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Abstract

This paper reveals that many state-of-the-art large language models (LLMs) lack
hierarchical knowledge about our visual world, unaware of even well-established
biology taxonomies. This shortcoming makes LLMs a bottleneck for vision
LLMs’ hierarchical visual understanding (e.g., recognizing Anemone Fish but
not Vertebrate). We arrive at these findings using about one million four-choice
visual question answering (VQA) tasks constructed from six taxonomies and four
image datasets. Interestingly, finetuning a vision LLM using our VQA tasks reaf-
firms LLMs’ bottleneck effect to some extent because the VQA tasks improve the
LLM’s hierarchical consistency more than the vision LLM’s. We conjecture that
one cannot make vision LLMs understand visual concepts fully hierarchical until
LLMs possess corresponding taxonomy knowledge.

1 Introduction

Taxonomy is natural and core in visual understanding. The biology taxonomies cover many objects
in our visual world [53]; for example, a Boston Terrier belongs to the class of Terrier, which
is a subtype of Dog, under Mammal, and ultimately part of the broader category Animal, forming a
semantic path in the animal taxonomy: Animal — Mammal — Dog — Terrier — Boston Terrier.
ImageNet [I[3] expands from the WordNet [B7] taxonomy. Visual parts [28, I35, 3], attributes [T4,
71, &1], and relationships [6]] can be grouped hierarchically due to shared characteristics.

A high-performing, general-purpose visual understanding system should map visual inputs to both
fine-grained leaf nodes of a taxonomy and coarse-grained inner nodes. Meanwhile, it should label an
input hierarchically consistently along the path that traces a leaf up to the root. Figure [ illustrates a
case selected from our experiments that the model predictions lack hierarchical consistency, failing
to follow the path of Animal — Vertebrate — Fish — Spiny-finned Fish — Anemone Fish.

Surprisingly, little has been done to assess the hierarchical visual understanding performance of vi-
sion large language models (VLLMs) [, 29, O, [72, B4, D9], which have the potential to make such
a general-purpose vision system. Indeed, VLLMs unify various vision tasks (e.g., visual recogni-
tion [I3], captioning [R], question answering [2], and retrieval [67]) into one model by anchoring
visual encoders [46, b6, [T, BY] to a versatile pretrained LLM [[IY, 0], typically orders of magnitude
bigger, offering integrated interactions with humans that involve images and videos in conjunction
with natural language prompts. Comprehensively benchmarking VLLMS is essential for realizing
their potential and identifying opportunities for improvements. Extensive benchmarks have recently
emerged, such as the bilingual MMBench [B6], manually labeled MME [I6], and MMMU [b4]
collected from college exams. We refer readers to [67] for an extensive list.

This work systematically evaluates VLLMs’ hierarchical visual understanding capabilities using six
taxonomies and four hierarchical image classification datasets. Conventionally, the hierarchical im-
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Question: Identify the taxonomic group of the  ——» Ground Truth Animal
animal in the image. Answer with the letter of g pPrediction
your chosen option. X
Level 1: j ?ﬁ)
A. Vertebrate B. Invertebrate
Level 2:
A. Arthropod B. Fish [ Worm ] [Arthropod]
C. Bird D. Worm
Level 3: X
A. Spiny-finned Fish Soft-finned
B. Soft-finned Fish Fish Fish MIEISIEE
Query Image C. Sea Slug
D. Sea Anemone
, Level 4:
[0\ {7 A. Lionfish B. Tench [L' fi h][T h] [B tterfl ]
7, Ir, v ionT1is enc u errtiy
iA //(; C. Anemone Fish D. Butterfly
Figure 1: Left: Four-choice VQA tasks for evaluating VLLMs’ hierarchical visual understanding.
Right: A VLLM’s answers ( ) deviate from the ground truth path (green arrows),
illustrating its lack of hierarchical consistency.

age classification [#7, 44, 58, &1, 59] aims to classify visual inputs into semantically structured
categories across multiple levels of specificity, in contrast to flat classification, which treats labels
as mutually exclusive and unstructured. We construct about one million four-choice visual question-
answering (VQA) tasks from the hierarchical datasets (see Figure [ for some examples). The tasks
traverse all taxonomy levels, and the four choices of an individual task are from the same level.
When evaluating VLLMs’ performance over these tasks, we stress hierarchical consistency because
it is unique to hierarchical visual understanding and crucial for adaptability to users’ varying granu-
larity preferences [44, 12, 58].

