
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SUBQUADRATIC ALGORITHMS AND HARDNESS FOR
ATTENTION WITH ANY TEMPERATURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the popularity of the Transformer architecture, the standard algorithm
for computing Attention suffers from quadratic time complexity in context length
n. Alman and Song showed that when the head dimension d = Θ(log n), sub-
quadratic Attention is possible if and only if the inputs have small entries bounded
by B = o(

√
log n) in absolute values, under the Strong Exponential Time Hy-

pothesis (SETH). Equivalently, subquadratic Attention is possible if and only if
the softmax is applied with high temperature for d = Θ(log n). Running times of
these algorithms depend exponentially on B and thus they do not lead to even a
polynomial-time algorithm outside the specific range of B.

This naturally leads to the question: when can Attention be computed efficiently
without strong assumptions on temperature? Are there fast attention algorithms that
scale polylogarithmically with entry size B? In this work, we resolve this question
and characterize when fast Attention for arbitrary temperatures is possible. First,
for all constant d = O(1), we give the first subquadratic Õ(n2−1/d · polylog(B))
time algorithm for Attention with large B. Our result holds even for matrices with
large head dimension if they have low rank. Combined with a reduction from
Gradient Computation to Attention, we obtain a subquadratic algorithm for the full
LLM training process. Furthermore, we show that any substantial improvement
on our algorithm is unlikely. In particular, we show that even when d = 2Θ(log∗ n),
Attention requires n2−o(1) time under SETH.

Finally, in the regime where d = poly(n), the standard algorithm requires O(n2d)
time while previous lower bounds only ruled out algorithms with truly subquadratic
time in n. We close this gap and show that the standard algorithm is optimal under
popular fine-grained complexity assumptions.

1 INTRODUCTION

Large Language Models powered by the Transformer architecture (Vaswani et al., 2017) have been at
the heart of modern AI revolution completely reshaping the landscapes of natural language processing,
computer vision, and multitude of other applications. The Attention mechanism is the cornerstone
of the Transformer architecture. Attention computes correlations between different tokens of the
sequences, allowing Transformers to model dependencies regardless of the position of the tokens in
the sequences. Despite its popularity, standard algorithms for computing Attention require quadratic
time complexity, as they compute the Attention matrix explicitly.

Formally, the Attention mechanism is defined as follows. Let Q,K, V be size n × d matrices
(respectively query, key and value matrices). We call n the context length and d the head dimension.
The Attention matrix is obtained by applying softmax1 to each row of QK⊤. Each entry in the matrix
represents the attention weight between a particular input token (query token Q) and output token
(key token K). Finally, Attention outputs the product of the Attention matrix with V .

We give the formal definition below. Note that exp(X) applies exp to each entry of a matrix X .

1Given a vector x, applying softmax to x replaces xi with exp(xi)/
∑

j exp(xj).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Definition 1.1 (Attention). Given input matrices Q,K, V ∈ Rn×d, Attention on Q,K, V is defined
Attention(Q,K, V) := D−1AV ∈ Rn×d where A := exp(QK⊤)2 and D := diag(A1).

In practice, there is an input X ∈ Rn×d and weight matrices WQ,WK ,WV ∈ Rd×d such that
Q = XWQ,K = XWK , V = XWV . Since Q,K, V can be computed from X,WQ,WK ,WV in
O(nd2) time, we assume for simplicity that the inputs Q,K, V are given directly.

Typically, it suffices to approximately perform Attention computations. In particular, it is not necessary
(or even reasonable) to expect Attention to be computed exactly due to the softmax operation. Thus,
we study Approximate Attention, where each entry is computed with polynomial precision (i.e.
inverse polynomial additive error).
Definition 1.2 (Approximate Attention Computation AttC(n, d,B, ε)). Given matrices Q,K, V ∈
[−B,B]n×d and B, ε > 0, compute O ∈ Rn×d such that ∥O −Attention(Q,K, V)∥∞ < ε.

The standard (and most widely used) algorithm for Attention (even in approximate form) requires
quadratic time. The algorithm begins by explicitly computing matrix product QK⊤, applies softmax
to obtain D−1A and then computes the matrix product (D−1A)V . Using standard matrix multiplica-
tion, this requires O(n2d) time. Even ignoring computation time of matrix multiplication, explicitly
computing the A matrix already requires Ω(n2) time.

