Under review as a conference paper at ICLR 2026

SUBQUADRATIC ALGORITHMS AND HARDNESS FOR
ATTENTION WITH ANY TEMPERATURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the popularity of the Transformer architecture, the standard algorithm
for computing Attention suffers from quadratic time complexity in context length
n. Alman and Song showed that when the head dimension d = ©(logn), sub-
quadratic Attention is possible if and only if the inputs have small entries bounded
by B = o(y/logn) in absolute values, under the Strong Exponential Time Hy-
pothesis (SETH). Equivalently, subquadratic Attention is possible if and only if
the softmax is applied with high temperature for d = ©(logn). Running times of
these algorithms depend exponentially on B and thus they do not lead to even a
polynomial-time algorithm outside the specific range of B.

This naturally leads to the question: when can Attention be computed efficiently
without strong assumptions on temperature? Are there fast attention algorithms that
scale polylogarithmically with entry size B? In this work, we resolve this question
and characterize when fast Attention for arbitrary temperatures is possible. First,
for all constant d = O(1), we give the first subquadratic O(n?~/? . polylog(B))
time algorithm for Attention with large B. Our result holds even for matrices with
large head dimension if they have low rank. Combined with a reduction from
Gradient Computation to Attention, we obtain a subquadratic algorithm for the full
LLM training process. Furthermore, we show that any substantial improvement
on our algorithm is unlikely. In particular, we show that even when d = 20(og"),
Attention requires n2>~°(!) time under SETH.

Finally, in the regime where d = poly(n), the standard algorithm requires O(n?d)
time while previous lower bounds only ruled out algorithms with truly subquadratic
time in n. We close this gap and show that the standard algorithm is optimal under
popular fine-grained complexity assumptions.

1 INTRODUCTION

Large Language Models powered by the Transformer architecture (,) have been at
the heart of modern Al revolution completely reshaping the landscapes of natural language processing,
computer vision, and multitude of other applications. The Attention mechanism is the cornerstone
of the Transformer architecture. Attention computes correlations between different tokens of the
sequences, allowing Transformers to model dependencies regardless of the position of the tokens in
the sequences. Despite its popularity, standard algorithms for computing Attention require quadratic
time complexity, as they compute the Attention matrix explicitly.

Formally, the Attention mechanism is defined as follows. Let @, K,V be size n X d matrices
(respectively query, key and value matrices). We call n the context length and d the head dimension.
The Attention matrix is obtained by applying softmax' to each row of QK ". Each entry in the matrix
represents the attention weight between a particular input token (query token () and output token
(key token K). Finally, Attention outputs the product of the Attention matrix with V.

We give the formal definition below. Note that exp(X) applies exp to each entry of a matrix X.

'Given a vector x, applying softmax to x replaces x; with exp(z;)/ > exp(z;).

Under review as a conference paper at ICLR 2026

Definition 1.1 (Attention). Given input matrices Q, K,V € R"*?, Attention on Q, K,V is defined
Attention(Q, K, V) := DAV € R"*? where A := exp(QK ")? and D := diag(A1).

In practice, there is an input X € R"* and weight matrices Wq, Wi, Wy, € R4*? such that
Q=XWy, K=XWgk,V =XWy. Since @, K,V can be computed from X, Wg, Wg, Wy in
O(nd?) time, we assume for simplicity that the inputs @, K,V are given directly.

Typically, it suffices to approximately perform Attention computations. In particular, it is not necessary
(or even reasonable) to expect Attention to be computed exactly due to the softmax operation. Thus,
we study Approximate Attention, where each entry is computed with polynomial precision (i.e.
inverse polynomial additive error).

Definition 1.2 (Approximate Attention Computation AttC(n, d, B, €)). Given matrices @, K,V €
[—B, B]"*4 and B,e > 0, compute O € R"*? such that ||O — Attention(Q, K, V)|l < e

The standard (and most widely used) algorithm for Attention (even in approximate form) requires
quadratic time. The algorithm begins by explicitly computing matrix product QK T, applies softmax
to obtain D! A and then computes the matrix product (D~!A)V. Using standard matrix multiplica-
tion, this requires O(n?d) time. Even ignoring computation time of matrix multiplication, explicitly
computing the A matrix already requires Q(n?) time.

However, the inputs (and outputs) only have size O(nd). Indeed, an algorithm that does not compute
A explicitly could compute Attention in O(nd) time, incurring only linear dependence on the context
length n. This leads to the fundamental question concerning the complexity of Attention.

Question 1: When can Attention be computed faster than n?d time?

Towards answering this question, () showed that for d = O(logn), Attention
can be computed in 7' +°() time whenever B = o(+/log n). Furthermore, whenever B = Q(y/Togn)
and d = O(logn), Attention requires n>~°1) time under SETH, a popular hardness hypothesis.

Yet there remain several shortcomings in our current understanding of Attention. Fast algorithms
for Attention are only known for inputs with small entries (i.e. B = o(y/logn)). Such a strong
bound on the entries of (), K essentially restricts the Attention mechanism to use softmax with high
temperature (enforcing a near-uniform distribution over the value matrix). Temperature, denoted by
T, is a key hyperparameter for Attention that dictates how random the output is. Formally, Attention
with temperature 7 replaces A := exp(QK ") with A := exp(QK " /T) so that high temperature
corresponds to high entropy (more likely to select keys with lower scores). In many tasks, temperature
is a key hyperparameter with potentially significant impact on accuracy and stability (

, s). Indeed, () prove that transformers with high
temperature are provably less expressive. In contrastive learning, temperature has been found to
significantly impact both the accuracy (s ; , ; s) as well
as the learned representanons (; ; ,) of
the model. Dynamically varying temperature throughout the trarnlng process can also help balance
multiple training objectives (,). In

instances where low entropy is required, no subquadratlc algorlthms are known

Furthermore, it is generally undesirable for the running time of an algorithm to scale poorly with
the numerical values of the input. In fact for many fundamental problems (Knapsack, All-Pairs
Shortest Paths, 3-SUM), having small entries makes the problems much easier. For example,
there is a simple pseudo-polynomial time dynamic programming algorithm for Knapsack, while
designing a polynomial time algorithm for Knapsack is NP-complete.’ Therefore, in this work we
study algorithms for Attention that scale polynomially with the representation length of the entries.
Equivalently, the algorithm should scale polylogarithmically with the entry size B.

Currently, the only known algorithms for Attention beyond the standard O(n?d) algorithm scales
exponentially with the entry size B (,). Following the terminology of pseudo-
polynomial time, we will call an algorithm that is subquadratic but scaling polynomially (or worse)

’In practice, a scaled dot-product attention, defined as A := (QK ' / \/a), is also commonly used for training
efficiency ().

3 An algorithm runs in pseudo-polynomial time if its running time is polynomial in the numerical value of the
input. A polynomial time algorithm must be polynomial in the length of the input.

Under review as a conference paper at ICLR 2026

with the numerical value of the input pseudo-subquadratic. We call an algorithm that is subquadratic
and scales logarithmically with the numerical value of the inputs (non-pseudo-)subquadratic, or
simply subquadratic. Following from our above discussion, the question of whether subquadratic
algorithms for Attention exist remains open.* Even if d = O(1), there is a tantalizing gap between
the O(n?) upper bound and the (n) lower bound.

Question 2: Is there a truly (non-pseudo-)subquadratic algorithm for Attention ?>

In our work, we resolve this question for almost all regimes of head dimension d. Our main result gives
the first truly sub-quadratic algorithm for attention that scales polylogarithmically with entry-size B.
Our algorithm obtains truly sub-quadratic time for constant d.°

Theorem 1.1 (Main Theorem). Let d = O(1). There is an algorithm that computes AttC(n, d, B, ¢)
in O(n*>=/? . polylog(B/¢)) time.

The result also generalizes to the case where the matrices), K have low rank.

Theorem 1.2. Let v = O(1). There is an O (nd + n?=1/" - polylog(B/¢)) time algorithm comput-
ing AttC(n, d, B, €) where r = min(rank(Q), rank(K)).

As a side result, we complement this algorithm with a subquadratic algorithm for Attention Gradient
Computation. In the training process, gradient descent tunes the weight matrices Wq, Wi, Wy
according to the input data. In contrast to previous algorithms which give ad hoc algorithms for
gradient computation, we show that gradient computation can be generically reduced to attention
computation. Combined with our previous result, we give a truly (non-pseudo-)subquadratic algorithm
for the full LLM training process when d = O(1).

Theorem 1.3 (Informal Theorem B.1). The Attention gradient can be computed with O(d) calls to
AttC(n,d, B, 5/®(n(~iB3)) with O(nd?) overhead. In particular, if d = O(1) the Attention gradient
can be computed in O(n?>~"/polylog(B/<)) time.

Above, we obtain a sub- quadratic algorithm for constant d. When d = w(1) is super-constant, the
above algorlthms requires n2~°(1) time. Is there a truly subquadratic algorithm for super-constant
d? Our remaining results provide stronger lower bounds for super-constant d.

() show that n?~°(1) time is necessary when d = Q(logn) under the Strong Exponential Time
Hypothesis (SETH). Under the same hardness assumption we provide a much stronger lower bound
and show that Attention is hard even when d = 2¢X(log") 7

Theorem 1.4 (Informal Theorem C.4). Under SETH, AttC(n,d, B, <) requires n*>~°") time for
d = 220°8" ") gud B = poly(n).

It suffices to consider instances with polynomial entry size B = poly(n) since any (non-pseudo-)
subquadratic algorithm must handle such instances in subquadratic time. Formally, we show that
any fast algorithm for AttC(n, d, B, €) implies a fast algorithm for (Bichromatic) Maximum Inner
Product (Max-IP) on d-dimensional vectors with integer entries. The (Bichromatic) Max-IP problem
asks an algorithm given two sets of vectors A, B C Z? to compute max,c 4 pe @ - b. Under SETH,
this requires n2=°(M) time whenever d = 2(log" n) (s). Furthermore, the best known
algorithms for Max-IP run in n2~ (/4 time (Vao, : : ,) s0
that any algorithm improving significantly over Theorem 1.1 must 1mpr0ve upon the best known
algorithms for Max-1P. () conjectures that no such algorithm exists under SETH.

Stronger Lower Bounds for Large Head Dimension. The head dimension d can often be relatively
large with respect to the context length n (in some cases e.g. (), the head dimension
d can even be larger than the context length n). In these settings, a large gap remains between the
standard algorithm requiring O(n?d) time and the known n>~°(") lower bound. We address this gap
and shows that the standard algorithm is conditionally optimal.

4Similarly, while there are pseudo-subcubic algorithms for APSP (e.g., ();
()), there is no truly subcubic (O (n®~¢) for some ¢ > 0) algorithm.

> An algorithm runs in truly subquadratic time if it runs in O(n?~¢) time for some ¢ > 0

SWe use 0() notation to suppress polylogarithmic factors.