Our main findings are as follows. First of all, many state-of-the-art VLLMs struggle with our VQA
tasks, substantially lacking hierarchical consistency. For example, Qwen2.5-VL-72B [@] makes
mistakes over 67% of the hierarchical paths in the iNaturalist [53] taxonomy. Moreover, in our
attempt to tracing down the error causes, we find that LLMs are the bottleneck and lack taxonomy
knowledge about the visual world. In contrast, the visual encoder and projector modules demonstrate
the ability to retain highly discriminative and well-structured visual features. We further show that
the LLM embeddings about the visual concepts contain sufficient hierarchical cues and organize
them orthogonally, but the model cannot decode them. Finally, finetuning a VLLM using our VQA
tasks enhance its LLM’s (text) hierarchical consistency more than the VLLM’s (visual) hierarchical
consistency, reaffirming LLMs’ bottleneck effect to some extent.

2 VLLMs Lack Hierarchical Consistency in Visual Understanding

We construct six hierarchical image classification benchmarks in a four-choice VQA format to sys-
tematically assess VLLMs’ accuracy and hierarchical consistency in visual understanding. These
benchmarks leverage datasets that inherently exhibit taxonomic structures, either derived from Word-
Net [B7] or grounded in biological classification standards. In what follows, we formally define hi-
erarchical image classification, followed by two evaluation metrics about accuracy and consistency,
respectively. We then describe our VQA tasks and the first set of experiment results in this work.

2.1 Hierarchical Image Classification: Notations and Problem Statement

General image classification tasks typically assume a flat label space, where each image = € X is
assigned a class label y € ) out of a predefined set ) of mutually exclusive categories. However,
many real-world problems exhibit rich semantic structures, in which labels are naturally organized
into a hierarchy 7 = (), £) [44, 5], b1, B9], such as a tree or a directed acyclic graph. Here, £ C
Y x Y denotes the set of directed edges representing parent-child relationships, where (y;,y;) € €
indicates that y; is the parent of y; in the hierarchy. In hierarchical image classification, the objective
is not only to predict the leaf node label y € Vieoy € ) but also to correctly recover its full ancestral
path (yo,y1,-- ,yr) in T, where yo denotes the root node and L is the depth of the hierarchy. In
this paper, we aim to evaluate VLLMs’ hierarchical image classification capabilities, identify their
limitations and underlying causes, and enhance their performance based on these insights.
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Table 1: Overview of the six taxonomies and four datasets we use to construct the VQA tasks.

Dataset ‘ # Levels # Leaf Nodes # TestImages Hierarchy Distribution
CUB-200-2011 [54] 4 200 5,794 13-37-124-200

iNaturalist-Plant [53] 6 4,271 42.711K 5-14-85-286-1702-4271
iNaturalist-Animal [53] 6 5,388 53.88K 6-27-152-715-2988-5388
ImageNet-Animal [IL3] 11 397 19.85K 2-10-37-81-123-81-65-41-64-34-2
ImageNet-Artifact [13] 8 492 24.60K 5-40-149-205-162-62-44
Food-101 [5] 4 84 21.00K 6-29-40-24

2.2 Two Evaluation Metrics about Accuracy and Consistency, Respectively

For evaluation, we mainly focus on the hierarchical consistency of model predictions [68, 43]. Be-
sides, we are interested in the leaf-level classification accuracy [68, BS, 20], which can be viewed as
the upper bound of the hierarchical consistency, detailed below.

Hierarchical Consistent Accuracy (HCA) [58, @3]. This metric is defined as

N Lt

HOA =+ S T 0 0o (+53) =il M

i=1j=1

where N is the number of images in the testing set, L’ denotes the depth of the hierarchy for the
i-th input 2t and may vary for different tasks in uneven trees, fp : X — ) is an image classifier, V;
represents the set of labels at the j-th layer of the hierarchy, and 1[-] is an indicator function. HCA
evaluates whether a model’s predictions are consistent with the entire hierarchical path from the root
to a leaf node. Specifically, it measures the proportion of samples for which all ancestor nodes along
the predicted paths match the ground truth. This is a stricter metric than flat accuracy and serves as
our primary evaluation criterion for hierarchical classification.

Leaf-Level Accuracy Accie.s [0S, 35, 2U]. It cares about the predictions at the most fine-grained
level of a taxonomy:

1 N . .
ACCleaf = ﬁ Z 1 [f9 (xl;yL) = ylL} : (2)
i=1

Interestingly, Acciear upper-bounds HCA because correctly assigning a leaf label y;, to an input
contributes to Acciear, but it does not increase HCA unless the model makes no mistake over all
nodes in the path (yo,y1,- - ,yr) connecting the leaf label to the root.

2.3 VQA Tasks Derived from Hierarchical Image Classification Datasets

VLLMs are the image classifiers fy in equations (I) and (B), and one can use language prompts to
steer their output to a particular taxonomy level. More concretely, we formalize a VQA task for each
image given a desired taxonomy level, (2*,);),i =1,2,--- ,N,j =1,2,---, L", as follows.

