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Abstract

This paper reveals that many state-of-the-art large language models (LLMs) lack1

hierarchical knowledge about our visual world, unaware of even well-established2

biology taxonomies. This shortcoming makes LLMs a bottleneck for vision3

LLMs’ hierarchical visual understanding (e.g., recognizing Anemone Fish but4

not Vertebrate). We arrive at these findings using about one million four-choice5

visual question answering (VQA) tasks constructed from six taxonomies and four6

image datasets. Interestingly, finetuning a vision LLM using our VQA tasks reaf-7

firms LLMs’ bottleneck effect to some extent because the VQA tasks improve the8

LLM’s hierarchical consistency more than the vision LLM’s. We conjecture that9

one cannot make vision LLMs understand visual concepts fully hierarchical until10

LLMs possess corresponding taxonomy knowledge.11

1 Introduction12

Taxonomy is natural and core in visual understanding. The biology taxonomies cover many objects13

in our visual world [53]; for example, a Boston Terrier belongs to the class of Terrier, which14

is a subtype of Dog, under Mammal, and ultimately part of the broader category Animal, forming a15

semantic path in the animal taxonomy: Animal→ Mammal→ Dog→ Terrier→ Boston Terrier.16

ImageNet [13] expands from the WordNet [37] taxonomy. Visual parts [28, 15, 3], attributes [14,17

27, 41], and relationships [26] can be grouped hierarchically due to shared characteristics.18

A high-performing, general-purpose visual understanding system should map visual inputs to both19

fine-grained leaf nodes of a taxonomy and coarse-grained inner nodes. Meanwhile, it should label an20

input hierarchically consistently along the path that traces a leaf up to the root. Figure 1 illustrates a21

case selected from our experiments that the model predictions lack hierarchical consistency, failing22

to follow the path of Animal→ Vertebrate→ Fish→ Spiny-finned Fish→ Anemone Fish.23

Surprisingly, little has been done to assess the hierarchical visual understanding performance of vi-24

sion large language models (VLLMs) [4, 29, 9, 72, 34, 29], which have the potential to make such25

a general-purpose vision system. Indeed, VLLMs unify various vision tasks (e.g., visual recogni-26

tion [13], captioning [8], question answering [2], and retrieval [62]) into one model by anchoring27

visual encoders [46, 66, 10, 39] to a versatile pretrained LLM [19, 60], typically orders of magnitude28

bigger, offering integrated interactions with humans that involve images and videos in conjunction29

with natural language prompts. Comprehensively benchmarking VLLMs is essential for realizing30

their potential and identifying opportunities for improvements. Extensive benchmarks have recently31

emerged, such as the bilingual MMBench [36], manually labeled MME [16], and MMMU [64]32

collected from college exams. We refer readers to [67] for an extensive list.33

This work systematically evaluates VLLMs’ hierarchical visual understanding capabilities using six34

taxonomies and four hierarchical image classification datasets. Conventionally, the hierarchical im-35
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Question: Identify the taxonomic group of the 
animal in the image. Answer with the letter of 
your chosen option.
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Figure 1: Left: Four-choice VQA tasks for evaluating VLLMs’ hierarchical visual understanding.
Right: A VLLM’s answers ( in red boxes ) deviate from the ground truth path (green arrows),
illustrating its lack of hierarchical consistency.

age classification [47, 44, 58, 61, 59] aims to classify visual inputs into semantically structured36

categories across multiple levels of specificity, in contrast to flat classification, which treats labels37

as mutually exclusive and unstructured. We construct about one million four-choice visual question-38

answering (VQA) tasks from the hierarchical datasets (see Figure 1 for some examples). The tasks39

traverse all taxonomy levels, and the four choices of an individual task are from the same level.40

When evaluating VLLMs’ performance over these tasks, we stress hierarchical consistency because41

it is unique to hierarchical visual understanding and crucial for adaptability to users’ varying granu-42

larity preferences [44, 12, 58].43

Our main findings are as follows. First of all, many state-of-the-art VLLMs struggle with our VQA44

tasks, substantially lacking hierarchical consistency. For example, Qwen2.5-VL-72B [4] makes45

mistakes over 67% of the hierarchical paths in the iNaturalist [53] taxonomy. Moreover, in our46

attempt to tracing down the error causes, we find that LLMs are the bottleneck and lack taxonomy47

knowledge about the visual world. In contrast, the visual encoder and projector modules demonstrate48

the ability to retain highly discriminative and well-structured visual features. We further show that49

the LLM embeddings about the visual concepts contain sufficient hierarchical cues and organize50

them orthogonally, but the model cannot decode them. Finally, finetuning a VLLM using our VQA51

tasks enhance its LLM’s (text) hierarchical consistency more than the VLLM’s (visual) hierarchical52

consistency, reaffirming LLMs’ bottleneck effect to some extent.53

2 VLLMs Lack Hierarchical Consistency in Visual Understanding54

We construct six hierarchical image classification benchmarks in a four-choice VQA format to sys-55

tematically assess VLLMs’ accuracy and hierarchical consistency in visual understanding. These56

benchmarks leverage datasets that inherently exhibit taxonomic structures, either derived from Word-57

Net [37] or grounded in biological classification standards. In what follows, we formally define hi-58

erarchical image classification, followed by two evaluation metrics about accuracy and consistency,59

respectively. We then describe our VQA tasks and the first set of experiment results in this work.60

2.1 Hierarchical Image Classification: Notations and Problem Statement61

General image classification tasks typically assume a flat label space, where each image x ∈ X is62

assigned a class label y ∈ Y out of a predefined set Y of mutually exclusive categories. However,63

many real-world problems exhibit rich semantic structures, in which labels are naturally organized64

into a hierarchy T = (Y, E) [44, 58, 61, 59], such as a tree or a directed acyclic graph. Here, E ⊆65

Y × Y denotes the set of directed edges representing parent-child relationships, where (yi, yj) ∈ E66

indicates that yi is the parent of yj in the hierarchy. In hierarchical image classification, the objective67

is not only to predict the leaf node label y ∈ Yleaf ⊆ Y but also to correctly recover its full ancestral68

path (y0, y1, · · · , yL) in T , where y0 denotes the root node and L is the depth of the hierarchy. In69

this paper, we aim to evaluate VLLMs’ hierarchical image classification capabilities, identify their70

limitations and underlying causes, and enhance their performance based on these insights.71
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Table 1: Overview of the six taxonomies and four datasets we use to construct the VQA tasks.
Dataset # Levels # Leaf Nodes # Test Images Hierarchy Distribution