"log™ denotes the iterated logarithm. For example, log* (16) = 3 since logloglog 16 < 1.

Under review as a conference paper at ICLR 2026

Table 1: Summary of known results when B = poly(n) and ¢ = 1/poly(n). Sub-polynomial
dependencies are suppressed for simplicity. Previous upper bounds that are not starred follow from

the standard algorithm for computing attention (,). Previous lower bounds that are
not starred are trivial and follow directly from input and output size. * The starred results are due
to (). For d = ©(log n), their lower bound holds when B = Q(+/logn) while
ours holds even when B > log 2.
Upper Bound Lower Bound
d Previous | New Previous | New
o(1) n? n2= 14 (1.1) n

2@(log* n) n2 n n2*0(1) (14)

O(logn) n? n2=oMx n2=°M) (C.7)

poly(n) | TmuL(n,d,n) n?=°Wx | TyuL(n, d,n)=°W (1.5)

Our conditional lower bound depends on a natural generalization of a popular hypothesis. The
Orthogonal Vectors (OV) problem is among the most well studied problems in fine-grained complexity.
In the OV problem, an algorithm is given two sets of n vectors A, B C {0, 1}d and is asked to
determine if there exists an orthogonal pair a € A,b € B such that a - b = 0. The naive algorithm for
this problem requires O(n?d) time and the current best algorithm for OV achieves truly subquadratic
time only for d = O(logn) (, ; ,). A central hypothesis
(known as the OV Hypothesis) in fine-grained complexity states that there is no n?>~°1) algorithm
for OV whenever d = w(logn), and the OV Hypothesis is known to hold under SETH (,
).

If d = poly(n), one can compute a - b for all pairs a € A,b € B using a matrix product between
an n X d matrix containing the vectors in A as rows and a d X n matrix containing the vectors of
B as columns. The above algorithm requires O(TmyL(n, d, n)) time, where Ty (a, b, ¢) is the
time complexity for multiplying an a x b matrix with a b X ¢ matrix. The High-Dimensional OV

Hypothesis introduced by () hypothesized that when d = n, any
algorithm computing OV requires Tyyp (7, 7, n)'~°() = n@=°(1) time, where w < 2.3714 denotes
the square matrix multiplication exponent (,). We consider a generalization of their

hypothesis: the Tyyc (12, d,7)'~°() running time is required for any d = poly(n). We call it the
Generalized High-Dimensional OV Hypothesis.

Under this hypothesis, we show that the standard algorithm for computing Attention is optimal.
Note that using fast matrix multiplication, one can easily obtain an algorithm for Attention using
O(TmuL(n, d,n)) time.

Theorem 1.5 (Informal Theorem C.5). Under the Generalized High-Dimensional OV Hypothesis,
AttC(n,d, B, €) requires TyuyL(n, d, n)'=°1) time for d = poly(n).

Table 1 summarizes our results. In particular, we tightly characterize the complexity of Attention
(up to sub- polynomial factors) when B = poly(n) for all regimes of d except 1 < d < 200" "),
Within this regime, our running time matches the best known algorithms for Max-IP (Yao, ;

; ,), and as mentioned earlier, significant improvements over our
algorithm w111 imply improvements over the current best known algorithms for Max-IP which will be
a breakthrough.

1.1 TECHNICAL OVERVIEW

In this section, we give a high level overview of our algorithm. For simplicity, we focus on the d = 1
case in this overview. Given inputs ¢, k,v € R", our goal is to compute 0; = > ; Pijv; forall ¢

where p; ; are probabilities in the softmax distribution proportional to exp(g;k;).

Our first observation is that small key values can be discarded: in particular, we show that for each ¢
it suffices to only consider keys where ¢;k; is near the maximum. Assume without loss of generality
that ¢; > 0 and let ko = max; k;. For an appropriate threshold ¢, we define j to be irrelevant
(with respect to ¢;) if ¢;k; < gikmax — t and relevant otherwise. By setting t = ©(log(n/e)), we
can ensure that all softmax probabilities corresponding to irrelevant indices are negligible. Since

Under review as a conference paper at ICLR 2026

Relevant Indices —

—e
ey ’ ky ks ks s ke ke ks
Value (v) 6 1 3 8 5 7 4 2
Key (k) 0.5 1.8 2.6 4.5 6.1 74 8.2 94
Rounding (k) —o0 4 4 7 7 10 10 10

Figure 1: Rounding based algorithm for 1-dimensional Attention illustrated for ¢; = 1. Each point is
placed at k; and has value v;. Points (e.g. k1) such that ¢;k; < q;Kkmax —1 are irrelevant and discarded
(in this example ¢;kmax — t = 1). Relevant points with similar k; (e.g. {k2, ks} or {ke, k7, ks}) are
grouped together and assigned the same (rounded) key k. The width of each region is log(1 + ¢) (in
this example log(1 + €) = 3). The algorithm outputs) p,;v; where p; o exp(k;).

discarding such j does not significantly change the value of the output significantly, we consider only
relevant j for the remainder of the overview.

Combining this observation with a simple rounding scheme, we already obtain a modest improvement

over known algorithms for Attention. We illustrate this for the d = 1 case. Consider a relevant key
k;. If we round such k; to k; such that ¢;k; < g;k; < q;k; + log(1 +), then e%*i is a (1 + ¢)-
multiplicative approximation of %%, This gives us good multiplicative approximations of the
softmax probabilities. Plugging in these approximate probabilities, we obtain a good multiplicative

approximation of the output.

Since the value of the output is bounded by entries of the value matrix V, (i.e. 0; = O(B)), this
gives a ¢ B-additive approximation of the output. To compute the approximation, we can now treat
all keys k; that are rounded to the same value k; as equivalent. Since relevant keys are within a range
of length ¢ and we round all keys within log(1 + ¢) to the same value, we only need to consider
O(t/log(1 + ¢)) = O(1/¢) intervals for each query. Now, we leverage the fact that similar k; lie in
contiguous intervals to design an efficient data structure. In particular, we can preprocess the keys in
O() time to ensure that we can query the sum of all values in each continuous interval of keys O()
time. Repeating this procedure for all queries and scaling the approximation factor (recall that our
goal is to compute an e-additive approximation), we obtain an algorithm that computes an e-additive
approximation of attention in total time O(nB/¢). Figure 1 illustrates the rounding scheme.

The above rounding method gives a polynomial dependence on the entry bound B, and is only
subquadratic when B = o(n). Although this already improves on ()’s algorithm
(which exhibits exponential dependence on B, and thus only worked for values of B = o(+/logn)),
we would like a truly subquadratic algorithm for all polynomial B. To do this, we leverage the
powerful polynomial method in algorithm design (see e.g. (); ().

A natural attempt to utilize the polynomial method is to approximate e” with a polynomial. As
a simple case, by approximating e* ~ 1 + = we can compute exp(QKT)V ~ 11TV + QKTV
efficiently. However, e® can only be approximated well by polynomials with degree p when |z| < p
(,). For arank d = O(1) matrix QK ", exp(QK ") can be approximated

with a rank 2°(B*) matrix. Using this observation (as in ()) one can obtain
a subquadratic algorithm by assuming B = o(+/logn), but this approach falls short of obtaining
sub-quadratic algorithms for polynomial B.

We now describe how to obtain a truly sub-quadratic algorithm by leveraging the polynomial method
only on relevant indices. For simplicity, consider 1-dimensional Attention. For x = O(t), there is a
low-degree polynomial P such that | P(x)—exp(x)| < € exp(x). In order to apply this approximation,
we crucially use the fact that irrelevant indices are discarded, since the relevant indices have g;k; lying
within an interval of length O(t). Since the probabilities are normalized, we can further assume that
this interval lies around 0, allowing us to approximate exp with a polynomial. Formally, we define

Under review as a conference paper at ICLR 2026

¢; = max; g;k; — O(t) and observe that exp(g;k;) is proportional to exp(g;k; — ¢;). Then, we can
approximate p; ; which is proportional to exp(g;k; — ¢;) with a polynomial P that approximates exp
on the range O(t), since for all relevant indices ¢;k; — ¢; = O(t). We denote p; ; o< P(q;k; — ¢;) as
our approximate probabilities and output 6; = > ; Di,jvj. As above, if the approximate probabilities
are accurate, our output is a good multiplicative approximation of attention computation.

It remains to argue that our algorithm is efficient. Note that it suffices to describe how to compute
> j P(g;k; — c¢;)v; over relevant j since we can compute 6; by computing this quantity twice (once
with v and once with v replaced by 1 for normalization). The idea is that in contrast to the exponential
function, the polynomial P(g;k; — ¢;) can be decoupled into a product of terms that only depend on
g; and terms that only depend on k; (see Equation (2) for example). As in the rounding scheme, we
use the fact that relevant keys lie in a continuous interval to create a data-structure that preprocesses
the terms depending on k; in O(n) time, while for each query g;, efficiently supports queries to

relevant precomputed values in O(1) time.

Generalizing to Higher Dimensions. What happens when we try to generalize this algorithm to
higher dimensions? In one dimension, we knew that for each i, the set of relevant j included all j
where ¢;k; > ¢;kmax — t. In higher dimensions, our goal is similarly to compute a set of relevant
indices j relative to each @); such that (1) discarding irrelevant indices outside this range does not
significantly affect the additive error of our estimate and (2) the range of (); - K; is now sufficiently
restricted so that we can use a low-degree polynomial to approximate exp(Q; - K;).

In one dimension, the set of all relevant j consists exactly of the set of sufficiently large k; (either
in the positive or negative direction). A simple interval searching data structure can support the
necessary queries. In d > 1 dimensions, each row of @), K (denoted);, K;) is now a d-dimensional
vector. Even in 2 dimensions, different K; may be larger with respect to different ;. Sorting all
K with respect to each Q; already requires n? time. Instead, the key observation is that the set of
relevant j with respect to (); is exactly the set of K; contained in the half-space

{xERd:Qi-xzmjain-Kj—t}.

This can be handled with a simplex range-searching data structure (,). In particular,
we can initialize the data structure using points {K;} so that for each @); we can query the data
structure for the appropriate half-space. Matousek’s data structure supports queries in O(nlfl/)
time and computes the sum of the weights assigned to all points in the half-space. Since in high
dimensions, the number of monomials in the polynomial P grows exponentially in dimension d,
we need to instantiate and query 2°2(9) instances of Matousek’s data structure. Still, for constant
d = O(1), this only occurs sub-polynomial factors in runtime. Using appropriate queries to the data
structure over all ¢, our algorithm requires O(nQ_l/) time. Figure 2 illustrates the algorithm.

Figure 2: Algorithm for d-dimensional Attention illustrated for @Q; = (2, 1). Relevant points are in
the shaded blue region. Irrelevant points are in the white region. Weights are omitted for clarity.

Generalizing to Low Rank Matrices. To generalize the algorithm for low-rank matrices @, K with
rank 7, we may decompose () = Ug Vg , K = UxVy where Ug, Vg, Uk, Vi are n x 7 matrices.

