of DEQ-integrated networks for Hamiltonian learning. We open
source our implementation at https://github.com/Zun-Wang/DEQHNet.

1 Introduction

Density Functional Theory (DFT) is a framework that has revolutionized the study of physical,
chemical, and material systems. By providing insights into the electronic structure of matter, DFT
has become an indispensable tool for researchers in various scientific fields. Despite its widespread
adoption, the computational intensity of DFT poses a significant bottleneck, particularly when applied
to large or complex systems.

To navigate the computational challenges of DFT, machine learning (ML) has emerged as a powerful
ally, capable of predicting a myriad of molecular and material properties with reduced computational
overhead [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. However, these
ML approaches typically require bespoke models for different properties, necessitating extensive
retraining or redesign.

The Hamiltonian, a fundamental quantity in DFT, encapsulates the entire energy and dynamics
of a system. Properties of molecules and materials can be considered downstream tasks of the
Hamiltonian. Therefore, once the Hamiltonian is accurately predicted, a broad spectrum of properties
can be subsequently derived. This realization has spurred interest in using ML to predict the
Hamiltonian directly [22]. Recent efforts in this direction have seen substantial improvements by
incorporating equivariant graph neural networks, which respect the underlying symmetries of physical
laws [23, 24, 25, 26].

In the context of DFT, the Hamiltonian is not just another property—it inherently involves self-
consistent iterative processes to achieve convergence. Some studies [27, 28, 29, 30] have incorporated
this iterative nature into network training by intertwining DFT computations with the loss function
during the training of neural networks, and even leveraging unlabeled data to enhance the model’s
generalizability. Nonetheless, these methods unavoidably rely on DFT iterations to solve the general-
ized eigenvalue problem, rendering them impractical for larger systems. This is because they integrate
DFT iterations within the training process, melding DFT with the training loss. To fundamentally
address this issue, a paradigm shift in network architecture is required.

In this work, we introduce DEQH model, combines deep equilibrium models (DEQs) [31] with
off-the-shelf neural network models for the prediction of DFT Hamiltonians. DEQs, characterized
by their ability to model systems at an equilibrium state, offer a structural innovation that inherently
captures the self-consistent nature of the Hamiltonian without the need for iterative DFT calculations
during training. By embedding the equilibrium concept into the architecture, our model seeks to
directly learn the fixed-point representation of the Hamiltonian, circumventing the computational
complexity while maintaining fidelity to the principles of DFT. Our key contributions are:

• The Hamiltonian’s iterative qualities are often neglected by standard machine learning
approaches for its direct prediction. Our approach integrates DEQs with off-the-shelf ML
frameworks, leveraging node features derived from the Hamiltonian and overlap matrix to
harness these iterative aspects. Considering computational efficiency and practical applica-
bility, we adopt QHNet as the backbone of the architecture, leading to the development of
DEQHNet.

• Traditional machine learning models primarily serve as Hamiltonian predictors, and while
recent self-consistency integrating frameworks aim to refine training, they incur high com-
putational costs. DEQH model distinguishes itself by acting fundamentally as a solver,
iteratively determining the Hamiltonian with the deep equilibrium model’s fixed-point
capabilities. This intrinsic self-consistency and computational efficiency render DEQH
model a scalable approach for precise eigenstate prediction without a significant increase in
complexity.

• We have benchmarked DEQHNet against the MD17 [22] and QH9 [32] datasets, demon-
strating that the incorporation of Hamiltonian self-consistency can significantly enhance
predictive accuracy.

• We conduct an ablation study on DEQHNet, and present conjectures regarding the efficacy
of networks that incorporate DEQs for the task of learning Hamiltonians.
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This architectural leap holds the potential to unlock scalable, efficient, and accurate predictions of
DFT Hamiltonians, paving the way for rapid advancements in the understanding and design of new
materials and molecules.

2 Related works

To date, more and more studies have tackled the intricate challenge of employing machine learning
(ML) techniques to model the wavefunction directly. The first study in this domain was conducted
by Hegde and Bowen [33], who utilized kernel ridge regression to ascertain the Hamiltonian matrix.
Building upon this, Schütt et al. introduced the SchNOrb neural network architecture [22], which
assembles the Hamiltonian matrix of molecules using a block-wise approach based on atom-pair
features. Deep Hamiltonian [24] was developed for the prediction of Hamiltonian matrices of periodic
systems. PhiSNet [23] leverage the principles from a series of SE(3)-equivariant models to ensure that
predictions maintain an exact physical consistency with the orientation of the input structures. DeepH-
E3 [25] formulates the DFT Hamiltonian as a function of the structural configuration of the material.
This representation inherently upholds Euclidean symmetry, maintaining this invariance seamlessly
even when spin-orbit coupling effects are taken into account. QHNet [26] has been meticulously
constructed to eliminate 92% of the tensor product operations to enhance the computational efficiency
of the model. DeepH-2 [34] is an equivariant local-coordinate transformer which reduces SO(3)
convolutions to SO(2) for efficient Hamiltonian prediction.

Additionally, an increasing number of studies have recognized the inherent self-consistent iterative
nature of the Hamiltonian’s eigenproperties. These works integrate DFT into the training process
to enhance network performance by using this self-consistent iterative characteristic. For instance,
Ref. [27] introduced a self-consistent loss that utilizes unlabeled data through amortized DFT, assisting
the model training and enabling the exploration of a broader chemical space to improve generalization
capabilities. Ref. [30] circumvent the creation of datasets by pretraining with DFT iterations and
employing an implicit DFT loss, denoted as E(·), as the training loss function. Simultaneously, a
similar approach [28] uses a network predicting the Hamiltonian matrix as an input to DFT to obtain
energies, which are then used as optimization targets. Ref. [29] has approached the problem by
simultaneously predicting both the Hamiltonian matrix and the density matrix, introducing the direct
inversion in the iterative subspace (DIIS) error ϵ = HDS − SDH as a training signal to avoid the
costly self-consistent field calculations. Furthermore, this method can estimate the accuracy of the
predictions, making it amenable to integrate with active learning strategies.

3 Preliminary

Equivariance Consider a mapping function L : X → Y that transforms inputs from space X
to outputs within space Y . The function L is deemed G-equivariant if it consistently upholds the
symmetry induced by a group G in its mappings. Specifically, for every element g belonging to group
G, the following relation is satisfied:

L ◦DX (g) = DY(g) ◦ L, (1)
where DX and DY denote the actions of the group G on the spaces X and Y , respectively. This
condition guarantees that the function L faithfully translates the symmetry operations performed on
the inputs by G into corresponding transformations in the outputs. For additional concepts relevant to
this discussion, please refer to the Supplementary Material A.2-A.3.

DFT Hamiltonian The primary goal of most electronic structure methodologies is to accurately
solve the electronic Schrödinger equation:

ĤelΨel = EelΨel (2)
where Ĥel is the electronic Hamiltonian operator, which encapsulates the interactions and dynamics
of electrons, Ψel represents the electronic wavefunction, and Eel denotes the ground state energy.
Typically, the electronic wavefunction Ψel is approximated by an antisymmetric combination of
molecular orbitals {ψi(r)} (r denotes the electronic coordinates). Generally, each molecular orbital
ψi is formulated as a linear combination of atom-centered basis functions {ϕj(r)}:

ψi(r) =
∑
j

Cijϕj(r). (3)
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This formulation leads to the matrix equation:
HC = SCϵ (4)

in which the Hamiltonian is represented as a matrix H. The overlap matrix S, with elements
Sij =

∫
ϕi(r)ϕj(r)dr, is introduced to account for the non-orthonormality of the basis functions. To

obtain the coefficients Cij that define the wavefunction Ψel and the orbital energies ε, one must solve
a generalized eigenvalue problem. More introduction refers to the Supplementary Material A.1.