VQA Tasks. We derive approximately one million four-choice VQA tasks and six taxonomies from
four hierarchical image classification datasets [54, 53, 3, 5] to evaluate VLLMs in a closed-set
setting. This setting mitigates the challenge of open-set generation, which involves a prohibitively
large prediction space [b8] and ambiguous prediction granularity. We test different VQA prompts
(provided in Appendix [0), and they generally follow this format:

<image> Given the plant in the image, what is its taxonomic classification
at the <hierarchy> (e.g., kingdom) level?

A.<similar class> B.<ground truth> C.<similar class> D.<similar class>
Answer with the option letter only. (Choices are shuffled in the experiments)

Arguably, the four-choice VQA tasks are easier than the conventional hierarchical image classifica-
tion, whose label space is orders of magnitude bigger than four. To compensate this difference, we
make sure the four choices are from the same level of a taxonomy and use “confusing labels” in
the VQA tasks. Specifically, we use SigLIP [bf] to compute the cosine similarity scores between
an image and all text labels other than the ground truth (at a particular taxonomy level), selecting
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Table 2: The hierarchical consistent accuracy (HCA) and leaf-level accuracy Accieas of six open-
source VLLMs, two CLIP-style models, and the proprietary GPT-40.

|iNat21-Animal | iNat21-Plant |ImgNet-Artifact| ImgNet-Animal| CUB-200
‘HCA ACCleaf ‘HCA ACCleaf‘ HCA ACC]eaf ‘HCA ACC]eaf ‘HCA ACC]eaf
Open-Source VLLMs

LLaVA-OV-7B [29] | 4.53 2647 | 446 27.51 |17.15 80.77 |3436 65.50 |11.51 44.23
InternVL2.5-8B [9] 852 27.65 | 556 2836 (2142 78.07 |37.82 65.19 |22.07 4556
InternVL3-8B [72] [11.93 35.40 | 8.68 36.39 |17.87 77.50 |4231 6941 |25.75 50.52
Qwen2.5-VL-7B [4] |19.43 4133 [17.67 41.61 |16.47 8520 [56.00 80.01 ([43.76 65.50
Qwen2.5-VL-32B [4]|26.90 46.98 [24.64 48.57 {2630 84.51 [62.23 80.48 |[56.80 69.00
Qwen2.5-VL-72B [4]|35.73 54.20 [32.82 55.00 {21.08 85.61 |64.08 80.52 [66.36 75.04

Model

CLIP Models
OpenCLIP [I10] 1.04 2353 | 0.19 28.12 | 9.11 83.64 |[12.57 81.14 | 431 80.39
SigLIP [66] 2.15 1271 | 046 18.84 | 6.41 87.19 |2440 86.85 |[23.18 73.84
Proprietary VLLM
GPT-4o [II] |42.95 6379 |35.53 62.95 |27.57 86.05 |67.69 85.50 |81.96 87.25

the top three most similar labels as the distracting VQA choices. Besides, we provide the results of
randomly sampled choices in Appendix B.

Hierarchical Image Classification Datasets. Table [ summarizes the six taxonomies and four
datasets we use to construct the VQA tasks. CUB-200-2011 (CUB-200) [54] is a fine-grained bird
dataset containing 200 species. We prompt GPT-4o [I] to map each class to a four-level taxon-
omy: Order — Family — Genus — Specie. To ensure taxonomic accuracy, we cross-validate the
generated hierarchy using corresponding entries from Wikipedia. In addition, we incorporate the
iNaturalist-2021 (iNat21) dataset [63], a large-scale collection with species-level annotations span-
ning various biological taxa. We separate it into two taxonomies, Plant and Animal, comprising
4,271 and 5,388 leaf nodes, respectively, and six levels. Both CUB-200 and iNat21 provide well-
established biological taxonomies with even hierarchical depths. To increase structural diversity, we
also experiment with ImageNet-1K (ImgNet) [[3], whose leaf labels are coarser-grained than iNat21
and CUB-200. ImgNet is built upon the WordNet [B7]. We extract two relatively well-structured
subsets from ImgNet: ImgNet-Animal and ImgNet-Artifact, following [68]. We further refine these
subsets to improve label quality and semantic consistency. Food-101 [8] is about food classification,
and its hierarchy is constructed based on the recent work of Liang and Davis [B7].

