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ABSTRACT

Current evaluations of large language models (LLMs) often treat datasets and
models in isolation, obscuring phenomena that only emerge from their collective
interaction. Items in datasets are reduced to labeled entries, disregarding the mul-
tidimensional properties they reveal when examined across model populations.
Models, in turn, are summarized by overall scores such as accuracy, neglecting
performance patterns that can only be captured through diverse data item inter-
actions. To address this gap, this paper conceptualizes LLMs as composed of
invisible memes, understood as cultural genes in the sense of Dawkins that func-
tion as replicating units of knowledge and behavior. Building on this perspective,
the Probing Memes paradigm reconceptualizes evaluation as an entangled world
of models and data. At its core lies the perception matrix, which captures in-
teraction patterns and enables two complementary abstractions: probe properties,
extending dataset characterization beyond labels, and phemotypes, revealing fine-
grained capability structures of models. Applied to 9 datasets and 4,507 LLMs,
Probing Memes reveals hidden capability structures and reveals phenomena invis-
ible under traditional paradigms (e.g., elite models failing on problems that most
models answer easily). This paradigm not only supports more informative, ex-
tensible, and fair benchmarks but also lays the foundation for population-based
evaluation of LLMs.

1 INTRODUCTION

To advance the development and understanding of large language models (LLMs), researchers have
devoted sustained efforts to improving benchmark design (Hendrycks et al., 2020; 2021} [Srivas-
tava et al.| 2023). On one axis, increasingly challenging or cost-efficient datasets have been in-
troduced (Phan et al.| 2025} [Maia Polo et al 2024} |Schilling-Wilhelmi et al.); on another, eval-
uation metrics have been expanded beyond simple accuracy to capture richer dimensions of per-
formance (Ribeiro et al., [2020; [Bommasani et al., 2023; |Guo et al., [2025a). These efforts aim to
enhance the effectiveness of evaluation. Further improvement efforts and limitations are detailed
in Appendix [A] However, persistent limitations remain: current approaches typically treat models
and datasets in isolation, resulting in overly coarse descriptions. As a result, evaluations often lack
depth and struggle to reveal phenomena that only emerge when data and models are analyzed in a
population context (Figure[T]and [2).

On the data side, individual items are usually defined only by pre-assigned labels, without further
characterization of their latent properties or their ability to differentiate model capabilities. This
limits the explanatory power of datasets. For example, some items exhibit riskiness, where failing
them strongly correlates with broader error patterns across the dataset. On the model side, although
many new evaluation metrics have been proposed, they largely broaden the range of overall eval-
uation scores rather than revealing the deeper structure of model capabilities. Fine-grained differ-
ences are often obscured within overall scores, yet such differences typically surface only through
population-level comparisons. For instance, certain elite models that excel in overall metrics never-
theless display anomalous errors on questions that most other models solve with ease.

These phenomena highlight the inadequacy of existing evaluation paradigms. To address this gap,
this paper introduces the Probing Memes paradigm. As shown in Figure [3] the paradigm situates
evaluation within an entangled world jointly shaped by interactions between data and models. Here,
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Figure 1: Limitations of the current evaluation. Current evaluation reveals only dataset-level
accuracy across models. It neglects fine-grained attributes on both data and model sides, which are
observable only through population-level interactions and thus remain hidden under accuracy-based
evaluation.
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Figure 2: A surprising case across LLMs. Qwen3-30B-A3B, despite lower overall accuracy, suc-
ceeds on this item, whereas higher-accuracy LLMs (Gemini-2.5-Pro, GPT-5) fail.

the notion of meme is borrowe(ﬂ and metaphorically extended to the context of LLM evaluation,
denoting latent units of model capability that can be revealed through probing. From this perspective,
the abilities of LLMs are conceptualized as composed of latent memes. At the same time, each data
item is treated as a Meme Probe (MP) designed to elicit and expose particular aspects of these
capabilities. See Appendix [A.3|for information about memetics.
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Figure 3: Phemotype-based LLM probing framework. Unlike traditional accuracy-focused ap-
proaches, this framework uses probes with diverse properties. By analyzing the resulting perception
matrix, it better captures subtle LLM behaviors and reveals underlying abilities.

Interactions between probes and models yield a perception matrix. Analyzing this matrix enables
two complementary abstractions. On the model side, latent memes can be organized into phenotypic
memes (phemotypes), making structural differences in capabilities across models explicit and inter-
pretable. On the data side, the ability of an item to elicit specific memes is captured by its Meme
Probe Properties (MPPs). These properties are derived by generalizing across models and data con-
texts, revealing deeper characteristics of data and enabling more principled dataset optimization.

Crucially, both phemotypes and probe properties are designed to be extensible, allowing researchers
to flexibly define new properties or phenotypes to meet diverse evaluation needs. In summary, Prob-
ing Memes enriches evaluation along two complementary axes: on the model side, it organizes la-
tent capabilities into interpretable phemotypes; on the data side, it attributes probing power through
MPPs. This dual abstraction moves beyond conventional reliance on overall metrics, enabling eval-
uation that is more flexible, fine-grained, and extensible.

'In The Selfish Gene (Dawkins| |1976), memes are described as “tunes, ideas, catch-phrases, clothes fash-
ions, ways of making pots or of building arches,” highlighting cultural units replicated through imitation.
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The paradigm is validated through applications to 9 datasets and 4,507 LLMs. First, analyses are
conducted on 28 models from 11 institutions across MATH-500, MMLU-Redux, and SimpleQA, fo-
cusing separately on probe-level and phemotype-level perspectives. At the probe level, the analysis
illustrates how individual items in the entangled evaluation world can reveal fine-grained insights,
such as the fact that datasets like MMLU-Redux contain a large number of seemingly simple ques-
tions that are nevertheless answered incorrectly by some elite models. At the phenotype level, the
analysis reveals differences invisible to conventional evaluations, for example, models with similar
accuracy may succeed on very different types of items. Second, by applying the paradigm to the
Open LLM Leaderboard (Fourrier et al.,|2024)), which includes six datasets and 4,479 models, scal-
ability is further demonstrated. This large-scale instantiation shows that Probing Memes sustains
interpretability and flexibility at the population level. Taken together, these experiments validate
the paradigm and reveal phenomena that remain hidden under conventional evaluations. Through
both probe-level and phemotype-level analyses, such phenomena become explicit, underscoring the
necessity of moving toward population-based, entangled evaluation.

In conclusion, the contributions of this work are threefold:

* Tt introduces the Probing Memes paradigm, which places evaluation within an entangled
world shaped by data and model interactions;

* It formalizes two complementary abstractions, namely phemotypes and meme probe
properties, enabling structured and extensible characterization of models and data;

* It validates the paradigm via large-scale experiments on 9 datasets and 4,507 LLMs, reveal-
ing fine-grained phenomena and insights remaining hidden under conventional evaluations.

2 THE PROBING MEMES PARADIGM

Building on the motivation outlined in Section [I] this section introduces the Probing Memes
paradigm in detail. The exposition proceeds in three steps: first, by formalizing the paradigm as
an evaluation paradigm within the entangled world shaped by the interaction between models and
data; second, by characterizing the meme probe properties, as defined in this paradigm, that enable
the detection of latent memes; and third, by defining phemotypes as structured representations of
model capabilities.