Deep equilibrium model The deep equilibrium model (DEQ), a class of innovative implicit layer
models introduced by Ref. [31], has garnered considerable attention for its remarkable performance
across various large-scale vision and natural language processing tasks. These models often rival
or even surpass the state of the art established by traditional explicit models, as demonstrated in
subsequent studies by Bai et al. [35]. The fundamental principle underpinning this methodology is
the concept of an implicit layer that converges to a fixed point through an iterative process.

A typical k-layer deep network h : X → Y is defined by a stack of layers,
z1 = x,

zi+1 = σ (Wizi + bi) , i = 1, · · · , k − 1,

h(x) =Wkzk + bk.

(5)

To allow for the continuous integration of input information throughout the depth of the model,
an input injection mechanism is incorporated across the layers, which involves adding a linear
transformation of the input, denoted as Ux. Consequently, this augmented model can be characterized
as

z1 = x,

zi+1 = σ (Wizi + Ux+ bi) , i = 1, · · · , k − 1,

h(x) =Wkzk + bk.

(6)

To model an infinitely deep network (k → ∞), it is observed that the layer values typically converge
to a fixed point, z∗ = σ (Wz∗ + Ux+ b). The inclusion of input injection Ux in the model is critical
due to the equilibrium point’s independence from any initial z1 value. Otherwise, the network’s
output would become paradoxically invariant to the input. Drawing on the insight that deep sequence
model layers often converge to a fixed point, the DEQ approach employs root-finding methods to
identify these equilibrium points, thereby optimizing the learning process. For a comprehensive
explanation of DEQ, please see the Supplementary Material A.7.

4 Methods

Our DEQ-based framework, depicted in Fig.1, is designed as a Hamiltonian solver, contrasting
with traditional predictors. It inputs the Hamiltonian, overlap matrix, and structural data to yield
the Hamiltonian output, which is then recursively processed through DEQ to find its fixed point.
Theoretically, the Hamiltonian and structural information alone could suffice, as structural data can
function as a conduit within DEQ to maintain fixed point traits, with atomic orbital representations
learned from the structure itself (see Sec. 5.3). Nevertheless, we include the overlap matrix, given its
role in DFT’s iterative equation (Eq. 4), ease of calculation, and similarity in node feature construction.

4.1 Diagonal reduction

The matrix element between atom i and j of single-electron operator Ô ∈ {Ĥ, Ŝ} represented in the
atomic orbitals {Φ} is

Tiµ,jν = ⟨Φµ
i |Ô|Φν

j ⟩, (7)
where µ := (n1, l1,m1) and ν := (n2, l2,m2) are the basis functions in the set of atomic orbitals
centered at each atom, respectively. The n, l, and m are principal, azimuthal, and magnetic quantum
numbers, respectively. Refer to OrbNet-Equi [36], for each diagonal block of T, i.e., TAA, defined
for an on-site atom pair (A,A), there exists a set of T -independent coefficients Qµν

nlm such that the
following linear transformation ψ,

hl
A :=

∑
µ,ν

Tµ,ν
AA Qµ,ν

nlm (8)
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Diagonal
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Hamiltonian
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Figure 1: Schematic of the DEQH model. A Hamiltonian solver must be engineered to concurrently
process structural information, the Hamiltonian, and the overlap matrix, and to output the subsequent
Hamiltonian iteration for DEQ convergence. Within the Hamiltonian solver, the module handling
structural information is termed injection, while the remaining components are collectively referred
to as filter.

is injective and satisfy equivariance. The existence of Q could be proved by Wigner–Eckart theorem.
For the sake of computational feasibility, a physically-motivated scheme is employed to tabulate Q
and produce order-1 equivariant embeddings hA, using on-site 3-index overlap integrals Q̃:

Q̃µ,ν
nlm := Q̃n1,l1,m1;n2,l2,m2

nlm

=

∫
r∈R3

(Φn1,l1,m1

A (r))∗Φn2,l2,m2

A (r)Φ̃n,l,m
A (r)dr

(9)

where ΦA are the atomic orbital basis, and Φ̃A are auxiliary Gaussian-type basis functions. Q̃ adheres
to equivariance constraints due to its relation to SO(3) Clebsch-Gordan coefficients Clm

l1m1;l2m2
∝∫

r∈S2 Yl1m1(r)Yl2m2(r)Y
∗
lm(r)dr. Consequently, the role of Q is to couple the indices l1 and l2

of the Hamiltonian matrix elements, resulting in features of order l. Details could be found in
Supplementary Material A.4-A.6.

4.2 Hamiltonian solver

In this paper, we have chosen to use QHNet [26] because of its versatility and adaptability. QHNet is
capable of supporting multiple molecules simultaneously. Its matrix prediction module is designed to
predict matrices of varying sizes for different molecules [32], making it a more flexible and robust
choice for our study. As illustrated in Fig. 2, we present the comprehensive architecture of DEQHNet.
To effectively incorporate the self-consistent nature of the Hamiltonian through the DEQ mechanism
within the network architecture, it is imperative that the network’s filters accept the Hamiltonian as
input. Additionally, structural information must be used as an injection to establish dependencies at
the fixed point. Consequently, this necessitates the design of a Hamiltonian solver tailored to these
requirements. This solver will enable the network to iteratively refine its predictions, ensuring that
the output Hamiltonian is self-consistent and in line with the structural information provided, thereby
harnessing the full potential of the DEQ framework in electronic structure modeling.

Injection As indicated in the boxed area of Fig. 2(a), the section highlighted represents the injection
component of DEQHNet. Within this component, the atomic number {Z} is input as the node
feature, while the relative position vectors r⃗ij are processed through Radial Basis Functions (RBF)
and spherical harmonics to construct the edge features that are invariant and equivariant, respectively.
This design ensures that the crucial chemical information, such as the type of elements and their
spatial relations, are effectively encoded into the network, allowing DEQHNet to accurately capture
the nuances of molecular structures and interactions.
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Figure 2: A schematic diagram of DEQHNet. (a) The overall architecture of DEQHNet, with the
injection mechanism encapsulated within the yellow frame and the remainder designated as the filter.
(b) TransBlock. Integrates the Hamiltonian and overlap matrix with structural information (relative
position vectors). (c) ConvNetLayer. Responsible for processing structural information. (d) Diagonal
Reduction. Transforms the Hamiltonian and overlap matrix into equivariant node features. (e)-(g)
Couple node features to form diagonal and off-diagonal blocks of the Hamiltonian.