Then, we obtain Theorem 1.2 by applying Theorem 1.1 to Q" = Ug and K’ T = VQT UV, which
may be computed in O(nr) time.

Under review as a conference paper at ICLR 2026

QOutline. We give our algorithm in Section 3. The reduction from gradient computation to Attention
computation is given in Appendix B. Our lower bounds are presented in Appendix C.

1.2 RELATED WORK

Approximate Attention Computation. In an orthogonal line of work, many approximate notions
of Attention have been studied to reduce its compute constraints w1th the goal of computing an
approximation in hnear time (s ; s ;) ;

s ; s). Several works obtain provable guarantees as well as practlcal
improvements (, ; s). However, these works
only obtain theoretical guarantees W1th respect to matrix norms such as operator norm rather than
any guarantee on the correctness of each entry. Indeed, our lower bounds show that linear time
approximations do not obtain such strong approximation guarantees.

In the low dimension regime d = o(logn), the Fast Multipole Method gives fast algorithms for
the related Gaussian Kernel Density Estimation (KDE) problem (,). However,
these algorithms do not apply in our regime of polynomial entries. In particular, using the standard
reduction from Attention to Gaussian KDE?® the error produced by the known KDE algorithms is
amplified so that only Attention with subpolynomial entries B = 2°(°2™) can be computed efficiently,
even with constant dimension d = O(1).

Attention w1th MLP Units. Many works have studied the expressive power of Transformers (

s ; s) for classical algorithmic problems. In an independent work
(,) show that an Attention unit with input and output MLP Layers can compute OV
and (Monochromatic) Max-1P. While the constructions are similar, we reduce (Bichromatic) Max-IP
to Attention, and thus obtain a strong conditional lower bound for d = 20(log™ 1) yig (s).

Rather than allowing arbitrary inputs @, K,V € R™*? these works consider Attention with
MLP Units: Given inputs X € R™"*% and Wg, Wi, Wy € RU1*4 compute Q = XWq, K =
XWpg,V = XWy and then Attention(Q, K, V). This preprocessing step requires only O(nd?)
time and does not change the running time of our algorithm. Via a simple modification (to either
our construction or (s)),’ it is possible to show that an Attention unit with MLP
Units can compute (Bichromatic) Max-IP. Our reductions from OV naturally hold for bichromatic
instances as well.

Variants of Attention and Transformers Several works have studied variants of attention and

transformers (s ; s), including several which leverage the polynomial

method for fast computation (, ;).

Attention Computation in Alternative Settings. Attention has also been studied in several settings,

including differential privacy (,), fine-tuning (,), dynamic updates

(s), quantum algorithms (s), and I/O complexity (,).

Conditional lower bounds for Attention have been studied as well (s ; s
;b; ,)-

2 PRELIMINARIES

We begin with the relevant definitions. Let log denote the natural log. Let [n] = {1,2,...,n}. Fora
matrix M € R™*™, we denote its (¢, j)-entry by M, ;, its transpose M T, and its inverse M 1. Let
[|M]||,, := max; ; |M; ;| and exp(M) denote applying e* entry-wise to M. Let 0 and 1 denote the
all zeros and all ones vectors. For a vector v € R™, diag(v) denotes the n x n diagonal matrix whose
(i,1)-entry equals v;.

SMap = — (x,0,r,) and y — (y, ry,0) for appropriate 7, r, so that ||z — y||> = R — 2z - y for some
constant R.

“We describe how to obtain @, K. Given sets of vectors A, B C R, let X € R™*2¢ consist of A in the first
d columns, B in the next d columns. Let Wg = (Id O) and W = (0 Id).

Under review as a conference paper at ICLR 2026

Fine-grained Complexity Hypotheses. We establish new fine-grained lower bounds for the approxi-
mate attention computation problem AttC(n, d, B, ¢). These lower bounds are conditional on some
well-known fine-grained complexity hypotheses, which we introduce below.

The Strong Exponential Time Hypothesis (SETH) was introduced by ().
They hypothesized that solving k-SAT for k£ > 3 cannot be significantly improved beyond exhaustive
search.

Hypothesis 2.1 (Strong Exponential Time Hypothesis (SETH)). For every € > 0, there is a positive

integer k > 3 such that k-SAT on formulas with n variables cannot be solved in O(2(1=)™) time,
even by randomized algorithms.

SETH is a strengthening of the famous P # NP conjecture and has later been used to derive
fine-grained lower bounds for many fundamental computational problems, from string edit distance

,) to graph diameter (,). Our lower
bounds under SETH will proceed via reduction to the Orthogonal Vectors (OV) Problem and the
Max-IP Problem.

Theorem 2.2 ((). Assuming SETH, for any 6 > 0 there is a constant C' such that any

randomized algorithm solving OV in dimension d = C'logn with high probability requires Q(n>—°)
time.

The Max-IP problem asks to compute given sets of integer-valued vectors A, B € Z¢, max,¢ AbeB Q-
b. (2018) showed that computing Max-IP requires n>~°(1) time even when d = 2€(og" ")

Theorem 2.3 ((). Assuming SETH, for any 0 > 0 there is a constant C' such that any
exact algorithm for Max-P in dimension d = C'°8" ™ with O(logn)-bit entries requires Q(n>~%)
time.

3 FAST ATTENTION FOR CONSTANT HEAD DIMENSION

In this section, we present our algorithms for computing Attention in truly subquadratic time for
constant head dimension d and polynomial entry size B.

Theorem 1.1 (Main Theorem). Let d = O(1). There is an algorithm that computes AttC(n, d, B, €)
in O(n*>=? . polylog(B/¢)) time.

The algorithm naturally extends to the case when d is large but the matrices are low dimensional.
Omitted proofs in this section may be found in Appendix A.2. A key tool we require is an efficient
data structure for the range searching problem.

Definition 3.1 (Simplex Range Searching). Preprocess a weighted point set { (k;, w;)} where k; € R?
and w; € R so that given any simplex query o, the data structure returns » kico Wi

Matousek gives an efficient data structure for the simplex range searching problem. In our work, we
will only query the data structure with halfspaces o, which are special case of simplex queries (one
can imagine a simplex defined by the half-space and a sufficiently large bounding box that contains
all input points).

Theorem 3.1 ((). There is a data structure RSDS for the Simplex Range Searching
problem for n. input points in d-dimension with O(nlogn) preprocessing and O(n'~'/%) query time.

Given this data structure, we now present our algorithm for arbitrary head dimension d. Our inputs are

n x d matrices @), K, V with entries in [— B, B]. Our goal is to compute the n x d output matrix O =
X K

Attention(Q, K, V). We rewrite O; ; = > pi,;Vj+ where p; j = % x exp(Qi - Kj).

Step 1: Removing Irrelevant Keys. We begin by showing that removing irrelevant keys does not

significantly alter the quality of the approximation. Deﬁne for each 7 € [n] the maximum probability

in the distribution p; ; as pgéx = max; p; ;. Let 51}« denote the maximum integer s such that the
half-space

{zeR?:Q; x> slog(l+¢)}
contains at least one K; vector. In particular, sffl)ax is the largest integer satisfying max; @; - K; >

SEHLX log(1 + €). We now define relevant and irrelevant keys.

E L

]

N

Under review as a conference paper at ICLR 2026

Definition 3.2. Let j € [n] be irrelevant with respect to Q; if Q; - K; < s log(1+4¢) —log(n/e).
Otherwise j is relevant with respect to ;. When @Q); is clear, we simply say j is irrelevant or relevant.

We argue that we can discard irrelevant indices.

(7'> — Pi,j

Lemma 3.2. Define p; ; if j is relevant and 0 otherwise for all i,j € [n]. Let

relevant § Pi.j

O = 52, p)Vis foralli € [n],t € [d]. Then ‘05’2 — 0,4

< 3eB.

Step 2: Polynomial Approximation of Exponential. We then show how to use polynomial
approximations of e* to efficiently estimate attention. We require the following result:

Lemma 3.3 ((); (). Let ¢ < 0.1. There is a

polynomial P : R — R of degree g = © (max (%, B)) such that for all © € [—B, B],

we have |P(x) —exp(x)| < € exp(x). Moreover, its coefficients are rationals with poly(g)-bit integer
numerators and denominators and can be computed in poly(g)-time.

Consider an entry O; ;. We first remove irrelevant j with respect to (J; and aim to approximate OZ(;).
Recall that

O(T) _ Zp(r)v _ Zrelevant j eXp(Qi : Kj)v.vjvt _ Zrelevant J exp(Qi ’ Kj - C(Ql))v}t
it T i, Vit — -
! j S Zrelevant J eXp(Qi ’ KJ) Zrelevant J eXp(Qi ’ Kj - C(Q@))

where ¢(Q;) = s log(1 + &) —log(n/e).

By the definition of s «, we have that for all relevant J, Qi-K;—C(Q;) € [0,log(n/e)+1og(1+¢)].
We then invoke Lemma 3.3 to obtain a ¢ = polylog(n/e)-degree polynomial P such that for all
x € [0,1og(n/e) 4+ log(1 +¢)] C [0,2log(n/e)], |P(x) — exp(x)| < € exp(x). Define for relevant
J» Di,j < P(Q; - Kj — ¢(Q;)) as an approximation ofpl(-j“j) x exp(Q; - Kj — ¢(Q;)). For irrelevant j,

set p; ; = pE? = 0. Then, define OA,M = Ej D4, V¢ We claim Om is a good approximation.

Lemma 34. [0, ; — O; ;| < 7eB foralli € [n)],t € [d].

Furthermore, we present an algorithm that computes 0] efficiently. The key ingredient to the algorithm
is the following data structure which utilizes the range searching data structure of ().
Lemma 3.5. Given matrices Q, K,V € R"*? there exist functions ¢y, . .. ¢4 such that any entry

OAl-,t can be computed with g°'Y queries to ¢ and ¢, and g°D additional time.

Furthermore, for each ¢ with 0 < t < d there is a data structure with 0 (go(d)n log n) preprocess-
ing and O (go(d)nlfl/d log(B/s)) query time.

Algorithm 1 ApproxAttention(Q, K, V)

Input :Matrices Q, K,V € [-B, B|".

Parameters : Error parameter &

Output :Matrix O satisfying HO — Attention(g, k, v) H < 7eB.

Compute sfril)ax for all ¢ € [n] using Theorem 3.1

Compute ¢(Q;) + Pos log(1 + &) —log(n/e) for all i € [n]

Compute a g-degree polynomial P(x) for range [0,2log(n/¢)] using Lemma 3.3
Initialize the data structure for queries ¢¢ (7,41, ..., ¢q) forall 0 < ¢ < d using Lemma 3.5

Compute O, ; for all (i,t) € [n] x [d] using queries to Lemma 3.5
return O

‘We bound the running time of Algorithm 1.
Lemma 3.6. ApproxAttention (Algorithm 1) runs in time O (n2_1/d - polylog(B/e)).