2.1 FORMALIZATION OF THE PARADIGM

The Probing Memes paradigm can be formalized by specifying data, models, and their interaction.
Let D = {(x;, y;)}1, denote a dataset of paired data items, where each pair consists of an input ;
and a reference output y;. Let M = {1 };"21 be a collection of LLMs, each viewed as a mapping
M, : X — O. For any (z;,y;), model M; produces an output 0;; = M;(z;) € O.

A judging function g : O x Y — {0,1}, applied to the paired outputs (0,5, y;), returns 1 if o;; is
judged correct with respect to y; and 0 otherwise, yielding a perception unit

Pij = g(Mj(xi), i) (D

Collecting all results gives the perception matrix P € {0,1}"*™  where rows correspond to data
items and columns to models. Specifically, each probe ¢ is associated with a perception span P;
(i.e., the row of the perception matrix corresponding to that probe), which serves as the basis for
defining higher-level probe properties and characterizes how the probe interacts with the population
of models.

The perception matrix preserves the full structure of data-model interactions and further serves as the
basis for deriving probe properties, which characterize the role of individual data items in revealing
latent model capabilities.

2.2 MEME PROBE PROPERTIES

The degree to which a probe reveals distinct facets of model capability depends on its intrinsic
properties. These properties, termed Meme Probe Properties (MPPs), offer a structured lens for
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characterizing the probing capacity of individual data items within the joint interaction of model
and data populations. Statistically, the perception matrix can be viewed as a sample of the model
population. Treating models as random variables drawn from a broader ensemble increases their
diversity or number, enhancing the reliability of MPP estimation. In this sense, MPPs are defined
at the nexus of data and models: they represent stable characteristics of data items that become in-
creasingly precise as the model population expands. The following outlines, for each probe property,
what the probe should do, followed by its definitions and notation.

Difficulty. A probe should dynamically provide a difficulty baseline based on the performance of
the model population. Formally, the difficulty of the ith data item can be quantified as

1 m
di=1-=3 Py, 2
m = / @

where P;; denotes the perception unit of model M; on probe ¢ as defined in Equation E], and m =
| M| is the number of models in the population M. Intuitively, d; measures the proportion of models
that fail on probe ¢, so a higher value indicates greater difficulty relative to the population baseline.

Risk. A probe should reveal high-risk failure modes: failure on this probe is associated with elevated
co-failure across many other probes. Formally, the risk of probe i is defined as

1 ,
n_1§:Wﬂum, 3)
k#i

T =

where WJ(i, k) denotes the weighted Jaccard similarity between the perception spans of probes
¢ and k‘, given by WJ(i, /{1) = Z;il Ij]l{(l,pij)/\(l,pkj)}/zy;l Ij]l{(lfPij)v(lkaj)}a and the
weight I; of model M; is defined as I; = — ln(l — % S Pij).

Intuitively, WJ(%, k) measures how often two probes fail together relative to how often either one
fails, so high risk corresponds to errors that co-occur broadly across probes. The weight I; reduces
the influence of weak models while emphasizing the contribution of stronger models, ensuring that
risk is driven by informative rather than trivial failure patterns. A detailed discussion of the role of
1; and its statistical interpretation is provided in Appendix

Surprise. A probe should expose anomalies in which high-ability models fail on relatively easy
probes, or conversely, low-ability models succeed on difficult probes. Formally, for the easy-side
case, the surprise of probe i is

1
S:aSY = (— In dz) . W Z aj,
JEW;
where d; is the difficulty of probe i as defined in Equation[2} W; = {j | P;; = 0} is the set of model
indices such that M fails probe 7, and a; denotes the normalized accuracy of model M across all

probes (see Appendix [B.1.2)).

Intuitively, s;" becomes large when a probe is solved by most models but disproportionately failed

by stronger ones, while s" highlights the reverse case. The formal definition of s is provided
in Appendix Finally, the overall surprise of probe ¢ is given by

5 = %(S:asy 4 S?ard). (4)

Uniqueness. If a probe’s response pattern does not materially reduce uncertainty about the responses
to other probes, it should be flagged as highly unique. For consistency with the information-theoretic
formulation, each probe i is not only represented by its perception span (P, ..., Py, ), but also
viewed as a binary random variable P; over the model population, where P; = 1 indicates a correct
response and P; = 0 an incorrect one, and the vector entries serve as empirical samples of this
variable. The uniqueness of probe ¢ is then defined as

1
n—1

U; =

> H(P | Py), )
ki
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where H (P | P;) is the conditional entropy of random variable Py, given P;, estimated empirically
from the samples.

Intuitively, a low u; means that the model responses to probe 7 substantially reduce the uncertainty
about other probes, indicating stronger representativeness; conversely, a high u; implies that probe
1 provides little predictive information about others, indicating stronger uniqueness. The detailed
formal definition of H (P, | P;) is provided in AppendixB.1.3

To characterize the distinctiveness and commonality among probes’ perception spans, this paper
constructs a similarity graph from the perception matrix of all probes and applies Leiden community
detection (Traag et al., 2019), yielding perception span clusters (i.e., sets of probes with highly
similar perception spans).

Cluster Construction. Given two probes i and k, their similarity sim(P;, Py ) is measured by the
¢-coefficient (see Appendix [B.1.4). Here, each perception span is interpreted as a sample value of
a Bernoulli random variable, whose expectation corresponds to the average difficulty of the probe.
The ¢-coefficient thus measures the correlation between two such random variables. An undirected
weighted graph G = (V, E) is then defined, where each node corresponds to a probe, and an edge
(i, k) is included if sim(P;, P;) > 7, with the edge weight set as the similarity value; here 7 is
a threshold controlling the sparsity of the graph. Applying Leiden community detection on this
graph produces a partition C = {C,Cs, ..., Ck } of probes into clusters of highly similar difficulty
patterns. Building on this cluster structure, this paper defines the fypicality and bridge properties.

Typicality. A probe should be considered a prototype if its difficulty vector shows high average
similarity to other probes in the cluster. Formally, for probe i € Cj, let N)"™* = {k € C} | (i,k) €
E} denote the set of neighbors of ¢ within its own cluster. The typicality of probe i is defined as

: Zk}eNimm sim(Pi, Pk')
i = :
A[;ntra'

(6)

Bridge. A probe should be considered a connector if its difficulty vector shows substantive similarity
to probes in multiple distinct clusters. Formally, for probe i € Cj, let N/ = {k ¢ C; | (i, k) € E}
denote the set of neighbors of i in other clusters, and define x; = [{C, | 3k € NI N C, }| the
number of distinct clusters spanned by probe :. Then the bridge property of probe i is defined as the
product of participation and strength:

K; 1
: N E
ki +median,cy K, [NMT| f=kenN

b, = sim(P;, Py) . @)

Participation Strength

Here, participation quantifies the extent to which a probe connects to multiple clusters, normalized
by the population median, while strength captures the average cross-cluster similarity.