However, the inputs (and outputs) only have size O(nd). Indeed, an algorithm that does not compute
A explicitly could compute Attention in O(nd) time, incurring only linear dependence on the context
length n. This leads to the fundamental question concerning the complexity of Attention.

Question 1: When can Attention be computed faster than n2d time?

Towards answering this question, Alman & Song (2024a) showed that for d = Θ(log n), Attention
can be computed in n1+o(1) time whenever B = o(

√
log n). Furthermore, whenever B = Ω(

√
log n)

and d = Θ(log n), Attention requires n2−o(1) time under SETH, a popular hardness hypothesis.

Yet there remain several shortcomings in our current understanding of Attention. Fast algorithms
for Attention are only known for inputs with small entries (i.e. B = o(

√
log n)). Such a strong

bound on the entries of Q,K essentially restricts the Attention mechanism to use softmax with high
temperature (enforcing a near-uniform distribution over the value matrix). Temperature, denoted by
T , is a key hyperparameter for Attention that dictates how random the output is. Formally, Attention
with temperature T replaces A := exp(QK⊤) with A := exp(QK⊤/T) so that high temperature
corresponds to high entropy (more likely to select keys with lower scores). In many tasks, temperature
is a key hyperparameter with potentially significant impact on accuracy and stability (Agarwala
et al., 2023; Xuan et al., 2025). Indeed, Alman & Song (2025b) prove that transformers with high
temperature are provably less expressive. In contrastive learning, temperature has been found to
significantly impact both the accuracy (Chen et al., 2020; Wang & Liu, 2021; Hu et al., 2021) as well
as the learned representations (Wang & Isola, 2020; Wang & Liu, 2021; Robinson et al., 2021) of
the model. Dynamically varying temperature throughout the training process can also help balance
multiple training objectives (Khaertdinov et al., 2022; Kukleva et al., 2023; Manna et al., 2023). In
instances where low entropy is required, no subquadratic algorithms are known.

Furthermore, it is generally undesirable for the running time of an algorithm to scale poorly with
the numerical values of the input. In fact for many fundamental problems (Knapsack, All-Pairs
Shortest Paths, 3-SUM), having small entries makes the problems much easier. For example,
there is a simple pseudo-polynomial time dynamic programming algorithm for Knapsack, while
designing a polynomial time algorithm for Knapsack is NP-complete.3 Therefore, in this work we
study algorithms for Attention that scale polynomially with the representation length of the entries.
Equivalently, the algorithm should scale polylogarithmically with the entry size B.

Currently, the only known algorithms for Attention beyond the standard O(n2d) algorithm scales
exponentially with the entry size B (Alman & Song, 2024a). Following the terminology of pseudo-
polynomial time, we will call an algorithm that is subquadratic but scaling polynomially (or worse)

2In practice, a scaled dot-product attention, defined as A := (QK⊤/
√
d), is also commonly used for training

efficiency Vaswani et al. (2017).
3An algorithm runs in pseudo-polynomial time if its running time is polynomial in the numerical value of the

input. A polynomial time algorithm must be polynomial in the length of the input.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

with the numerical value of the input pseudo-subquadratic. We call an algorithm that is subquadratic
and scales logarithmically with the numerical value of the inputs (non-pseudo-)subquadratic, or
simply subquadratic. Following from our above discussion, the question of whether subquadratic
algorithms for Attention exist remains open.4 Even if d = O(1), there is a tantalizing gap between
the O(n2) upper bound and the Ω(n) lower bound.

Question 2: Is there a truly (non-pseudo-)subquadratic algorithm for Attention?5

In our work, we resolve this question for almost all regimes of head dimension d. Our main result gives
the first truly sub-quadratic algorithm for attention that scales polylogarithmically with entry-size B.
Our algorithm obtains truly sub-quadratic time for constant d.6

Theorem 1.1 (Main Theorem). Let d = O(1). There is an algorithm that computes AttC(n, d,B, ε)

in Õ(n2−1/d · polylog(B/ε)) time.

The result also generalizes to the case where the matrices Q,K have low rank.

Theorem 1.2. Let r = O(1). There is an Õ
(
nd+ n2−1/r · polylog(B/ε)

)
time algorithm comput-

ing AttC(n, d,B, ε) where r = min(rank(Q), rank(K)).