2.4 Experiments and Findings

We mainly study state-of-the-art open-source VLLMs: The Qwen2.5-VL [4] models of 7B, 32B,
and 72B parameters, InternVL2.5-8B [U], InternVL3-8B [[Z7], and LLaVA-OV-7B [29]. Meanwhile,
we include the proprietary GPT-40’s results for reference; in general, GPT-4o slightly outperforms
Qwen-2.5-VL-72B, but the main findings below still apply. Finally, we experiment with two CLIP-
style [A6] models, SigL.IP-SO400M [66] and OpenCLIP-L [I{], following the experiment protocol
in [B6] except that the candidate labels for each test image are restricted to the same four choices as
fed to VLLMSs. Table O shows the results about the models’ hierarchical consistency (HCA) and leaf-
level accuracy (Acciear) on iNat21, ImgNet, and CUB-200. The Food-101 results are in Appendix
to save space in the main text. We draw the following conclusions.

VLLMs Lack Hierarchical Consistency in Visual Understanding. Regardless of the leaf-level
accuracy, all open-source VLLMs, CLIP models, and GPT-40 lack hierarchical consistency because
their HCA is significantly lower than Accjeas (up to 99.3% relatively). The gaps on iNat21-Plant are
especially big (e.g., 32.82 vs. 55.00 for Qwen2.5-VL-72B and 35.53 vs. 62.95 for GPT-40). While
one might expect better results on ImgNet, neither open-source VLLMs nor GPT-40 can make their
HCA match Accjear — more than 20% decrease for all models, indicating that VLLMs make many
mistakes along the paths from the taxonomies’ roots to the leaf nodes even when they are correct
over the leaves.

Fine-Grained Visual Recognition Remains Challenging for VLLMs. While VLLMs and CLIP
models perform moderately well on ImgNet, they struggle with fine-grained object recognition; on
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Figure 2: Prompt variants and their effects on VLLMSs’ hierarchical consistency (HCA) and fine-
grained recognition Acciear (Gen: general prompts, Hier: hierarchical prompts, +CoT: prompts
with Chain-of-Thought reasoning, +Taxonomy: prompts that include an explicit taxonomy in the
JSON format. Please see Appendix O for details and examples.).

the iNat21 dataset, even the best-performing GPT-40 gives rise to only 63% leaf-level accuracy, far
from its 86% on ImgNet. Notably, InternVL2.5 and LLaVA-OV’s results (about 27%) on iNat21 are
only slightly above random guess (25%), and the CLIP models are barely on par with random guess.
In contrast, a small task-specialized model [X3] leads to 61.56% leaf-level accuracy on iNat21, and
some models [T, BY] achieve 93% accuracy on CUB-200, outperforming all the general-purpose
VLLMs in our experiments. These findings are consistent with the recent work [[I'Z, bR, D0, 3] that
recognizes the limitation of VLLMs on (fine-grained) image classification.

Scaling Laws Works for Hierarchical Visual Understanding. Both hierarchical consistency and
leaf-level accuracy improve as the size of the Qwen2.5-VL series of models increases. Moreover, the
gap between HCA and Accjeat progressively narrows. However, the largest models (Qwen2.5-VL-
72B and GPT-40) are still unsatisfactory in terms of both hierarchical consistency and fine-grained
recognition, especially on the iNat21 benchmark.

Qwen2.5-VLs Are Among the Most Powerful Open-Source VLLMs. LLaVA-OV-7B’s hierar-
chical consistency and leaf-level accuracy are below InternVLs and Qwen2.5-VLs. InternVL3-8B
improves upon InternVL2.5-8B, but it is still under par with Qwen2.5-VL-7B.

3  Why Are VLLMs Poor at Hierarchical Image Classification?

We systematically investigate potential causes of VLLMs’ low performance on hierarchical visual
understanding. We first extensively study prompt variations in Section BT and reveal that some
prompts can lead to marginally better results than the rest, but the results remain generally bad. We
then examine VLLMSs’ visual encoders and subsequent visual tokens to see whether and where es-
sential visual information is lost when it forwards through VLLMs (Section B2). Interestingly, the
discriminative cues in the visual tokens are maintained across various stages of the VLLM archi-
tectures, leading to about the same hierarchical image classification results immediately after the
visual encoder, after the projection to the language token space, and at the very last layer of an
LLM. Finally and surprisingly, we find that the generally believed powerful LLMs, even the one
with 72B parameters in our experiments, lack basic taxonomy knowledge and are likely responsible
for VLLMs’ poor performance on hierarchical visual understanding! (We believe this conclusion is
true for open-source VLLMs, but we urge readers not to extrapolate it to proprietary LLMs because
we could not probe their intermediate embeddings.)