2.3 PHEMOTYPES OF LLMs

This subsection introduces model phemotypes, summarizing how memes are expressed across probe
properties. In a nutshell, one phenotype dimension (e.g., vigilance) is constructed by combining each
probe’s corresponse properties into a numeric score, which the model obtains whenever it answers
that probe correctly. Let d;, 7, 3;, i, by, @; € (0, 1) denote normalized probe attributes, obtained via
a generic normalization operator Norm(-). Given probe weights w, the phemotype score of model
7 is defined as

Phemotype(M;;w) = Score(w; P.j), (8)

where Score(-) denotes the weight-aggregated model score (see Appendix [C.1]for details). The five
concrete phemotypes differ only in their weighting schemes, summarized in Table

3 EXPERIMENTS AND ANALYSIS

This section introduces the derivation of probe properties and the resulting characterization of model
phemotypes, as showcased within an Entangled Evaluation World.
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Table 1: Definitions of LLM phemotypes with semantic interpretation.

Phemotype Interpretation Definition

Vigilance Resist high-risk and counter-intuitive traps; w, ' = 7; 3;
maintain correctness where many models co-fail.

Mastery Proficiency on typical yet difficult cluster-core wMas = {; d; 55"
motifs; sfhr denotes the cluster-shrink factor.

Transfer Generalization across clusters or prompts; suc- w;™ = b; d;
cess on bridging and difficult probes.

Ingenuity Flexibility on unique and difficult probes; suc- w,"® = 4, d;
cess on rare or non-canonical cases.

Astuteness Avoid elite traps; identify key cues on surprising  w#*t = §;

probes where common priors mislead.

3.1 EXPERIMENTAL SETUP

Under the proposed paradigm, this study evaluates 28 large language models from 11 providers,
where models span small to large sizes. The study analyzes three reasoning modes: default prompt-
ing (Base), chain-of-thought prompting (CoT), and internal reasoning (IR), definitions and
prompts settings can be seen in Appendix [F.I] These abbreviations are used consistently throughout
the paper, including in figures and tables. Three widely used datasets across distinct tasks (math-
ematics, general knowledge, and question answering) are selected: MATH-500
[2023), MMLU-Redux 2025), and SimpleQA 2024). Further details and

special cases appear in the AppendixE

3.2 PROBE-LEVEL ANALYSIS

Within this evaluation paradigm, this paper performs probe-level analysis on the perception span
matrix to derive well-designed probe properties for meme detection. To improve the quality of
probe properties, probes whose perception spans are all ones or all zeros in the perception span
matrix are excluded. For further details, refer to the Appendix [F.2]

MATH-500 MMLU-Redux SimpleQA

Similarity

(@) (b) (©

Figure 4: Probe similarity heatmaps across datasets.

Distributions of Probes. By calculating the perception span similarity of each pair of probes, as
shown in Figure[d] the perception span similarity distribution in different datasets is significantly di-
verse. Concretely, MATH-500 shows higher probe similarity with clear blocks and repeated bands;
by contrast, MMLU-Redux and SimpleQA show lower, more fragmented similarity with small clus-
ters. See Appendix [B.2]for more visualizations of alternative property combinations.

More than Correctness: A Unified Property Space for Probes. In the proposed paradigm, ques-
tions are treated as more than right or wrong. They are thus called probes. Each probe is represented
by an expandable attribute vector and embedded in a unified property space. Figure[5uses difficulty,
uniqueness, and surprise as three axes and plots probes from each dataset. The distribution forms a
funnel that narrows from easy to hard and shows a long tail of negative surprise at the hard end. The
low-difficulty region is more dispersed. This suggests that easy probes can still produce unexpected
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behavior in both positive and negative directions at the group level. Specifically, MMLU-Redux
contains many easy probes with high surprise, indicating that many top models fail on them.

MATH-500 MMLU-Redux SimpleQA
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Figure 5: Probe property distribution. Axes show difficulty, uniqueness, and vertical surprise.

3.3 PHEMOTYPES OF LLMs

Building on the analysis of probes, six probe properties were derived to characterize the behavioral
attributes of individual items. By combining the perception span matrix with these probe properties,
five model-level phemotypes were computed. This construction gives rise to A Memetic Landscape
for Scrutinizing LLMs.
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Figure 6: Distribution of probe-level contributions to each phemotype. This figure consists of
five sub-graphs, one for each of the phemotype weight. Each sub-graph shows the distribution of
a specific weight type across three different datasets. For each line, the x-axis represents 20 equal
intervals within the range [0, 1]. The y-axis shows the proportion of weights that fall into that
specific range. The x-coordinate of each point represents the midpoint of the interval, while the
y-coordinate represents the proportion of weights in that interval.

From Probe to Phemotypes. Based on the design introduced in Section[2.3] each probe’s proper-
ties are combined to detect memes in LLMs, thereby yielding the corresponding phemotypes. For
each phemotype, Figure[6plots the distributions of probe-level contribution weights across datasets,
which in turn characterize a model’s phemotype from its responses across probes.

Accuracy versus phemotypes. Figure[7] presents a comparison of accuracy and the five phemotype
dimensions across all models under the three reasoning paradigms. Unlike the smooth trajectory of
the accuracy curve, the phemotype curves exhibit nonparallel patterns with abrupt changes, cross-
ings, and occasional reordering. These phenomena show how accuracy can alienate distinct be-
havioral characteristics, while phemotypes recover the latent diversity of memetic traits, providing
evidence that models with the same accuracy may in fact display different behavioral patterns. It can
be seen that even with comparable accuracy, gpt-40-2024-11-20 (CoT) exhibits consistently lower
phemotypes than qwen3-235b-a22b (IR), suggesting that the high accuracy of gpt-40-2024-11-20
(CoT) relies more on routine or straightforward items, while its abilities in vigilance to traps and
cross-cluster transfer are relatively weaker. The full tabular summaries and the per-dataset results
are reported in Appendix
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Figure 7: Accuracy vs. phemotype scores. Line plots show accuracy and phemotypes for all
models under different reasoning modes, sorted by accuracy. The Phemotype Composite Score is
the average of the five phemotypes.

4 TOWARD A LARGE ENTANGLED EVALUATION WORLD AT SCALE: OPEN
LLM LEADERBOARD

This section applies the Probing Memes paradigm to the Open LLM Leaderboard. Valid results
from 4,479 models across six datasets are collected to construct a high-dimensional perception ma-
trix. This matrix supports meme-level characterization of models, revealing shared and divergent
behaviors. Details on the models and datasets appear in Appendix [D.1]
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Figure 8: Probe properties distributions across datasets of the Open LLM Leaderboard.

Landscapes of Probe Properties. By applying open evaluation results from over 4,479 models
across six datasets, the properties of each probe within each dataset are well-characterized, whose
distributions are shown in Figure[8] Overall, the distributions vary across different datasets. Among
these 4,479 models, the MATH and MUSR datasets contain a relatively high proportion of difficult
probes. On the difficulty side of MMLU-Pro, there are many questions with high surprise scores,
suggesting that a large number of models with lower performance can correctly answer these dif-
ficult probes. Moreover, the probes in IFEval, GPQA-Diamond, and BBH exhibit relatively high
uniqueness. The visualization of probe similarity can be seen in Appendix [D.2]
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Figure 9: Commonality and divergence among models revealed by phemotypes. Each model
is embedded with t-SNE from its five-dimensional phemotype representation. Model families are
defined by the shared base model, and the 20 families with the largest numbers of models are color-
coded (others are shown in gray). Nearby points indicate more similar phemotypic profiles.