As a side result, we complement this algorithm with a subquadratic algorithm for Attention Gradient
Computation. In the training process, gradient descent tunes the weight matrices WQ,WK ,WV

according to the input data. In contrast to previous algorithms which give ad hoc algorithms for
gradient computation, we show that gradient computation can be generically reduced to attention
computation. Combined with our previous result, we give a truly (non-pseudo-)subquadratic algorithm
for the full LLM training process when d = O(1).
Theorem 1.3 (Informal Theorem B.1). The Attention gradient can be computed with O(d) calls to
AttC(n, d,B, ε/Θ(ndB3)) with O(nd2) overhead. In particular, if d = O(1) the Attention gradient
can be computed in Õ(n2−1/dpolylog(B/ε)) time.

Above, we obtain a sub-quadratic algorithm for constant d. When d = ω(1) is super-constant, the
above algorithms requires n2−o(1) time. Is there a truly subquadratic algorithm for super-constant
d? Our remaining results provide stronger lower bounds for super-constant d. Alman & Song
(2024a) show that n2−o(1) time is necessary when d = Ω(log n) under the Strong Exponential Time
Hypothesis (SETH). Under the same hardness assumption we provide a much stronger lower bound
and show that Attention is hard even when d = 2Ω(log∗ n).7

Theorem 1.4 (Informal Theorem C.4). Under SETH, AttC(n, d,B, ε) requires n2−o(1) time for
d = 2Ω(log∗ n) and B = poly(n).

It suffices to consider instances with polynomial entry size B = poly(n) since any (non-pseudo-)
subquadratic algorithm must handle such instances in subquadratic time. Formally, we show that
any fast algorithm for AttC(n, d,B, ε) implies a fast algorithm for (Bichromatic) Maximum Inner
Product (Max-IP) on d-dimensional vectors with integer entries. The (Bichromatic) Max-IP problem
asks an algorithm given two sets of vectors A,B ⊆ Zd to compute maxa∈A,b∈B a · b. Under SETH,
this requires n2−o(1) time whenever d = 2Ω(log∗ n) (Chen, 2018). Furthermore, the best known
algorithms for Max-IP run in n2−Θ(1/d) time (Yao, 1982; Agarwal et al., 1991; Matoušek, 1992) so
that any algorithm improving significantly over Theorem 1.1 must improve upon the best known
algorithms for Max-IP. Chen (2018) conjectures that no such algorithm exists under SETH.

Stronger Lower Bounds for Large Head Dimension. The head dimension d can often be relatively
large with respect to the context length n (in some cases e.g. Vaswani et al. (2017), the head dimension
d can even be larger than the context length n). In these settings, a large gap remains between the
standard algorithm requiring O(n2d) time and the known n2−o(1) lower bound. We address this gap
and shows that the standard algorithm is conditionally optimal.

4Similarly, while there are pseudo-subcubic algorithms for APSP (e.g., Shoshan & Zwick (1999); Zwick
(2002)), there is no truly subcubic (O(n3−c) for some c > 0) algorithm.

5An algorithm runs in truly subquadratic time if it runs in O(n2−c) time for some c > 0
6We use Õ(·) notation to suppress polylogarithmic factors.
7log∗ denotes the iterated logarithm. For example, log∗(16) = 3 since log log log 16 ≤ 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Summary of known results when B = poly(n) and ε = 1/poly(n). Sub-polynomial
dependencies are suppressed for simplicity. Previous upper bounds that are not starred follow from
the standard algorithm for computing attention (Vaswani et al., 2017). Previous lower bounds that are
not starred are trivial and follow directly from input and output size. ∗ The starred results are due
to Alman & Song (2024a). For d = Θ(log n), their lower bound holds when B = Ω(

√
log n) while

ours holds even when B ≥ log 2.

Upper Bound Lower Bound
d Previous New Previous New

O(1) n2 n2−1/d (1.1) n
2Θ(log∗ n) n2 n n2−o(1) (1.4)
Θ(log n) n2 n2−o(1)∗ n2−o(1) (C.7)
poly(n) TMUL(n, d, n) n2−o(1)∗ TMUL(n, d, n)

1−o(1) (1.5)

Our conditional lower bound depends on a natural generalization of a popular hypothesis. The
Orthogonal Vectors (OV) problem is among the most well studied problems in fine-grained complexity.
In the OV problem, an algorithm is given two sets of n vectors A,B ⊆ {0, 1}d and is asked to
determine if there exists an orthogonal pair a ∈ A, b ∈ B such that a · b = 0. The naive algorithm for
this problem requires O(n2d) time and the current best algorithm for OV achieves truly subquadratic
time only for d = O(log n) (Abboud et al., 2015b; Chan & Williams, 2016). A central hypothesis
(known as the OV Hypothesis) in fine-grained complexity states that there is no n2−o(1) algorithm
for OV whenever d = ω(log n), and the OV Hypothesis is known to hold under SETH (Williams,
2004).