Filter Our design draws inspiration from QHNet [26] and Equiformer [15] to handle structural
information, as well as node features constructed from the Hamiltonian and the overlap matrix. As
depicted in Fig. 2 (d), the Hamiltonian and overlap matrix are initially processed using the previously
described diagonal reduction method to construct node features. It is noteworthy that the initial value
of the Hamiltonian provided to the Hamiltonian solver is set as the identity matrix I, a deliberate
choice to preserve the Hermiticity of the Hamiltonian. These features are then normalized as xH/S(lT )

i
before being fed into the module illustrated in Fig. 2 (b). Within this module, the equivariant node
features are combined with the equivariant relative position vectors through a tensor product, resulting
in the generation of new node features,

h
H/S,(lo)
ij =

(
Linear(xH/S,(lT )

i ) + Linear(xH/S,(lT )
j )

)
⊗ Ylim(r⃗ij),

aij = Softmax
(
WLeakyReLU(h

H/S,lo=0
ij )

)
,

vij = Linear
(
h
H/S,(lo)
ij ⊗ Ylim(r⃗ij)

)
,

x̃
H/S,l
i =

∑
j∈Ni

aijvij .

(10)

As depicted in Fig. 2 (c), the filtering module within the Tensor Field Network (TFN) layer regulates
the influence of messages coming from other nodes. In processing structural features, the inner
product I lij of the l-order irreducible representation on a pair is calculated as

I lij = ⟨Linear(xli),Linear(xlj)⟩. (11)

Subsequently, the pairwise cosine similarity of the irreducible representations, along with the 0-order
irreducible expression, are fed into a MLP to compute attention scores aij . The calculation of the
message mij from node j to node i is constructed through a tensor product of the transformed relative
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position vector r̂ij and the feature vector x̂lin
jc,

mlout
ij =

∑
lf ,lin

a
(lin,lf ,lout)
ijc R

(lin,lf ,lout)
c (rij)Ylfm(r̂ij)⊗ x̂lin

jc. (12)

The output irreducible representation x̃li is then obtained by aggregating the messages ml
ij and

self-connections to form the updated feature:

x̃li = Linear

x̂li + ∑
j∈Ni

ml
ij

 . (13)

Subsequently, the node features x̃H/S,l
i constructed from the Hamiltonian and overlap matrix are

merged with the node features x̃li containing structural information. This amalgamation is employed
to construct the iteratively refined Hamiltonian for the solver. As shown in Fig. 2(e), the block is
designed to harness the tensor product between nodes to separately construct on-site features and
pairwise features. These are then channeled into the module depicted in Fig. 2(f)-(g), where the
inverse operation of the tensor product [26], i.e. the tensor expansion operation,

⊗̄l3
l1,m1;l2,m2

wl3 =

l3∑
m3=−l3

Cl3,m3

l1,m1;l2,m2
wl3

m3
, (14)

is applied to construct the Hamiltonian for the next iteration step of the solver.

,

,
′

Iteration

∗

(a)

(b)

Figure 3: (a) The network predicts the
Hamiltonian using atomic number Z and
coordinates R as inputs, outputting the
molecular Hamiltonian H . (b) The DEQH
model also includes an input for H and iter-
atively refines the Hamiltonian until reach-
ing a fixed-point solution H∗, hence we re-
fer to this block as the Hamiltonian solver.

We have developed a complete Hamiltonian solver
that seamlessly integrates with the Differentiable Equa-
tion (DEQ) method for fixed-point iterations, enforc-
ing the Hamiltonian’s inherent self-consistency. This
solver iteratively refines the Hamiltonian, mirroring
the self-consistency principle in physics. Utilizing the
DEQ framework, it dynamically adjusts parameters to
achieve convergence, yielding a Hamiltonian that pre-
cisely captures the interactions. This approach not only
improves accuracy but also aligns with the iterative
nature of electronic structure calculations.

4.3 Mathematical
formulations of Hamiltonian solver and predictor

As illustrated in Fig. 3, the DEQH model operates
as a Hamiltonian solver, learning the iterative process
H∗ = f(H∗, Z,R). In contrast, models like QHNet
function as predictors, using the formula H = f(Z,R),
where Z and R represent atomic numbers and coordi-
nates, respectively. The function f typically involves
a neural network, and H denotes the Hamiltonian. The
superscript H∗ indicates the converged Hamiltonian.

In practice, if the dataset includes overlap matrices,
these can also be incorporated into the network input,
transforming them into equivariant node features akin
to the Hamiltonian. Even if overlap matrices are not
initially present, they can be easily calculated during data preprocessing using Z and R. The overlap
matrix provides a wealth of detailed information, enhancing the model’s input. Consequently, the
equations for the DEQH and the modified Hamiltonian predictor become H∗ = f(H∗, Z,R, S) and
H = f(Z,R, S), respectively, where S is the overlap matrix.

5 Results

We evaluated the performance of DEQHNet by applying it to the MD17 [22] and QH9 [32] datasets.
We have further explored the convergence behavior of DEQHNet. Additionally, we conducted
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an ablation study to isolate and understand the specific impacts of the DEQ mechanism and the
architectural design on our method’s effectiveness. For descriptions of the metrics and results
pertaining to acceleration ratio, please consult the Supplementary Material A.8-A.9.

5.1 MD17

MD17 dataset [22] encompasses an array of molecular properties, including structures, energies,
forces, and Hamiltonians—specifically Fock or Kohn-Sham matrices—as well as overlap matrices
pertaining to molecules such as water, ethanol, malondialdehyde, and uracil. All computational
analyses were executed at the PBE/def2-SVP level of theory [37, 38], employing the ORCA electronic
structure software [39]. Table 1 shows DEQHNet’s performance on the MD17 dataset against QHNet.
Except for water, DEQHNet achieves lower mean absolute error (MAE) in Hamiltonian predictions
for three molecules, a benefit likely from more extensive training data that prevents overfitting. The
predicted Hamiltonian improves orbital coefficients and the MAE for orbital energies has risen,
which indicates that lower Hamiltonian MAE doesn’t necessarily correlate with better orbital energy
predictions.

Table 1: Comparison of the MAEs between QHNet and DEQHNet trained on MD17 dataset. The
optimal and the second best values are highlighted in bold and underlining, respectively. It should be
noted that due to the design of DeepH [24], the data used is re-labeled by OpenMX [40], which may
lead to different results compared to other models. Furthermore, considering the high training cost of
PhiSNet (ori) [23], PhiSNet (reproduce) results from the QHNet [26] article are provided for a more
balanced and comprehensive comparison.