Commonality and Divergence Among Models Revealed by Phemotypes. Figure [J] shows that
models in the phemotype space are not uniformly distributed but instead form several clear clus-
ters. Some datasets (e.g., MMLU-Pro) exhibit tightly packed and well-separated groups, indicating
pronounced behavioral commonality and divergence. Using each model’s reported base model on
Hugging Face, models are organized into families. Colors indicate the top-20 families by size; un-
labeled or other models are shown in gray. Notably, models from the same family tend to lie closer
together in the visualization. Overall, these results demonstrate that phemotypes can uncover both
similarities and differences among models. In other words, this paradigm can serve as a powerful
tool to reveal similarities and differences between models, thereby helping to investigate potential
relationships in their training data, base models, and training strategies.

5 LIMITATIONS

This paper proposes an innovative and effective evaluation paradigm. However, it still has limita-
tions. First, the selected datasets do not comprehensively cover task types such as coding, retrieval-
augmented generation (RAG), and agent workflows. Moreover, although the six properties help
characterize phemotypes, more revealing property designs may exist that detect a wider range of
memes. Finally, due to cost constraints, each question is queried only once per model; even with
temperature set to 0 for non-reasoning models, full reproducibility is not guaranteed.

6 CONCLUSION

This paper reveals that the evaluation of large models is essentially an entangled world between data
and models. To better explore the diverse characteristics of large models, the paper introduces the
Probing Memes paradigm. It conceptualizes LLMs, drawing on memetics, as collections of invisi-
ble memes. Through interactions between data and models, calibrated probe properties detect these
memes and infer each model’s phemotype, thereby revealing hidden behavioral traits. Evidence
comes first from 28 models tested under three reasoning modes across three datasets, revealing the
diversity of models and probes that is obscured by traditional evaluation paradigms. The frame-
work is then applied to the larger entangled world of the Open LLM Leaderboard, demonstrating
behavioral similarities and divergences among thousands of models. The Probing Memes paradigm
offers a scalable, extensible way to evaluate LLMs: calibrated probes yield interpretable phemotype
profiles, enable cross-model comparisons, and expose failure modes that accuracy alone obscures.
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A EXTENDED RELATED WORK

A.1 RESULT DRIVEN IRT ANALYSIS

Item Response Theory (IRT) (Baker & Kiml) estimates a respondent’s latent ability together with
item difficulty and discrimination from observed responses. By migrating IRT from psychology
and education, (Kipnis et al., 2024; Maia Polo et al., [2024)) fit latent model ability alongside item
difficulty and discrimination, then select high-information items and enable adaptive testing; as a
result, they produce compact subsets that preserve full-benchmark scores while substantially reduc-
ing evaluation cost. Furthermore, (Schilling-Wilhelmi et al.) employs a Bayesian two-parameter
IRT model that yields calibrated ability estimates with uncertainty, revealing how model rankings
shift when viewed through the lens of IRT. However, these attempts do not adequately capture the
heterogeneity across items or the behavioral similarities and differences across models.
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Table 2: Benchmark scores on phemotypes

Model Acc  PCS Vig Mas Tra Ing Ast
gemini-2.5-pro(IR) 84.0 756 747 741 783 69.2 81.6
grok-4-0709(IR) 83.1 750 741 738 764 68.6 82.0
gpt-5-2025-08-07(IR) 828 748 745 742 757 678 82.1
03-2025-04-16(IR) 822 739 73.6 734 750 66.6 81.2
grok-3(CoT) 76.7 67.5 676 663 682 599 754
gpt-4.1-2025-04-14(CoT) 758 646 648 628 674 555 726
kimi-k2-0711-preview(CoT) 741 649 651 634 649 577 733
gemini-2.5-flash(IR) 734 658 656 650 652 596 734
deepseek-R1(IR) 732 655 654 644 646 592 738
claude-sonnet-4-20250514(IR) 712 638 638 627 633 578 712
gemini-2.5-flash(CoT) 71.0 619 623 60.7 623 547 69.6
gpt-5-mini-2025-08-07(IR) 70.1 634 635 623 629 582 699
doubao-seed-1-6-250615(IR) 70.1 634 63.0 624 627 588 70.2
glm-4.5(1R) 693 604 594 592 598 551 68.6
deepseek-V3(CoT) 682 578 58.0 554 580 512 662
MiniMax-M1(IR) 68.1 609 60.6 599 606 559 672
claude-sonnet-4-20250514 68.0 594 600 575 598 535 664
claude-sonnet-4-20250514(CoT) 67.8 584 593 56,6 594 51.1 658
glm-4.5(CoT) 677 574 572 551 581 51.1 656
kimi-k2-0711-preview 677 578 558 56.8 562 541 66.1
doubao-seed-1-6-250615(CoT) 66.8 584 58.6 569 59.1 526 650
qwen3-235b-a22b(IR) 66.6 61.0 60.8 600 609 574 658
gpt-40-2024-11-20(CoT) 66.5 532 524 504 557 459 o616
gpt-4.1-mini-2025-04-14(CoT) 656 57.1 577 556 579 513 634
03-mini-2025-01-31(IR) 653 583 584 569 586 539 637
gpt-5-nano-2025-08-07(IR) 645 585 578 572 587 553 632
claude-3-5-sonnet-20241022(CoT) 643 517 50.8 499 528 457 594
doubao-seed-1-6-250615 628 535 537 514 551 481 594
glm-4.5-air(CoT) 61.1 516 512 487 531 471 578
doubao-seed-1-6-flash-250715(IR) 61.0 550 544 538 559 523 583
gwen3-235b-a22b(CoT) 60.8 52.1 524 498 542 47.1 56.8
MiniMax-Text-01(CoT) 60.6 49.1 479 467 503 445 558
spark-X1(IR) 60.5 543 540 532 557 510 576
glm-4.5-air(IR) 589 505 495 482 507 472 570
doubao-seed-1-6-flash-250715(CoT) 56.7 48.7 483 463 509 451 526
qwen3-30b-a3b(CoT) 560 475 468 449 495 447 514
deepseek-V3 552 434 398 427 397 43.0 520
gemini-2.5-flash 55.0 444 413 433 420 435 521
qwen3-32b(CoT) 549 46.1 459 440 489 42.1 498
gpt-4.1-nano-2025-04-14(CoT) 530 439 439 406 464 39.8 48.6
gpt-4.1-2025-04-14 50.7 376 333 362 347 36.1 47.7
claude-3-5-sonnet-20241022 495 37,5 339 36,5 336 364 469
gpt-40-2024-11-20 493 364 320 351 319 359 472
glm-4.5 49.0 362 313 348 310 377 46.1
grok-3 478 360 314 348 322 370 447
doubao-seed-1-6-flash-250715 469 39.0 367 363 389 393 439
qwen3-235b-a22b 448 347 307 332 324 36.1 409
gpt-4.1-mini-2025-04-14 442 344 308 327 304 357 422
MiniMax-Text-01 437 339 300 327 288 352 427
gqwen3-30b-a3b 392 307 273 288 28.0 332 364
qwen3-32b 369 282 243 27.0 247 309 340
glm-4.5-air 36.1 266 220 248 213 299 349
gpt-4.1-nano-2025-04-14 29.1 244 217 221 201 27.1 31.1
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A.2 CORRELATED ERRORS IN LLMS

Prior studies have documented that large language models do not fail independently: incorrect model
outputs are highly correlated across models, and often structured enough to reveal model families
and shared failure modes. (Bradley, 2024) revealed that model errors are strongly correlated, mani-
fested as high agreement on incorrect options in multiple-choice questions. He introduced a model
classification approach based on error correlations, employing z-scores and hierarchical clustering
to uncover model families. (Kim et al., [2025) conducted a study across hundreds of models and
multiple benchmarks. They found that models sharing a developer, base architecture, and compa-
rable size consistently exhibit higher agreement rates. While these studies indicate the presence of
inherent similarities among different models, they do not provide a quantitative analysis of these
attributes. Therefore, they fail to provide a mechanistic explanation of this similarity.

