
PERCEIVER-ACTOR:
A Multi-Task Transformer for Robotic Manipulation

Mohit Shridhar 1,⇤ Lucas Manuelli 2 Dieter Fox 1,2

1University of Washington 2NVIDIA
mshr@cs.washington.edu lmanuelli@nvidia.com fox@cs.washington.edu

peract.github.io

Abstract: Transformers have revolutionized vision and natural language process-
ing with their ability to scale with large datasets. But in robotic manipulation, data
is both limited and expensive. Can manipulation still benefit from Transformers
with the right problem formulation? We investigate this question with PERACT,
a language-conditioned behavior-cloning agent for multi-task 6-DoF manipula-
tion. PERACT encodes language goals and RGB-D voxel observations with a
Perceiver Transformer [1], and outputs discretized actions by “detecting the next
best voxel action”. Unlike frameworks that operate on 2D images, the voxelized
3D observation and action space provides a strong structural prior for efficiently
learning 6-DoF actions. With this formulation, we train a single multi-task Trans-
former for 18 RLBench tasks (with 249 variations) and 7 real-world tasks (with
18 variations) from just a few demonstrations per task. Our results show that
PERACT significantly outperforms unstructured image-to-action agents and 3D
ConvNet baselines for a wide range of tabletop tasks.

Keywords: Transformers, Language Grounding, Manipulation, Behavior Cloning

1 Introduction

Transformers [2] have become prevalent in natural language processing and computer vision. By
framing problems as sequence modeling tasks, and training on large amounts of diverse data, Trans-
formers have achieved groundbreaking results in several domains [3, 4, 5, 6]. Even in domains that
do not conventionally involve sequence modeling [7, 8], Transformers have been adopted as a gen-

eral architecture [9]. But in robotic manipulation, data is both limited and expensive. Can we still
bring the power of Transformers to 6-DoF manipulation with the right problem formulation?

Language models operate on sequences of tokens [10], and vision transformers operate on sequences
of image patches [4]. While pixel transformers [11, 1] exist, they are not as data efficient as ap-
proaches that use convolutions or patches to exploit the 2D structure of images. Thus, while Trans-
formers may be domain agnostic, they still require the right problem formulation to be data efficient.
A similar efficiency issue is apparent in behavior-cloning (BC) agents that directly map 2D images
to 6-DoF actions. Agents like Gato [9] and BC-Z [12, 13] have shown impressive multi-task ca-
pabilities, but they require several weeks or even months of data collection. In contrast, recent
works in reinforcement-learning like C2FARM [14] construct a voxelized observation and action
space to efficiently learn visual representations of 3D actions with 3D ConvNets. Similarly, in this
work, we aim to exploit the 3D structure of voxel patches for efficient 6-DoF behavior-cloning with
Transformers (analogous to how vision transformers [4] exploit the 2D structure of image patches).

To this end, we present PERACT (short for PERCEIVER-ACTOR), a language-conditioned BC agent
that can learn to imitate a wide variety of 6-DoF manipulation tasks with just a few demonstrations
per task. PERACT encodes a sequence of RGB-D voxel patches and predicts discretized translations,
rotations, and gripper actions that are executed with a motion-planner in an observe-act loop. PER-
ACT is essentially a classifier trained with supervised learning to detect actions akin to prior work
like CLIPort [16, 17], except our observations and actions are represented with 3D voxels instead of
2D image pixels. Voxel grids are less prevalent than images in end-to-end BC approaches often due

⇤Work done partly while the author was a part-time intern at NVIDIA.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

peract.github.io

“open the middle drawer”

“screw in the gray lightbulb” “turn the right tap”

“slide the block to pink target” “put the moon in the shape sorter” “place the wine bottle on the
middle of the rack”

“stack 2 purple blocks”

“sweep dirt
to the short dustpan”

“put the tomatoes
in the top bin”

“put the tape
in the top drawer”

“hit the green ball
with the stick”

“place the blue whiteboard
marker in the mug”

“sweep the beans into
the gray dustpan”

“use the stick to drag
the cube onto the rose target”

“take the steak
o! the grill”

(a) (b) (c) (d) (e)

(f)

(k) (l) (m) (n) (o)

(g) (h) (i) (j)

Figure 1. Language-Conditioned Manipulation Tasks: PERACT is a language-conditioned multi-task agent capable of imitating a wide
range of 6-DoF manipulation tasks. We conduct experiments on 18 simulated tasks in RLBench [15] (a-j; only 10 shown), with several pose
and semantic variations. We also demonstrate our approach with a Franka Panda on 7 real-world tasks (k-o; only 5 shown) with a multi-task
agent trained with just 53 demonstrations. See the supplementary video for simulated and real-world rollouts.

to scaling issues with high-dimensional inputs. But in PERACT, we use a Perceiver2 Transformer [1]
to encode very high-dimensional input of up to 1 million voxels with only a small set of latent vec-
tors. This voxel-based formulation provides a strong structural prior with several benefits: a natural
method for fusing multi-view observations, learning robust action-centric3 representations [18, 19],
and enabling data augmentation in 6-DoF – all of which help learn generalizable skills by focusing
on diverse rather than narrow multi-task data.

To study the effectiveness of this formulation, we conduct large-scale experiments in the RL-
Bench [15] environment. We train a single multi-task agent on 18 diverse tasks with 249 variations
that involve a range of prehensile and non-prehensile behaviors like placing wine bottles on a rack
and dragging objects with a stick (see Figure 1 a-j). Each task also includes several pose and seman-
tic variations with objects that differ in placement, color, shape, size, and category. Our results show
that PERACT significantly outperforms image-to-action agents (by 34⇥) and 3D ConvNet baselines
(by 2.8⇥), without using any explicit representations of instance segmentations, object poses, mem-
ory, or symbolic states. We also validate our approach on a Franka Panda with a multi-task agent
trained from scratch on 7 real-world tasks with a total of just 53 demonstrations (see Figure 1 k-o).

In summary, our contributions are as follows:

• A novel problem formulation for perceiving, acting, and specifying goals with Transformers.
• An efficient action-centric framework for grounding language in 6-DoF actions.
• Empirical results investigating multi-task agents on a range of simulated and real-world tasks.

The code and pre-trained models will be made available at peract.github.io.

2Throughout the paper we refer to PerceiverIO [1] as Perceiver for brevity.
3Action-centric refers to a system that learns perceptual representations of actions; see Appendix J.