CUB-200-2011 [54] 4 200 5,794 13-37-124-200
iNaturalist-Plant [53] 6 4,271 42.71K 5-14-85-286-1702-4271
iNaturalist-Animal [53] 6 5,388 53.88K 6-27-152-715-2988-5388
ImageNet-Animal [13] 11 397 19.85K 2-10-37-81-123-81-65-41-64-34-2
ImageNet-Artifact [13] 8 492 24.60K 5-40-149-205-162-62-44
Food-101 [5] 4 84 21.00K 6-29-40-24

2.2 Two Evaluation Metrics about Accuracy and Consistency, Respectively72

For evaluation, we mainly focus on the hierarchical consistency of model predictions [58, 43]. Be-73

sides, we are interested in the leaf-level classification accuracy [68, 35, 20], which can be viewed as74

the upper bound of the hierarchical consistency, detailed below.75

Hierarchical Consistent Accuracy (HCA) [58, 43]. This metric is defined as76

HCA =
1

N

N∑

i=1

Li∏

j=1

[
fθ

(
xi;Yj

)
= yij

]
, (1)

where N is the number of images in the testing set, Li denotes the depth of the hierarchy for the77

i-th input xi and may vary for different tasks in uneven trees, fθ : X %→ Y is an image classifier, Yj78

represents the set of labels at the j-th layer of the hierarchy, and [·] is an indicator function. HCA79

evaluates whether a model’s predictions are consistent with the entire hierarchical path from the root80

to a leaf node. Specifically, it measures the proportion of samples for which all ancestor nodes along81

the predicted paths match the ground truth. This is a stricter metric than flat accuracy and serves as82

our primary evaluation criterion for hierarchical classification.83

Leaf-Level Accuracy Accleaf [68, 35, 20]. It cares about the predictions at the most fine-grained84

level of a taxonomy:85

Accleaf =
1

N

N∑

i=1

[
fθ

(
xi;YL

)
= yiL

]
. (2)

Interestingly, Accleaf upper-bounds HCA because correctly assigning a leaf label yL to an input x86

contributes to Accleaf, but it does not increase HCA unless the model makes no mistake over all87

nodes in the path (y0, y1, · · · , yL) connecting the leaf label to the root.88

2.3 VQA Tasks Derived from Hierarchical Image Classification Datasets89

VLLMs are the image classifiers fθ in equations (1) and (2), and one can use language prompts to90

steer their output to a particular taxonomy level. More concretely, we formalize a VQA task for each91

image given a desired taxonomy level, (xi,Yj), i = 1, 2, · · · , N, j = 1, 2, · · · , Li, as follows.92

VQA Tasks. We derive approximately one million four-choice VQA tasks and six taxonomies from93

four hierarchical image classification datasets [54, 53, 13, 5] to evaluate VLLMs in a closed-set94

setting. This setting mitigates the challenge of open-set generation, which involves a prohibitively95

large prediction space [68] and ambiguous prediction granularity. We test different VQA prompts96

(provided in Appendix C), and they generally follow this format:97

<image> Given the plant in the image, what is its taxonomic classification
at the <hierarchy> (e.g., kingdom) level?
A.<similar class> B.<ground truth> C.<similar class> D.<similar class>
Answer with the option letter only. (Choices are shuffled in the experiments)

Arguably, the four-choice VQA tasks are easier than the conventional hierarchical image classifica-98

tion, whose label space is orders of magnitude bigger than four. To compensate this difference, we99

make sure the four choices are from the same level of a taxonomy and use “confusing labels” in100

the VQA tasks. Specifically, we use SigLIP [66] to compute the cosine similarity scores between101

an image and all text labels other than the ground truth (at a particular taxonomy level), selecting102
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Table 2: The hierarchical consistent accuracy (HCA) and leaf-level accuracy Accleaf of six open-
source VLLMs, two CLIP-style models, and the proprietary GPT-4o.

Model
iNat21-Animal iNat21-Plant ImgNet-Artifact ImgNet-Animal CUB-200

HCA Accleaf HCA Accleaf HCA Accleaf HCA Accleaf HCA Accleaf

Open-Source VLLMs
LLaVA-OV-7B [29] 4.53 26.47 4.46 27.51 17.15 80.77 34.36 65.50 11.51 44.23
InternVL2.5-8B [9] 8.52 27.65 5.56 28.36 21.42 78.07 37.82 65.19 22.07 45.56
InternVL3-8B [72] 11.93 35.40 8.68 36.39 17.87 77.50 42.31 69.41 25.75 50.52
Qwen2.5-VL-7B [4] 19.43 41.33 17.67 41.61 16.47 85.20 56.00 80.01 43.76 65.50
Qwen2.5-VL-32B [4] 26.90 46.98 24.64 48.57 26.30 84.51 62.23 80.48 56.80 69.00
Qwen2.5-VL-72B [4] 35.73 54.20 32.82 55.00 21.08 85.61 64.08 80.52 66.36 75.04

CLIP Models
OpenCLIP [10] 1.04 23.53 0.19 28.12 9.11 83.64 12.57 81.14 4.31 80.39
SigLIP [66] 2.15 12.71 0.46 18.84 6.41 87.19 24.40 86.85 23.18 73.84

Proprietary VLLM
GPT-4o [1] 42.95 63.79 35.53 62.95 27.57 86.05 67.69 85.50 81.96 87.25

the top three most similar labels as the distracting VQA choices. Besides, we provide the results of103

randomly sampled choices in Appendix B.104

Hierarchical Image Classification Datasets. Table 1 summarizes the six taxonomies and four105

datasets we use to construct the VQA tasks. CUB-200-2011 (CUB-200) [54] is a fine-grained bird106

dataset containing 200 species. We prompt GPT-4o [1] to map each class to a four-level taxon-107

omy: Order → Family → Genus → Specie. To ensure taxonomic accuracy, we cross-validate the108

generated hierarchy using corresponding entries from Wikipedia. In addition, we incorporate the109

iNaturalist-2021 (iNat21) dataset [53], a large-scale collection with species-level annotations span-110

ning various biological taxa. We separate it into two taxonomies, Plant and Animal, comprising111