If d = poly(n), one can compute a · b for all pairs a ∈ A, b ∈ B using a matrix product between
an n × d matrix containing the vectors in A as rows and a d × n matrix containing the vectors of
B as columns. The above algorithm requires O(TMUL(n, d, n)) time, where TMUL(a, b, c) is the
time complexity for multiplying an a × b matrix with a b × c matrix. The High-Dimensional OV
Hypothesis introduced by Dalirrooyfard & Kaufmann (2021) hypothesized that when d = n, any
algorithm computing OV requires TMUL(n, n, n)

1−o(1) = nω−o(1) time, where ω < 2.3714 denotes
the square matrix multiplication exponent (Alman et al., 2025). We consider a generalization of their
hypothesis: the TMUL(n, d, n)

1−o(1) running time is required for any d = poly(n). We call it the
Generalized High-Dimensional OV Hypothesis.

Under this hypothesis, we show that the standard algorithm for computing Attention is optimal.
Note that using fast matrix multiplication, one can easily obtain an algorithm for Attention using
O(TMUL(n, d, n)) time.
Theorem 1.5 (Informal Theorem C.5). Under the Generalized High-Dimensional OV Hypothesis,
AttC(n, d,B, ε) requires TMUL(n, d, n)

1−o(1) time for d = poly(n).

Table 1 summarizes our results. In particular, we tightly characterize the complexity of Attention
(up to sub-polynomial factors) when B = poly(n) for all regimes of d except 1≪ d≪ 2Θ(log∗ n).
Within this regime, our running time matches the best known algorithms for Max-IP (Yao, 1982;
Agarwal et al., 1991; Matoušek, 1992), and as mentioned earlier, significant improvements over our
algorithm will imply improvements over the current best known algorithms for Max-IP which will be
a breakthrough.

1.1 TECHNICAL OVERVIEW

In this section, we give a high level overview of our algorithm. For simplicity, we focus on the d = 1
case in this overview. Given inputs q, k, v ∈ Rn, our goal is to compute oi =

∑
j pi,jvj for all i

where pi,j are probabilities in the softmax distribution proportional to exp(qikj).

Our first observation is that small key values can be discarded: in particular, we show that for each i
it suffices to only consider keys where qikj is near the maximum. Assume without loss of generality
that qi > 0 and let kmax = maxj kj . For an appropriate threshold t, we define j to be irrelevant
(with respect to qi) if qikj ≤ qikmax − t and relevant otherwise. By setting t = Θ(log(n/ε)), we
can ensure that all softmax probabilities corresponding to irrelevant indices are negligible. Since

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Relevant Indices→

k1

6

0.5
−∞

k2

1

1.8
4

k3

3

2.6
4

k4

8

4.5
7

k5

5

6.1
7

k6

7

7.4
10

k7

4

8.2
10

k8

2

9.4
10

Value (v)
Key (k)

Rounding (k)

Figure 1: Rounding based algorithm for 1-dimensional Attention illustrated for qi = 1. Each point is
placed at kj and has value vj . Points (e.g. k1) such that qikj < qikmax−t are irrelevant and discarded
(in this example qikmax − t = 1). Relevant points with similar kj (e.g. {k2, k3} or {k6, k7, k8}) are
grouped together and assigned the same (rounded) key k. The width of each region is log(1 + ε) (in
this example log(1 + ε) = 3). The algorithm outputs

∑
pjvj where pj ∝ exp(kj).

discarding such j does not significantly change the value of the output significantly, we consider only
relevant j for the remainder of the overview.