Dataset Model H [10−6Eh] ↓ ϵ [10−6Eh] ↓ ψ [10−2] ↑

Water

SchNOrb 165.4 279.3 100.00
PhiSNet (ori) 17.59 85.53 100.00

PhiSNet (reproduce) 15.67 - 99.94
DeepH 38.51 - -
QHNet 10.79 33.76 99.99

DEQHNet 36.07 335.86 99.99

Ethanol

SchNOrb 187.4 334.4 100.00
PhiSNet (ori) 12.15 62.75 100.00

PhiSNet (reproduce) 20.09 102.04 99.81
DeepH 22.09 - -
QHNet 20.91 81.03 99.99

DEQHNet 18.73 106.94 100.00

Malonaldehyde

SchNOrb 191.1 400.6 99.00
PhiSNet (ori) 12.32 73.50 100.00

PhiSNet (reproduce) 21.31 100.60 99.89
DeepH 20.10 - -
QHNet 21.52 82.12 99.92

DEQHNet 17.97 93.79 99.90

Uracil

SchNOrb 227.8 1760 90.00
PhiSNet (ori) 10.73 84.03 100.00

PhiSNet (reproduce) 18.65 143.36 99.86
DeepH 17.27 - -
QHNet 20.12 113.44 99.89

DEQHNet 15.07 107.49 99.89

5.2 QH9

The QH9 dataset [32], crafted using PySCF [41], is split into QH9-stable and QH9-dynamic. QH9-
stable contains 130,831 Hamiltonian matrices from QM9 [42, 43], while QH9-dynamic has 100-
geometry trajectories for 999 molecules. DFT calculations employ a grid level of 3, SCF convergence
with a 10−13 tolerance, and a 3.16 × 10−5 gradient limit. The B3LYP functional and def2SVP GTO
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basis set are used, with DIIS aiding SCF convergence. QH9-dynamic’s molecular dynamics were run
at 300K in an NVE ensemble. The QH9-dynamic-100k subset features 0.12 fs step trajectories, taken
every 10th step for 1,000 steps. Table 2 displays the results of DEQHNet on the QH9 dataset, where
a significant reduction in the MAE of the Hamiltonian across both the QH9-stable and QH9-dynamic
subsets can be seen. The decrease in MAE is particularly striking for the QH9-dynamic subset, where
it nearly halves. The fidelity of the orbital coefficients, derived from the Hamiltonians predicted by
DEQHNet, reached over 99% accuracy. This is attributed to the fact that the overlap matrix and
the Hamiltonian offer significant insights into the basis set, thereby facilitating the expression of
orbital coefficients. Similar to the trend observed with the MD17 dataset, there is no direct positive
correlation between the MAE of the Hamiltonian and the orbital energies. Additional experiments
was performed to elucidate this situation, with details provided in the Supplementary Material A.10.

Table 2: Comparison of the MAEs between QHNet and DEQHNet trained on QH9 dataset. The
optimal values are highlighted in bold.

Dataset Model H [10−6Eh] ↓
ϵ [10−6Eh] ↓ ψ [10−2] ↑diagonal non-diagonal all

QH9-stable-id QHNet 111.21 73.68 76.31 798.51 95.85
DEQHNet 96.43 58.75 61.42 4383.10 99.84

QH9-stable-ood QHNet 111.72 69.88 72.11 644.17 93.68
DEQHNet 81.01 51.66 53.23 5657.07 99.80

QH9-dynamic-geo QHNet 149.62 92.88 96.85 834.47 94.45
DEQHNet 84.97 60.04 62.14 1864.06 99.92

QH9-dynamic-mol QHNet 416.99 153.68 173.92 9719.58 79.15
DEQHNet 210.76 97.18 105.80 4625.88 99.80

(a) (b)

Figure 4: (a) The variation in the number of DEQ iterations within DEQHNet as a function of training
steps. For this analysis, 50 random configurations were selected from the uracil test set, and the
iteration counts were tallied after performing inference with DEQHNet checkpoints saved during the
training process. (b) The change in Hamiltonian MAE with respect to iteration count for a randomly
chosen molecule from the QH9-dynamics-geo test set, comparing the self-consistent field (SCF)
iterations using PySCF, DEQHNet inference, and DEQHNet inference initialized with Hamiltonians
guessed by PySCF.

5.3 On the convergence of DEQHNet

We further explored DEQHNet through additional experiments. As depicted in Fig. 4(a), we inferred
50 uracil test set configurations using DEQHNet checkpoints from various training phases. Initially,
the model required many iterations to achieve convergence but soon stabilized at two or three
iterations, showing quick adaptation to the Hamiltonian’s iterative solution. In comparison, PySCF
calculations for these configurations, which are structurally similar due to their molecular dynamics
origin, consistently converged at 15 SCF iterations. Initially, DEQHNet surpassed this number but
soon settled at fewer iterations. This suggests that DEQHNet learns a distilled version of the DFT
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solver, and unlike PySCF, which considers energy for convergence, it uses Hamiltonian differences
for this purpose.

Furthermore, we randomly selected a molecule from the QH9-dynamic-geo test set for additional
analysis. In Fig. 4(b), we plotted the MAE of the Hamiltonian at each iteration during the PySCF
computation and the DEQHNet inference relative to the true Hamiltonian. DEQHNet starts with an
identity matrix as the initial Hamiltonian, leading to a high initial error, while PySCF employs MINAO
density [41]-the superposition of orbitals of each atom in isolation-for its initial guess, resulting in a
lower starting MAE. DEQHNet typically stabilizes within three iterations, unlike PySCF, which can
have initial optimization fluctuations. By initiating DEQHNet with PySCF’s starting Hamiltonian [44],
we noted improved stability in convergence. This suggests that DEQHNet’s iterative refinement can
benefit from a more accurate initial guess, enhancing the stability and reliability of convergence, an
important aspect in electronic structure computations.

5.4 Ablation studies

H (10 6Eh)  (10 6Eh) C (%)
0

20

40

60

80

100

120

140
M

AE
DEQHNet
DEQHNet w/o S
QHNet
QHNet w/ S

Figure 5: Ablation study for MAE of Hamiltonian H , orbital
energy ε, and orbital coefficients C for DEQHNet, DEQHNet
without the overlap matrix as an input, QHNet, and QHNet
with the addition of the overlap matrix as an input, respec-
tively.

To evaluate DEQHNet’s efficacy, we
conducted ablation studies with two
model variants: one excluding the
overlap matrix from DEQHNet and
another enhancing the original QH-
Net with overlap matrix features. As
depicted in Fig. 5, DEQHNet’s per-
formance dips without the overlap
matrix, while the upgraded QHNet
shows a reduction in MAE for Hamil-
tonian prediction but doesn’t surpass
DEQHNet. The results suggest that
both models can infer atomic orbital
details from molecular structures and
the Hamiltonian labels. The overlap
matrix, however, seems to expedite
the network’s acquisition of atomic
orbital information, aiding Hamil-
tonian construction. Supplying the
overlap matrix equips the network
with explicit atomic orbital data, fa-
cilitating the learning of the effec-
tive potential from structural inputs.
Without this data, the network must align with the Hamiltonian’s basis while learning atomic orbital
information through loss optimization.

6 Conclusion

In essence, the DEQH model fuses DEQs with Hamiltonian learning to obviate the need for iterative
DFT computations during the training stage, which are typically required to introduce the self-
consistent properties of the Hamiltonian. Our model architecture is meticulously designed to directly
capture the fixed-point representation of the Hamiltonian, capitalizing on its intrinsic iterative
characteristics to accurately reflect the fundamental principles of molecular systems. This innovative
strategy propels the DEQH model beyond the traditional confines of predictive machine learning
models, transforming it into an iterative solver that refines Hamiltonians. This paradigm shift
ushers in a new epoch of computational efficiency and scalability, enabling the model to adeptly
process voluminous datasets and master the complexities of elaborate systems. The DEQH model
methodology is a universal one, readily adaptable to established machine learning models for
predicting Hamiltonians. With QHNet as the backbone, our DEQHNet has exhibited enhanced
predictive accuracy in empirical evaluations on the MD17 and QH9 datasets. We have further delved
into the convergence behavior of DEQHNet to elucidate the effectiveness. Our ablation study further
reinforces the viability of merging DEQs with neural networks for efficient Hamiltonian learning.
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A Supplementary Material

A.1 Electronic structures

The Hamiltonian for a system composed of electrons and nuclei is given by:

Ĥ = − ℏ2

2me

∑
i

∇2
i +

∑
i,I

ZIe
2

|ri −RI |
+

1

2

∑
i ̸=j

e2

|ri − rj |
−
∑
I

ℏ2

2MI
∇2

I +
1

2

∑
I ̸=J

ZIZJe
2

|RI −RJ |
, (15)

where electrons are represented by lowercase subscripts, while nuclei, characterized by their charge
ZI and mass MI , are denoted by uppercase subscripts.