2

peract.github.io

2 Related Work

Vision for Manipulation. Traditionally, methods in robot perception have used explicit “object”
representations like instance segmentations, object classes, poses [20, 21, 22, 23, 24, 25]. Such
methods struggle with deformable and granular items like cloths and beans that are hard to represent
with geometric models or segmentations. In contrast, recent methods [26, 17, 16, 27] learn action-
centric representations without any “objectness” assumptions, but they are limited to top-down 2D
settings with simple pick-and-place primitives. In 3D, James et al. proposed C2FARM [14], an
action-centric reinforcement learning (RL) agent with a coarse-to-fine-grain 3D-UNet backbone.
The coarse-to-fine-grain scheme has a limited receptive field that cannot look at the entire scene at
the finest level. In contrast, PERACT learns action-centric representations with a global-receptive
field through a Transformer backbone. Also, PERACT does BC instead of RL, which enables us to
easily train a multi-task agent for several tasks by conditioning it with language goals.

End-to-End Manipulation approaches [28, 29, 30, 31] make the least assumptions about objects
and tasks, but are often formulated as an image-to-action prediction task. Training directly on RGB
images for 6-DoF tasks is often inefficient, generally requiring several demonstrations or episodes
just to learn basic skills like rearranging objects. In contrast, PERACT uses a voxelized observation
and action space, which is dramatically more efficient and robust in 6-DoF settings. While other
works in 6-DoF grasping [32, 33, 34, 35, 36, 37] have used RGB-D and pointcloud input, they
have not been applied to sequential tasks or used with language-conditioning. Another line of work
tackles data inefficiency by using pre-trained image representations [16, 38, 39] to bootstrap BC.
Although our framework is trained from scratch, such pre-training approaches could be integrated
together in future works for even greater efficiency and generalization to unseen objects.

Transformers for Agents and Robots. Transformers have become the prevalent architecture in
several domains. Starting with NLP [2, 3, 40], recently in vision [4, 41], and even RL [8, 42, 43]. In
robotics, Transformers have been applied to assistive teleop [44], legged locomotion [45], path-
planning [46, 47], imitation learning [48, 49], morphology controllers [50], spatial rearrange-
ment [51], and grasping [52]. Transformers have also achieved impressive results in multi-domain
settings like in Gato [9] where a single Transformer was trained on 16 domains such as captioning,
language-grounding, robotic control etc. However, Gato relies on extremely large datasets like 15K
episodes for block stacking and 94K episodes for Meta-World [53] tasks. Our approach might com-
plement agents like Gato, which could use our 3D formulation for greater efficiency and robustness.

Language Grounding for Manipulation. Several works have proposed methods for grounding
language in robot actions [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65]. However, these methods
use disentangled pipelines for perception and action, with the language primarily being used to
guide perception [66]. Recently, a number of end-to-end approaches [13, 12, 67, 68, 69] have been
proposed for conditioning BC agents with language instructions. These methods require thousands
of human demos or autonomous episodes that are collected over several days or even months. In
contrast, PERACT can learn robust multi-task policies with just a few minutes of training data. For
benchmarking, several simulation environments exist [70, 17, 53], but we use RLBench [15] for its
diversity of 6-DoF tasks and ease of generating demonstrations with templated language goals.

3 PERCEIVER-ACTOR

PERACT is a language-conditioned behavior-cloning agent for 6-DoF manipulation. The key idea
is to learn perceptual representations of actions conditioned on language goals. Given a voxelized
reconstruction of a scene, we use a Perceiver Transformer [1] to learn per-voxel features. Despite the
extremely large input space (1003), Perceiver uses a small set of latent vectors to encode the input.
The per-voxel features are then used to predict the next best action in terms of discretized translation,
rotation, and gripper state at each timestep. PERACT relies purely on the current observation to
determine what to do next in sequential tasks. See Figure 2 for an overview.

Section 3.1 and Section 3.2 describe our dataset setup. Section 3.3 describes our problem formula-
tion with PERACT, and Section 3.4 provides details on training PERACT. Further implementation
details are presented in Appendix B.

3

PerceiverIO Transformer

“open the middle drawer”

t=3
open the middle drawer ...

...

...

...

Language Encoder Voxel Encoder

skip connection

Voxel Decoder

Pos Emb +

next best
voxel

trans
Q

open
Q

rot
Q

collide
Q

Maxpool

0

11

0

MLP MLP MLP

Latent Vectors
2048 x 512

left right

Figure 2. PERACT Overview. PERACT is a language-conditioned behavior-cloning agent trained with supervised learning to detect actions.
PERACT takes as input a language goal and a voxel grid reconstructed from RGB-D sensors. The voxels are split into 3D patches, and the
language goal is encoded with a pre-trained language model. These language and voxel features are appended together as a sequence and
encoded with a Perceiver transformer [1]. Despite the extremely long input sequence, Perceiver uses a small set of latent vectors to encode the
input (see Appendix Figure 6 for an illustration). These encodings are upsampled back to the original voxel dimensions with a decoder and
reshaped with linear layers to predict a discretized translation, rotation, gripper open, and collision avoidance action. This action is executed
with a motion-planner after which the new observation is used to predict the next discrete action in an observe-act loop until termination.

3.1 Demonstrations
We assume access to a dataset D = {⇣1, ⇣2, . . . , ⇣n} of n expert demonstrations, each paired with
English language goals G = {l1, l2, . . . , ln}. These demonstrations are collected by an expert with
the aid of a motion-planner to reach intermediate poses. Each demonstration ⇣ is a sequence of
continuous actions A = {a1, a2, . . . , at} paired with observations O = {õ1, õ2, . . . õt}. An action
a consists of the 6-DoF pose, gripper open state, and whether the motion-planner used collision
avoidance to reach an intermediate pose: a = {apose, aopen, acollide}. An observation õ consists
of RGB-D images from any number of cameras. We use four cameras for simulated experiments
õsim = {ofront, oleft, oright, owrist}, but just a single camera for real-world experiments õreal = {ofront}.

3.2 Keyframes and Voxelization
Following prior work by James et al. [14], we construct a structured observation and action space
through keyframe extraction and voxelization.

Training our agent to directly predict continuous actions is inefficient and noisy. So instead, for each
demonstration ⇣, we extract a set of keyframe actions {k1,k2, . . . ,km} ⇢ A that capture bottleneck
end-effector poses [71] in the action sequence with a simple heuristic: an action is a keyframe if (1)
the joint-velocities are near zero and (2) the gripper open state has not changed. Each datapoint in
the demonstration ⇣ can then be cast as a “predict the next (best) keyframe action” task [14, 72, 73].
See Appendix Figure F for an illustration of this process.