Combining this observation with a simple rounding scheme, we already obtain a modest improvement
over known algorithms for Attention. We illustrate this for the d = 1 case. Consider a relevant key
kj . If we round such kj to kj such that qikj ≤ qikj ≤ qikj + log(1 + ε), then eqikj is a (1 + ε)-
multiplicative approximation of eqikj . This gives us good multiplicative approximations of the
softmax probabilities. Plugging in these approximate probabilities, we obtain a good multiplicative
approximation of the output.

Since the value of the output is bounded by entries of the value matrix V , (i.e. oi = O(B)), this
gives a εB-additive approximation of the output. To compute the approximation, we can now treat
all keys kj that are rounded to the same value kj as equivalent. Since relevant keys are within a range
of length t and we round all keys within log(1 + ε) to the same value, we only need to consider
O(t/ log(1 + ε)) = Õ(1/ε) intervals for each query. Now, we leverage the fact that similar kj lie in
contiguous intervals to design an efficient data structure. In particular, we can preprocess the keys in
Õ(n) time to ensure that we can query the sum of all values in each continuous interval of keys Õ(1)
time. Repeating this procedure for all queries and scaling the approximation factor (recall that our
goal is to compute an ε-additive approximation), we obtain an algorithm that computes an ε-additive
approximation of attention in total time Õ(nB/ε). Figure 1 illustrates the rounding scheme.

The above rounding method gives a polynomial dependence on the entry bound B, and is only
subquadratic when B = o(n). Although this already improves on Alman & Song (2024a)’s algorithm
(which exhibits exponential dependence on B, and thus only worked for values of B = o(

√
log n)),

we would like a truly subquadratic algorithm for all polynomial B. To do this, we leverage the
powerful polynomial method in algorithm design (see e.g. Williams (2018); Abboud et al. (2015a)).

A natural attempt to utilize the polynomial method is to approximate ex with a polynomial. As
a simple case, by approximating ex ∼ 1 + x we can compute exp(QKT)V ∼ 11⊤V + QKTV
efficiently. However, ex can only be approximated well by polynomials with degree p when |x| ≤ p
(Aggarwal & Alman, 2022). For a rank d = O(1) matrix QK⊤, exp(QK⊤) can be approximated
with a rank 2O(B2) matrix. Using this observation (as in Alman & Song (2024a)) one can obtain
a subquadratic algorithm by assuming B = o(

√
log n), but this approach falls short of obtaining

sub-quadratic algorithms for polynomial B.

We now describe how to obtain a truly sub-quadratic algorithm by leveraging the polynomial method
only on relevant indices. For simplicity, consider 1-dimensional Attention. For x = O(t), there is a
low-degree polynomial P such that |P (x)−exp(x)| < ε exp(x). In order to apply this approximation,
we crucially use the fact that irrelevant indices are discarded, since the relevant indices have qikj lying
within an interval of length O(t). Since the probabilities are normalized, we can further assume that
this interval lies around 0, allowing us to approximate exp with a polynomial. Formally, we define

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ci = maxj qikj −O(t) and observe that exp(qikj) is proportional to exp(qikj − ci). Then, we can
approximate pi,j which is proportional to exp(qikj − ci) with a polynomial P that approximates exp
on the range O(t), since for all relevant indices qikj − ci = O(t). We denote p̂i,j ∝ P (qikj − ci) as
our approximate probabilities and output ôi =

∑
j p̂i,jvj . As above, if the approximate probabilities

are accurate, our output is a good multiplicative approximation of attention computation.

It remains to argue that our algorithm is efficient. Note that it suffices to describe how to compute∑
j P (qikj − ci)vj over relevant j since we can compute ôi by computing this quantity twice (once

with v and once with v replaced by 1 for normalization). The idea is that in contrast to the exponential
function, the polynomial P (qikj − ci) can be decoupled into a product of terms that only depend on
qi and terms that only depend on kj (see Equation (2) for example). As in the rounding scheme, we
use the fact that relevant keys lie in a continuous interval to create a data-structure that preprocesses
the terms depending on kj in Õ(n) time, while for each query qi, efficiently supports queries to
relevant precomputed values in Õ(1) time.

Generalizing to Higher Dimensions. What happens when we try to generalize this algorithm to
higher dimensions? In one dimension, we knew that for each i, the set of relevant j included all j
where qikj ≥ qikmax − t. In higher dimensions, our goal is similarly to compute a set of relevant
indices j relative to each Qi such that (1) discarding irrelevant indices outside this range does not
significantly affect the additive error of our estimate and (2) the range of Qi ·Kj is now sufficiently
restricted so that we can use a low-degree polynomial to approximate exp(Qi ·Kj).