4,271 and 5,388 leaf nodes, respectively, and six levels. Both CUB-200 and iNat21 provide well-112

established biological taxonomies with even hierarchical depths. To increase structural diversity, we113

also experiment with ImageNet-1K (ImgNet) [13], whose leaf labels are coarser-grained than iNat21114

and CUB-200. ImgNet is built upon the WordNet [37]. We extract two relatively well-structured115

subsets from ImgNet: ImgNet-Animal and ImgNet-Artifact, following [58]. We further refine these116

subsets to improve label quality and semantic consistency. Food-101 [5] is about food classification,117

and its hierarchy is constructed based on the recent work of Liang and Davis [32].118

2.4 Experiments and Findings119

We mainly study state-of-the-art open-source VLLMs: The Qwen2.5-VL [4] models of 7B, 32B,120

and 72B parameters, InternVL2.5-8B [9], InternVL3-8B [72], and LLaVA-OV-7B [29]. Meanwhile,121

we include the proprietary GPT-4o’s results for reference; in general, GPT-4o slightly outperforms122

Qwen-2.5-VL-72B, but the main findings below still apply. Finally, we experiment with two CLIP-123

style [46] models, SigLIP-SO400M [66] and OpenCLIP-L [10], following the experiment protocol124

in [46] except that the candidate labels for each test image are restricted to the same four choices as125

fed to VLLMs. Table 2 shows the results about the models’ hierarchical consistency (HCA) and leaf-126

level accuracy (Accleaf) on iNat21, ImgNet, and CUB-200. The Food-101 results are in Appendix B127

to save space in the main text. We draw the following conclusions.128

VLLMs Lack Hierarchical Consistency in Visual Understanding. Regardless of the leaf-level129

accuracy, all open-source VLLMs, CLIP models, and GPT-4o lack hierarchical consistency because130

their HCA is significantly lower than Accleaf (up to 99.3% relatively). The gaps on iNat21-Plant are131

especially big (e.g., 32.82 vs. 55.00 for Qwen2.5-VL-72B and 35.53 vs. 62.95 for GPT-4o). While132

one might expect better results on ImgNet, neither open-source VLLMs nor GPT-4o can make their133

HCA match Accleaf — more than 20% decrease for all models, indicating that VLLMs make many134

mistakes along the paths from the taxonomies’ roots to the leaf nodes even when they are correct135

over the leaves.136

Fine-Grained Visual Recognition Remains Challenging for VLLMs. While VLLMs and CLIP137

models perform moderately well on ImgNet, they struggle with fine-grained object recognition; on138
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Figure 2: Prompt variants and their effects on VLLMs’ hierarchical consistency (HCA) and fine-
grained recognition Accleaf (Gen: general prompts, Hier: hierarchical prompts, +CoT: prompts
with Chain-of-Thought reasoning, +Taxonomy: prompts that include an explicit taxonomy in the
JSON format. Please see Appendix C for details and examples.).

the iNat21 dataset, even the best-performing GPT-4o gives rise to only 63% leaf-level accuracy, far139

from its 86% on ImgNet. Notably, InternVL2.5 and LLaVA-OV’s results (about 27%) on iNat21 are140

only slightly above random guess (25%), and the CLIP models are barely on par with random guess.141

In contrast, a small task-specialized model [23] leads to 61.56% leaf-level accuracy on iNat21, and142

some models [11, 69] achieve 93% accuracy on CUB-200, outperforming all the general-purpose143

VLLMs in our experiments. These findings are consistent with the recent work [17, 68, 20, 63] that144

recognizes the limitation of VLLMs on (fine-grained) image classification.145

Scaling Laws Works for Hierarchical Visual Understanding. Both hierarchical consistency and146

leaf-level accuracy improve as the size of the Qwen2.5-VL series of models increases. Moreover, the147

gap between HCA and Accleaf progressively narrows. However, the largest models (Qwen2.5-VL-148

72B and GPT-4o) are still unsatisfactory in terms of both hierarchical consistency and fine-grained149

recognition, especially on the iNat21 benchmark.150

Qwen2.5-VLs Are Among the Most Powerful Open-Source VLLMs. LLaVA-OV-7B’s hierar-151

chical consistency and leaf-level accuracy are below InternVLs and Qwen2.5-VLs. InternVL3-8B152

improves upon InternVL2.5-8B, but it is still under par with Qwen2.5-VL-7B.153

3 Why Are VLLMs Poor at Hierarchical Image Classification?154

We systematically investigate potential causes of VLLMs’ low performance on hierarchical visual155

understanding. We first extensively study prompt variations in Section 3.1 and reveal that some156

prompts can lead to marginally better results than the rest, but the results remain generally bad. We157

then examine VLLMs’ visual encoders and subsequent visual tokens to see whether and where es-158

sential visual information is lost when it forwards through VLLMs (Section 3.2). Interestingly, the159

discriminative cues in the visual tokens are maintained across various stages of the VLLM archi-160

tectures, leading to about the same hierarchical image classification results immediately after the161

visual encoder, after the projection to the language token space, and at the very last layer of an162

LLM. Finally and surprisingly, we find that the generally believed powerful LLMs, even the one163

with 72B parameters in our experiments, lack basic taxonomy knowledge and are likely responsible164

for VLLMs’ poor performance on hierarchical visual understanding! (We believe this conclusion is165

true for open-source VLLMs, but we urge readers not to extrapolate it to proprietary LLMs because166

we could not probe their intermediate embeddings.)167

3.1 Language Prompts Are Not the Bottleneck168

Prompt engineering often comes as a remedy for boosting VLLMs’ performance in different appli-169

cations [6, 55, 68, 58]. Could it also rescue VLLMs on our hierarchical visual understanding tasks?170

We strive to test prompt variants comprehensively. We specify the taxonomy levels in the prompts171

for CUB-200 [54] and iNat21 [53], whose taxonomies are grounded in biology. We even add CUB-172

200’s complete taxonomy as a JSON file to the prompts. For the other datasets with more generic173

taxonomies, we test general and chain-of-thought [24, 57] prompts derived from the template in174