To learn action-centric representations [18] in 3D, we use a voxel grid [74, 75] to represent both the
observation and action space. The observation voxels v are reconstructed from RGB-D observations
õ fused through triangulation õ) v from known camera extrinsics and intrinsics. By default, we
use a voxel grid of 1003, which corresponds to a volume of 1.0m3 in metric scale. The keyframe
actions k are discretized such that training our BC agent can be formulated as a “next best action”
classification task [14]. Translation is simply the closest voxel to the center of the gripper fingers.
Rotation is discretized into 5 degree bins for each of the three rotation axes. Gripper open state is a
binary value. Collide is also a binary value that indicates if the motion-planner should avoid every-
thing in the voxel grid or nothing at all; switching between these two modes of collision avoidance
is crucial as tasks often involve both contact based (e.g., pulling the drawer open) and non-contact
based motions (e.g., reaching the handle without colliding into anything).

3.3 PERACT Agent
PERACT is a Transformer-based [2] agent that takes in a voxel observation and language goal (v, l),
and outputs a discretized translation, rotation, and gripper open action. This action is executed with
a motion-planner, after which this process is repeated until the goal is reached.

The language goal l is encoded with a pre-trained language model. We use CLIP’s [76] language
encoder, but any pre-trained language model would suffice [13, 69]. Our choice of CLIP opens up
possibilities for future work to use pre-trained vision features that are aligned with the language for
better generalization to unseen semantic categories and instances [16].

4

The voxel observation v is split into 3D patches of size 53 (akin to vision-transformers like ViT [4]).
In implementation, these patches are extracted with a 3D convolution layer with a kernel-size and
stride of 5, and then flattened into a sequence of voxel encodings. The language encodings are fine-
tuned with a linear layer and then appended with the voxel encodings to form the input sequence.
We also add learned positional embeddings to the sequence to incorporate voxel and token positions.

The input sequence of language and voxel encodings is extremely long. A standard Transformer
with O(n2) self-attention connections and an input of (100/5)3 = 8000 patches is hard to fit on the
memory of a commodity GPU. Instead, we use the Perceiver [1] Transformer. Perceiver is a latent-
space Transformer, where instead of attending to the entire input, it first computes cross-attention
between the input and a much smaller set of latent vectors (which are randomly initialized and
trained). These latents are encoded with self-attention layers, and for the final output, the latents
are again cross-attended with the input to match the input-size. See Appendix Figure 6 for an
illustration. By default, we use 2048 latents of dimension 512 : R2048⇥512, but in Appendix G we
experiment with different latent sizes.

The Perceiver Transformer uses 6 self-attention layers to encode the latents and outputs a sequence
of patch encodings from the output cross-attention layer. These patch encodings are upsampled
with a 3D convolution layer and tri-linear upsampling to decode 64-dimensional voxel features. The
decoder includes a skip-connection from the encoder (like in UNets [77]). The per-voxel features
are then used to predict discretized actions [14]. For translation, the voxel features are reshaped into
the original voxel grid (1003) to form a 3D Q-function of action-values. For rotation, gripper open,
and collide, the features are max-pooled and then decoded with linear layers to form their respective
Q-function. The best action T is chosen by simply maximizing the Q-functions:

Ttrans = argmax
(x,y,z)

Qtrans((x, y, z) | v, l), Trot = argmax
(,✓,�)

Qrot((, ✓,�) | v, l),

Topen = argmax
!

Qopen(! | v, l), Tcollide = argmax

Qcollide(| v, l),

where (x, y, z) is the voxel location in the grid, (, ✓,�) are discrete rotations in Euler angles, ! is
the gripper open state and is the collide variable. See Figure 5 for examples of Q-predictions.

3.4 Training Details

PERACT is trained through supervised learning with discrete-time input-action tuples from a dataset
of demonstrations. These tuples are composed of voxel observations, language goals, and keyframe
actions {(v1, l1,k1), (v2, l2,k2), . . .}. During training, we randomly sample a tuple and supervise
the agent to predict the keyframe action k given the observation and goal (v, l). For translation,
the ground-truth action is represented as a one-hot voxel encoding Ytrans : RH⇥W⇥D. Rotations are
also represented with a one-hot encoding per rotation axis with R rotation bins Yrot : R(360/R)⇥3

(R = 5 degrees for all experiments). Similarly, open and collide variables are binary one-hot vectors
Yopen : R2, Ycollide : R2. The agent is trained with cross-entropy loss like a classifier:

Ltotal = �EYtrans [logVtrans]� EYrot [logVrot]� EYopen [logVopen]� EYcollide [logVcollide],

where Vtrans = softmax(Qtrans((x, y, z)|v, l)), Vrot = softmax(Qrot((, ✓,�)|v, l)), Vopen =
softmax(Qopen(!|v, l)), Vcollide = softmax(Qcollide(|v, l)) respectively. For robustness, we also
augment v and k with translation and rotation perturbations. See Appendix E for more details.

By default, we use a voxel grid size of 1003. We conducted validation tests by replaying expert
demonstrations with discretized actions to ensure that 1003 is a sufficient resolution for execution.
The agent was trained with a batch-size of 16 on 8 NVIDIA V100 GPUs for 16 days (600K itera-
tions). We use the LAMB [78] optimizer following Perceiver [1].

For multi-task training, we simply sample input-action tuples from all tasks in the dataset. To ensure
that tasks with longer horizons are not over-represented during sampling, each batch contains a
uniform distribution of tasks. That is, we first uniformly sample a set of tasks of batch-size length,
then pick a random input-action tuple for each of the sampled tasks. With this strategy, longer-
horizon tasks need more training steps for full coverage of input-action pairs, but all tasks are given
equal weighting during gradient updates.

5

4 Results
We perform experiments to answer the following questions: (1) How effective is PERACT com-
pared to unstructured image-to-action frameworks and standard architectures like 3D ConvNets?
And what are the factors that affect PERACT’s performance? (2) Is the global receptive field of
Transformers actually beneficial over methods with local receptive fields? (3) Can PERACT be
trained on real-world tasks with noisy data?

4.1 Simulation Setup
We conduct our primary experiments in simulation for the sake of reproducibility and benchmarking.

Environment. The simulation is set in CoppelaSim [79] and interfaced through PyRep [80]. All
experiments use a Franka Panda robot with a parallel gripper. The input observations are captured
from four RGB-D cameras positioned at the front, left shoulder, right shoulder, and on the wrist, as
shown in Appendix Figure 7. All cameras are noiseless and have a resolution of 128⇥ 128.