Under review as a conference paper at ICLR 2026

To conclude the proof of Theorem 1.1, we run Algorithm 1 with error parameter ¢’ < ==. We note
that we can generalize our result to obtain an algorithm for computing Attention when the input
matrices have low rank. We defer the proof to Appendix A.3.

Theorem 1.2. Let + = O(1). There is an O (nd + n?=/" - polylog(B/¢)) time algorithm comput-
ing AttC(n, d, B, €) where r = min(rank(Q), rank(K)).

4 CONCLUSION

We conclude with some open questions. The most natural question is settling the complexity of
Max-IP when 1 < d < 2°20°¢" ") We have shown several conditional lower bounds for Attention
computation. Is Attention fine-grained equivalent to any well-studied problem? If such a relationship
can be established, then breakthroughs on well-studied problems in fine-grained complexity can lead
to breakthroughs on Attention computation. While this work focuses on characterizing the complexity
of training a single Attention unit, the complexity of computing a full transformer remains open:
perhaps the cost of computing many Attention units is less than computing each of them separately.

REFERENCES

Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA. SIAM, 2015a.

Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 218-230. SIAM, 2015b.

Pankaj K. Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl. Euclidean minimum
spanning trees and bichromatic closest pairs. Discrete and Computational Geometry, 6:407-422,
1991.

Atish Agarwala, Samuel Stern Schoenholz, Jeffrey Pennington, and Yann N. Dauphin. Temperature
check: theory and practice for training models with softmax-cross-entropy losses. Trans. Mach.
Learn. Res., 2023, 2023.

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials and
gaussian kernel density estimation. In 37th Computational Complexity Conference (CCC), 2022.

Josh Alman and Yunfeng Guan. Finer-grained hardness of kernel density estimation. In Rahul
Santhanam (ed.), 39th Computational Complexity Conference, 2024.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix softmax
attention to kronecker computation. arXiv preprint arXiv:2310.04064, 2023.

Josh Alman and Zhao Song. Fast attention requires bounded entries. In Proceedings of the 37th
International Conference on Neural Information Processing Systems. Curran Associates Inc.,
2024a.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024b.

Josh Alman and Zhao Song. Fast rope attention: Combining the polynomial method and fast fourier
transform. arXiv preprint arXiv:2505.11892, 2025a.

Josh Alman and Zhao Song. Only large weights (and not skip connections) can prevent the perils of
rank collapse. arXiv preprint arXiv:2505.16284, 2025b.

Josh Alman and Hantao Yu. Fundamental limitations on subquadratic alternatives to transformers. In
The Thirteenth International Conference on Learning Representations, 2025.

Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou.
More asymmetry yields faster matrix multiplication. In Proceedings of the 2025 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 2005-2039. SIAM, 2025.

10

Under review as a conference paper at ICLR 2026

Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic time
(unless SETH is false). SIAM J. Comput., 47(3):1087-1097, 2018.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention
maintenance in large language models. arXiv preprint arXiv:2304.02207, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Neural Information
Processing Systems, NeurIPS, 2020.

Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and more: Quickly
derandomizing Razborov-Smolensky. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 1246—1255. SIAM, 2016.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Unifying
sparse and low-rank attention. In Neural Information Processing Systems, NeurlPS, 2021.

Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum inner product. In
Proceedings of the 33rd Computational Complexity Conference (CCC), 2018.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of the 37th International Conference
on Machine Learning, ICML, volume 119 of Proceedings of Machine Learning Research, pp.
1597-1607. PMLR, 2020.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamads Sarlés, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Ben-
jamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with performers. In
International Conference on Learning Representations, ICLR, 2021.

Mina Dalirrooyfard and Jenny Kaufmann. Approximation algorithms for min-distance problems in
dags. In 48th International Colloquium on Automata, Languages, and Programming ICALP, 2021.

Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf-efficient attention
using asymmetric clustering. Advances in Neural Information Processing Systems, 33:6476-6489,
2020.

Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulating single
layer attention in llm based on tensor and svm trick, and solving it in matrix multiplication time.
arXiv preprint arXiv:2309.07418, 2023a.

Yeqi Gao, Zhao Song, Xin Yang, and Ruizhe Zhang. Fast quantum algorithm for attention computa-
tion. arXiv preprint arXiv:2307.08045, 2023b.

Yeqi Gao, Zhao Song, Xin Yang, and Yufa Zhou. Differentially private attention computation. arXiv
preprint arXiv:2305.04701, 2023c.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Conference
on Learning Representations, 2024.

11

Under review as a conference paper at ICLR 2026

John Hopcroft and Ravi Kannan. Singular value decomposition (svd). https://www.cs.cmu.
edu/~venkatg/teaching/CStheory-infoage/book-chapter—4.pdf. Accessed:
2024-12-21.

Jerry Yao-Chieh Hu, Weimin Wu, Zhuoru Li, Sophia Pi, Zhao Song, and Han Liu. On statistical
rates and provably efficient criteria of latent diffusion transformers (dits). Advances in Neural
Information Processing Systems, 37:31562-31628, 2024.

Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song, and Han Liu. Computational limits of
low-rank adaptation (lora) fine-tuning for transformer models. In ICLR 2025 Workshop on Deep
Generative Model in Machine Learning: Theory, Principle and Efficacy, 2025.

Qianjiang Hu, Xiao Wang, Wei Hu, and Guo-Jun Qi. Adco: Adversarial contrast for efficient learning
of unsupervised representations from self-trained negative adversaries. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, pp. 1074-1083. Computer Vision Foundation /
IEEE, 2021.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer and
System Sciences, 62(2):367-375, 2001.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketching polynomial kernels. In Forty-first International Conference on Machine Learning, 2024.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Frangois Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine

learning, pp. 5156-5165. PMLR, 2020.

Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. On computational
limits and provably efficient criteria of visual autoregressive models: A fine-grained complexity
analysis. arXiv preprint arXiv:2501.04377, 2025.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational
complexity of self-attention. In International Conference on Algorithmic Learning Theory, pp.
597-619. PMLR, 2023.

Bulat Khaertdinov, Stylianos Asteriadis, and Esam Ghaleb. Dynamic temperature scaling in con-
trastive self-supervised learning for sensor-based human activity recognition. IEEE Trans. Biom.
Behav. Identity Sci., 4(4):498-507, 2022.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, ICLR, 2020.

Anna Kukleva, Moritz Bohle, Bernt Schiele, Hilde Kuehne, and Christian Rupprecht. Temperature
schedules for self-supervised contrastive methods on long-tail data. In The Eleventh International
Conference on Learning Representations, ICLR, 2023.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqgi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038-53075, 2023.

Siladittya Manna, Soumitri Chattopadhyay, Rakesh Dey, Saumik Bhattacharya, and Umapada
Pal. Dystress: Dynamically scaled temperature in self-supervised contrastive learning. CoRR,
abs/2308.01140, 2023.

Jifi Matousek. Efficient partition trees. Discrete and Computational Geometry, 8(1):315-334, 1992.

Abhishek Panigrahi, Sadhika Malladi, Mengzhou Xia, and Sanjeev Arora. Trainable transformer in
transformer. In Fortieth International Conference on Machine Learning (ICML), 2023.

Joshua Robinson, Li Sun, Ke Yu, Kayhan Batmanghelich, Stefanie Jegelka, and Suvrit Sra. Can
contrastive learning avoid shortcut solutions? In Advances in Neural Information Processing
Systems NeurlPS 34, 2021.

12

https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/book-chapter-4.pdf
https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/book-chapter-4.pdf

Under review as a conference paper at ICLR 2026

Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the diameter and
radius of sparse graphs. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum (eds.), Symposium
on Theory of Computing Conference, STOC. ACM, 2013.

Tim Roughgarden and Gregory Valiant. The singular value decomposition (svd) and low-rank matrix
approximations. https://web.stanford.edu/class/cs168/1/19.pdf. Accessed:
2024-12-21.

Barna Saha and Christopher Ye. I/O complexity of attention, or how optimal is FlashAttention? In
Proceedings of the 41st International Conference on Machine Learning, 2024.

Clayton Sanford, Daniel J. Hsu, and Matus Telgarsky. Representational strengths and limitations of
transformers. In Advances in Neural Information Processing Systems, 2023.

Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
algorithms. In Advances in Neural Information Processing Systems, 2024a.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computation, and logarith-
mic depth. In Forty-first International Conference on Machine Learning, ICML, 2024b.

Avi Shoshan and Uri Zwick. All pairs shortest paths in undirected graphs with integer weights. In
Proceedings of the 40th Annual Symposium on Foundations of Computer Science (FOCS), pp.
605-615. IEEE Computer Society, 1999.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing Systems
NeurlPS, 2017.

Feng Wang and Huaping Liu. Understanding the behaviour of contrastive loss. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR, pp. 2495-2504. Computer Vision Foundation
/ IEEE, 2021.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In Proceedings of the 37th International Conference
on Machine Learning, ICML, volume 119 of Proceedings of Machine Learning Research, pp.
9929-9939. PMLR, 2020.

R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput., 47(5),
2018.

Ryan Williams. A new algorithm for optimal constraint satisfaction and its implications. In Proceed-
ings of the 31st International Colloquium on Automata, Languages and Programming (ICALP),
2004.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nystromformer: A nystrom-based algorithm for approximating self-attention. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, 2021.

Hao Xuan, Bokai Yang, and Xingyu Li. Exploring the impact of temperature scaling in softmax for
classification and adversarial robustness. CoRR, abs/2502.20604, 2025.

Andrew Chi-Chih Yao. On constructing minimum spanning trees in k-dimensional spaces and related
problems. Siam Journal on Computing, 11(4):721-736, 1982.

Gilad Yehudai, Clayton Sanford, Maya Bechler-Speicher, Orr Fischer, Ran Gilad-Bachrach, and
Amir Globerson. Depth-width tradeoffs in algorithmic reasoning of graph tasks with transformers.
CoRR, abs/2503.01805, 2025.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontafién, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird:
Transformers for longer sequences. In Neural Information Processing Systems, NeurIPS, 2020.

13

https://web.stanford.edu/class/cs168/l/l9.pdf

Under review as a conference paper at ICLR 2026

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via
kernel density estimation. In International Conference on Machine Learning, pp. 40605—40623.
PMLR, 2023.

Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM,
49(3):289-317, 2002.

A OMITTED PROOFS FOR ALGORITHMS

A.1 WARM-UP:d=1

For simplicity, we begin with our algorithm for the d = 1 case and explain how to generalize to the
constant head dimension case later. Formally, we prove in this section the following result.

Lemma A.1. There is an algorithm computing AttC(n, 1, B, €) in O(n - polylog(B/¢)) time.