A.3 MEMETICS AND ITS APPLICATIONS TO LLMS

Dawkins first proposed the concept of memes (Dawkins, |1976), drawing an analogy to genes in
cultural transmission. Building on this analogy, memetics introduced memotype and phemotype,
paralleling genotype and phenotype (Grant et al., |1990; [Blackmore, 2000; Alvarez, 2005}, |[Fomin|
2019). In memetics, the memotype refers to the actual information content of a meme, while the
phemotype denotes its concrete manifestation as produced by the memotype under specific condi-
tions. Within LLM research, memetics has been applied to model ideological propagation (Farlow
et al., 2024) and to explain reasoning behaviors (Birchall). These works fail to show how different
memes shape similarities and differences across model populations.

B PROBE PROPERTIES

B.1 ADDITIONAL DISCUSSION ON MPPs

B.1.1 RISK

The weighting factor ; can be viewed as an information weight derived from the overall error rate
of model M;. Its form resembles the notion of self-information — Inp, assigning higher values
when errors are rarer and lower values when errors are common. In this weighting scheme, models
with extremely high error rates yield values close to zero, thereby diminishing their impact on the
risk estimate. This prevents low-quality models, which fail almost universally, from artificially
inflating co-failure statistics. Conversely, models that are generally accurate but occasionally fail
on specific probes receive larger weights, highlighting their role in identifying probes that induce
genuinely high-risk failure modes. Thus, weighting by I; not only incorporates an information-
theoretic perspective on model behavior but also mitigates distortions caused by extreme outlier
models.

B.1.2 SURPRISE

Normalization To ensure comparability across models with different overall ability levels, model
accuracy a; is normalized by z-score:

where £ and o are the mean and standard deviation of {a; j=1. This normalization guarantees that
the contribution of each model is measured relative to the population, and it is consistently applied
in all computations of Surprise.

Calculation of the Hard-side Surprise For the hard-side case, let
Ry ={j| P =1},

that is, R; is the set of model indices such that M} succeeds on probe . The hard-side surprise of
probe i is then defined as

har 1 z
S; d — (—ln(l—di»'m Z(l_aj)a

JER;
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where d; is the difficulty of probe 4. This formulation mirrors the easy-side case: while s;"> em-

phasizes probes that are generally easy yet unexpectedly failed by stronger models, s?‘“d emphasizes
probes that are generally difficult yet unexpectedly solved by weaker models.

B.1.3 UNIQUENESS

For each probe i, the perception span (P;q, ..., P;y,) is a binary row vector recording the responses
of m models. For the purpose of information-theoretic analysis, probe i is also viewed as a binary
random variable P; over the model population, where P; = 1 indicates a correct response and
P; = 0 an incorrect one, and the vector entries (P;1, ..., P;y,) are regarded as empirical samples of
this variable.

The uniqueness of probe ¢ is defined as

1
n—1

U; =

zn:H(Pk | Pi),

ki

where P denotes the random variable associated with probe k.

The conditional entropy term is expanded as
H(Py | P;) =Pr(P; =1)H(P | P; = 1)+ Pr(P; = 0) H(P | P, =0),
with
H(Py | Py =) = —pzlogg pe — (1 = ps)1ogo(1 = pz),  pa =Pr(BPp =1[ P =),

where probabilities are estimated empirically from the model population.

Thus, u; measures the average conditional entropy of other probes given probe ¢, capturing how
much information the responses to probe ¢ contribute about the rest of the probes.

B.1.4 ¢-COEFFICIENT

For each probe i, P; = (Pi1, Pj2,. .., Pim), where P;; € {0,1} indicates whether probe i is an-
swered incorrectly by model M;. Each P;; can be interpreted as the observed samples of a Bernoulli
random variable, whose expectation corresponds to the empirical difficulty d; of probe .

The similarity between probes ¢ and & is computed using the ¢-coefficient, defined as

o(i k) = M11M00 — M10N01 )

\/ (nl.no.n.ln.o) ’

where n,,s denotes the number of models for which P;,,, = o and Py, = 8 with o, 8 € {0, 1}. Al-
though the ¢-coefficient is formally a correlation measure between two Bernoulli random variables,
in this work, it is employed as a similarity score quantifying the extent to which two probes exhibit
consistent difficulty patterns across the model population.

B.2 EXPANDED VISUALIZATIONS

This section presents the visualization results of various property combinations across different
datasets.
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Figure 10: Probe properties distributions across datasets. Axes depict difficulty, risk, and bridge.

MATH-500 MMLU-Redux SimpleQA

Figure 11: Probe properties distributions across datasets. Axes depict difficulty, surprise, and
typicality. A typicality value of 0 indicates that the probe does not belong to any cluster during the
clustering process.
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Figure 12: Probe properties distributions across datasets. Axes depict uniqueness, risk, and
surprise.

16



Under review as a conference paper at ICLR 2026

MATH-500 MMLU-Redux SimpleQA

:ﬁ .':l° R g A
X 4 0.6 .
e~ <

u.n' = i

Figure 13: Probe properties distributions across datasets. Axes depict uniqueness, surprise, and
bridge.

MATH-500 MMLU-Redux SimpleQA
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Figure 14: Probe properties distributions across datasets. Axes depict difficulty, uniqueness, and
bridge.

C PHEMOTYPES

C.1 ADDITIONAL DISCUSSION ON PHEMOTYPES

Notation. P € {0,1}"*™ is the perception matrix, with entries P;; (probe 4, model j), where n
is the number of probes and m is the number of models. Probe raw attributes are denoted by p; € R
(e.g., risk, surprise, difficulty, typicality, bridge, uniqueness). Weights are w = (wy,...,w,)" €

n
>0
C.1.1 NORMALIZATION

Given scores {p; }1_,, define the average-tie rank

n

ki = 14+ > Hpe<p} + 5D Hpe=pi}—1]. (10)

k=1 k=1

Normalize ranks to unit interval
rki -1
frac; = — 2 ¢ (i 1—i). (11)

Here, n denotes the number of probes.
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With temperature 7 > 0 and output range [/, h|, define

frac; — 1
pi = Norm(p;) = U(r :, 2>a pi = L+ (h—1)pi, (12)
where o(x) = H%
Shorthand: ) .
Ty = Norm(p?Sk), §; = Norm/(p;"™™"™),
(L‘ — 1\]-0]:.1,1,1(p?iﬂ’icu]ty)7 i’l _ 1\Iorrn(pgypicality)7 (13)
Bi — Norm(p?ridge), ﬂz — Norm(p;miqueneSS)'
C.1.2 SCORE
For weights w > 0 with > " | w; = 1:
Score(w; P;) = Zwi P, Zwl =1. (14)
i=1 i=1

Range: Score € [0, 1].