Section 2.3. Appendix C provides all prompts in detail, and Figure 2 shows the results of some175

high-performing prompts. We can see from the results that the prompt design alone is insufficient to176

improve VLLMs’ hierarchical consistency or leaf-level accuracy.177
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Table 3: (Text) HCA of VLLMs’ LLMs and its correlation ρ with VLLMs’ (visual) HCA

LLM of iNat21-Animal iNat21-Plant ImgNet-Artifact ImgNet-Animal CUB-200 ρ(text,visual)

LLaVA-OV-7B [29] 11.56 28.49 29.27 56.93 33.45 0.9116
InternVL2.5-8B [9] 38.15 41.15 35.32 66.11 49.11 0.8832
InternVL3-8B [72] 54.20 47.49 31.86 69.92 59.87 0.9030
Qwen2.5-VL-7B [4] 52.08 64.21 35.06 68.14 63.86 0.8640

GPT-4o [1] 96.85 96.70 42.31 89.56 98.81 0.7980

3.2 Visual Embeddings Are Not the Bottleneck178

Figure 3: Qwen2.5-VL-7B vs. linearly
probing the visual tokens at various
stages of Qwen2.5-VL-7B on CUB-200
and iNat21-Plant.

The open-source VLLMs in this work vary in specific im-179

plementations, but their core components are the same:180

A visual encoder mapping images to embeddings, a pro-181

jector translating visual embeddings into the language182

token space, and an LLM. If the hierarchical structure183

and discriminativeness are lost before the visual embed-184

dings reach LLMs, the overall VLLMs would inevitably185

perform poorly on our hierarchical visual understanding186

tasks. Hence, it is crucial to examine the visual embed-187

dings. We train three linear classifiers per taxonomy level188

to respectively probe the visual encoder, projector, and189

last layer of an LLM, where the image representations190

are an average of the visual tokens. Further details and191

results of the probing are provided in Appendix C.192

Figure 3 shows the probing results of Qwen2.5-VL-7B193

over CUB-200 [54] and iNat21-Plant [53]. Remarkably,194

the linear classifiers outperform Qwen2.5-VL-7B all around. They achieve not only higher leaf-195

level accuracy than Qwen2.5-VL but also much better hierarchical consistency, even though the196

classifiers of different taxonomy levels are independently trained. Moreover, the linear probing197

results remain about the same at different stages of the forward propagation (i.e., immediately after198

the visual encoder, projector, and last layer of the VLLM), indicating that the visual tokens remain199

discriminative and structurally rich throughout different LLM layers. These results are a strong200

defense for the visual embeddings: They carry sufficient hierarchical and discriminative cues and201

should not be blamed for VLLMs’ poor hierarchical visual understanding performance.202

3.3 LLMs Are the Bottleneck in VLLMs’ Hierarchical Visual Understanding203

The huge discrepancy between the results of linearly probing visual tokens and VLLM performance204

in Figure 3 propels us to investigate other potential causes of VLLMs’ low hierarchical consistency205

beyond the visual embeddings, and we find that the influential LLMs are the bottleneck.206

3.3.1 Open-Souce VLLMs’ LLMs Lack Taxonomy Knowledge207

We separate LLMs from open-source VLLMs and examine how much they know about the tax-208

onomies used in our experiments. Mechanically, we reformulate our VQA tasks to a text-only209

version by replacing the images with their corresponding leaf labels:210

Given the <leaf node label> (e.g., Anemone Fish), what is its taxonomic
classification at the <hierarchy> (e.g., kingdom) level?
A.<similar class> B.<ground truth> C.<similar class> D.<similar class>
Answer with the option letter only. (Choices are shuffled in the experiments)

This process results in about 0.7 million QA tasks after deduplication. We use them to assess LLMs211

and report the (text) HCA results in Table 3 — we use (text/visual) HCA to refer to LLMs/VLLMs’212

performance on text/visual QA tasks for clarity. We find that Qwen2.5-VL-7B’s LLM achieves only213

63.86% (text) HCA on CUB-200, whose taxonomy comprises merely four levels. The LLMs of214

LLaVA-OV and InternVL-2.5 give rise to even lower (text) HCAs on CUB-200 (33% and 49%).215

One might wonder if these low (text) HCAs are due to that the biology taxonomy underlying CUB-216

200 is too specific for general LLMs.217
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Figure 4: Text HCA of different
VLLMs’ LLMs over the iNat21-Plant
taxonomies of various depths.

However, Table 3 further reveals that the LLMs also can-218

not perform well on ImgNet’s general taxonomies. Be-219

sides, we progressively simplify our QA tasks by chop-220

ping the iNat21-Plant taxonomy level by level. Figure 4221

plots the (text) HCA results, which increase as the taxon-222

omy becomes shallower (and, correspondingly, the leaf223

nodes are less fine-grained). Still, they are below 90% re-224

gardless of the taxonomies’ depths. There are noticeable225

drops at Levels 3 and 5 for Qwen2.5-VL and LLaVA-226

OV’s LLMs, implying that they pose more challenges227

than the other levels for the LLMs’ hierarchical reason-228

ing. These results are surprising to a large degree, given229

the recent success of LLMs over various benchmarks and230

domains [1, 50, 60, 33, 45].231

Correlation between (text) HCA and Accleaf-scaled (visual) HCA. An LLM’s low (text) HCA232

undoubtedly discounts its corresponding VLLM’s hierarchical consistency on visual inputs. We can233

quantify this notion using Pearson’s correlation coefficient. Since the (text) HCA’s corresponding234

leaf-level accuracy is 100% — we replaced images with their ground-truth leaf labels when making235

the text QA tasks, we normalize (visual) HCA by 1/Accleaf. The last column in Table 3 shows that236

the correlation between (text) HCA and Accleaf-scaled (visual) HCA is as high as 0.9116.237

A note about GPT-4o’s (text) HCA. The analyses above apply to only open-source VLLMs because238

we cannot separate LLMs from the proprietary GPT-4o. Unlike the open-source LLMs’ low (text)239

HCA, GPT-4o’s (text) HCA scores are as high as 98.81. Hence, the LLM part is not GPT-4o’s240

bottleneck in hierarchical visual understanding; instead, there are other possible causes of GPT-4o’s241

hierarchical inconsistency about the visual world.242

3.3.2 Why Are LLMs Poor at Hierarchical Text Classification?243

In what follows, we present some preliminary quests into why and where LLMs fail at the seemingly244

simple hierarchical four-choice text classification tasks. We rule out the vision-language tuning that245

anchors visual encoders to pretrained LLMs and conclude that the language decoders are responsible246

for LLMs’ lack of taxonomy knowledge.247

Figure 5: Left: (Text) HCA difference between vision-language-tuned LLMs and the original ones.
Right: (Text) HCA of linearly probing different layers of Qwen-2.5-VL-7B’s LLM on iNat21-Plant.