In the general Hamiltonian, the inverse mass of the nuclei, denoted as 1/MI , stands out as the
only term that can be considered "small." This allows to establish a perturbation series based on
this parameter, which holds broad applicability across the fully interacting electron-nuclei system.
Initially, by setting the nuclear mass to infinity, we can disregard the kinetic energy of the nuclei. This
leads us to the Born-Oppenheimer or adiabatic approximation. This approximation proves highly
effective for various applications, such as calculating nuclear vibration modes in most solids.

With the omission of nuclear kinetic energy, the fundamental Hamiltonian for the theory of electronic
structure simplifies to:

Ĥ = T̂ + V̂ext + V̂int + EII . (16)

Adopting Hartree atomic units where ℏ = me = e = 4πϵ0 = 1, we can express the kinetic energy
operator for the electrons, T̂ as:

T̂ =
∑
i

−1

2
∇2

i . (17)

The external potential acting on the electrons due to the nuclei, V̂ ext, is given by:

V̂ext =
∑
i,I

VI(|ri −RI |). (18)

V̂int encompasses the electron-electron interactions,

V̂int =
1

2

∑
i ̸=j

1

|ri − rj |
, (19)

which quantifies the electron-electron Coulomb repulsion, a fundamental aspect of electronic in-
teractions. The last term, EII , represents the classical interactions between nuclei themselves and
encompasses any additional contributions to the system’s total energy that are not directly related
to the description of electron behavior. In this model, the influence of nuclei on the electrons is
integrated into a fixed "external" potential. This formulation remains applicable even when the
straightforward nuclear Coulomb interaction is substituted with a pseudopotential, which accounts
for core electron effects, albeit these potentials are "non-local".

There are two basic independent-particle approaches that may be classified as "non-interacting" and
"Hartree-Fock" [45]. They are similar in that each assumes the electrons are uncorrelated except that
they must obey the exclusion principle. However, they are different in that Hartree-Fock includes
the electron-electron Coulomb interaction in the energy, while neglecting the correlation that is
introduced in the true wavefunction due to those interactions. In general, "non-interacting" theories
have some effective potential that incorporates some effect of the real interaction, but there is no
interaction term explicitly included in the effective Hamiltonian. This approach is often referred to
as "Hartree" or "Hartree-like," after D. R. Hartree who included an average Coulomb interaction
in a rather heuristic way. More to the point of modern calculations, all calculations following the
Kohn-Sham method involve a non-interacting Hamiltonian with an effective potential chosen to
incorporate exchange and correlation effects approximately.

According to our comprehensive definition, calculations for non-interacting electrons necessitate
solving a Schrödinger-like equation, represented as:

Ĥeffψi(r) =

[
− ℏ2

2me
∇2 + V σ

eff(r)

]
ψσ
i (r) = ϵσi ψ

σ
i (r), (20)
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where V σ
eff(r) denotes an effective potential influencing each electron of spin σ at position r. To

determine the ground state for a collection of non-interacting electrons, one must populate the lowest
eigenstates, adhering to the exclusion principle. If the Hamiltonian lacks spin-dependence, the spin
states, both up and down, are considered degenerate, effectively doubling the count for these states.
The occupation of higher energy eigenstates characterizes the excited states. The primary rationale
for employing such independent-particle equations for electrons in materials is founded on density
functional theory.

At finite temperatures, it is straightforward to utilize the general formulas of statistical mechanics
to demonstrate that the equilibrium distribution of electrons conforms to the Fermi-Dirac (or Bose-
Einstein) distribution for occupation numbers as a function of energy. The expectation value,
aggregates over many-body states Ψ, each defined by a set of occupation numbers nσi for individual
particle states with energies ϵσi . With each nσi being either 0 or 1 and the sum

∑
i n

σ
i = Nσ, it can

be shown that:
⟨Ô⟩ =

∑
i,σ

fσi ⟨ψσ
i |Ô|ψσ

i ⟩, (21)

where ⟨ψσ
i |Ô|ψσ

i ⟩ represents the expectation value of the operator Ô for the one-particle state ψσ
i ,

and fσi indicates the probability of finding an electron in state i, spin σ. Specifically, the Fermi-Dirac
distribution is given by:

fσi =
1

eβ(ϵ
σ
i −µ) + 1

, (22)

where µ represents the Fermi energy or the chemical potential of the electrons. The system’s energy,
for instance, is the weighted sum of the energies of non-interacting particles:

E(T ) = ⟨Ĥ⟩ =
∑
i,σ

fσi ϵ
σ
i . (23)

Similar to the general many-body scenario, a single-body density matrix operator can be defined:

ρ̂ =
∑
i,σ

|ψσ
i ⟩fσi ⟨ψσ

i |, (24)

where the expectation value ⟨Ô⟩ is equal to Tr(ρ̂Ô). For a specific representation involving spin and
position, ρ̂ is expressed as:

ρ(r, σ; r′, σ′) = δσ,σ′

∑
i

ψ
σ(r)∗
i fiψ

σ
i (r

′), (25)

where the density is the diagonal component:

nσ(r) = ρ(r, σ; r, σ) =
∑
i

fσi |ψσ
i (r)|2. (26)

The Hartree–Fock method is another fundamental approach in many-particle theory, which involves
constructing a properly antisymmetrized determinant wavefunction for a predefined number, N ,
of electrons. The goal is to find a single determinant that minimizes the total energy of the fully
interacting Hamiltonian. In cases where there is no spin-orbit interaction, this wavefunction, denoted
as Φ, can be expressed as a Slater determinant:

Φ =
1√
N !

∣∣∣∣∣∣∣∣
ϕ1(r1, σ1) ϕ1(r2, σ2) ϕ1(r3, σ3) · · ·
ϕ2(r1, σ1) ϕ2(r2, σ2) ϕ2(r3, σ3) · · ·
ϕ3(r1, σ1) ϕ3(r2, σ2) ϕ3(r3, σ3) · · ·

...
...

...
. . .

∣∣∣∣∣∣∣∣ , (27)

where each ϕi(rj , σj) is a single-particle "spin-orbital" comprising a spatial function, ψi(rj), and a
spin function, αi(σj). It’s important to note that ψi(rj) is spin-independent in closed-shell systems,
aligning with the "spin-restricted Hartree–Fock approximation." These spin-orbitals must not only
be linearly independent but also orthonormal to simplify the equations significantly. It can be
straightforwardly demonstrated that Φ is normalized to 1.
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Moreover, if the Hamiltonian does not depend on spin or is diagonal in the spin basis σ = | ↑⟩; | ↓⟩, the
expected value of the Hamiltonian using Hartree atomic units with the wavefunction Φ is calculated
as follows:

⟨Φ|Ĥ|Φ⟩ =
∑
i,σ

∫
drψσ∗

i (r)

(
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2
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ψσ
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1

2
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∫
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i (r)ψ
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1

|r − r′|
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− 1

2
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∫
drdr′ψσ∗

i (r)ψσ∗
j (r′)

1

|r − r′|
ψσ
j (r)ψ

σ
i (r

′).