C.1.3 CLUSTER SHRINK
Let clusters {C.} XX, partition probes; ¢; is probe i’s cluster, size |C,|.

s = (., Belo1], (15)

optionally clipped:
s3hr min{max{sihr, 0}, h}, (<h. (16)

Defaults: 5 = 0.5, [¢,h] = [0,1].

C.1.4 PHENOTYPE WEIGHTS AND SCORES

Vig _ ~ ~ Mas __ 7 7 .shr Tef 7 3 Ing  ~ 7 Ast _ ~
w, =78, wp o =tidy sy, wit =bidy, w; C=1Ud;, wpt = 5. (17

Phenotype score for model M: Score(w’; P.;).

C.2 MORE RESULTS

Figure [T3] shows the results of phemotypes compared with the accuracy for each dataset separately.
The models are sorted from high to low according to their accuracy. It can be seen that the scores of
the five phemotypes do not change synchronously with the accuracy.

Table [2] presents the phemotype benchmarks of all models across three datasets (MMLU-Redux,
MATH-500, and SimpleQA), with models sorted in descending order of accuracy. All scores are
averaged over the three datasets. PCS refers to the Phemotype Composite Score, which represents
the average of the five phemotypes, with scores scaled to 0—100 with one decimal. Column abbrevi-
ations are as follows: Acc for Accuracy, PCS for the composite, Vig for Vigilance, Mas for Mastery,
Tra for Transfer, Ing for Ingenuity, and Ast for Astuteness. The table enables side-by-side inspec-
tion of aggregate accuracy and phemotype dimensions, making it possible to identify cases where
accuracy-similar models exhibit divergent phemotype profiles.

C.2.1 PHEMOTYPE COMPOSITION ACROSS REASONING MODES

As shown in Figure [16] the three reasoning modes, produce noticeably different phemotype com-
positions. Across reasoning modes, the total capability rises from Base, through CoT, to IR. The
pies show composition, not magnitude: how each mode distributes its “effort” across five phe-
motypes. These different workflows naturally reweight the phemotype mix even when headline
accuracy moves in the same direction.
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phemotypes and accuracy rates for all models under different reasoning modes (sorted in descending

Figure 15: The scores between accuracy and phemotypes. This figure shows a line plot of the
order of accuracy for each model).
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Figure 16: Phemotype composition across reasoning modes. Each pie chart shows the relative
distribution of the five phemotype dimensions: Vigilance, Mastery, Transfer, Ingenuity, and Astute-
ness.

D MORE DETAILS OF OPEN LLM LEADERBOARD APPLICATION

D.1 DETAILS ABOUT MODELS AND DATASETS

Results from the Open LLM Leaderboard v2 (Fourrier et al. [2024) on Hugging Face were used
to assess the validity of the probing-memes paradigm. This work collects the publicly available re-
sponse data of models from the Open LLM Leaderboard on Hugging Face, and removes models with
missing records as well as items with incomplete information, ensuring that all models have com-
plete results on the same set of items. Six datasets were contained in the leaderboard: IFEval (Zhou
et all 2023), MATH (Hendrycks et al., [2021), MUSR (Sprague et al. 2023), MMLU-Pro (Wang
et al.,[2024), BBH (Suzgun et al.,2023) and GPQA (Rein et al.). The three primary GPQA subsets
(Diamond, Main and Extended) were available for all models. Therefore, GPQA-Diamond was used
as a substitute.

D.2 MORE RESULTS FROM OPEN LLM LEADERBOARD

Table 3: Benchmark scores on phemotype

Model Acc PCS Vig Mas Tra Ing  Ast
calme-3.2-instruct-78b 60.3 4777 448 469 47.1 434 562
CalmeRys-78B-Orpo-v0.1 60.0 473 445 466 468 430 558
calme-3.1-instruct-78b 59.6 46.7 4377 46.0 46.1 425 554
calme-2.4-rys-78b 59.5 465 435 458 459 420 553
FluentlyLM-Prinum 582 425 392 423 424 359 530
Homer-v1.0-Qwen2.5-72B 579 425 384 421 422 374 522
ultiima-72B 571 414 372 411 412 363 5l1.1
Gilgamesh-72B 570 429 393 428 429 377 519
shuttle-3 56.6 404 37.0 40.1 402 33.0 515
T3Q-qwen2.5-14b-v1.0-e3 562 419 38.0 425 426 369 49.7
T3Q-Qwen2.5-14B-Instruct-1M-e3 562 419 38.0 425 426 369 49.7
test-2.5-72B 56.1 414 379 416 417 355 503
Qwen?2.5-72B-Instruct-abliterated 554 40.1 362 39.6 39.7 351 498
sky-tl-coder-32b-flash 553 41.0 384 40.1 402 349 516
RYS-XLarge 553 398 365 395 39.6 334 499
calme-2.1-rys-78b 552 403 373 398 399 344 503
tempmotacilla-cinerea-0308 552 384 343 388 390 321 48.0
ultiima-72B-v1.5 549 39.1 347 387 388 342 492
Rombos-LLM-V2.5-Qwen-72b 549 399 360 394 395 352 492
li-14b-v0.4 547 385 354 381 383 309 497
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Table 3] presents the phemotype benchmarks of models the from Open LLM Leaderboard. All scores
are averaged over the six datasets. PCS refers to the Phemotype Composite Score, which represents
the average of the five phemotypes, with scores scaled to 0—100 with one decimal. Column abbrevi-
ations are as follows: Acc for Accuracy, PCS for the composite, Vig for Vigilance, Mas for Mastery,
Tra for Transfer, Ing for Ingenuity, and Ast for Astuteness.

D.3 EXTENDED VISUALIZATIONS

Figure[I7]shows the heatmaps of the perception span similarity of probes in the Open LLM Leader-
board dataset.

BBH GPQA-Diamond IFEval L0
0.8
0.6 »
(b) 5
MMLU-Pro =
04
0.2
0.0

(@ (e) ®

Figure 17: Probe similarity heatmaps across datasets. Probes are reordered by cluster to reveal
blocks; similarities are computed from each probe’s perception span.

E MODELS AND DATASETS

E.1 MODELS

The following 28 models are included in this work. OpenAl (9 models): gpt-4.1-2025-04-14,
gpt-4.1-mini-2025-04-14, gpt-4.1-nano-2025-04-14, gpt-40-2024-11-20, 03-2025-04-16, 03-mini-
2025-01-31, gpt-5-2025-08-07, gpt-5-mini-2025-08-07, gpt-5-nano-2025-08-07 (Achiam et al.
[2023} [OpenAlL [2025bza); Anthropic (2 models): claude-3-5-sonnet-20241022, claude-sonnet-4-
20250514 (Anthropicl2024;[2025)); Google (2 models): gemini-2.5-flash, gemini-2.5-pro

2025)); DeepSeek (2 models): deepseek-V3, deepseek-R1 (Liu et al.,[2024;Guo et al., 2025b);
Alibaba (3 models): qwen3-235b-a22b, qwen3-30b-a3b, qwen3-32b (Yang et al., [2025); xAI (2

models): grok-3, grok-4-0709(xAll 2025aib); MiniMax (2 models): MiniMax-Text-01, MiniMax-
M1 (Li et all, 2025}, [Chen et al., [2025); ByteDance (2 models): doubao-seed-1-6-250615, doubao-
seed-1-6-flash-250715(ByteDance, 2025aib); Zhipu AI (2 models): glm-4.5, glm-4.5-air
2025); Moonshot AI (1 model): kimi-k2-0711-preview 2025); iFlytek (1 model):
spark-X1 2025).