3.1 Language Prompts Are Not the Bottleneck

Prompt engineering often comes as a remedy for boosting VLLMs’ performance in different appli-
cations [f, 55, b&, 58]. Could it also rescue VLLMs on our hierarchical visual understanding tasks?
We strive to test prompt variants comprehensively. We specify the taxonomy levels in the prompts
for CUB-200 [64] and iNat21 [53], whose taxonomies are grounded in biology. We even add CUB-
200’s complete taxonomy as a JSON file to the prompts. For the other datasets with more generic
taxonomies, we test general and chain-of-thought [24, §7] prompts derived from the template in
Section 3. Appendix O provides all prompts in detail, and Figure @ shows the results of some
high-performing prompts. We can see from the results that the prompt design alone is insufficient to
improve VLLMs’ hierarchical consistency or leaf-level accuracy.
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Table 3: (Text) HCA of VLLMs’ LLMs and its correlation p with VLLMs’ (visual) HCA

LLM of |iNat21-Animal iNat21-Plant ImgNet-Artifact ImgNet-Animal CUB-200|p(text,visual)
LLaVA-OV-7B [29] 11.56 28.49 29.27 56.93 33.45 09116
InternVL2.5-8B [9] 38.15 41.15 35.32 66.11 49.11 0.8832
InternVL3-8B [72] 54.20 47.49 31.86 69.92 59.87 0.9030
Qwen2.5-VL-7B [4] 52.08 64.21 35.06 68.14 63.86 0.8640
GPT-40 [1] ‘ 96.85 96.70 42.31 89.56 98.81 ‘ 0.7980

3.2 Visual Embeddings Are Not the Bottleneck

The open-source VLLMs in this work vary in specific im- HCA

plementations, but their core components are the same: 58 Vision Encoder (Probing) B LLM (Probing)
A visual encoder mapping images to embeddings, a pro- Frojestor (Frobing) VLM
jector translating visual embeddings into the language
token space, and an LLM. If the hierarchical structure
and discriminativeness are lost before the visual embed-
dings reach LLMs, the overall VLLMs would inevitably
perform poorly on our hierarchical visual understanding
tasks. Hence, it is crucial to examine the visual embed-
dings. We train three linear classifiers per taxonomy level
to respectively probe the visual encoder, projector, and
last layer of an LLM, where the image representations )
are an average of the visual tokens. Further details and Figure 3: Qwen2.5-VL-7B vs. linearly

results of the probing are provided in Appendix O. probing the visual tokens at various
) } stages of Qwen2.5-VL-7B on CUB-200
Figure B shows the probing results of Qwen2.5-VL-7B 454 iNat21-Plant.

over CUB-200 [54] and iNat21-Plant [53]. Remarkably,

the linear classifiers outperform Qwen2.5-VL-7B all around. They achieve not only higher leaf-
level accuracy than Qwen2.5-VL but also much better hierarchical consistency, even though the
classifiers of different taxonomy levels are independently trained. Moreover, the linear probing
results remain about the same at different stages of the forward propagation (i.e., immediately after
the visual encoder, projector, and last layer of the VLLM), indicating that the visual tokens remain
discriminative and structurally rich throughout different LLM layers. These results are a strong
defense for the visual embeddings: They carry sufficient hierarchical and discriminative cues and
should not be blamed for VLLMs’ poor hierarchical visual understanding performance.

N Accy,r

HCA/Acc) ¢
- [=a) ®
< < <

[N
<

<

3.3 LLMs Are the Bottleneck in VLLMs’ Hierarchical Visual Understanding

The huge discrepancy between the results of linearly probing visual tokens and VLLM performance
in Figure B propels us to investigate other potential causes of VLLMs’ low hierarchical consistency
beyond the visual embeddings, and we find that the influential LLMs are the bottleneck.

3.3.1 Open-Souce VLLMs’ LLMs Lack Taxonomy Knowledge

We separate LLMs from open-source VLLMs and examine how much they know about the tax-
onomies used in our experiments. Mechanically, we reformulate our VQA tasks to a text-only
version by replacing the images with their corresponding leaf labels:

Given the <leaf node label> (e.g., Anemone Fish), what is its taxonomic
classification at the <hierarchy> (e.g., kingdom) level?

A.<similar class> B.<ground truth> C.<similar class> D.<similar class>
Answer with the option letter only. (Choices are shuffled in the experiments)

This process results in about 0.7 million QA tasks after deduplication. We use them to assess LLMs
and report the (text) HCA results in Table B — we use (text/visual) HCA to refer to LLMs/VLLMs’
performance on text/visual QA tasks for clarity. We find that Qwen2.5-VL-7B’s LLM achieves only
63.86% (text) HCA on CUB-200, whose taxonomy comprises merely four levels. The LLMs of
LLaVA-OV and InternVL-2.5 give rise to even lower (text) HCAs on CUB-200 (33% and 49%).
One might wonder if these low (text) HCAs are due to that the biology taxonomy underlying CUB-
200 is too specific for general LLMs.
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However, Table B further reveals that the LLMs also can-
not perform well on ImgNet’s general taxonomies. Be-
sides, we progressively simplify our QA tasks by chop-

e \ ping the iNat21-Plant taxonomy level by level. Figure &
e’ ‘= B /.