Language-Conditioned Tasks. We train and evaluate on 18 RLBench [15] tasks. See per-
act.github.io for examples and Appendix A for details on individual tasks. Each task includes several
variations, ranging from 2-60 possibilities, e.g., in the stack blocks task, “stack 2 red blocks” and
“stack 4 purple blocks” are two variants. These variants are randomly sampled during data genera-
tion, but kept consistent during evaluations for one-to-one comparisons. Some RLBench tasks were
modified to include additional variations to stress-test multi-task and language-grounding capabil-
ities. There are a total of 249 variations across 18 tasks, and the number of extracted keyframes
range from 2-17. All keyframes from an episode have the same language goal, which is constructed
from templates (but human-annotated for real-world tasks). Note that in all experiments, we do
not test for generalization to unseen objects, i.e., our train and test objects are the same. However
during test time, the agent has to handle novel object poses, randomly sampled goals, and randomly
sampled scenes with different semantic instantiations of object colors, shapes, sizes, and categories.
The focus here is to evaluate the performance of a single multi-task agent trained on all tasks and
variants.

Evaluation Metric. Each multi-task agent is evaluated independently on all 18 tasks. Evaluations
are scored either 0 for failures or 100 for complete successes. There are no partial credits. We report
average success rates on 25 evaluation episodes per task (25 ⇥ 18 = 450 total episodes) for agents
trained with n = 10, 100 demonstrations per task. During evaluation, an agent keeps taking actions
until an oracle indicates task-completion or reaches a maximum of 25 steps.

4.2 Simulation Results

Table 1 reports success rates of multi-task agents trained on all 18 tasks. We could not investigate
single-task agents due to resource constraints of training 18 individual agents.

Baseline Methods. We study the effectiveness of our problem formulation by benchmarking against
two language-conditioned baselines: Image-BC and C2FARM-BC. Image-BC is an image-to-action
agent similar to BC-Z [12]. Following BC-Z, we use FiLM [81] for conditioning with CLIP [76]
language features, but the vision encoders take in RGB-D images instead of just RGB. We also study
both CNN and ViT vision encoders. C2FARM-BC is a 3D fully-convolutional network by James et
al. [14] that has achieved state-of-the-art results on RLBench tasks. Similar to our agent, C2FARM-
BC also detects actions in a voxelized space, however it uses a coarse-to-fine-grain scheme to detect
actions at two-levels of voxelization: 323 voxels with a 13m grid, and 323 voxels with a 0.153m
grid after “zooming in” from the first level. Note that at the finest level, C2FARM-BC has a higher
resolution (0.47cm) than PERACT (1cm). We use the same 3D ConvNet architecture as James et
al. [14], but instead of training it with RL, we do BC with cross-entropy loss (from Section 3.4). We
also condition it with CLIP [76] language features at the bottleneck like in LingUNets [82, 16].

Multi-Task Performance. Table 1 compares the performance of Image-BC and C2FARM-
BC against PERACT. With insufficient demonstrations, Image-BC has near zero performance on
most tasks. Image-BC is disadvantaged with single-view observations and has to learn hand-eye
coordination from scratch. In contrast, PERACT’s voxel-based formulation naturally allows for in-
tegrating multi-view observations, learning 6-DoF action representations, and data-augmentation
in 3D, all of which are non-trivial to achieve in image-based methods. C2FARM-BC is the most
competitive baseline, but it has a limited receptive field mostly because of the coarse-to-fine-grain
scheme and partly due to the convolution-only architecture. PERACT outperforms C2FARM-BC in

6

https://peract.github.io
https://peract.github.io

open
drawer

slide
block

sweep to
dustpan

meat off
grill

turn
tap

put in
drawer

close
jar

drag
stick

stack
blocks

Method 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100

Image-BC (CNN) 4 4 4 0 0 0 0 0 20 8 0 8 0 0 0 0 0 0
Image-BC (ViT) 16 0 8 0 8 0 0 0 24 16 0 0 0 0 0 0 0 0
C2FARM-BC 28 20 12 16 4 0 40 20 60 68 12 4 28 24 72 24 4 0
PERACT (w/o Lang) 20 28 8 12 20 16 40 48 36 60 16 16 16 12 48 60 0 0
PERACT 68 80 32 72 72 56 68 84 72 80 16 68 32 60 36 68 12 36

screw
bulb

put in
safe

place
wine

put in
cupboard

sort
shape

push
buttons

insert
peg

stack
cups

place
cups

10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100

Image-BC (CNN) 0 0 0 4 0 0 0 0 0 0 4 0 0 0 0 0 0 0
Image-BC (ViT) 0 0 0 0 4 0 4 0 0 0 16 0 0 0 0 0 0 0
C2FARM-BC 12 8 0 12 36 8 4 0 8 8 88 72 0 4 0 0 0 0
PERACT (w/o Lang) 0 24 8 20 8 20 0 0 0 0 60 68 4 0 0 0 0 0
PERACT 28 24 16 44 20 12 0 16 16 20 56 48 4 0 0 0 0 0

Table 1. Multi-Task Test Results. Success rates (mean %) of various multi-task agents tasks trained with either 10 or 100 demonstrations per
task and evaluated on 25 episodes per task. Each evaluation episode is scored either a 0 for failure or 100 for succces. PERACT outperforms
C2FARM-BC [14], the most competitive baseline, with an average improvement of 1.33⇥ with 10 demos and 2.83⇥ with 100 demos.

25/36 evaluations in Table 1 with an average improvement of 1.33⇥ with 10 demonstrations and
2.83⇥ with 100 demonstrations. For a number of tasks, C2FARM-BC actually performs worse
with more demonstrations, likely due to insufficient capacity. Since additional training demonstra-
tions include additional task variants to optimize for, they might end up hurting performance.
In general, 10 demonstrations are sufficient for PERACT to achieve > 65% success on tasks with
limited variations like open drawer (3 variations). But tasks with more variations like stack
blocks (60 variations) need substantially more data, sometimes to simply cover all possible con-
cepts like “teal color block” that might have not appeared in the training data. See the simulation
rollouts in the supplementary video to get a sense of the complexity of these evaluations. For three
tasks: insert peg, stack cups, and place cups, all agents achieve near zero success. These
are very high-precision tasks where being off by a few centimeters or degrees could lead to unre-
coverable failures. But in Appendix H we find that training single-task agents, specifically for these
tasks, slightly alleviates this issue.

Figure 3. Ablation Experiments. Success rate of PER-
ACT after ablating key components.