Vision-Language Tuning Is Not the Reason. Acute readers likely have noted that our previous248

LLM results are about the LLM parts of VLLMs, not the “true” standalone LLMs. Does the vision-249

language tuning, which is needed when one connects a visual encoder with an LLM, compromise250

LLMs and potentially induce catastrophic forgetting of taxonomy knowledge?251

We answer this question by studying the original LLMs from which VLLMs are initialized, using the252

same text-only hierarchical classification setup described in Section 3.3. Figure 5 (Left) compares253

LLaVA-OV-7B and Qwen2.5-VL-7B’s LLMs with their corresponding original LLMs. First of all,254

we see that the original LLMs are on par with or even worse than their vision-tuned counterparts,255

indicates that the standalone LLMs still lack a strong grasp of taxonomy knowledge. Interestingly,256

Qwen2.5-VL’s LLM actually outperforms its original LLM on all taxonomies; in other words, the257

vision-language tuning actually enhances the LLM’s (text) hierarchical consistency. In contrast,258

LLaVA-OV’s vision-language tuning weakens the LLM’s (text) HCA.259
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LLMs Encode Hierarchical Structures Effectively but Cannot Decode Them Sufficiently. Next,260

we shift attention to the LLM embeddings of the concepts in our taxonomies — if the embeddings261

do not provide sufficient hierarchical structural cues, there is little chance LLMs can decode them.262

To this end, we convert a taxonomy into language prompts of three variants:263

Prompt 1: <leaf node label> (e.g., Blue Jay) belongs to the <hierarchy>
(e.g., Order) of <ground truth> (e.g., Passeriformes).
Prompt 2: Given the <leaf node label>, what is its taxonomic classification
at the <hierarchy> level? It belongs to <ground truth>.
Prompt 3: Given the <leaf node label>, what is its taxonomic classification
at the <hierarchy> level?

We then train a linear classifier for each taxonomy level to probe the average embedding of the264

language tokens in every layer of an LLM. Figure 5 (Right) summarizes the (text) HCA results of265

Qwen2.5-VL-7B’s LLM on iNat21-Plant: The text embeddings give rise to highly hierarchically266

consistent linear probes. Especially for Prompt 3, with the ground-truth hierarchy labels withheld,267

the linear probes that receive only the leaf node embeddings can still achieve near-perfect hierarchi-268

cal consistency in the LLM’s deeper layers. In other words, the specialized linear probes can decode269

the taxonomy knowledge significantly better than the general-purpose LLM.270

LLMs’ Hierarchical Orthogonality Does Not Guarantee Hierarchical Consistency. Park et al.271

[42] recently predicted that LLMs represent hierarchical relations orthogonally in the representation272

space, e.g., animal is orthogonal to bird−mammal. They validated the prediction using Gemma [51]273

and LLaMA [19], and we further verify it in Figure 6 using both the original Qwen2.5-7B and the274

one after vision-language tuning. This pleasant geometric interpretation is, unfortunately, shadowed275

by the poor performance of Gemma and Qwen2.5-7B on our taxonomy QA tasks — we report the276

Gemma results in Appendix C. We argue that more fine-grained analyses of the LLM representation277

are required to establish a relationship between LLMs’ hierarchical consistency and geometry.278

Figure 6: Hierarchical semantics are encoded as orthogonality in different LLMs’ representation
spaces (figures drawn following [42]).

4 LLMs Gain More Hierarchical Consistency than VLLMs from Finetuning279

Could we improve the VLLMs’ hierarchical visual understanding capabilities via finetuning using280

our VQA tasks built upon taxonomies? Likely, no, because LLMs are the bottleneck: The LLMs’281

hierarchical consistency over text-only tasks is so bad (Table 3) that we conjecture this shortcoming282

can only be fixed in the pretraining stage rather than the “tail patching” finetuning stage.283

Still, the following presents some LoRA-finetuning [22] experiments with Qwen2.5-VL-7B, the284

best-performing 7B VLLM in our previous experiments, mainly for two reasons. One is to see285

how much finetuning could help, even though we believe pretraining instead of finetuning should286

be the rescue to VLLMs’ hierarchical inconsistency. The other is further to investigate the interplay287

between VLLMs and their LLMs — interestingly, our results reaffirm that LLMs are the bottleneck288

for VLLMs’ hierarchical visual understanding because LLMs’ performance gain from the finetuning289

upper-bounds VLLMs’. Our finetuning data consists of VQA tasks constructed from iNat21-Plant’s290

training set, covering 3,771 species nodes in the taxonomy instead of the full 4,271 species nodes.291

We then evaluate the finetuned model’s improvement on iNat21-Plant, its generalization to other292

hierarchical visual understanding datasets, and how well it maintains the general vision-language293

capabilities. Please see Appendix D for more details on the training.294

Results and Discussion. Tables 4 shows that finetuning Qwen2.5-VL using the VQA tasks that295

partially cover the iNat21-Plant taxonomy delivers improvements on both iNat21-Plant and other296

datasets. On iNat21-Plant, HCA rises from 17.67 to 29.34 (+11.67 absolute gain), while Accleaf297
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Table 4: (Visual) HCA and Accleaf of Qwen2.5-VL-7B before and after the LoRA-finetuning.