(28)

The first term in the Hartree–Fock method consolidates the single-body expectation values by sum-
ming over the orbitals, while the third and fourth terms address the direct and exchange interactions
between electrons, involving double sums. Conventionally, we include the "self-interaction" (where
i = j), a concept deemed spurious but necessary as it cancels out in the aggregation of direct and
exchange interactions. When this self-interaction is accounted for, the cumulative effect across
all orbitals represents the electron density, and the direct term effectively simplifies to the Hartree
energy. The "exchange" term specifically interacts between electrons of the same spin, owing to
the orthogonality of spin components in orbitals for opposite spins. These interactions, crucial to
the energy computation. The essence of the Hartree–Fock approach is to minimize the total energy
subject to all constraints imposed by the wavefunction’s degrees of freedom. This minimization
process leverages orthonormality to streamline the equations and employs Lagrange multipliers to
ensure this condition is met throughout.

A.2 Real spherical harmonics functions

A real basis of spherical harmonics Ylm : S2 → R can be defined in terms of their complex analogues
Y m
l : S2 → C by setting

Ylm =


i√
2

(
Y

−|m|
l − (−1)mY

|m|
l

)
if m < 0

Y 0
l if m = 0
1√
2

(
Y

−|m|
l + (−1)mY

|m|
l

)
if m > 0

(29)

The Condon–Shortley phase convention is frequently employed to maintain uniformity and con-
sistency across the analysis. The corresponding inverse equations defining the complex spherical
harmonics Y m

l : S2 → C in terms of the real spherical harmonics Ylm : S2 → R are

Y m
l =


1√
2

(
Yl|m| − iYl,−|m|

)
if m < 0

Yl0 if m = 0
(−1)m√

w

(
Yl|m| + iYl,−|m|

)
if m > 0

(30)

It is well-established from the analytical solutions of the hydrogen atom that the eigenfunctions
corresponding to the angular component of the wave function manifest as spherical harmonics.
Intriguingly, when magnetic terms are absent, the solutions to the non-relativistic Schrödinger
equation can be rendered as real functions. This characteristic underpins the prevalent use of real-
form basis functions in electronic structure computations, as it obviates the need for complex algebra
in the software implementations. It is essential to recognize that these real-valued functions occupy
an identical functional space to that of their complex counterparts, ensuring no loss of generality or
completeness in the solutions.

A.3 Irreps representation and tensor product

Irreps representation The model’s equivariant framework harnesses the special orthogonal group
SO(3) to represent the 3D rotational symmetries that are fundamental to molecular structures. It
utilizes the irreducible representations (irreps) of SO(3), denoted by an integer l, which resonate
with spherical harmonic functions Ylm. These harmonics confer rotational attributes upon the feature
vectors, granting the model rotational equivariance and allowing for uniform geometric property
assessment.
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Tensor product In pursuit of heightened expressiveness within the model, it orchestrates interac-
tions among irrep features corresponding to different angular momenta l via the tensor product. This
operation combines two irreps with angular momenta l1 and l2 to form a new irrep characterized
by angular momentum l3, employing Clebsch-Gordan coefficients to facilitate an expansion that is
weighted by wm1,m2

:
hl3,m3 = hl1,m1 ⊗ hl2,m2

=
∑

m1,m2

wm1,m2
Cl3,m3

l1,m1,l2,m2
hl1,m1

hl2,m2
. (31)

This mathematical formulation enables the synthesis of complex features from simpler ones, capturing
the intricate interplay of angular momentum in the molecular description.

A.4 Wigner–Eckart theorem

The Wigner-Eckart theorem [46], a cornerstone of representation theory, articulates that the matrix
elements of spherical tensor operators, when projected onto a basis of angular momentum eigenstates,
can be factorized into two distinct components: a term invariant to angular momentum orientation
and a Clebsch-Gordan coefficient. It provides a bridge connecting the symmetry transformation
groups governing spatial configurations, as applied within the Schrödinger equation framework, to
the fundamental conservation principles of energy, momentum, and angular momentum.

Mathematically articulated, the Wigner-Eckart theorem posits that for a given tensor operator T (k)

and two states with angular momenta j and j′, there exists a reduced matrix element ⟨j|T (k)vertj′⟩
that is invariant with respect to the magnetic quantum numbers m, m′, and q. The theorem asserts
that for all values of these quantum numbers, the matrix elements of the tensor operator satisfy the
relation:

⟨jm|T (k)
q |j′m′⟩ = ⟨j′m′kq|jm⟩⟨j ∥ T (k) ∥ j′⟩, (32)

where T (k)
q is the q-th component of the spherical tensor operator T (k) of rank k, and |jm⟩ represents

an eigenstate of the total angular momentum operator J2 and its z-component Jz . ⟨j′m′kq|jm⟩ is
the Clebsch-Gordan coefficient, which mediates the coupling of angular momentum j′ with k to yield
j. ⟨j ∥ T (k) ∥ j′⟩ symbolizes the reduced matrix element, a scalar that encapsulates the essence of
the tensor operator independent of the magnetic quantum numbers. This theorem elegantly decouples
the geometric dependencies from the dynamic properties of the matrix elements, thereby simplifying
the computation of transition amplitudes.

A.5 Proof of the proportionality between on-site three-index overlap integrals and
Clebsch-Gordan coefficients

The order-l equivariant embeddings hlA using on-site three-index overlap integrals Q̃:

Q̃µ,ν
nlm = Q̃n1,l1,m1;n2,l2,m2

nlm

=

∫
r∈R3

(
Φn1,l1,m1

A (r)
)∗

Φn2,l2,m2

A (r)Φ̃n,l,m
A (r)dr
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∫ ∞

0

∫ 2π

0

∫ π

0
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(
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2
)
rl1Y m1∗

l1
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(
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2
)
rl2Y m2

l2
(θ, φ)

cn,l exp
(
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)
rlY m

l (θ, φ)r2 sin θdrdθdϕ
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∫ ∞
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∝
∫
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where
(
l1 l2 l
m1 m2 m

)
denotes the Wigner 3j-symbols, which are proportional to the Clebsch-

Gordan coefficients.

A.6 Auxiliary Gaussian-type basis functions

Adhering to the methodology outlined in Ref. [36], we define the auxiliary Gaussian-type basis
functions, and for the sake of brevity, we consider their form at the origin, xA = 0:

Φ̃n,l,m(r) := cn,l · exp(−γn,l · r2) rl Ylm(
r

r
) (34)

where cn,l is a normalization constant such that
∫
r
||Φ̃n,l,m

A (r))||2dr = 1 following standard conven-
tions. For numerical experiments considered in this work the scale parameters γ are chosen as (in
atomic units):

γn,l=0 := 128 · (0.5)n−1 where n ∈ {1, 2, · · · , 16} (35)

γn,l=1 := 32 · (0.25)n−1 where n ∈ {1, 2, · · · , 8} (36)

γn,l=2 := 4.0 · (0.25)n−1 where n ∈ {1, 2, 3, 4} (37)

Note that the auxiliary basis Φ̃A is independent of the atomic numbers thus the resulting hA are of
equal length for all chemical elements.

A.7 Deep equilibrium model

Here, we adopt a generalized notation for the DEQ [31] function, denoted as f(z, x). This notation
encapsulates the earlier specified function f(x, y) = σ(Wz + Ux + b), where σ represents the
activation function, and W , U , and b denote the weight matrix, input weight matrix, and bias vector,
respectively. Our objective here is to determine a stable fixed point z∗ that satisfies the equilibrium
condition z∗ = f(z∗, x).