Ablations. Table 1 reports PERACT w/o Lang, an agent
without any language conditioning. Without a language
goal, the agent does not know the underlying task and
performs at chance. We also report additional ablation
results on the open drawer task in Figure 3. To sum-
marize these results: (1) the skip connection helps train
the agent slightly faster, (2) the Perceiver Transformer is
crucial for achieving good performance with the global
receptive field, and (3) extracting good keyframes actions
is essential for supervised training as randomly chosen or
fixed-interval keyframes lead to zero-performance.

Sensitivity Analysis. In Appendix G we investigate factors that affect PERACT’s performance: the
number of Perceiver latents, voxelization resolution, and data augmentation. We find that more
latent vectors generally improve the capacity of the agent to model more tasks, but for simple short-
horizon tasks, fewer latents are sufficient. Similarly, with different voxelization resolutions, some
tasks are solvable with coarse voxel grids like 323, but some high-precision tasks require the full
1003 grid. Finally, rotation perturbations in the data augmentation generally help in improving
robustness essentially by exposing the agent to more rotation variations of objects.

4.3 Global vs. Local Receptive Fields

Figure 4. Global vs. Local Receptive Field Ex-
periments. Success rates of PERACT against various
C2FARM-BC [14] baselines

To further investigate our Transformer agent’s global re-
ceptive field, we conduct additional experiments on the
open drawer task. The open drawer task has three
variants: “open the top drawer”, “open the middle

drawer”, and “open the bottom drawer”, and with a lim-
ited receptive field it is hard to distinguish the drawer
handles, which are all visually identical. Figure 4 re-
ports PERACT and C2FARM-BC agents trained with 100
demonstrations. Although the open drawer tasks can be

7

“place the wine bottle
on the middle of the rack”

“sweep the dirt
to the tall dustpan”

“press the handsan” “put the tape
in the top drawer”

Q-Prediction Expert Action

t=3 t=0 t=0 t=3

Figure 5. Q-Prediction Examples: Qualitative examples of translation Q-Predictions from PERACT along with expert actions, highlighted
with dotted-circles. The left two are simulated tasks, and the right two are real-world tasks. See Appendix J for more examples.

solved with fewer demonstrations, here we want to ensure that insufficient data is not an issue. We
include several versions of C2FARM-BC with different voxelization schemes. For instance, [16, 16]
indicates two levels of 163 voxel grids at 1m3 and 0.15m3, respectively. And [64] indicates a sin-
gle level of a 643 voxel grid without the coarse-to-fine-grain scheme. PERACT is the only agent
that achieves > 70% success, whereas all C2FARM-BC versions perform at chance with ⇠ 33%,
indicating that the global receptive field of the Transformer is crucial for solving the task.

4.4 Real-Robot Results

Task # Train # Test Succ. %

Press Handsan 5 10 90
Put Marker 8 10 70
Place Food 8 10 60
Put in Drawer 8 10 40
Hit Ball 8 10 60
Stack Blocks 10 10 40
Sweep Beans 8 5 20

Table 2. Success rates (mean %) of a multi-
task model trained an evaluated 7 real-
world tasks (see Figure 1).

We also validated our results with real-robot experiments on a
Franka Emika Panda. See Appendix D for setup details. With-
out any sim-to-real transfer or pre-training, we trained a multi-task
PERACT agent from scratch on 7 tasks (with 18 unique variations)
from a total of just 53 demonstrations. See the supplementary video
for qualitative results that showcase the diversity of tasks and ro-
bustness to scene changes. Table 2 reports success rates from small-
scale evaluations. Similar to the simulation results, we find that
PERACT is able to achieve > 65% success on simple short-horizon
tasks like pressing hand-sanitizers from just a handful number of
demonstrations. The most common failures involved predicting incorrect gripper open actions,
which often lead the agent into unseen states. This could be addressed in future works by using
HG-DAgger style approaches to correct the agent [12]. Other issues included the agent exploiting
biases in the dataset like in prior work [16]. This could be addressed by scaling up expert data with
more diverse tasks and task variants.

5 Limitations and Conclusion

We presented PERACT, a Transformer-based multi-task agent for 6-DoF manipulation. Our experi-
ments with both simulated and real-world tasks indicate that the right problem formulation, i.e., de-
tecting voxel actions, makes a substantial difference in terms of data efficiency and robustness.

While PERACT is quite capable, extending it to dexterous continuous control remains a challenge.
PERACT is at the mercy of a sampling-based motion-planner to execute discretized actions, and is
not easily extendable to N-DoF actuators like multi-fingered hands. See Appendix L for an extended
discussion on PERACT’s limitations. But overall, we are excited about scaling up robot learning with
Transformers by focusing on diverse rather than narrow multi-task data for robotic manipulation.

Acknowledgments

We thank Selest Nashef and Karthik Desingh for their help with the Franka setup at UW. We thank
Stephen James for helping with RLBench and ARM issues. We are also grateful to Valts Blukis,
Zoey Chen, Markus Grotz, Aaron Walsman, and Kevin Zakka, for providing feedback on the initial
draft. And thanks to Shikhar Bahl for initial discussions. This work was funded in part by ONR
under award #1140209-405780. Mohit Shridhar is supported by the NVIDIA Graduate Fellowship,
and was also a part-time intern at NVIDIA throughout the duration of this project.

8

References
[1] A. Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu, D. Ding, S. Koppula, D. Zoran,

A. Brock, E. Shelhamer, et al. Perceiver io: A general architecture for structured inputs &
outputs. arXiv preprint arXiv:2107.14795, 2021.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing

Systems (NeuRIPS), 2017.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Neural In-

formation Processing Systems (NeurIPS), 2020.

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transform-
ers for image recognition at scale. In International Conference on Learning Representations

(ICLR), 2020.

[5] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,
R. Bates, A. Žı́dek, A. Potapenko, et al. Highly accurate protein structure prediction with
alphafold. Nature, 2021.

[6] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. M. Czarnecki, A. Dudzik,
A. Huang, P. Georgiev, R. Powell, et al. Alphastar: Mastering the real-time strategy game
starcraft ii. DeepMind blog, 2, 2019.

[7] T. Chen, S. Saxena, L. Li, D. J. Fleet, and G. Hinton. Pix2seq: A language modeling frame-
work for object detection. arXiv preprint arXiv:2109.10852, 2021.

[8] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. In Neural

Information Processing Systems (NeurIPS), 2021.

[9] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron,
M. Gimenez, Y. Sulsky, J. Kay, J. T. Springenberg, et al. A generalist agent. arXiv preprint

arXiv:2205.06175, 2022.