Model iNat21-Animal iNat21-Plant ImgNet-Animal CUB-200

HCA Accleaf HCA Accleaf HCA Accleaf HCA Accleaf

Qwen2.5-VL-7B 19.43 41.33 17.67 41.61 56.00 80.01 43.76 65.50
Qwen2.5-VL-7B (LoRA) 23.38 45.00 29.34 47.66 58.62 80.28 46.17 67.12
∆ +3.95 +3.67 +11.67 +6.05 +2.62 +0.27 +2.41 +1.62

Table 5: (Text) HCA of the LLM of Qwen2.5-VL-7B before and after the LoRA-finetuning.
Model iNat21-Animal iNat21-Plant ImgNet-Animal CUB-200

LLM of Qwen2.5-VL-7B 52.08 64.21 68.14 63.86
LLM of Qwen2.5-VL-7B (LoRA) 65.63 84.87 72.39 66.15
∆ +13.55 +20.66 +4.25 +2.29

gains 6.05. The HCA on ImageNet-Animal increases from 56.00 to 58.62 and on CUB-200 from298

43.76 to 46.17. More interestingly, Table 5 indicates that the LLM’s (text) HCA increases more299

from the finetuning than Qwen2.5-VL’s (visual) HCA (e.g., 20.66 vs. 11.67 on iNat21-Plant and300

4.25 vs. 2.62 on ImgNet-Animal). To some extent, this finding reaffirms that LLMs are the bottle-301

neck of VLLMs’ hierarchical visual understanding, and one has to improve LLMs’ (text) taxonomy302

knowledge to boost VLLMs’ (visual) hierarchical consistency. Besides, our results demonstrate that303

vision-language training can benefit both VLLMs and their LLMs, aligning with some recent ad-304

vocates for improving LLMs using multimodal data beyond language only [31, 52]. Appendix D305

reports more results and discussion, including that the finetuned model does not lose its general306

capability tested on MME [16], MMBench [36], and SEED-Bench [30].307

5 Related Work308

Hierarchical classification [47, 25] enables many applications. It is vital for a comprehensive un-309

derstanding of the visual world [61, 43, 65, 48, 7, 44] and many language concepts [70, 56, 71, 21].310

Several recent studies have revisited this longstanding problem and shown that CLIP-style [46] mod-311

els lack consistency across taxonomic levels [58, 18]. Wu et al. [58] evaluate CLIP under multiple312

levels of semantic granularity and introduce a hierarchy-consistent prompt tuning method. Pal et al.313

[40] enhance CLIP’s hierarchical representations by embedding them to a hyperbolic space. Xia et al.314

[59] further extend this direction by incorporating graph-based representation learning. Novack et al.315

[38] use hierarchical information to improve zero-shot classification accuracy. Zhang et al. [68] first316

identified the limitations of current VLLMs in fine-grained image classification. Building on this,317

Liu et al. [35] further assess a broader range of VLLMs. He et al. [20] point out a potential cause,318

the scarcity of image class names in pretraining. Beyond closed-set evaluation [63, 17], Conti et al.319

[12] benchmark VLLMs’ open-world classification, while Snæbjarnarson et al. [49] propose to eval-320

uate VLLMs’ open-set predictions using a taxonomic similarity rather than exact string matching.321

However, to the best of our knowledge, no prior work has examined VLLMs under the hierarchical322

visual understanding context.323

6 Conclusion324

This work presents a systematic evaluation of state-of-the-art VLLMs’s hierarchical visual under-325

standing performance. We find that both open-source VLLMs and the proprietary GPT-4o give rise326

to low hierarchical consistency over six taxonomies of visual concepts. Probing results reveal that327

the visual and text embeddings carry rich hierarchical and discriminative cues, whereas the LLMs328

fail to decode them, implying LLMs are the bottleneck. Finetuning on hierarchical VQA tasks im-329

proves VLLMs’ hierarchical consistency on visual inputs while preserving their performance on gen-330

eral VQA tasks. Intriguingly, the finetuning benefits the LLMs (text) hierarchical consistency more331

than the corresponding VLLM’s (visual) hierarchical measure. Ingesting the taxonomy-knowledge332

gap to LLMs, likely during pretraining rather than post-hoc patching, is a promising path toward333

VLLMs that reason coherently across different levels of semantic granularity about the visual world.334
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• The answer NA means that the paper has no limitation while the answer No means551

that the paper has limitations, but those are not discussed in the paper.552

• The authors are encouraged to create a separate "Limitations" section in their paper.553

• The paper should point out any strong assumptions and how robust the results are to554

violations of these assumptions (e.g., independence assumptions, noiseless settings,555

model well-specification, asymptotic approximations only holding locally). The au-556

thors should reflect on how these assumptions might be violated in practice and what557

the implications would be.558

• The authors should reflect on the scope of the claims made, e.g., if the approach was559

only tested on a few datasets or with a few runs. In general, empirical results often560

depend on implicit assumptions, which should be articulated.561

• The authors should reflect on the factors that influence the performance of the ap-562

proach. For example, a facial recognition algorithm may perform poorly when image563

resolution is low or images are taken in low lighting. Or a speech-to-text system might564

not be used reliably to provide closed captions for online lectures because it fails to565

handle technical jargon.566

• The authors should discuss the computational efficiency of the proposed algorithms567

and how they scale with dataset size.568

• If applicable, the authors should discuss possible limitations of their approach to ad-569

dress problems of privacy and fairness.570

• While the authors might fear that complete honesty about limitations might be used by571

reviewers as grounds for rejection, a worse outcome might be that reviewers discover572

limitations that aren’t acknowledged in the paper. The authors should use their best573

judgment and recognize that individual actions in favor of transparency play an impor-574

tant role in developing norms that preserve the integrity of the community. Reviewers575

will be specifically instructed to not penalize honesty concerning limitations.576

3. Theory assumptions and proofs577

Question: For each theoretical result, does the paper provide the full set of assumptions and578

a complete (and correct) proof?579

Answer: [NA]580
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Justification: The paper does not include theoretical results.581

Guidelines:582

• The answer NA means that the paper does not include theoretical results.583

• All the theorems, formulas, and proofs in the paper should be numbered and cross-584

referenced.585

• All assumptions should be clearly stated or referenced in the statement of any theo-586

rems.587

• The proofs can either appear in the main paper or the supplemental material, but if588

they appear in the supplemental material, the authors are encouraged to provide a589

short proof sketch to provide intuition.590

• Inversely, any informal proof provided in the core of the paper should be comple-591

mented by formal proofs provided in appendix or supplemental material.592

• Theorems and Lemmas that the proof relies upon should be properly referenced.593