21



Under review as a conference paper at ICLR 2026

E.2 DATASETS

There are three datasets involved in the experiment part of this work, including MATH-500 (Light-
man et al.,[2023), MMLU-Redux (Gema et al.|[2025), and SimpleQA (Wei et al.| [2024).

MATH-500 is a 500-problem subset of MATH (Hendrycks et al.,[2021]) curated by the OpenAl team.
Its items come from high-school mathematics competitions, and many are challenging for humans.
The high difficulty increases the discriminative power, which is crucial for revealing the distinct
phemotypes of different models in the research. Another point is that all the problems in MATH-
500 can be solved with step-by-step reasoning. Therefore, it is an excellent dataset for evaluating a
model’s stepwise reasoning ability.

MMLU-Redux is a revised version of MMLU (Hendrycks et al., [2020) dataset. It comprises 5,399
choice questions spanning 57 subject areas, including fields such as mathematics, physics, chemistry,
political science, economics, law, and philosophy. Its broad subject coverage enables a comprehen-
sive assessment of general knowledge across disciplines. In addition, MMLU-Redux is composed
entirely of multiple-choice questions. This format allows for straightforward and highly accurate
evaluation of model answers.

SimpleQA is a challenging dataset comprising 4,326 commonsense question-answer pairs. A dis-
tinctive feature of this dataset is its ternary answer evaluation scheme (“Correct”, “Incorrect”, or
“Not Attempted”); for consistency, this study treated “Not Attempted” answers as “Incorrect”. Due
to its high difficulty, few models performed well in our experiments. The dataset’s broad topical cov-
erage enables a comprehensive evaluation of model capabilities across diverse domains. Moreover,
all questions are phrased precisely and unambiguously. Their high reliability is ensured through a
rigorous validation process involving multiple annotators who independently provided and cross-
verified answers. This procedure guarantees a unique gold answer for each question.

F DETAILED EXPERIMENTAL SETTINGS

F.1 REASONING MODES

Two prompting templates are used in this paper: a default prompt and a chain of thought prompt.
Models with internal reasoning (so-called reasoning models, like deepseek-R1 (Guo et al.| [2025b))
use the default template, with the internal reasoning executed by the model; several of these mod-
els allow internal reasoning to be disabled, which permits use of both templates. Models without
internal reasoning use both templates.

F.2 PROBE FILTERING

As shown in Table 4} most dataset contains a number of probes that are either answered correctly or
incorrectly by all models.

Table 4: Summary of unanimous probes and counts after filtering.

Dataset Total Probes  Unanimous (Correct)  Unanimous (Incorrect) ~Remaining Probes
MMLU-Redux 5,399 2,698 35 2,666
Math-500 500 47 0 453
SimpleQA 4,326 10 569 3,747
BBH 5,759 0 0 5,759
GPQA-Diamond 198 0 0 198
IFEval 536 0 5 536
MATH 1,297 0 27 1,297
MUSR 756 0 0 756
MMLU-Pro 12,032 0 0 12,032
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F.3 HYPERPARAMETERS

For models without internal reasoning, temperature is set to 0, top-p to 1, and max tokens to 8§192.
Internal reasoning models often output a large amount of reasoning content. For models with in-
ternal reasoning, max tokens is set to 28672, and the remaining parameters follow the providers’
defaults because these models often do not support very low temperature, settings and defaults are
recommended. Internal reasoning models from the Qwen family max tokens does not include the
number of reasoning tokens, so set max tokens to 8192 and thinking budget to 20480 (for limiting
max reasoning output).

F.4 PROMPT TEMPLATES

The boxes below present the prompts used for each dataset and reasoning mode, where “<question
text>" denotes the text of the question. These prompts follow certain conventions. For instance,
all prompts specify the required answer format, which varies across datasets. Furthermore, when
testing under the Chain-of-Thought (CoT) setting, the phrase “Please reason step by step” is included
to enable CoT reasoning, and models are instructed to output their reasoning process separately.

In terms of formatting, models are required to provide their final answers in the form “Answer:”
followed by the answer, with no further explanation permitted. In addition, the MATH-500 prompt
requires answers to be enclosed in \boxed{ } to facilitate the extraction of mathematical expressions;
the MMLU-Redux prompt requires the answer to be a single letter corresponding to the selected op-
tion; and the SimpleQA prompt imposes no additional requirements beyond the “Answer:” format.

MATH-500 CoT Prompting (CoT).

Answer the following question.

Question: ‘‘<question text>'’

Please reason step by step.

Your response must strictly follow the format below:
Reasoning Process: {Explain your reasoning step by step}
Answer: \boxed{Your final result without any explanation}

MATH-500 Default Prompting (Base) and Internal Reasoning (IR).

Answer the following question.

Question: ‘‘<question text>'’

Your response must strictly follow the format below:
Answer: \boxed{Your final result without any explanation}

MMLU-Redux CoT Prompting (CoT).

Answer the following question.

Question: ‘‘<question text>'’

Please reason step by step.

Your response must strictly follow the format below:
Reasoning Process: {Explain your reasoning step by step}
Answer: {Your final choice letter without any explanation}

MMLU-Redux Default Prompting (Base) and Internal Reasoning (IR).

Answer the following question.

Question: ‘‘<question text>'’

Your response must strictly follow the format below:
Answer: {Your final choice letter without any explanation}

SimpleQA CoT Prompting (CoT).
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Answer the following question.

Question: ‘‘<question text>'’

Please reason step by step.

Your response must strictly follow the format below:
Reasoning Process: {Explain your reasoning step by step}
Answer: {Your final answer without any explanation}

SimpleQA Default Prompting (Base) and Internal Reasoning (IR).

Answer the following question.

Question: ‘‘<question text>'’
Your response must strictly follow the format below:
Answer: {Your final answer without any explanation}

F.5 DETAILS AND METHODS OF ANSWER VERIFICATION

Several issues arose during the extraction and evaluation of model responses. These included non-
compliant output formats (despite explicit instructions), responses exceeding token limits, and model
refusals to answer sensitive questions. Tables [7] [ and [6] present the statistics for these respective
issues. The token limits are specified in Appendix

The experiment applied two rounds of verification. The first round enforced the prompt’s formatting
requirements strictly: any response that failed to comply with the required format was treated as
incorrect. The second round attempted to match and extract answers using a variety of possible
formats, which did not conform to the prompt. Therefore, a purely formatting error was always
regarded as incorrect in the first round verification, but could be viewed as correct in the second
round verification if the model’s output contained the correct answer. Responses that exceeded the
token number limits and responses in which the model refused to answer were treated as incorrect
in both verification rounds. The data presented in the experiments and analyses were obtained from
the second round of verification.

Each round of answer verification comprises two steps: answer extraction and answer evaluation.
The answer extractor extracts the model’s answer (without any explanation) from the model’s re-
sponse, while the answer evaluator compares the extracted answer with the golden answer. Differ-
ent datasets used different methods to extract and evaluate answers, and the methods are presented
below.