plots the (text) HCA results, which increase as the taxon-
RN omy becomes shallower (and, correspondingly, the leaf
nodes are less fine-grained). Still, they are below 90% re-
gardless of the taxonomies’ depths. There are noticeable
3 ——— ¢ drops at Levels 3 and 5 for Qwen2.5-VL and LLaVA-
OV’s LLMs, implying that they pose more challenges
than the other levels for the LLMs’ hierarchical reason-
Figure 4: Text HCA of different ing. These results are surprising to a large degree, given
VLLMs’ LLMs over the iNat21-Plant the recent success of LLMs over various benchmarks and
taxonomies of various depths. domains [, 50, 60, 33, 45].

Correlation between (text) HCA and Acc.¢-scaled (visual) HCA. An LLM’s low (text) HCA
undoubtedly discounts its corresponding VLLM’s hierarchical consistency on visual inputs. We can
quantify this notion using Pearson’s correlation coefficient. Since the (text) HCA’s corresponding
leaf-level accuracy is 100% — we replaced images with their ground-truth leaf labels when making
the text QA tasks, we normalize (visual) HCA by 1/Accieas. The last column in Table B shows that
the correlation between (text) HCA and Accjeqs-scaled (visual) HCA is as high as 0.9116.

HCA

Taxonomy Depth

A note about GPT-40’s (text) HCA. The analyses above apply to only open-source VLLMs because
we cannot separate LLMs from the proprietary GPT-40. Unlike the open-source LLMs’ low (text)
HCA, GPT-40’s (text) HCA scores are as high as 98.81. Hence, the LLM part is not GPT-40’s
bottleneck in hierarchical visual understanding; instead, there are other possible causes of GPT-40’s
hierarchical inconsistency about the visual world.

3.3.2 Why Are LLMs Poor at Hierarchical 7ext Classification?

In what follows, we present some preliminary quests into why and where LLMs fail at the seemingly
simple hierarchical four-choice text classification tasks. We rule out the vision-language tuning that
anchors visual encoders to pretrained LLMs and conclude that the language decoders are responsible
for LLMs’ lack of taxonomy knowledge.

100 Tf} .‘.00000

80 % ;

09". 90000000 ¢

< 60 & . *

8] ¢ —e=— Prompt 1 (Probing)

= 40 ." —m-- Prompt 2 (Probing)
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Figure 5: Left: (Text) HCA difference between vision-language-tuned LLMs and the original ones.
Right: (Text) HCA of linearly probing different layers of Qwen-2.5-VL-7B’s LLM on iNat21-Plant.

Vision-Language Tuning Is Not¢ the Reason. Acute readers likely have noted that our previous
LLM results are about the LLM parts of VLLMs, not the “true” standalone LLMs. Does the vision-
language tuning, which is needed when one connects a visual encoder with an LLM, compromise
LLMs and potentially induce catastrophic forgetting of taxonomy knowledge?

We answer this question by studying the original LLMs from which VLLMs are initialized, using the
same text-only hierarchical classification setup described in Section B3. Figure B (Left) compares
LLaVA-OV-7B and Qwen2.5-VL-7B’s LLMs with their corresponding original LLMs. First of all,
we see that the original LLMs are on par with or even worse than their vision-tuned counterparts,
indicates that the standalone LLM:s still lack a strong grasp of taxonomy knowledge. Interestingly,
Qwen2.5-VL’s LLM actually outperforms its original LLM on all taxonomies; in other words, the
vision-language tuning actually enhances the LLM’s (text) hierarchical consistency. In contrast,
LLaVA-OV’s vision-language tuning weakens the LLM’s (text) HCA.
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LLMs Encode Hierarchical Structures Effectively but Cannot Decode Them Sufficiently. Next,
we shift attention to the LLM embeddings of the concepts in our taxonomies — if the embeddings
do not provide sufficient hierarchical structural cues, there is little chance LLLMs can decode them.
To this end, we convert a taxonomy into language prompts of three variants:

Prompt 1: <leaf node label> (e.g., Blue Jay) belongs to the <hierarchy>
(e.g., Order) of <ground truth> (e.g., Passeriformes).

Prompt 2: Given the <leaf node label>, what is its taxonomic classification
at the <hierarchy> level? It belongs to <ground truth>.

Prompt 3: Given the <leaf node label>, what is its taxonomic classification
at the <hierarchy> level?