In the above, Attention(q, k,v) is defined by viewing vectors ¢, k,v € R"*! as matrices. When
d = 1, the input is given by vectors ¢, k,v € [— B, B|™. In the output vector, we hope to compute the

entries .
qiRjay.
Zj eI

Zj etik;

0; =

for all 7. Define the softmax probabilities
edikj

Zj, etiks!

Dij =

so that o; = Zj Pi,jVj-

We begin with an overview of our algorithm. Without loss of generality, we assume ¢; > 0 are
non-negative for all . In particular, if we compute Attention(|q|, k, v) and Attention(|q|, —k,v),
where |g| is a vector where we take entrywise absolute value of g, we can recover the entries of
Attention(q, k,v) from the two outputs. If ¢; > 0, we read the output from Attention(|q|, k,v) and
otherwise we read the output from Attention(|q|, —k, v).
Let k.« denote the maximum value of k£ and pfx?ax = max; p;,; be the corresponding maximum
probability for some fixed . First, we argue that we may ignore all indices where k; < kmax. Since
all of these indices have exponentially small p; ;, ignoring these indices incurs only a small additive
error to the output estimate 0;. Second, we argue that the remaining values of k; satisfy the property
that ¢;k; lie in a small range. In particular, on this range, we use the low-degree polynomial P from
() to give a low-error approximation of the exponential function. Using this
polynomial approximation, we instead compute

5 _ 2 Plaiks — vy Y, ethimey; 37 etifiy; o
’ Zj P(gik; —c) Zj ediks—c Zj ediks '

for some value c that guarantees g;k; — c lies in a bounded interval around O for the remaining values
kj.
J

Consider a monomial mz’ of P. Then > (aik; — c)f = Zi:o (ﬁ) (—c)t0gb > kb. This allows
to pre-compute > j k;’ for all exponents b in a pre-processing phase, and then efficiently compute 6;
using the pre-computed values. We now describe the algorithm in more detail.

Step 1: Removing Irrelevant Keys. We argue that we can ignore irrelevant keys k; (Definition 3.2)
with only small additive error in the estimate.

Since ¢; > 0, by rearranging, note that for all irrelevant j, we have ¢;k; — ¢ikmax < —log(n/e).
Then, we conclude

14

Under review as a conference paper at ICLR 2026

Summing over all such indices 7,

Z Pij < Z P%x%§€~

irrelevant j irrelevant j
Thus, if we define

Dij -
is relevan
() _) retovant §! Pij! J 1s relevant,
Pij =

0 o/w,

we can obtain the guarantees for all relevant j

(r) « Pij_
pZ;J —plj — 1*6
Then, define
-3
b;;
so that
—oi| < | Y B — pij)vs| + > B — pig)v;
relevant j irrelevant j
3
S| D oot DL Pt
relevant j irrelevant j
<
=71_
< 3eB

where we assume £ < %

Step 2: Polynomial Approximation of Exponential. We now show how we use polynomial
approximations of e” to efficiently estimate attention.

Our goal is to approximate o("):

aikjq) . qikj—c(a:)
(r)y _ (r), _ Zrelevantj e . Zrelevantj et V0j
0; " = b; v =

aik; o kj—c
Zrelevant J e Zrclcvant 7 edit (a:)

relevant j

where ¢(¢;) = ¢i - kmax — log(n/e). In particular, we have ¢;k; — ¢(g;) € [0,log(n/e)] for every
relevant j.

On this interval, by Lemma 3.3, there is a polynomial P of degree

= O | max log(1/¢) os(n O llosin
g—O((10g(10g(1/6)/10g(n/5))’1 8(/5)>> O (log(n/e))

such that |P(z) — exp(z)| < eexp(x) for all z € [0,log(n/e)]. Then, we define p;; =
P(gik;—c(a:))

Zrelevant i’ P(Qikj/_C(Qi))

we prove the desired approximation guarantee. For all relevant 7,

for relevant j and p; ; = 0 otherwise. Next, define 6, =) j Dsjv;. First,

1f€p(r) <pii < 1+¢ (r)
1478 =80 =1 _ glig

so that
N (T)

0 —

<B Y

relevant j

<B Y depl’) <4eB.

relevant j

p’h] ng

15

e e 3

10

12

Under review as a conference paper at ICLR 2026

Combined with our previous bound using triangle inequality, we get

6— o

10— ol <

< 7eB. ey

Now, we describe how to compute 0 efficiently. Consider a monomial myx! of P. Then,

me(qik; — c(4;) zz (> PRY (—c(g:) "

Summing over the indices j,

> mulgik; —c(@) =me Y Z() PR (—c(gi)

relevant j relevant j b=0
4
12
_ b £=b b
—me Y () el X
b=0 relevant j

Let ¢(4,0) = 3 clevant j k: be the sum of kzé’ for all j relevant with respect to ¢;. In particular,

Z P(h Z)): Z P(h 1))

relevant j relevant j

Z Zmé QZ Z))

relevant j ¢

L
S 3 (i) (-ela)' " o6i)
4 b=0

Following similar computations we obtain

4
> Plaiky —clg))v; =Y me Y (i) ¢} (—(a:)) ™" bu(i,))
i 0

b=0

where ¢v (7’7 b) = Zrclcvant 7 k]
The following lemmas show that we can compute 6 efficiently.

Lemma A.2. Letb > land ky > ko > ... > ky,. Let qu, . .., qn, be arbitrary. Then, ¢(i,b), ¢, (i,b)
can be computed for all i in time O(nlogn) time.

Proof. Given b, we can compute Z 1 kj forall 1 < J < nin O(n) time. Then, for each i, we

use binary search to find J;, the maximum index j where k; > max; k; — log(n/€)/q;, i.e., k;j is
relevant with respect to ¢;. Then we assign ¢ (i, b) = Z) k;’ Over all 4, this takes O(nlogn) time.

We can compute ¢, (%, b) similarly. O

Algorithm 2 VectorAttention(q, k, v)

Input :Vectors ¢, k,v € [-B, B]™.

Parameters : Error parameter €

Output : Vector 6 satisfying ||6 — Attention(q, k)| < eB.

Compute a polynomial P(x) = Y, mx* for range [0, log(n/c)] using Lemma 3.3.
Compute kpax < max; k; and sort {k: 1.

Compute ¢(i, b), ¢y (i, b) for all1 <i<n,1 <b< gusing Lemma A.2.

forl1 <i:<ndo

Compute 0; +—

Zrelevant j P((Itkj_c(lh))vj
> retovant 5 P (@ikj—c(a:))

using Lemma A.3.

return o

16

Under review as a conference paper at ICLR 2026

Lemma A.3. Let P(z) = >, mya* be a degree g-polynomial with poly (g)-bit coefficients. Given
i, (i, b), Py (i, b), there is an algorithm computing 6, in poly(g) time.

Proof. We recall that

. Plaky — cla)yy
% Xj:p” T, Plaiky — e(q)

From Equation (2), we note

S Plak, ZWZ (Jat (et 6.0,

so that given access to ¢,(i,b), we can compute the numerator in poly(g)-time. Similarly, by
accessing ¢(%, b), we can compute the denominator as well. O

To conclude the proof of Lemma A.l, we apply Algorithm 2 with ¢’ = =% so we obtain &-

approximation under Equation (1). In particular, the degree of the polynomial required is
g9 =0 (log(n/e')) = O (log(nB/e)).
Then, Algorithm 2 takes time O(n - polylog(B/¢)).

A.2 CONSTANT HEAD DIMENSION

We provide the omitted proofs for Theorem 1.1.
Lemma 3.4. [0, ; — O, | < 7eB foralli € [n],t € [d].

This follows from identical arguments as to those in the one-dimensional warm-up.

Lemma 3.5. Given matrices Q, K,V € R"*? there exist functions ¢q, . . . ¢q such that any entry
O;,+ can be computed with %D queries to ¢o and ¢, and g°V additional time.

Furthermore, for each ¢ with 0 < t < d there is a data structure with o} (go(d)n log n) preprocess-
ing and O (gODn'=141og(B/e)) query time.

Proof. Recall that O;, = 2relevant P(F,Q('i'lfg C_(g(g);/)” where P is the polynomial of degree g
K, :

relevant j

obtained from Lemma 3.3.

We begin with describing how to compute the numerator of Oi,t. Suppose P(z) = Y_9_, mex’.

Z P(Q;- Kj — C(Qz))

relevant j

S S me@i K — (@) Vi

relevant j £

¢ d
_ng Z Z (50751,...,&1) Zokl;[l Q”“Kﬂk Vit

relevant j lo+414...+4q=¢

D OTEED S R [SCCULY | N o | O

Lo+l1+...+Lg=L relevant j k=1

=2 me) (eoelé zd) %HQ kulis by ba)
Z o

Lo+Ll14...+Lqg=L

where we define the function ¢ (4, {1, ..., 4a) = > cjovant ; Hk 1 Ké :. V. Similarly, define the

function
Golis b, la) = Y HK“

relevant j k=1

17

Under review as a conference paper at ICLR 2026

so that

ZP(Qi K —c(Qi)) =

Y d
dome Y. (g 0 ’)(—c(Qi))“ 1 @eolista, ... La).
Vi 0,%15 -5 td el

Lo+Ll1+...+Lg=L

The following lemma describes how to build the appropriate data structures.

Lemma A4, Let {1, . .., L be nonnegative integers. Let 0 < t < d. Given matrices Q, K,V there
is a data structure with O(nd + nlogn) preprocessing time that answers queries ¢¢(i, 41, ...,4q) in
O (n'=Ylog(dB/<)) time.

Proof. We initialize two RSDS data structures using Theorem 3.1, one with unweighted point set

{K} and one with weighted point set { (Kj, e, Kf‘k Vjt) } . By Theorem 3.1, this requires
; =1

O(nlogn) preprocessing. Computing each weight requires O(nd) time.

Now, consider a query ¢ (i, {1, ..., ¢q) for some i € [n]. We compute s using binary search with

the first RSDS data structure. Since |Q; - K;| < dB? there are at most O(dB?/log(1 + ¢)) values

to search through. This requires O(log(dB/<)) queries which requires O (n!~/?log(dB/e))
overall time by Theorem 3.1. The set of j relevant to @); is the set of K; such that Q; - K; >
s log(1 4 €) — log(n/e). This can easily be captured by a simplex query with the half-space

Qi x> sy log(1+¢€) —log(n/e) and thus requires one query to the second RSDS instance. [

Our data structure for Lemma 3.5 is simply the combination of all data structures that answer
queries ¢ (4,¢1,...,¢4). Since P is degree g and ¢4 + {5 + ... + €3 < £ < g, there are at most
(g +d)°@) = gO@ distinct tuples /1, . . ., £4 since d is a constant. In particular, we can initialize all
the necessary data structures to compute queries of ¢¢ in O (g9 (nd + nlogn)) time.