Any deep network—irrespective of its depth or the intricacy of its connections—can be succinctly
encapsulated within the framework of a single-layer DEQ model. Remarkably, this encapsulation
does not succumb to the typical exponential surge in parameters that is often associated with universal
function approximation theorems for single-layer models. In essence, a single-layer DEQ model can
represent the functional capacity of any network without necessitating an increase in the number of
parameters. Consider a conventional deep network described by the composition of two functions,
denoted as y = g2(g1(x)). This construct can be seamlessly transmuted into a single-layer DEQ
model by amalgamating all intermediate variables derived from the computation into an extended
vector,

f(z, x) = f

([
z1
z2

]
, x

)
=

[
g1(x)
g2(z1)

]
. (38)

At an equilibrium point z∗ of this function,

z∗ = f(z∗, x) ⇐⇒ z∗1 = g1(x), z∗2 = g2(z
∗
1) = g2(g1(x)). (39)

We can concatenate all intermediate results of a computational graph into the vector z, and designate
the function f as the operator that applies the "subsequent" computation in the graph to each of these
elements. This theoretical framework unequivocally demonstrates the representational strength of a
single DEQ layer.

To elucidate the principles of implicit backpropagation tailored to DEQ models—and by extension,
to any fixed-point iterative layer—we will primarily concentrate on the DEQ model’s specific form
herein. Our objective is to compute the vector-Jacobian product (∂z

∗(·)
∂(·) )T y for a given vector y,

where (·) symbolizes any variable with respect to which we seek to differentiate the fixed point, all of
which influence the determined fixed point z∗. Differentiating both sides of the fixed-point equation
yields:

∂z∗(·)
∂(·)

=
∂f(z∗(·), x)

∂(·)
=
∂f(z∗, x)

∂z∗
∂z∗(·)
∂(·)

+
∂f(z∗, x)

∂(·)
, (40)
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where z∗(·) denotes the case where z∗ is treated as an implicit function of the differentiated quantity,
and z∗ alone signifies the equilibrium value. The second equality arises by applying the multivariate
chain rule. Rearranging terms, we arrive at an explicit expression for the Jacobian:

∂z∗(·)
∂(·)

= (I − ∂f(z∗, x)

∂z∗
)−1 ∂f(z

∗, x)

∂(·)
, (41)

where the terms on the right-hand side can be computed using conventional automatic differentiation.
To compute the vector-Jacobian product,(

∂z∗(·)
∂(·)

)T

y =

(
∂f(z∗, x)

∂(·)

)T (
I − ∂f(z∗, x)

∂z∗

)−T

y. (42)

In practice, the focal term is the solution to the linear system (abbreviated as g):

g =

(
I − ∂f(z∗, x)

∂z∗

)−T

y, (43)

which can be expressed as a fixed-point equation:

g =

(
∂f(z∗, x)

∂z∗

)T

g + y. (44)

The convergence of this equation via forward iteration hinges on the stability of the Jacobian ∂f(z∗,x)
∂z∗ ,

which also underlies the local stability of the forward iterative process.

The derivation of the vector-Jacobian product for a DEQ layer can be distilled into a two-step
procedure:

• Solve the Fixed-Point Equation g =
(

∂f(z∗,x)
∂z∗

)T

g + y. This can be done either through
direct analytical inversion or, more commonly, by employing an iterative method that neces-

sitates only the multiplications by
(

∂f(z∗,x)
∂z∗

)T

. Such multiplications can be expediently
performed using standard automatic differentiation, as they are vector-Jacobian products in
their own right.

• Calculate the final vector-Jacobian product
(

∂z∗(·)
∂(·)

)T

y =
(

∂f(z∗,x)
∂(·)

)T

g. This step also
leverages the capabilities of conventional automatic differentiation, as it involves the compu-
tation of another vector-Jacobian product.

By executing these steps, one can integrate DEQ layers into the backpropagation algorithm, thereby
harnessing the power of implicit differentiation to effectively train deep equilibrium models.

A.8 Metrics

To evaluate the accuracy and computational efficiency of the predicted Hamiltonian matrix, we adopt
a set of metrics as demonstrated in Ref. [32] to evaluate the model’s performance:

MAE of Hamiltonian matrix H The MAE against DFT-computed reference data, considering
both diagonal and off-diagonal blocks that represent intra- and inter-atomic interactions, respectively.
Given the sparsity induced by distant atom pairs in larger molecules, we separately assess the MAE
for diagonal and off-diagonal blocks along with the total MAE of the matrix.

MAE of occupied orbital energies ε The MAE for occupied orbital energies, including HOMO
and LUMO levels derived from the predicted and reference Hamiltonian matrices, is used to measure
the matrix’s predictive accuracy for these critical properties.

Cosine similarity of orbital coefficients ψ To determine the similarity between predicted and
reference electronic wavefunctions, we compute the cosine similarity of the coefficients for occupied
molecular orbitals, which are crucial for inferring chemical properties.
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Table 3: The performance of DFT calculation acceleration.

Training Dataset DFT initialization Metric QHNet DEQHNet

QH9-stable-id

1e
Optimal ratio 0.057 ± 0.004 0.060 ± 0.004

Achieved ratio ↓ 0.395 ± 0.030 0.363 ± 0.074
Error-level ratio ↑ 0.635 ± 0.039 0.683 ± 0.039

minao
Optimal ratio 0.102 ± 0.005 0.113 ± 0.006

Achieved ratio ↓ 0.706 ± 0.031 0.681 ± 0.129
Error-level ratio ↑ 0.408 ± 0.025 0.459 ± 0.031

QH9-stable-ood

1e
Optimal ratio 0.057 ± 0.004 0.060 ± 0.004

Achieved ratio ↓ 0.400 ± 0.030 0.359 ± 0.031
Error-level ratio ↑ 0.620 ± 0.037 0.678 ± 0.038

minao
Optimal ratio 0.102 ± 0.005 0.113 ± 0.006

Achieved ratio ↓ 0.715 ± 0.033 0.674 ± 0.045
Error-level ratio ↑ 0.406 ± 0.021 0.454 ± 0.029

QH9-dynamic-100k-geo

1e
Optimal ratio 0.056 ± 0.006 0.056 ± 0.006

Achieved ratio ↓ 0.392 ± 0.036 0.373 ± 0.037
Error-level ratio ↑ 0.648 ± 0.041 0.673 ± 0.037

minao
Optimal ratio 0.098 ± 0.008 0.098 ± 0.008

Achieved ratio ↓ 0.679 ± 0.041 0.646 ± 0.043
Error-level ratio ↑ 0.443 ± 0.044 0.475 ± 0.050

QH9-dynamic-100k-mol

1e
Optimal ratio 0.056 ± 0.006 0.056 ± 0.006

Achieved ratio ↓ 0.512 ± 0.138 0.426 ± 0.081
Error-level ratio ↑ 0.622 ± 0.048 0.644 ± 0.048

minao
Optimal ratio 0.098 ± 0.008 0.098 ± 0.008

Achieved ratio ↓ 0.882 ± 0.217 0.736 ± 0.128
Error-level ratio ↑ 0.406 ± 0.066 0.436 ± 0.050

Acceleration ratio Acceleration ratios, such as the achieved ratio and the error-level ratio, could be
used to evaluate how well the predicted Hamiltonian matrix speeds up DFT calculations. These ratios
compare the number of optimization steps needed when using the predicted matrix versus traditional
initial guesses, and the steps required to reach a comparable error level in the DFT SCF cycle.