We then train a linear classifier for each taxonomy level to probe the average embedding of the
language tokens in every layer of an LLM. Figure B (Right) summarizes the (text) HCA results of
Qwen2.5-VL-7B’s LLM on iNat21-Plant: The text embeddings give rise to highly hierarchically
consistent linear probes. Especially for Prompt 3, with the ground-truth hierarchy labels withheld,
the linear probes that receive only the leaf node embeddings can still achieve near-perfect hierarchi-
cal consistency in the LLM’s deeper layers. In other words, the specialized linear probes can decode
the taxonomy knowledge significantly better than the general-purpose LLM.

LLMs’ Hierarchical Orthogonality Does Not Guarantee Hierarchical Consistency. Park et al.
[22] recently predicted that LLMs represent hierarchical relations orthogonally in the representation
space, e.g., animalis orthogonal to bird—mammal. They validated the prediction using Gemma [51]
and LLaMA [I9], and we further verify it in Figure B using both the original Qwen2.5-7B and the
one after vision-language tuning. This pleasant geometric interpretation is, unfortunately, shadowed
by the poor performance of Gemma and Qwen2.5-7B on our taxonomy QA tasks — we report the
Gemma results in Appendix 0. We argue that more fine-grained analyses of the LLM representation
are required to establish a relationship between LLMs’ hierarchical consistency and geometry.

Gemma-2B Original LLM of Qwen2.5-VL-7B LLM of Qwen2.5-VL-7B
. 75 B
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Figure 6: Hierarchical semantics are encoded as orthogonality in different LLMs’ representation
spaces (figures drawn following [242]).

4 LLMs Gain More Hierarchical Consistency than VLLMs from Finetuning

Could we improve the VLLMSs’ hierarchical visual understanding capabilities via finetuning using
our VQA tasks built upon taxonomies? Likely, no, because LLMs are the bottleneck: The LLMs’
hierarchical consistency over text-only tasks is so bad (Table B) that we conjecture this shortcoming
can only be fixed in the pretraining stage rather than the “tail patching” finetuning stage.

Still, the following presents some LoRA-finetuning [?7] experiments with Qwen2.5-VL-7B, the
best-performing 7B VLLM in our previous experiments, mainly for two reasons. One is to see
how much finetuning could help, even though we believe pretraining instead of finetuning should
be the rescue to VLLMs’ hierarchical inconsistency. The other is further to investigate the interplay
between VLLMs and their LLMs — interestingly, our results reaffirm that LLMs are the bottleneck
for VLLMs’ hierarchical visual understanding because LLMs’ performance gain from the finetuning
upper-bounds VLLMs’. Our finetuning data consists of VQA tasks constructed from iNat21-Plant’s
training set, covering 3,771 species nodes in the taxonomy instead of the full 4,271 species nodes.
We then evaluate the finetuned model’s improvement on iNat21-Plant, its generalization to other
hierarchical visual understanding datasets, and how well it maintains the general vision-language
capabilities. Please see Appendix D for more details on the training.

Results and Discussion. Tables B shows that finetuning Qwen2.5-VL using the VQA tasks that
partially cover the iNat21-Plant taxonomy delivers improvements on both iNat21-Plant and other
datasets. On iNat21-Plant, HCA rises from 17.67 to 29.34 (4+11.67 absolute gain), while Acciear
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Table 4: (Visual) HCA and Accjear of Qwen2.5-VL-7B before and after the LoRA-finetuning.

Model iNat21-Animal iNat21-Plant ImgNet-Animal CUB-200
HCA ACC]eaf HCA ACC]eaf HCA ACCleaf HCA ACC]eaf
Qwen2.5-VL-7B 1943 4133 17.67 4161 56.00 80.01 43.76 65.50
Qwen2.5-VL-7B (LoRA) 2338 45.00 2934 47.66 58.62 8028 46.17 67.12
A +3.95 +3.67 +11.67 +6.05 +2.62 +0.27 +241 +1.62

Table 5: (Text) HCA of the LLM of Qwen2.5-VL-7B before and after the LoRA-finetuning.

Model iNat21-Animal iNat21-Plant ImgNet-Animal CUB-200
LLM of Qwen2.5-VL-7B 52.08 64.21 68.14 63.86
LLM of Qwen2.5-VL-7B (LoRA) 65.63 84.87 72.39 66.15
A +13.55 +20.66 +4.25 +2.29

gains 6.05. The HCA on ImageNet-Animal increases from 56.00 to 58.62 and on CUB-200 from
43.76 to 46.17. More interestingly, Table B indicates that the LLM’s (text) HCA increases more
from the finetuning than Qwen2.5-VL’s (visual) HCA (e.g., 20.66 vs. 11.67 on iNat21-Plant and
4.25 vs. 2.62 on ImgNet-Animal). To some extent, this finding reaffirms that LLMs are the bottle-
neck of VLLMs’ hierarchical visual understanding, and one has to improve LLMs’ (text) taxonomy
knowledge to boost VLLMs’ (visual) hierarchical consistency. Besides, our results demonstrate that
vision-language training can benefit both VLLMs and their LLMs, aligning with some recent ad-
vocates for improving LLMs using multimodal data beyond language only [31, 57]. Appendix D
reports more results and discussion, including that the finetuned model does not lose its general
capability tested on MME [[I&], MMBench [36], and SEED-Bench [30].