4. Experimental result reproducibility594

Question: Does the paper fully disclose all the information needed to reproduce the main595

experimental results of the paper to the extent that it affects the main claims and/or conclu-596

sions of the paper (regardless of whether the code and data are provided or not)?597

Answer: [Yes]598

Justification: We provide detailed descriptions of evaluation benchmarks, model architec-599

tures, training protocols, and evaluation metrics to ensure reproducibility of the main results600

in the paper. The code will be released upon acceptance.601

Guidelines:602

• The answer NA means that the paper does not include experiments.603

• If the paper includes experiments, a No answer to this question will not be perceived604

well by the reviewers: Making the paper reproducible is important, regardless of605

whether the code and data are provided or not.606

• If the contribution is a dataset and/or model, the authors should describe the steps607

taken to make their results reproducible or verifiable.608

• Depending on the contribution, reproducibility can be accomplished in various ways.609

For example, if the contribution is a novel architecture, describing the architecture610

fully might suffice, or if the contribution is a specific model and empirical evaluation,611

it may be necessary to either make it possible for others to replicate the model with612

the same dataset, or provide access to the model. In general. releasing code and data613

is often one good way to accomplish this, but reproducibility can also be provided via614

detailed instructions for how to replicate the results, access to a hosted model (e.g., in615

the case of a large language model), releasing of a model checkpoint, or other means616

that are appropriate to the research performed.617

• While NeurIPS does not require releasing code, the conference does require all sub-618

missions to provide some reasonable avenue for reproducibility, which may depend619

on the nature of the contribution. For example620

(a) If the contribution is primarily a new algorithm, the paper should make it clear621

how to reproduce that algorithm.622

(b) If the contribution is primarily a new model architecture, the paper should describe623

the architecture clearly and fully.624

(c) If the contribution is a new model (e.g., a large language model), then there should625

either be a way to access this model for reproducing the results or a way to re-626

produce the model (e.g., with an open-source dataset or instructions for how to627

construct the dataset).628

(d) We recognize that reproducibility may be tricky in some cases, in which case au-629

thors are welcome to describe the particular way they provide for reproducibility.630

In the case of closed-source models, it may be that access to the model is limited in631

some way (e.g., to registered users), but it should be possible for other researchers632

to have some path to reproducing or verifying the results.633

5. Open access to data and code634
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Question: Does the paper provide open access to the data and code, with sufficient instruc-635

tions to faithfully reproduce the main experimental results, as described in supplemental636

material?637

Answer: [Yes]638

Justification: The code and data will be made publicly available upon acceptance.639

Guidelines:640

• The answer NA means that paper does not include experiments requiring code.641

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/642

public/guides/CodeSubmissionPolicy) for more details.643

• While we encourage the release of code and data, we understand that this might not644

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not645

including code, unless this is central to the contribution (e.g., for a new open-source646

benchmark).647

• The instructions should contain the exact command and environment needed to run to648

reproduce the results. See the NeurIPS code and data submission guidelines (https:649

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.650

• The authors should provide instructions on data access and preparation, including how651

to access the raw data, preprocessed data, intermediate data, and generated data, etc.652

• The authors should provide scripts to reproduce all experimental results for the new653

proposed method and baselines. If only a subset of experiments are reproducible, they654

should state which ones are omitted from the script and why.655

• At submission time, to preserve anonymity, the authors should release anonymized656

versions (if applicable).657

• Providing as much information as possible in supplemental material (appended to the658

paper) is recommended, but including URLs to data and code is permitted.659

6. Experimental setting/details660

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-661

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the662

results?663

Answer:[Yes]664

Justification: We provide detailed descriptions of data curation procedures, model architec-665

tures, evaluation metrics, and training protocols in corresponding sections. The code for all666

experiments will be released upon acceptance.667

Guidelines:668

• The answer NA means that the paper does not include experiments.669

• The experimental setting should be presented in the core of the paper to a level of670

detail that is necessary to appreciate the results and make sense of them.671

• The full details can be provided either with the code, in appendix, or as supplemental672

material.673

7. Experiment statistical significance674

Question: Does the paper report error bars suitably and correctly defined or other appropri-675

ate information about the statistical significance of the experiments?676

Answer: [No]677

Justification: We did not include error bars or statistical significance analysis.678

Guidelines:679

• The answer NA means that the paper does not include experiments.680

• The authors should answer "Yes" if the results are accompanied by error bars, confi-681

dence intervals, or statistical significance tests, at least for the experiments that support682

the main claims of the paper.683

• The factors of variability that the error bars are capturing should be clearly stated (for684

example, train/test split, initialization, random drawing of some parameter, or overall685

run with given experimental conditions).686
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• The method for calculating the error bars should be explained (closed form formula,687

call to a library function, bootstrap, etc.)688

• The assumptions made should be given (e.g., Normally distributed errors).689

• It should be clear whether the error bar is the standard deviation or the standard error690

of the mean.691

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-692

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of693

Normality of errors is not verified.694

• For asymmetric distributions, the authors should be careful not to show in tables or695

figures symmetric error bars that would yield results that are out of range (e.g. negative696

error rates).697

• If error bars are reported in tables or plots, The authors should explain in the text how698

they were calculated and reference the corresponding figures or tables in the text.699

8. Experiments compute resources700

Question: For each experiment, does the paper provide sufficient information on the com-701

puter resources (type of compute workers, memory, time of execution) needed to reproduce702

the experiments?703

Answer: [Yes]704

Justification: Discussed in Appendix D.705

Guidelines:706

• The answer NA means that the paper does not include experiments.707

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,708

or cloud provider, including relevant memory and storage.709

• The paper should provide the amount of compute required for each of the individual710

experimental runs as well as estimate the total compute.711

• The paper should disclose whether the full research project required more compute712

than the experiments reported in the paper (e.g., preliminary or failed experiments713

that didn’t make it into the paper).714

9. Code of ethics715

Question: Does the research conducted in the paper conform, in every respect, with the716

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?717

Answer: [Yes]718

Justification: We have carefully reviewed the NeurIPS Code of Ethics.719

Guidelines:720

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.721

• If the authors answer No, they should explain the special circumstances that require a722

deviation from the Code of Ethics.723

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-724

eration due to laws or regulations in their jurisdiction).725

10. Broader impacts726

Question: Does the paper discuss both potential positive societal impacts and negative727

societal impacts of the work performed?728

Answer: [Yes]729

Justification: Discussed in Appendix F.730

Guidelines:731

• The answer NA means that there is no societal impact of the work performed.732

• If the authors answer NA or No, they should explain why their work has no societal733

impact or why the paper does not address societal impact.734

• Examples of negative societal impacts include potential malicious or unintended uses735