A.9 Accelerate ratio of DEQHNet

The DEQHNet, after being trained on the QH9 dataset, undergoes evaluation on a meticulously
selected subset of molecules. This subset consists of 50 molecules that have been randomly chosen
from the overlapping elements of the QH9-stable and QH9-dynamic’s respective test subsets. The
intersection ensures that the evaluation is conducted on a common ground, facilitating a direct
comparison of the performance results between the stable and dynamic regimes. As illustrated in
Table 3, the study underscores the feasibility of leveraging DEQHNet as initial seeds for electronic
structure computations, which can potentially reduce the time to convergence significantly.

A.10 Explanation of the error in orbital energy

In the experiments with MD17 and QH9, we observed a decrease in the Mean Absolute Error (MAE)
of the Hamiltonian, but the MAE of the orbital energy did not show a corresponding positive trend.
To investigate this, we conducted additional experiments. We randomly selected a molecule, added
a Hermitian Gaussian noise matrix to its Hamiltonian, and solved the corresponding generalized
eigenvalue equation. As shown in Fig. 6, it can be seen that as the noise on the Hamiltonian gradually
increases, the range of error in the orbital energy becomes larger. The errors in the orbital energy of
QHNet and DEQHNet on MD17 and QH9 are all within the range shown in the figure. Only when the
MAE of the Hamiltonian is sufficiently small can it be ensured that the corresponding orbital energy
error is also small. In the comparison between QHNet and PhiSNet, we observed similar situations.
This somewhat suggests that using existing Hamiltonian error measurements cannot definitively
reflect the errors in the eigenvalues. These evidence suggests that it is a nontrivial and long-standing
challenge in the domain of Hamiltonian prediction to design a proper metric on the matrix space so
that reflects the metric of derived quantities e.g. energy, for which we will investigate in future work.
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Figure 6: The variation in the error of orbital energy with the injection of Hermitian Gaussian noise
to the Hamiltonian.

Table 4: Hyperparameters of DEQHNet for different datasets.

MD17 QH9
Water Ethanol Malonaldehyde Uracil Stable-id Stable-ood Dynamic-geo Dynamic-mol

# Train/validation/test 500/500/4,000 25,000/500/4,500 25,000/500/1,478 25,000/500/4,500 104,664/13,083/13,084 104,001/17,495/9,335 79,920/9,990/9,990 79,900/9,900/10,100
Cutoff (Å) 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0

Order of spherical harmonics 4 4 4 4 4 4 4 4
# layers 5 5 5 5 5 5 5 5

# neurons 128 128 128 128 128 128 128 128
Batch size 10 5 5 5 32 32 32 32

Learning rate (LR) 5e-4 1e-3 1e-3 1e-3 5e-4 5e-4 5e-4 5e-4
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW AdamW

EMA True True True True False False False False
EMA start epoch 40 0 0 0 NA NA NA NA

# iterations (Forward) 40 40 40 40 3 3 3 3
# iterations (Backward) 40 40 40 40 3 3 3 3

A.11 Settings of experiments

The overarching framework is implemented using PyTorch [47], PyTorch Geometric [48], e3nn [49],
and Torchdeq [50] libraries. The computation of on-site three-index overlap integrals is conducted by
Psi4 software [51], and subsequently converted to adhere to the conventions of PySCF [41]. The loss
function for training DEQHNet model is the summation of the Frobenius norm and L1 norm of the
absolute error of the matrix of Hamiltonians,

L =

√
1

N2

∑
i,j

(Hi,j − Ĥi,j)2 +
1

N2

∑
i,j

∣∣∣Hi,j − Ĥi,j

∣∣∣ , (45)

where N is the number of elements in Hamiltonian matrix. H and Ĥ denote the predicted and
ground-truth Hamiltonian respectively. AdamW optimizer [52] was adopted. DEQHNet model was
trained on single 16G Nvidia Tesla V100 GPU for MD17 dataset and single 80G Nvidia Tesla A100
GPU for QH9 dataset. It is noteworthy that the iterative process inherent in DEQ may impact training
efficiency to a certain extent. In our experiments with the MD17 dataset, we observed that the model
eventually converges after only 2-3 DEQ iterations. Therefore, to enhance training efficiency, we
set the maximum number of iterations for both the forward and backward passes of DEQ to 3 in
our experiments with the QH9 dataset. With this configuration, the training time on the QH9 data
was approximately 1.5 times that of QHNet. Furthermore, detailed settings of hyperparameters are
summarized in the Table 4.

A.12 Rethinking and Prospects

The Hamiltonian exhibits self-consistent iterative properties. Specifically, in the DFT solution process,
the information from the previously obtained Hamiltonian is used to construct the current Hamiltonian
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for the current DFT solution. This process is repeated until certain criteria meet a set threshold. We
hypothesize that introducing DEQ enables the network to learn the iterative mechanism of solving the
Hamiltonian, rather than directly learning the solution to the Hamiltonian. This shift could allow the
network to better capture inherent physical laws, thereby improving generalizability. Compared to
models without self-consistency, DEQ introduces additional orbital information to the network input.
This, coupled with the introduction of scientific priors, can expedite DFT convergence even when the
model’s output is simply used as the initial value for DFT. In contrast with methods that introduce
self-consistency (which often include DFT computations in the loss function during model training),
our method offers an architectural enhancement. The DEQH model does not directly include DFT
computations, leading to a more efficient computational process. Empirically, if the dataset and
molecular size are relatively small and the cost of DFT computations during training is acceptable,
previous methods introducing self-consistency might outperform ours (as suggested by DEQHNet’s
results on water, where DEQHNet requires more data). However, when the dataset is large enough,
or when it includes large molecules where DFT computation cost is prohibitive, the benefits of the
DEQH model become more significant.

The DEQH model is a versatile approach that can be seamlessly integrated with current machine
learning models for Hamiltonian prediction. In this paper, we opted for QHNet [26] over PhiSNet [23]
due to the current implementation of PhiSNet being restricted to single-molecule support. This
limitation stems from PhiSNet’s matrix prediction module, which is tailored to predict matrices of
fixed size for identical molecules [32]. Additionally, based on the ablation studies, we also posit
that providing the overlap matrix could enable training on data whose DFT labels are associated
with varying basis sets, whereas models lacking it may be restricted to consistent DFT-level datasets.
Furthermore, the DEQH model employs a method that is entirely orthogonal to the inclusion of
iterative DFT processes during training to achieve the self-consistency of the Hamiltonian—an
architectural innovation within the model. Incorporating DFT iterations into the existing Hamiltonian
training introduces a more explicit physical prior [? 28, 29, 30] compared to the DEQH model, which
requires a larger dataset to enable the model to learn the iterative solving process. However, for
cases involving large datasets and larger molecules, the DEQH model may be more appropriate. This
not only offers the possibility of direct integration with off-the-shelf training methodologies that
incorporate self-consistency but may also assist in enhancing aspects such as model generalizability.
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societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the data can be found publicly, and we open source our implementation at
https://github.com/Zun-Wang/DEQHNet..

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: or [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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