5 Related Work

Hierarchical classification [&7, P5] enables many applications. It is vital for a comprehensive un-
derstanding of the visual world [b1, B3, b5, 48, [, 4] and many language concepts [[Z0, 56, [71, D).
Several recent studies have revisited this longstanding problem and shown that CLIP-style [46] mod-
els lack consistency across taxonomic levels [68, [8]. Wu et al. [68] evaluate CLIP under multiple
levels of semantic granularity and introduce a hierarchy-consistent prompt tuning method. Pal et al.
[20] enhance CLIP’s hierarchical representations by embedding them to a hyperbolic space. Xia et al.
[59] further extend this direction by incorporating graph-based representation learning. Novack et al.
[BR] use hierarchical information to improve zero-shot classification accuracy. Zhang et al. [BX] first
identified the limitations of current VLLMs in fine-grained image classification. Building on this,
Liu et al. [33] further assess a broader range of VLLMs. He et al. [20] point out a potential cause,
the scarcity of image class names in pretraining. Beyond closed-set evaluation [63, 7], Conti et al.
[T2] benchmark VLLMs’ open-world classification, while Snabjarnarson et al. [29] propose to eval-
uate VLLMs’ open-set predictions using a taxonomic similarity rather than exact string matching.
However, to the best of our knowledge, no prior work has examined VLLMs under the hierarchical
visual understanding context.

6 Conclusion

This work presents a systematic evaluation of state-of-the-art VLLMSs’s hierarchical visual under-
standing performance. We find that both open-source VLLMs and the proprietary GPT-40 give rise
to low hierarchical consistency over six taxonomies of visual concepts. Probing results reveal that
the visual and text embeddings carry rich hierarchical and discriminative cues, whereas the LLMs
fail to decode them, implying LLMs are the bottleneck. Finetuning on hierarchical VQA tasks im-
proves VLLMs’ hierarchical consistency on visual inputs while preserving their performance on gen-
eral VQA tasks. Intriguingly, the finetuning benefits the LLMs (text) hierarchical consistency more
than the corresponding VLLM’s (visual) hierarchical measure. Ingesting the taxonomy-knowledge
gap to LLMs, likely during pretraining rather than post-hoc patching, is a promising path toward
VLLMs that reason coherently across different levels of semantic granularity about the visual world.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Claims are further disscussed in Section B, Section B and Section .
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Discussed in Appendix E.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

» The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

» All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of evaluation benchmarks, model architec-
tures, training protocols, and evaluation metrics to ensure reproducibility of the main results
in the paper. The code will be released upon acceptance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code and data will be made publicly available upon acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]

Justification: We provide detailed descriptions of data curation procedures, model architec-
tures, evaluation metrics, and training protocols in corresponding sections. The code for all
experiments will be released upon acceptance.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer:
Justification: We did not include error bars or statistical significance analysis.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

¢ Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Discussed in Appendix D.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed the NeurIPS Code of Ethics.
Guidelines:
» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Discussed in Appendix E.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit all external assets used in this work, including datasets,
pre-trained models, and code repositories. Licenses and terms of use are reviewed and
respected, with appropriate citations provided in the paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has

curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.
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14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: We provide detailed descriptions of the hierarchical VQA benchmark curation
process, model architecture, training protocols, and evaluation metrics in the corresponding
sections. All data, code, and model checkpoints will be released upon acceptance.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
* Depending on the country in which research is conducted, IRB approval (or equiva-

lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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843 * For initial submissions, do not include any information that would break anonymity

844 (if applicable), such as the institution conducting the review.

845 16. Declaration of LLM usage

846 Question: Does the paper describe the usage of LLMs if it is an important, original, or
847 non-standard component of the core methods in this research? Note that if the LLM is used
848 only for writing, editing, or formatting purposes and does not impact the core methodology,
849 scientific rigorousness, or originality of the research, declaration is not required.

850 Answer: [Yes]

851 Justification: Our evaluation involves vision large language models (VLLMs) with large
852 language model (LLM) backbones as a core component. We describe how the LLM is
853 used for hierarchical classification and detail its role in the architecture, prompting, and
854 evaluation.

855 Guidelines:

856 * The answer NA means that the core method development in this research does not
857 involve LLMs as any important, original, or non-standard components.

858 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
859 for what should or should not be described.
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