We now show to compute an entry of OAM. Note that numerator sums over ¢, tuples £, ..., ¢4 of
which there are at most g°(%) summands. Each summand can be computed with one query to ¢; and
¢4 additional time. Since the denominator can be computed similarly (instead querying ¢g) the
total time to compute O; ¢ is O (g% Dn'~1/?log(dB/e)). O

Lemma 3.6. ApproxAttention (Algorithm 1) runs in time O (n2_1/d . polylog(B/E)).

Proof. We now analyze the running time. From Lemma 3.3, we have

= max log(1/e) oe(n — O(log(n
g_o< (log(log(l/s)/log(n/a))’1 8(/5)>) O(log(n/e)).

Then, to initialize all the necessary data structures, we invoke Lemma 3.5 a total of d 4 1 times, thus
requiring preprocessing time (recall d is a constant)

O (n - polylog(1/e)) .

Then, computing all OAM requires time

0 (ngo(d) (nlfl/d log(B/5)>> =0 (n2*1/d . polylog(B/e)) .

A.3 GENERALIZATION TO LOW RANK MATRICES

To prove Theorem 1.2, we require the following standard result on computing a representation of
low-rank matrices.

18

Under review as a conference paper at ICLR 2026

Lemma A.5 (e.g., ;). Let A be an x d matrix of rank r
with entries in [— B, B]. Then, there is an O(ndr) time algorithm computing an n x r matrix U 4 and
a d x v matrix Vo such that A = UV, . Furthermore, U 4, VA have entries bounded by poly(Bnd).

Suppose we are given n X d input matrices (), K of rank rq, rx respectively. Then, we apply
Lemma A.5 to compute Ug, Vg, Uk, Vi in time O(nd max(rg, rx)) = O(nd). Suppose without
loss of generality 7 < 7. Then, we compute

Q =Uq, K'" =V UxV{
in time O(rgrxn) = O(n) and note that), K’ have entries bounded by poly(Bnd).

We then apply Theorem 1.1 to approximate Attention(Q’, K', V') = Attention(Q, K, V') which is
an instance of AttC(n, min(rg, 7k), poly(Bnd),) which requires time

0 (n2_1/mi“(rQ’TK) -polylog(B/5)>

to compute an output O such that HO — Attention(Q, K, V) H < ¢. This completes the proof of

Theorem 1.2. =

B THE COMPLEXITY OF ATTENTION GRADIENT COMPUTATION

In this section, we leverage our algorithm for approximate attention computation to obtain the
corresponding upper bounds for approximate attention gradient computation. We begin by formalizing
the notion of attention optimization:

Definition B.1 (Attention Optimization). Given input matrices A;, Ay, A3, E € R"*% and Y €
R¥*?_find a matrix X € R?*? that minimizes the objective:

1 _ 2
L(X) =3 |D(X)~rAV — E|,.,
where A 1= exp(A4; XA,),V := A3Y, and D(X) := diag(A1,) € R»xn 10

The gradient of the objective function L(X) with respect to X is then used to optimize the atten-
tion mechanism by iteratively adjusting X to minimize L(X). Formally, we define the following
approximate version of the gradient computation problem for attention optimization:

Definition B.2 (Approximate Gradient Computation for Attention Optimization AAttLGC(n, d, €)).
Given Ay, A, A3, FE € [-B,B|"*%, Y € [-B, B]**4, and ¢ > 0, compute a matrix g € R%*9

such that
-

<
ax ¢

o0

B.1 NOTATION

Throughout this section we use the following notation. We overload the diag operator. In this
section, the diag operator indicates turning all the non-diagonal entries to zero. The o operator
indicates entry-wise multiplication. The ® operator denotes the Kronecker product, as defined by
Z[(i — Dn+£4,(j — 1)d + k] = X[i,j] - Y[¢, k] where X,Y € R"*4 and Z € R" *%°_ The ®,
operator denotes row-wise Kronecker product, as defined by Z[i, (j — 1)d + k] = X[i, j] - Y[i, k]
where X, Y € R"*? and Z € R"*4", We use e{) as shorthand to denote ¢*i"*% , where ay, and
ay, are rows of Aj and Aj respectively. If M is a matrix, we use M; to denote the i-th row of M,
M, i to denote the i-th column of M. We use M [i][j] to denote the (7, j)-th entry of M (since our
matrices have subscripts, the previous notation M; ; is confusing).

10 () scale the Attention matrix A by d for training efficiency, becoming A :=
T

exp (%). Since our algorithms scale polylogarithmically with entry size, we can safely ignore this
scaling term.

19

Under review as a conference paper at ICLR 2026

B.2 UPPER BOUND ON ATTENTION BACKWARD COMPUTATION

We show that the backwards pass for approximate attention can be computed in time
O (n*~1/? . polylog(B/e)) when d = O(1).

Theorem B.1 (Formal Theorem 1.3). AAttLGC(n,d, B,e) is reducible to O(d) calls to
AAttC(n, d, B, m) using O(nd?) time.

Corollary B.2. Let d = O(1). There exists an algorithm that computes AAttLGC(n, d, B, €) in time
O (n*71/ . polylog(B/e)).

Proof of Corollary B.2. This follows directly from Theorem B.1 and Theorem 1.1. O

Proof of Theorem B.1. We begin by recalling the following definitions from (),
which we will use to define the gradient computation formula.

Definition B.3. Let A;, Ay € R™*? be two matrices and let A = A; ® Ay € R? ¥4 Letz € RY
be the vectorization of the matrix X € R%*¢ in Definition B.1. We define A;, € R"*%" to be the
n x d* size sub-block of A consisting of rows {(jo — 1)n + j1}} _;. Let f(x) be the n x n matrix
whose jo-th row, denoted f(z);,, is given by:

f(x)jo = (<6Xp(Aj0$),\1:b>_1 eXp(Ajox))T

nx1 nx1 nx1

Note that f(x) = exp(A; X A]) - diag(exp(A; X AJ)1,,). Therefore f(x)Z, where Z is ann x d
matrix, is evaluated by Attention(A4;, As, X

Definition B.4. Let Y € R?*? denote the matrix representation of y € RY" and Y, ;, indicate the
ig-th column of Y. h(y) € R™*? is defined as the matrix whose io-th column is h(y);,, which is
defined as follows:
h(y) A3 *,40
~

nxXd dx1

Note that throughout this section, we occasionally use h as a shorthand for h(y). It is clear that h(y)
can be computed in Tmyr(n, d, d) time.

Definition B.5. Let ¢(x) be an n x d matrix defined as follows:

nxd nxn nxd nxd

We can approximate ¢(y) by evaluating Attention(A; X, Az, h(y)) to get f(x)h(y), then subtracting
E which takes O(nd) time.

From () we have the following formula for attention gradient computation:
D) _ A1) 0 (elw)h(w))]s — AT () dinglf()ela)h(y) I 4
= A [f(z) o ((f(x)h(y) — E)h(y)")]Az — A] f(x) diag(f (z)c(z)h(y) "] A2
= A [f(z) o (f()h(y)h(y) ")]As — A [f(x) o (Eh(y)")]As

1
AT f(x) diaglf (x)e(w)h(y) T] Ao

The first line comes from the characterization of the gradient as dL(x) = A p(x)As where p(x) =
p1(x) — p2(x) (see Appendix D.4-D.6 of ()). T the notation of

(), the first term corresponds to p1(z) := f(x) o q(x) := f(z) o (c¢(x)h(y)). The second
term corresponds to pa () which is an n x n matrix whose jo-th column is f (), f(x) ;] q(x);, =
F(@)jof ()] c(@)h(y);,. Note that pa(x) := f(x)diag[f(2)q(x)] = f() diaglf(z)c(z)h(y)].

Note that ¢(z) = c¢(x)h(y) " is notation in () which we do not use here.

20

Under review as a conference paper at ICLR 2026

Let us denote

We now have the following formula which can clearly be computed in O(nd) time if given By, Ba,
and Bj:

dL(x
U:AI B, — Al By — A] Bs.
dz N N N
dxn nXd dxn nXd dxn nxd

Note that for each attention computation we perform in order to evaluate the attention gradient, we

. . pi T
do with eg = SOy (4B additive error.

Computing Bs. Given f(z),c(z), and h(y), we can approximate Bs using a series of matrix
multiplications and attention computations, which are illustrated below in the following equations.
C; denotes the intermediate matrix products from each of these matrix multiplications/attention
computations. We compute an approximation of B3 as follows:

Bs = f(x)diag[f(z) c(z) h(y) A,
= f(z)diag[C1 h(y)"]As
nxd dxn

= f(ac) CQ A2
M~
nxn nxd

nxd

We begin by computing C; = f(x)c(z) by evaluating Attention(A; X, As, ¢(x)). Next, we compute
Co = diag[C1h(y) "], which consists of the diagonal of the matrix product C; h(y) . Since we only
need the diagonal entries, this step takes O(nd?) time. We then compute C3 = CoAy. As Cs is a
diagonal matrix, this matrix multiplication can be performed in O(nd) time. Finally, we compute
B; = f(x)C3 by evaluating Attention(A; X, A, C3).

We argue that our computed output is a good approximation of Bs. Let E, denote the computed
matrix. For any matrix Z, Z indicates an approximation of Z derived by a step in our algorithm.

21

Under review as a conference paper at ICLR 2026

Then,

IN

HBg - B}Hw F(2)Cs — AMtC(AL X, Ay, @Hm

IN

f@)Cs = F@)Ca||_+2

IN

C3—a;H +eo

= ||diag[C1h(y) T Ag — diag[CN'lh(y)T]AzH + &2

[diag[Cuh(y)T] - diaglCuh(y) | Ao+ ez

IN

4zl |[diaglCah(y)T] - diag[Cin(y)]| + =2

< sl [C1h)T = Cun)T|_ +=

~|
< dAzll o 10 €1 = Cr||_ 42

< | 4zll o 19 . [F@)el@) — ARC(ALX, Az c@))]| + 22
< dl| Azl [193) . (2 + || f (@)el@) = f@)e@)|) +e2

< d | Azll o [10(3) | (2 + ||e@) = e(@)]|)+
< 2dB282 + &9.

Above, step 1 follows from how our algorithm approximates Bs, step 2 follows from our e2-error
approximation of attention and the triangle inequality, step 3 follows from the fact that f(z) is a
stochastic matrix and distributivity of matrix multiplication, step 4 follows from our definition of C'3,
step 5 follows from the distributivity of matrix multiplication, and step 6 follows from basic properties
of the co-norm and diagonal matrices. Step 7 follows from the fact that the diag operator simply
zeroes out the off-diagonal entries, making the off-diagonal elements of C1h(y)" and C1h(y) "
identical. Step 8 follows from basic properties of the co-norm, step 9 follows from how our algorithm
approximates C1, step 10 follows from the triangle inequality and our 2 approximation of attention,
step 11 follows from similar arguments as steps 9 and 10, and step 12 follows from entry bounds.