[10] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Conference of the North American Chapter of

the Association for Computational Linguistics (NAACL), 2018.

[11] A. Jaegle, F. Gimeno, A. Brock, O. Vinyals, A. Zisserman, and J. Carreira. Perceiver: General
perception with iterative attention. In International Conference on Machine Learning (ICML),
2021.

[12] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn.
Bc-z: Zero-shot task generalization with robotic imitation learning. In Conference on Robot

Learning (CoRL), 2021.

[13] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan,
K. Hausman, A. Herzog, et al. Do as i can, not as i say: Grounding language in robotic
affordances. arXiv preprint arXiv:2204.01691, 2022.

[14] S. James, K. Wada, T. Laidlow, and A. J. Davison. Coarse-to-fine q-attention: Efficient
learning for visual robotic manipulation via discretisation. In Computer Vision and Pattern

Recognition (CVPR), 2022.

[15] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &
learning environment. IEEE Robotics and Automation Letters (RA-L), 2020.

[16] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manip-
ulation. In In Conference on Robot Learning (CoRL), 2021.

9

[17] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,
D. Duong, V. Sindhwani, and J. Lee. Transporter networks: Rearranging the visual world for
robotic manipulation. Conference on Robot Learning (CoRL), 2020.

[18] J. J. Gibson. The ecological approach to visual perception: classic edition. Psychology Press,
2014.

[19] R. A. Brooks. New approaches to robotics. Science, 1991.

[20] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2017.

[21] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network
for 6d object pose estimation in cluttered scenes. In Robotics: Science and Systems (RSS),
2018.

[22] M. Zhu, K. G. Derpanis, Y. Yang, S. Brahmbhatt, M. Zhang, C. Phillips, M. Lecce, and
K. Daniilidis. Single image 3d object detection and pose estimation for grasping. In 2014

IEEE International Conference on Robotics and Automation (ICRA), 2014.

[23] A. Zeng, K.-T. Yu, S. Song, D. Suo, E. Walker, A. Rodriguez, and J. Xiao. Multi-view self-
supervised deep learning for 6d pose estimation in the amazon picking challenge. In 2017

IEEE international conference on robotics and automation (ICRA), 2017.

[24] X. Deng, Y. Xiang, A. Mousavian, C. Eppner, T. Bretl, and D. Fox. Self-supervised 6d object
pose estimation for robot manipulation. In 2020 IEEE International Conference on Robotics

and Automation (ICRA), 2020.

[25] C. Xie, Y. Xiang, A. Mousavian, and D. Fox. The best of both modes: Separately leveraging
rgb and depth for unseen object instance segmentation. In Conference on Robot Learning

(CoRL), 2020.

[26] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza, D. Ma, O. Taylor, M. Liu,
E. Romo, et al. Robotic pick-and-place of novel objects in clutter with multi-affordance
grasping and cross-domain image matching. The International Journal of Robotics Research

(IJRR), 2019.

[27] E. Stengel-Eskin, A. Hundt, Z. He, A. Murali, N. Gopalan, M. Gombolay, and G. Hager.
Guiding multi-step rearrangement tasks with natural language instructions. In Conference on

Robot Learning (CoRL), 2022.

[28] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, et al. Qt-opt: Scalable deep reinforcement learning for
vision-based robotic manipulation. Conference on Robot Learning (CoRL), 2018.

[29] Y. Wu, W. Yan, T. Kurutach, L. Pinto, and P. Abbeel. Learning to Manipulate Deformable
Objects without Demonstrations. In Robotics: Science and Systems (RSS), 2020.

[30] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[31] C. Finn and S. Levine. Deep visual foresight for planning robot motion. In 2017 IEEE

International Conference on Robotics and Automation (ICRA), 2017.

[32] S. Song, A. Zeng, J. Lee, and T. Funkhouser. Grasping in the wild: Learning 6dof closed-
loop grasping from low-cost demonstrations. IEEE Robotics and Automation Letters (RA-L),
2020.

[33] A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox. 6-dof grasping for target-
driven object manipulation in clutter. In International Conference on Robotics and Automa-

tion (ICRA), 2020.

[34] A. Mousavian, C. Eppner, and D. Fox. 6-dof graspnet: Variational grasp generation for object
manipulation. In International Conference on Computer Vision (ICCV), 2019.

10

[35] Z. Xu, H. Zhanpeng, and S. Song. Umpnet: Universal manipulation policy network for
articulated objects. Robotics and Automation Letters (RA-L), 2022.

[36] S. Agrawal, Y. Li, J.-S. Liu, S. K. Feiner, and S. Song. Scene editing as teleoperation: A case
study in 6dof kit assembly. arXiv preprint arXiv:2110.04450, 2021.

[37] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitz-
mann. Neural descriptor fields: Se (3)-equivariant object representations for manipulation.
arXiv preprint arXiv:2112.05124, 2021.

[38] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual represen-
tation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

[39] W. Yuan, C. Paxton, K. Desingh, and D. Fox. Sornet: Spatial object-centric representations
for sequential manipulation. In In Conference on Robot Learning (CoRL). PMLR, 2021.

[40] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint

arXiv:1907.11692, 2019.

[41] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In In International Conference on

Computer Vision (ICCV), 2021.

[42] M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence modeling
problem. Neural information processing systems (NeurIPS), 2021.

[43] K.-H. Lee, O. Nachum, M. Yang, L. Lee, D. Freeman, W. Xu, S. Guadarrama, I. Fis-
cher, E. Jang, H. Michalewski, et al. Multi-game decision transformers. arXiv preprint

arXiv:2205.15241, 2022.

[44] H. M. Clever, A. Handa, H. Mazhar, K. Parker, O. Shapira, Q. Wan, Y. Narang, I. Akinola,
M. Cakmak, and D. Fox. Assistive tele-op: Leveraging transformers to collect robotic task
demonstrations. arXiv preprint arXiv:2112.05129, 2021.

[45] R. Yang, M. Zhang, N. Hansen, H. Xu, and X. Wang. Learning vision-guided quadrupedal
locomotion end-to-end with cross-modal transformers. arXiv preprint arXiv:2107.03996,
2021.

[46] D. S. Chaplot, D. Pathak, and J. Malik. Differentiable spatial planning using transformers. In
International Conference on Machine Learning (ICML), 2021.

[47] J. J. Johnson, L. Li, A. H. Qureshi, and M. C. Yip. Motion planning transformers: One model
to plan them all. arXiv preprint arXiv:2106.02791, 2021.