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations736

(e.g., deployment of technologies that could make decisions that unfairly impact spe-737

cific groups), privacy considerations, and security considerations.738
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• The conference expects that many papers will be foundational research and not tied739

to particular applications, let alone deployments. However, if there is a direct path to740

any negative applications, the authors should point it out. For example, it is legitimate741

to point out that an improvement in the quality of generative models could be used to742

generate deepfakes for disinformation. On the other hand, it is not needed to point out743

that a generic algorithm for optimizing neural networks could enable people to train744

models that generate Deepfakes faster.745

• The authors should consider possible harms that could arise when the technology is746

being used as intended and functioning correctly, harms that could arise when the747

technology is being used as intended but gives incorrect results, and harms following748

from (intentional or unintentional) misuse of the technology.749

• If there are negative societal impacts, the authors could also discuss possible mitiga-750

tion strategies (e.g., gated release of models, providing defenses in addition to attacks,751

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from752

feedback over time, improving the efficiency and accessibility of ML).753

11. Safeguards754

Question: Does the paper describe safeguards that have been put in place for responsible755

release of data or models that have a high risk for misuse (e.g., pretrained language models,756

image generators, or scraped datasets)?757

Answer: [NA]758

Justification: The paper poses no such risks.759

Guidelines:760

• The answer NA means that the paper poses no such risks.761

• Released models that have a high risk for misuse or dual-use should be released with762

necessary safeguards to allow for controlled use of the model, for example by re-763

quiring that users adhere to usage guidelines or restrictions to access the model or764

implementing safety filters.765

• Datasets that have been scraped from the Internet could pose safety risks. The authors766

should describe how they avoided releasing unsafe images.767

• We recognize that providing effective safeguards is challenging, and many papers do768

not require this, but we encourage authors to take this into account and make a best769

faith effort.770

12. Licenses for existing assets771

Question: Are the creators or original owners of assets (e.g., code, data, models), used in772

the paper, properly credited and are the license and terms of use explicitly mentioned and773

properly respected?774

Answer: [Yes]775

Justification: We properly credit all external assets used in this work, including datasets,776

pre-trained models, and code repositories. Licenses and terms of use are reviewed and777

respected, with appropriate citations provided in the paper.778

Guidelines:779

• The answer NA means that the paper does not use existing assets.780

• The authors should cite the original paper that produced the code package or dataset.781

• The authors should state which version of the asset is used and, if possible, include a782

URL.783

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.784

• For scraped data from a particular source (e.g., website), the copyright and terms of785

service of that source should be provided.786

• If assets are released, the license, copyright information, and terms of use in the pack-787

age should be provided. For popular datasets, paperswithcode.com/datasets has788

curated licenses for some datasets. Their licensing guide can help determine the li-789

cense of a dataset.790
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• For existing datasets that are re-packaged, both the original license and the license of791

the derived asset (if it has changed) should be provided.792

• If this information is not available online, the authors are encouraged to reach out to793

the asset’s creators.794

13. New assets795

Question: Are new assets introduced in the paper well documented and is the documenta-796

tion provided alongside the assets?797

Answer: [Yes]798

Justification: We provide detailed descriptions of the hierarchical VQA benchmark curation799

process, model architecture, training protocols, and evaluation metrics in the corresponding800

sections. All data, code, and model checkpoints will be released upon acceptance.801

Guidelines:802

• The answer NA means that the paper does not release new assets.803

• Researchers should communicate the details of the dataset/code/model as part of their804

submissions via structured templates. This includes details about training, license,805

limitations, etc.806

• The paper should discuss whether and how consent was obtained from people whose807

asset is used.808

• At submission time, remember to anonymize your assets (if applicable). You can809

either create an anonymized URL or include an anonymized zip file.810

14. Crowdsourcing and research with human subjects811

Question: For crowdsourcing experiments and research with human subjects, does the pa-812

per include the full text of instructions given to participants and screenshots, if applicable,813

as well as details about compensation (if any)?814

Answer: [NA]815

Justification: The paper does not involve crowdsourcing nor research with human subjects.816

Guidelines:817

• The answer NA means that the paper does not involve crowdsourcing nor research818

with human subjects.819

• Including this information in the supplemental material is fine, but if the main contri-820

bution of the paper involves human subjects, then as much detail as possible should821

be included in the main paper.822

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-823

tion, or other labor should be paid at least the minimum wage in the country of the824

data collector.825

15. Institutional review board (IRB) approvals or equivalent for research with human826

subjects827

Question: Does the paper describe potential risks incurred by study participants, whether828

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)829

approvals (or an equivalent approval/review based on the requirements of your country or830

institution) were obtained?831

Answer: [NA]832

Justification: The paper does not involve crowdsourcing nor research with human subjects.833

Guidelines:834

• The answer NA means that the paper does not involve crowdsourcing nor research835

with human subjects.836

• Depending on the country in which research is conducted, IRB approval (or equiva-837

lent) may be required for any human subjects research. If you obtained IRB approval,838

you should clearly state this in the paper.839

• We recognize that the procedures for this may vary significantly between institutions840

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the841

guidelines for their institution.842
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• For initial submissions, do not include any information that would break anonymity843

(if applicable), such as the institution conducting the review.844

16. Declaration of LLM usage845

Question: Does the paper describe the usage of LLMs if it is an important, original, or846

non-standard component of the core methods in this research? Note that if the LLM is used847

only for writing, editing, or formatting purposes and does not impact the core methodology,848

scientific rigorousness, or originality of the research, declaration is not required.849

Answer: [Yes]850

Justification: Our evaluation involves vision large language models (VLLMs) with large851

language model (LLM) backbones as a core component. We describe how the LLM is852

used for hierarchical classification and detail its role in the architecture, prompting, and853

evaluation.854

Guidelines:855

• The answer NA means that the core method development in this research does not856

involve LLMs as any important, original, or non-standard components.857

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)858

for what should or should not be described.859
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