Computing B;. We now show how to compute B;. We begin by noting that B; =
Zzzo(f(:c)(h(y)*,p ®r A2)) @, (f(x)h(y))«p, a fact we will prove later. Using this fact, we
can compute Bj efficiently, as illustrated in the following:

d
B =) (f(@)(hly)sp @r A2)) @1 (f(@)h(y))ss

(f(@)(h(Y)sp @r

A2) ®r 05*,;,
N—— ~
nxl1 nxd

22

Under review as a conference paper at ICLR 2026

We begin by approximating Cs = f(x)h(y) by evaluating Attention(A; X, As, h(y)). Next, for
each 1 < p < d, we compute the matrix Cs , = h(y) p ®, Aa. Each matrix requires O(nd) time to
compute, so constructing all d matrices incurs a total cost of O(nd?).

We then compute each matrix C7 , = f(2)Cs p, by evaluating Attention(A1X, A, Cs) across all
p € [d]. Computing the row-wise Kronecker products Cs , = C7, ®, Cs, , takes O(nd) time for

each p € [d], totaling O(nd?). Finally, summing over all Cy ,, requires an additional O(nd?) time.

We argue that our algorithm returns a close approximation of Bj. Let E indicate our computation of
B;. For any matrix Z, Z indicates an approximation of Z derived by a step in our algorithm.

|3 -5 -

d d
> G- 3a,
p=0 p=0 00

< dm}gX{Hé;p ®p C/”_svp —Crp®r G5,

< dmgx{HCf'ng, —Csp

J

< mpe {0 - _ e

+ Hé;;j - C?,p

65l

o (SN M
= dmgx{||AttC(A1X7 AQ, C6,p) — f(x)061p||oo HAttC(A1X7 AQ, h(y))*’p - 05

eolloe
+ [|AttC(A1 X, A3, Co) — f(2)Copll o [|C5. || o
+ || AttC(AL X, A2, () p — Cs., || 1070100 }

< dm}z}x {e3 + 2 [(f(@)P()spll oo + €2 1 () (A(Y)wp @7 A2)]| o }

< dm;lx {3 + 22 |h(Y)ll oo + 2 [|P(y)+p @r A2l }

< dmgx {2 + a2 [h(W)ll o + 2 [|P() pll oo 1 2]l 10 }

< d (e} +e2B* + €2B%) = de5 + deo B + dey B

Step 1 follows from our definition of Cj ,, step 2 follows from the triangle inequality, and step 3
follows from how we define Cy ,,. Step 4 follows from analyzing the entry-wise error in the row-wise

Kronecker product. Let a = C7,i][j], b = Cs, [i][j]. and let e; and ey denote the entry-wise
approx1mat10n errors in C7 ,[i][j] and Cs, [i][j i, respectlvely Then the approximated entry is
¢ = (C’7 p®rCs, p)[ill7] = (a +e1)(b+ e2) = ab + bey + aes + e1es. Therefore, the entry-wise

error in the approximation is ¢ — ¢ = bey + aeg + e1ea, where (¢ = C7, ®, Cs,)[i][j].

Step 5 follows from how our algorithm approximates C'7 , and Cs, . Step 6 follows from the fact

that E’VG = (s and our €, approximation of the attention computation. Step 7 follows from the fact
that f(x) is a stochastic matrix, step 8 is based on the linearity of the Kronecker product, and step 9
follows from entry bounds.

We defined By := [f(x) o (f(x)h(y)h(y)T)]A2. We now show We begin by noting that the format
of each entry of Bj is as follows, where 1 < i <mnand1 < j <d:

d
Z N (i k) (i,k) Z Zh[&p]h[mvp] AQ[&]}
Z 06
= m= 0 p:O
Yy [z Sy] i)
p=0¢= 0

23

Under review as a conference paper at ICLR 2026

We now compute the sum Zi:o Cs,p and verify that
d

> Csy

p=0

Let C5 = f(z)h(y). For1 <i<mnand1 < p < d, we have:

[i,j] = Bali, j].

Z ’H'L

Z 7h(y)m, p).

Let Csp = h(Y)sp @r As. For1 < ¢ <mand 1 < j < d, this gives:

We define C7 , = f(x)Cs p, sO:
07717 i, J] Z Zn Oe(Z k) ()14, €] A2[¢, j].

Let Cs, = f(x)C7p @, Cs, . Thenfor1 <i<n,1<j <d:

eli:0) elim)
Cspli, j] = (ZZ 06”“ h(y)[4 AM;) (Z (y)[m,p]>
e<7’)m>
= A m,p| - L,p] - Asle, j].
;; zk_ s Bl sl)] A)

Summing over all p, we recover:
d
3= Csyli.).
p=0

Computing Bo. We begin by noting that By = Zzzo[f(x)(h(y)*’p ®y A2)] @, E, p, a fact that

we will prove later on. Using this fact, we use the following procedure to compute an approximation
of Bsy:

We start by approximating the set of d matrices, Cg , = h(y)+p ®r A2. Foreach 1 < p < d,
computing Cy ,, takes O(nd) time, so this takes O(nd?) time in total. We approximate each Cig , =
f(x)Cy , by evaluating Attention(A; X, As, Cy ;). Next, we compute all C11,, = Crop @ Exp
which takes O(nd?) time in total. Finally, summing over C1; , takes O(nd?) time.

24

Under review as a conference paper at ICLR 2026

We now analyze the error from approximating B5 using the method we just described. For any matrix
Z, Z indicates an approximation of Z derived by a step in our algorithm.

Jox- 2] -|

d d

E :Cll,p - E :Cll,p
p=0 p=0 o
oo}

= dmaX{HCmAp ®r E*’p — C/'—l\(;; ®r E*’pH }
p [e%e]

< dmaX{HC’le — Cle
p

 dmae {|(Cra ~ Gyl 01 2.}

< amc {1821 €~ G}

_ dmgX{HE*,pHoo ||f(‘/1;)(h(y)*)p ®7‘ A?) - AttC(A1X7 A27 h(y)*J? ®T AZ)HOO}
< dmgx {62 HE*,p”oo}

S dEQB-

Above, step 1 follows from our definition of C; j, step 2 is follows from the triangle inequality,
and step 3 follows from our definition of C1 ;. Step 4 follows from the linearity of the row-wise
Kronecker product and step 5 follows from the fact that the row-wise Kronecker product scales every
element in C'g,, by an element in F, ;,. Step 6 follows from how we approximate C'q in our
algorithm, step 7 follows from our eq-error approximation of attention, and step 8 follows from our
defined entry bounds.

We defined B := [f(z) o (E)h(y)")]Az. Finally, we show that By = Zzzo[f(x)(h(y)*’p ®y

As)] ®, E. p, which can be proven by showing that Bs[i, j] = ZZ:O Ciipli,jlforalll <i<mn
and 1 < j < d. We note the following:

n 1@) d
=0 Zk:oe p=0
ii Bl plhle, Aol
= —n LD , PlA21L, 7],
D kg €M)
p=0 £=0 =

and it is clear that the following is true:

et . .
Cll,p i j Z Zk o 6 i, k [Z7p]h[£7p]A2[£7J]

Bounding Approximation Error. Now all that is left is to show our procedure gives us an
approximation of the gradient with ¢ additive error. Recall that we did all the attention calculations

—_—

with €2 = ——£—— additive error. Let (I) denote the matrix our procedure returns and let ¢(x)
poly(d,B)

25

Under review as a conference paper at ICLR 2026

be the approximation of ¢(z) given by Attention(A; X, As, h(y)).

—_~—

dL(z) dL(x)

dx dx

d d
AlBi— A By — A[By — (Al) Csp— Al Y Cuuyy— A f(2)Ch)

p=0 p=0

oo

_ AI

d d
(B1 = Csp)+ (Ba— Y Cirp) + (Bs — f(x)Cs)
p=0 p=0

oo

d d
< a7 \ (B 3" Cap) + (Ba — 3" Cuay) + (Bo — F()C)
p=0 p=0

o0

+ +11Bs = f(#)Csll

oo

d d
By — Z Cg’p By — Z Cll,p
p=0 p=0

< nB((de3 + de2 B + dea B?) + des B + (2dB%es + €5))
= O(ndB3c,) = ¢.

Above, steps 1 and 2 follow from definitions and rearranging terms, step 3 follows from basic
properties of the oo-norm, step 4 follows from the triangle inequality, and step 5 was justified
previously.

o0

<n Al

O

C NEW LOWER BOUNDS FOR ATTENTION

In this section, we prove Theorem 1.4 which shows Attention is hard even with d = 2°©(1°8" ™) and
Theorem 1.5 which shows that the standard algorithm is optimal for d = poly(n). We begin with a
generic self-reduction (Lemma C.1) that shows it suffices to prove lower bounds for Attention without
normalization. We also prove Theorem C.7 which shows that Attention is hard for d = Q(logn)
even for constant entry size.

Recall that in the attention computation Attention(Q, K, V) = D~' AV, the diagonal matrix D1
applies a normalization to each row of A. In our reductions, however, it is necessary to work directly
with the unnormalized entries of A. As a key lemma, we show that given oracle access to AttC
with e-additive error approximation, one can approximately recover the row sums of A up to O(¢)-
multiplicative errors, hence recovering the unnormalized entries of A. Specifically, if .5; is the actual

row sum of the i-th row of A, then the reduction computes an approximation S; such that

|Sl — Sl| < O({:‘)Sl
It turns out that multiplicative error approximation on the row sums is sufficient for our lower bound
proofs.
Lemma C.1. Let 0 < & = O(1). Given matrices Q, K € [~B, B]"*% with B > 1, we can estimate
the row sums of A = exp(QK ") up to O(e)-multiplicative error in time

O((loglogn +log(dB/e))Tarrc(n + 1,d+ 1, B, ¢)).

Proof. We use a parallel binary search approach to estimate the row sums. In order to implement
parallel binary search, it suffices to perform the following task 7

Given an array of numbers ¢ = [c1,...,c,] ", outputan array b € {0, 1}" such thatif S; > (1+4¢)c;,
then b; = 1;if S; < (1 — €)¢;, then b; = 0. Otherwise, b; can be arbitrary.

Indeed, at each round we let ¢; := (1 + E)f i~1 for some f;. We use the indicator b; = 1 to perform
binary search for the smallest f; such that (14-¢)/¢ > S; for all 7. Such an f; gives the guarantee that
S; < (1+¢)fi < (1+4¢)S;, which is an e-multiplicative approximation of S;. Note that the value of
each row sum S; belongs to the range [n exp(—B2d), n exp(B2d)], so we just need to binary search
for the correct f; € [log, . (nexp(—B3d)),log, ,.(nexp(B?d))]. Therefore, the number of rounds
for binary search (i.e., for performing the task 7") is given by

O(log, log; . (nexp(2B%d)) = O(loglogn + log(dB/¢)).

26

Under review as a conference paper at ICLR 2026

It now remains to show how to perform the task 7. We claim the following:

Claim C.2. The task T can be completed with one oracle call to AttC(n + 1,d + 1, B,£/100) and
O(nd) additional time.