[48] S. Dasari and A. Gupta. Transformers for one-shot visual imitation. arXiv preprint

arXiv:2011.05970, 2020.

[49] H. Kim, Y. Ohmura, and Y. Kuniyoshi. Transformer-based deep imitation learning for dual-
arm robot manipulation. In International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2021.

[50] A. Gupta, L. Fan, S. Ganguli, and L. Fei-Fei. Metamorph: Learning universal controllers
with transformers. arXiv preprint arXiv:2203.11931, 2022.

[51] W. Liu, C. Paxton, T. Hermans, and D. Fox. Structformer: Learning spatial structure for
language-guided semantic rearrangement of novel objects. In International Conference on

Robotics and Automation (ICRA), 2022.

[52] Y. Han, R. Batra, N. Boyd, T. Zhao, Y. She, S. Hutchinson, and Y. Zhao. Learning general-
izable vision-tactile robotic grasping strategy for deformable objects via transformer. arXiv

preprint arXiv:2112.06374, 2021.

11

[53] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on

Robot Learning (CoRL), 2020.

[54] M. Shridhar and D. Hsu. Interactive visual grounding of referring expressions for human-
robot interaction. In Robotics: Science and Systems (RSS), 2018.

[55] C. Matuszek, L. Bo, L. Zettlemoyer, and D. Fox. Learning from unscripted deictic gesture
and language for human-robot interactions. In AAAI Conference on Artificial Intelligence,
volume 28, 2014.

[56] M. Bollini, S. Tellex, T. Thompson, N. Roy, and D. Rus. Interpreting and executing recipes
with a cooking robot. In Experimental Robotics, pages 481–495. Springer, 2013.

[57] D. K. Misra, J. Sung, K. Lee, and A. Saxena. Tell me dave: Context-sensitive grounding
of natural language to manipulation instructions. The International Journal of Robotics Re-

search (IJRR), 2016.

[58] Y. Bisk, D. Yuret, and D. Marcu. Natural language communication with robots. In North

American Chapter of the Association for Computational Linguistics (NAACL), 2016.

[59] J. Thomason, S. Zhang, R. J. Mooney, and P. Stone. Learning to interpret natural language
commands through human-robot dialog. In Twenty-Fourth International Joint Conference on

Artificial Intelligence (IJCAI), 2015.

[60] J. Hatori, Y. Kikuchi, S. Kobayashi, K. Takahashi, Y. Tsuboi, Y. Unno, W. Ko, and J. Tan.
Interactively picking real-world objects with unconstrained spoken language instructions. In
International Conference on Robotics and Automation (ICRA), 2018.

[61] Y. Chen, R. Xu, Y. Lin, and P. A. Vela. A Joint Network for Grasp Detection Conditioned on
Natural Language Commands. arXiv:2104.00492 [cs], Apr. 2021.

[62] V. Blukis, R. A. Knepper, and Y. Artzi. Few-shot object grounding for mapping natural
language instructions to robot control. In Conference on Robot Learning (CoRL), 2020.

[63] C. Paxton, Y. Bisk, J. Thomason, A. Byravan, and D. Fox. Prospection: Interpretable plans
from language by predicting the future. In International Conference on Robotics and Au-

tomation (ICRA), 2019.

[64] S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Banerjee, S. Teller, and N. Roy. Understand-
ing natural language commands for robotic navigation and mobile manipulation. In AAAI

Conference on Artificial Intelligence (AAAI), 2011.

[65] T. Nguyen, N. Gopalan, R. Patel, M. Corsaro, E. Pavlick, and S. Tellex. Robot object retrieval
with contextual natural language queries. arXiv preprint arXiv:2006.13253, 2020.

[66] Y. Bisk, A. Holtzman, J. Thomason, J. Andreas, Y. Bengio, J. Chai, M. Lapata, A. Lazaridou,
J. May, A. Nisnevich, N. Pinto, and J. Turian. Experience grounds language. In Empirical

Methods in Natural Language Processing (EMNLP), 2020.

[67] S. Nair, E. Mitchell, K. Chen, S. Savarese, C. Finn, et al. Learning language-conditioned
robot behavior from offline data and crowd-sourced annotation. In Conference on Robot

Learning (CoRL), 2022.

[68] O. Mees, L. Hermann, and W. Burgard. What matters in language conditioned robotic imita-
tion learning over unstructured data. IEEE Robotics and Automation Letters (RA-L), 2022.

[69] C. Lynch and P. Sermanet. Grounding language in play. arXiv preprint arXiv:2005.07648,
2020.

[70] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot manipulation tasks. arXiv preprint

arXiv:2112.03227, 2021.

12

[71] E. Johns. Coarse-to-fine imitation learning: Robot manipulation from a single demonstration.
In International Conference on Robotics and Automation (ICRA), 2021.

[72] S. James and A. J. Davison. Q-attention: Enabling efficient learning for vision-based robotic
manipulation. IEEE Robotics and Automation Letters (RA-L), 7(2):1612–1619, 2022.

[73] S. Liu, S. James, A. J. Davison, and E. Johns. Auto-lambda: Disentangling dynamic task
relationships. Transactions on Machine Learning Research, 2022.

[74] H. Moravec. Robot spatial perceptionby stereoscopic vision and 3d evidence grids. Percep-

tion, 1996.

[75] Y. Roth-Tabak and R. Jain. Building an environment model using depth information. Com-

puter, 22(6):85–90, 1989.

[76] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning Transferable Visual Models From
Natural Language Supervision. arXiv:2103.00020, 2021.

[77] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical im-
age segmentation. In International Conference on Medical image computing and computer-

assisted intervention, pages 234–241. Springer, 2015.

[78] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song, J. Demmel, K. Keutzer,
and C.-J. Hsieh. Large batch optimization for deep learning: Training bert in 76 minutes.
arXiv preprint arXiv:1904.00962, 2019.

[79] E. Rohmer, S. P. N. Singh, and M. Freese. V-rep: A versatile and scalable robot simulation
framework. In International Conference on Intelligent Robots and Systems (IROS), 2013.

[80] S. James, M. Freese, and A. J. Davison. Pyrep: Bringing v-rep to deep robot learning. arXiv

preprint arXiv:1906.11176, 2019.

[81] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with
a general conditioning layer. In AAAI Conference on Artificial Intelligence, 2018.

[82] D. Misra, A. Bennett, V. Blukis, E. Niklasson, M. Shatkhin, and Y. Artzi. Mapping in-
structions to actions in 3d environments with visual goal prediction. In 2019 Conference on

Empirical Methods in Natural Language Processing (EMNLP), 2018.