MATH-500. MATH-500 dataset uses Math-Verify (Kydlicek) library to extract and evaluate an-
swers. The extractor first attempts to extract the content enclosed by \boxed{} from the model
response using regular expressions. If the attempt fails, the response will be sent directly to Math-
Verify. Math-Verify is capable of extracting answers in LaTeX format as well as numeric/expression
formats from the model response. It uses the following formats to extract answers in descending
priority:

» Explicit final answer (e.g., “Final answer is 3. I hope”);

* General final answer (e.g., “final answer is 3”) and boxed expressions (e.g., \boxed{3}) at
the same priority;

* Answer with a colon (e.g., “answer: 3”);
* Answer without a colon (e.g., “answer is 37);

* Unanchored matches (e.g., “3”).

Unanchored matches carry some risk of extracting numbers/expressions that appear in the response
but are not the model’s perceived answer; however, manual per-item inspection found no such errors.
After extraction, Math-Verify normalizes the answer format and then parses it with SymPy. The
golden answer is likewise converted to SymPy, and Math-Verify judges correctness by comparing
the two SymPy expressions.

MMLU-Redux. Regular expressions are used to extract the one-letter answer in MMLU-Redux.
There are three modes in the answer extraction as follows:
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Table 5: Numbers of refusals to answer
Model MMLU-Redux  SimpleQA

qwen3-235b-a22b(IR) 6 34
spark-x1(IR) 12
MiniMax-M1(IR) 10
qwen3-30b-a3b(CoT)
qwen3-235b-a22b(CoT)
glm-4.5(CoT)
qwen3-30b-a3b
qwen3-235b-a22b
qwen3-32b(CoT)
qwen3-32b
glm-4.5-air(CoT)
glm-4.5(IR)
glm-4.5-air(IR)

glm-4.5

glm-4.5-air

others

O == WU W WA WOV WUn W
QOO — WL WL W Q00

Table 6: Numbers of responses exceeding token limit

Model MATH-500 MMLU-Redux SimpleQA

glm-4.5-air(IR) 31 506 452
glm-4.5(IR) 15 209 447
gemini-2.5-flash(CoT) 23 13 12
doubao-seed-1-6-flash-250715(CoT) 31
glm-4.5-air(CoT) 12
glm-4.5(CoT) 10
MiniMax-M1(IR) 18
gpt-4.1-mini-2025-04-14(CoT) 14
gpt-4.1-2025-04-14(CoT)
kimi-k2-0711-preview(CoT)
kimi-k2-0711-preview
grok-4-0709(IR)
doubao-seed-1-6-250615(CoT)
doubao-seed-1-6-flash-250715(IR)
gpt-4.1-nano-2025-04-14(CoT)
gemini-2.5-flash
doubao-seed-1-6-flash-250715
qwen3-30b-a3b(CoT)
deepseek-reasoner(IR)
gpt-4.1-nano-2025-04-14
deepseek-chat(CoT)
03-2025-04-16(IR)
gpt-5-2025-08-07(IR)
claude-sonnet-4-20250514(CoT)
doubao-seed-1-6-250615
qwen3-30b-a3b
doubao-seed-1-6-250615(IR)
others

—_

SO OR =R OO NDNDNAIANDOXO W
—

SO OO0 —~,OR,NONRULN

O= OO OO OWNRNDUNWND WO
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Table 7: Numbers of malformed answers

Model MATH-500 MMLU-Redux SimpleQA
doubao-seed-1-6-flash-250715(IR) 100 956 838
doubao-seed-1-6-flash-250715 19 707 912
MiniMax-M1(IR) 497 1119 21
doubao-seed-1-6-250615 5 21 693
spark-x1(IR) 88 399 16
gemini-2.5-flash(CoT) 219 220 0
gemini-2.5-flash(IR) 249 122 4
doubao-seed-1-6-flash-250715(CoT) 39 26 292
grok-3(CoT) 282 24 9
deepseek-reasoner(IR) 299 4 0
glm-4.5-air(IR) 168 84 22
grok-4-0709(IR) 234 1 0
qwen3-235b-a22b(IR) 191 6 2
glm-4.5(IR) 163 3 3
gemini-2.5-flash 152 3 0
qwen3-235b-a22b 18 97 0
doubao-seed-1-6-250615(CoT) 3 12 100
doubao-seed-1-6-250615(IR) 2 12 101
gpt-40-2024-11-20(CoT) 12 77 2
gemini-2.5-pro(IR) 61 9 0
qwen3-235b-a22b(CoT) 14 42 0
kimi-k2-0711-preview(CoT) 46 4 4
gpt-4.1-2025-04-14(CoT) 0 42 0
MiniMax-Text-01(CoT) 4 24 8
gpt-4.1-nano-2025-04-14(CoT) 5 31 0
qwen3-32b(CoT) 15 20 0
03-mini-2025-01-31(IR) 1 11 21
gqwen3-30b-a3b(CoT) 9 22 0
grok-3 2 24 2
qwen3-30b-a3b 19 2 0
deepseek-chat 12 7 0
kimi-k2-0711-preview 18 1 0
glm-4.5(CoT) 10 8 0
MiniMax-Text-01 0 14 4
gpt-5-mini-2025-08-07(IR) 0 11 5
gpt-4.1-nano-2025-04-14 9 5 0
qwen3-32b 10 2 0
gpt-4.1-mini-2025-04-14(CoT) 4 7 0
deepseek-chat(CoT) 4 6 0
claude-3-5-sonnet-20241022(CoT) 1 8 0
glm-4.5-air(CoT) 1 7 0
gpt-5-2025-08-07(IR) 0 5 1
gpt-4.1-2025-04-14 0 6 0
claude-sonnet-4-20250514(IR) 0 1 5
03-2025-04-16(IR) 0 5 0
claude-sonnet-4-20250514(CoT) 0 4 0
gpt-4.1-mini-2025-04-14 1 3 0
gpt-5-nano-2025-08-07(IR) 0 2 1
glm-4.5 1 1 0
glm-4.5-air 0 2 0
gpt-40-2024-11-20 0 0 1
others 0 0 0
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 Searching answer using “Answer”/“answer” anchor. If multiple matches occur, then take
the last match.

* Searching answer with other anchors, like “{}”” and “**”. These anchors do not mean the
letter beside them is definitely the answer. Therefore, the extractor accepts a match as an
answer only if exactly one match is found.

* Full-string match. Sometimes models give one-letter responses, with no anchors existing
in these responses. However, it is risky to extract non-anchor answers in responses. To
address this issue, the extractor applies full-string matches, matching responses like “A”,
“A.” and so forth.

After the extraction, the evaluation step only requires a simple string comparison between the ex-
tracted answer and the golden answer.

SimpleQA. In SimpleQA, the extractor only extracts the content following “Answer:” as the answer,
without any other format requirements. GPT-4.1 is employed as an LLM evaluator to evaluate the
answers of the models under test by comparing their answers with the golden answer. The prompt
for the LLM evaluator is the same as that in SimpleQA’’s official publication paper (Wei et al.,[2024).
Under this prompt, the LLM evaluator classifies the answer into three categories: Correct, Incorrect,
and Not Attempted. A response will be classified into “Not Attempted” if the model recognizes its
inability to solve the problem and refrains from providing an answer. As long as it gives an answer,
it will be classified into “Correct” or “Incorrect”. In this work, only answers classified into the
“Correct” category were regarded as correct answers, and other answers were all deemed incorrect.

G USE OF LARGE LANGUAGE MODELS

This article was written with the moderate use of LLMs as polishing tools.
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