Proof. We create the following matrices as inputs to the oracle AttC(n + 1,d + 1, B,¢):

Q = P%C (?T},K’: {01 gﬂ,v’: oo
d n : . . .

Then,
Inc QKT]

Q/K/T — [0 0;
so the (i, 1)-th entry of Attention(Q’, K', V') = D'~t A'V’ would be
Si
ci+ 9

0; =

Assume we have an (¢/100)-additive approximation of o; (denoted by ;). Then, we set b; = 1 if
0; > % and b; = 0 otherwise. We now show that all entries of b are correctly set. If S; > (1 + ¢)¢;,
then

S; 1+¢ 1
0; > 0; — /100 > —¢e/100 > —— — /100 > .
0i 2 0i ¢/ T+ S Z T 2+4¢ 2 2
On the other hand, if S; < (1 — €)¢;, then
Si 1—¢ 1
0; < 04 100 < 100 < — 100 < -.
0; <oi+e/ Ci+Si+€/ 2_8+€/ 5
In the first inequality, we use éig > % + § and in the second we use %:g < % — §- Thus, the
algorithm will output b; = 1 in the former case and b; = 0 in the latter case, as desired. O
This completes the proof of Lemma C.1. O

C.1 LOWER BOUND FOR ATTENTION WITH SMALL HEAD DIMENSION

In this section, we show via a reduction from the Max-IP problem that AttC(n, d, B,) requires
n?=°() time when d = 29(°8" ") B = poly(n), and e = O(1) additive approximation error. In
particular, we note that we are able to compute Max-IP exactly even with oracle access to AttC that
allows ¢ = O(1) additive error.

Lemma C.3. Let ¢ > 0. Max-IP(n, d, B) can be computed exactly in time
O((loglogn +log(dB/¢))Tarrc(n + 1,d +1,0(Blogn),€)).
Proof. Given a §, we choose a C' = C(J) and set d = 2€1°¢*(") Let A = {a1,...,a,},B =

{b1,...,b,} C Z% be two sets of d-dimensional integer-valued vectors with entries bounded by
B > 1. Let k = Inn and we choose the smallest integer C' > 0 such that

0.5C >1+1log,(14+¢) and —0.5C <log,(1—e¢).

Define the following matrices @, K € R"*¢:

— af _ _ bir _
— a; _ _ sz _

Q= . , K =kC -) . 3)
— a; _ _ b;LF _

27

Under review as a conference paper at ICLR 2026

By Lemma C.1, we get the (1 + ¢)-multiplicative approximations of the row sums of exp(QK ") in
time

O((loglogn + log(k*C%B%d/¢)) Tarrc(n + 1,d + 1,keB, ¢)).
Here, note that k<C B = O(B logn). Note that the i-th row sum is given by

S; = ZekC(ai-bj) _ ch(ai'bj),
Jj=1 j=1

Let S} be the (1 + ¢)-multiplicative approximation for S; and let M/; := max; a; - b; (note that all
inner products are integers) be the maximum inner product over all vectors in 5 for a fixed a; € A.
We claim that M; can be recovered exactly by

log,, S!
M, = | 2802 L g5
{c * J

Note that each non-maximum term on a single row can be bounded by 0 < n¢ (%) < nCMi 50 we
can bound the row sum by

Thus, applying (1 + €)-approximation to the upper and lower bounds respectively we get
(1 —e)nMi < 8/ < (1+4e)ncMitt,

If we can show M; < (log,, S!)/C + 0.5 < M; + 1 then we are done. Indeed, using our definition
for C we get

log, ! OM; +1+ log, (1 1+ log, (1
108,51 | g5 OMit LTl (LH0) | 5 gy y LFLOBMATE) |5 gy y g,
C c C
nd e s OM; +log, (1 log, (1

O

Combining the above reduction with the conditional lower bound for Max-IP (Theorem 2.3), we
obtain Theorem 1.4.

Theorem C.4 (Formal Theorem 1.4). Fixe = O(1) and B = poly(n). For all § > 0, there exists
C = C(6) and d = 2€'°8" ™ such that any algorithm computing AttC(n, d, B, €) requires n>~° time
under SETH.

C.2 LOWER BOUND FOR ATTENTION WITH LARGE HEAD DIMENSION

In this section, we study the case of large head dimension where d = poly(n). Through a reduction

from the OV problem, we show that computing AAttC(n, d, B, €) requires explicitly computing the

matrix product QK " when d = poly(n), B = O (v/Iogn), and ¢ = O(1) (additive approximation

error). Furthermore, we establish a similar lower bound from the OV problem when d = poly(n),
_ _ 1

B=0(1),ande = O (poly(n)>.

Theorem C.5 (Formal Theorem 1.5). Fix d = poly(n). There exists B = O(y/logn) and ¢ = O(1)
such that any algorithm computing AttC(n, d, B, ¢) requires TyuyL(n, d, n)'=°1) time under the
Generalized High-Dimensional OV Hypothesis.

We show the following lemma to prove Theorem C.5.

Lemma C.6. The OV problem can be computed exactly with one call to AttC(n,d,B =
O(Vlogn),e = O(1)) and O(nd) additional time.

Proof Let A = {ai,...,a,},B = {b1,...,b,} C {0,1}% be two sets of vectors. We chose a
constant ¢ such that ¢ < ¢ < 1 and a constant k such that k < —=S~. We then define Q, K € R"*%;

n(l+c)”
— a]’ _ — b1T _
— a2T _ — b2T _
Q:=—+/|Ink|- . , K i=+/|Ink|- . 4
— al’ _ — b; _

28

Under review as a conference paper at ICLR 2026

Due to Lemma C.1, we can recover the row sums of exp(QK ') up to e-multiplicative error in
O ((loglogn +log(dB/e))Tartc(n+ 1,d + 1, B,¢)) time. Let S; be the (1 & €)-approximation
of the ¢-th row sum.

n n
Si:=(1=x¢) Z e (k) (aibs) — (1+te) Z kit
j=1 j=1
which implies

(1= k" <8< (146> k.
j=1 j=1

If there are no orthogonal pairs of vectors in .4 and B, then a; - b; is a positive integer for all
1 < 4,5 < n. Consequently, because 0 < k£ < 1, the maximum value of k%% is k. From this it
follows that if there are no pairs of orthogonal vectors, all of the sums 5, . .., .S, will be less than
1—-c

Si < (L+e)) kb < (14e)nk <
j=1

(I+e)(l—2c)
(14¢)

(I+¢)(1—¢)
(I+¢)

< =1—-c

On the other hand, when there are one or more pairs of orthogonal vectors in .4 and B, there will be
at least one k%% = 1 and a row sum S; will exist such that S; > 1 — ¢:

n
Siz(1—e) k> (1-el>1-c
j=1
By checking for the existence of a row sum S; that is greater than or equal to 1 — ¢ we can determine
whether there is a pair of orthogonal vectors in .4 and B. O

We also show that when d = ©(log n), Attention is hard under SETH even with constant entry size
B

Theorem C.7. For all § > 0, there exists C = C(3), d = Clogn and ¢ = n~C such that any
algorithm computing AttC(n, d,log 2,) requires 2 (n*~?) time under SETH.

We show the following lemma to prove Theorem C.7.
Lemma C.8. The OV problem on vectors of dimension d can be computed with high probability in
time

) 1
0] ((logn)(d+ logn)TatTC (n +1,d+1,log2, Wi)) ‘

Given the above lemma, suppose we have an algorithm computing AttC. Given a ¢ define &' = §/2
and let C’ = C’(8") and d = C” log n as required in Theorem 2.2. Then, let e = 1557 = n~¢ for
some large constant C' = C'(§) > C’. Any algorithm computing Tartc(n + 1,d + 1,log 2,) then
requires 2(n2>~%) time, proving Theorem C.7.

Proof. Let A = {ay,...,a,},B={b1,...,b,} C {0,1}% be two sets of vectors. Define Q, K €
R™*4 to be the matrices whose rows are formed by the vectors in .4 and B, respectively, i.e.,

o] — T
_ a2T _ _ b; —
Q = log(2) : , K :=1og(2) .
— g — o —
Note that ~
log(2) -a;-by -+ log(2)-ay-by,
QK" = : : -
log(2) “an by - log(2) - an - by

Under review as a conference paper at ICLR 2026

and the 4-th row sum of exp(QK ") is given by Z?Zl 2% Tn particular, note that all row sums are

integers satisfying n < S; < n2?. From Lemma C.1, we can recover the row sums up to =+ and

1 10n2d
therefore E-addltlve error in time

1
o) ((log logn + log(dn2%)) Tarrc (” +1,d+1 log2, 10n2d>) '

Given the 1—10-additive approximation of S;, we may recover S; by rounding since they are integers.
Note that S; < n2? and can therefore be represented in O(d + logn) bits.

If there are no orthogonal pairs of vectors in .4 and B, then a; - b; is a positive integer for all
1 <1,7 < n, which means 2% ig an even number. It follows that all of the sums S1, ..., S, are
also even numbers.

Conversely, when an orthogonal pair of vectors exists in .4 and B, we would like to detect this based
on the sums Sy, ..., S,, as well. Note that when a; -b; = 0 we have 2%% = 1, which may potentially
make the sum into an odd number. However, when there are an even number of such orthogonal pairs,
the sum remains even, and we cannot distinguish from the previous case. The workaround is to use a
standard sampling method, so that with high probability, we include exactly one pair of orthogonal
vectors in the sample, and therefore the corresponding sum will be odd.

Fix an index 1 <4 < n such that a; € A is orthogonal to some vector in B. Let b* be the last vector
in B orthogonal to a;. Without loss of generality, we may assume that the zero vector 04 ¢ A, since
we can check this in O(nd) time and immediately accepts the input if this is the case. Given 04 ¢ A,
we know that vector 14 is not orthogonal to any vector in A. Consider the following sampling
procedure:

Construct 5’ by including each vector of B with probability % independently and padding with 14
to ensure 3’ has n vectors. Note that with probability exactly % we have that 3’ contains an odd

number of orthogonal vectors to a; (i.e. b* is included with probability %). In particular, sampling B’
O(log n)-times allows us to detect an odd row sum with high probability.

Thus, the overall algorithm requires involves O(log n) loops, where in each loop we check for an
odd row-sum using Lemma C.1. The overall time is therefore

i 1
9] <(logn)(d+ logn)TarTcC <n +1,d+1,log2, 1()712‘1)> ‘

30

	Introduction
	Technical Overview
	Related Work

	Preliminaries
	Fast Attention for Constant Head Dimension
	Conclusion
	Omitted Proofs for Algorithms
	Warm-up: d = 1
	Constant Head Dimension
	Generalization to Low Rank Matrices

	The Complexity of Attention Gradient Computation
	Notation
	Upper Bound on Attention Backward Computation

	New Lower Bounds for Attention
	Lower Bound for Attention with Small Head Dimension
	Lower Bound for Attention with Large Head Dimension