[83] Z. Mandi, P. Abbeel, and S. James. On the effectiveness of fine-tuning versus meta-
reinforcement learning. arXiv preprint arXiv:2206.03271, 2022.

[84] S. Sodhani, A. Zhang, and J. Pineau. Multi-task reinforcement learning with context-based
representations. In M. Meila and T. Zhang, editors, International Conference on Machine

Learning (ICML), 2021.

[85] M. Shridhar, X. Yuan, M.-A. Côté, Y. Bisk, A. Trischler, and M. Hausknecht. ALFWorld:
Aligning Text and Embodied Environments for Interactive Learning. In International Con-

ference on Learning Representations (ICLR), 2021.

[86] A. Zeng, A. Wong, S. Welker, K. Choromanski, F. Tombari, A. Purohit, M. Ryoo, V. Sind-
hwani, J. Lee, V. Vanhoucke, et al. Socratic models: Composing zero-shot multimodal rea-
soning with language. arXiv preprint arXiv:2204.00598, 2022.

[87] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. arXiv preprint arXiv:2201.07207,
2022.

[88] L. P. Kaelbling and T. Lozano-Pérez. Integrated task and motion planning in belief space.
The International Journal of Robotics Research, 2013.

[89] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.
Integrated task and motion planning. Annual review of control, robotics, and autonomous

systems, 2021.

13

[90] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez. From skills to symbols: Learning sym-
bolic representations for abstract high-level planning. Journal of Artificial Intelligence Re-

search, 2018.

[91] J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu, and C. Xu. Voxel transformer for
3d object detection. In International Conference on Computer Vision (ICCV), 2021.

[92] C. He, R. Li, S. Li, and L. Zhang. Voxel set transformer: A set-to-set approach to 3d object
detection from point clouds. In Computer Vision and Pattern Recognition (CVPR), pages
8417–8427, 2022.

[93] K. Zheng, R. Chitnis, Y. Sung, G. Konidaris, and S. Tellex. Towards optimal correlational
object search. In International Conference on Robotics and Automation (ICRA), 2022.

[94] V. Blukis, C. Paxton, D. Fox, A. Garg, and Y. Artzi. A persistent spatial semantic representa-
tion for high-level natural language instruction execution. In Conference on Robot Learning,
pages 706–717. PMLR, 2022.

[95] R. Corona, S. Zhu, D. Klein, and T. Darrell. Voxel-informed language grounding. In Associ-

ation for Computational Linguistics (ACL), 2022.

[96] V. Sitzmann, J. Thies, F. Heide, M. Nießner, G. Wetzstein, and M. Zollhofer. Deepvoxels:
Learning persistent 3d feature embeddings. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2019.

[97] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics primitives with a
multiresolution hash encoding. ACM Transactions on Graphics (ToG), 2022.

[98] Sara Fridovich-Keil and Alex Yu, M. Tancik, Q. Chen, B. Recht, and A. Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, 2022.

[99] S. Lal, M. Prabhudesai, I. Mediratta, A. W. Harley, and K. Fragkiadaki. Coconets: Contin-
uous contrastive 3d scene representations. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2021.

[100] H.-Y. F. Tung, Z. Xian, M. Prabhudesai, S. Lal, and K. Fragkiadaki. 3d-oes: Viewpoint-
invariant object-factorized environment simulators. arXiv preprint arXiv:2011.06464, 2020.

[101] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger. Real-time 3d reconstruction at scale
using voxel hashing. ACM Transactions on Graphics (ToG), 2013.

[102] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler. Efficient transformers: A survey. ACM

Computing Surveys (CSUR), 2020.

[103] A. Goyal, A. R. Didolkar, A. Lamb, K. Badola, N. R. Ke, N. Rahaman, J. Binas, C. Blundell,
M. C. Mozer, and Y. Bengio. Coordination among neural modules through a shared global
workspace. In International Conference on Learning Representations (ICLR), 2021.

[104] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-end
object detection with transformers. In European conference on computer vision (ECCV),
2020.

[105] F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit,
A. Dosovitskiy, and T. Kipf. Object-centric learning with slot attention. Neural Informa-

tion Processing Systems (NeurIPs), 2020.

[106] R. Ranftl, A. Bochkovskiy, and V. Koltun. Vision transformers for dense prediction. In
International Conference on Computer Vision (ICCV), pages 12179–12188, 2021.

[107] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[108] S. James and P. Abbeel. Coarse-to-fine q-attention with learned path ranking. arXiv preprint

arXiv:2204.01571, 2022.

14

[109] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser. Tossingbot: Learning to throw
arbitrary objects with residual physics. IEEE Transactions on Robotics (T-RO), 2020.

[110] A. Kamath, M. Singh, Y. LeCun, I. Misra, G. Synnaeve, and N. Carion. Mdetr–modulated
detection for end-to-end multi-modal understanding. arXiv preprint arXiv:2104.12763, 2021.

[111] A. Birhane, V. U. Prabhu, and E. Kahembwe. Multimodal datasets: misogyny, pornography,
and malignant stereotypes. arXiv preprint arXiv:2110.01963, 2021.

[112] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell. On the dangers of stochastic
parrots: Can language models be too big? In 2021 ACM Conference on Fairness, Account-

ability, and Transparency, pages 610–623, 2021.

[113] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

[114] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee,
I. Mordatch, and J. Tompson. Implicit behavioral cloning. In Conference on Robot Learning

(CoRL), 2022.

15

	Introduction
	Related Work
	Perceiver-Actor
	Demonstrations
	Keyframes and Voxelization
	PerAct Agent
	Training Details

	Results
	Simulation Setup
	Simulation Results
	Global vs. Local Receptive Fields
	Real-Robot Results

	Limitations and Conclusion
	Task Details
	Open Drawer
	Slide Block
	Sweep to Dustpan
	Meat Off Grill
	Turn Tap
	Put in Drawer
	Close Jar
	Drag Stick
	Stack Blocks
	Screw Bulb
	Put in Safe
	Place Wine
	Put in Cupboard
	Sort Shape
	Push Buttons
	Insert Peg
	Stack Cups
	Place Cups

	PerAct Details
	Evaluation Workflow
	Simulation
	Real-Robot

	Robot Setup
	Simulation
	Real-Robot

	Data Augmentation
	Demo Augmentation
	Sensitivity Analysis
	High-Precision Tasks
	Additional Related Work
	Additional Q-Prediction Examples
	Things that did not work
	Limitations and Risks
	Emergent Properties
	Object Tracking
	Multi-Modal Actions