In one dimension, the set of all relevant j consists exactly of the set of sufficiently large kj (either
in the positive or negative direction). A simple interval searching data structure can support the
necessary queries. In d > 1 dimensions, each row of Q,K (denoted Qi,Kj) is now a d-dimensional
vector. Even in 2 dimensions, different Kj may be larger with respect to different Qi. Sorting all
Kj with respect to each Qi already requires n2 time. Instead, the key observation is that the set of
relevant j with respect to Qi is exactly the set of Kj contained in the half-space{

x ∈ Rd : Qi · x ≥ max
j

Qi ·Kj − t

}
.

This can be handled with a simplex range-searching data structure (Matoušek, 1992). In particular,
we can initialize the data structure using points {Kj} so that for each Qi we can query the data
structure for the appropriate half-space. Matoušek’s data structure supports queries in Õ(n1−1/d)
time and computes the sum of the weights assigned to all points in the half-space. Since in high
dimensions, the number of monomials in the polynomial P grows exponentially in dimension d,
we need to instantiate and query 2Ω(d) instances of Matoušek’s data structure. Still, for constant
d = O(1), this only occurs sub-polynomial factors in runtime. Using appropriate queries to the data
structure over all i, our algorithm requires Õ(n2−1/d) time. Figure 2 illustrates the algorithm.

Figure 2: Algorithm for d-dimensional Attention illustrated for Qi = (2, 1). Relevant points are in
the shaded blue region. Irrelevant points are in the white region. Weights are omitted for clarity.

Generalizing to Low Rank Matrices. To generalize the algorithm for low-rank matrices Q,K with
rank r, we may decompose Q = UQV

⊤
Q ,K = UKV ⊤

K where UQ, VQ, UK , VK are n× r matrices.
Then, we obtain Theorem 1.2 by applying Theorem 1.1 to Q′ = UQ and K ′⊤ = V ⊤

Q UKV ⊤
K which

may be computed in O(nr) time.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Outline. We give our algorithm in Section 3. The reduction from gradient computation to Attention
computation is given in Appendix B. Our lower bounds are presented in Appendix C.

1.2 RELATED WORK

Approximate Attention Computation. In an orthogonal line of work, many approximate notions
of Attention have been studied to reduce its compute constraints with the goal of computing an
approximation in linear time (Brown et al., 2020; Beltagy et al., 2020; Choromanski et al., 2020;
Daras et al., 2020; Katharopoulos et al., 2020; Kitaev et al., 2020; Wang et al., 2020; Zaheer et al.,
2020; Chen et al., 2021; Choromanski et al., 2021; Xiong et al., 2021; Gao et al., 2023a; Panigrahi
et al., 2023; Malladi et al., 2023). Several works obtain provable guarantees as well as practical
improvements (Zandieh et al., 2023; Han et al., 2024; Kacham et al., 2024). However, these works
only obtain theoretical guarantees with respect to matrix norms such as operator norm rather than
any guarantee on the correctness of each entry. Indeed, our lower bounds show that linear time
approximations do not obtain such strong approximation guarantees.

In the low dimension regime d = o(log n), the Fast Multipole Method gives fast algorithms for
the related Gaussian Kernel Density Estimation (KDE) problem (Alman & Guan, 2024). However,
these algorithms do not apply in our regime of polynomial entries. In particular, using the standard
reduction from Attention to Gaussian KDE8 the error produced by the known KDE algorithms is
amplified so that only Attention with subpolynomial entries B = 2o(logn) can be computed efficiently,
even with constant dimension d = O(1).

Attention with MLP Units. Many works have studied the expressive power of Transformers (Sanford
et al., 2023; 2024b;a; Yehudai et al., 2025) for classical algorithmic problems. In an independent work
(Alman & Yu, 2025) show that an Attention unit with input and output MLP Layers can compute OV
and (Monochromatic) Max-IP. While the constructions are similar, we reduce (Bichromatic) Max-IP
to Attention, and thus obtain a strong conditional lower bound for d = 2Θ(log∗ n) via (Chen, 2018).

Rather than allowing arbitrary inputs Q,K, V ∈ Rn×d, these works consider Attention with
MLP Units: Given inputs X ∈ Rn×d1 and WQ,WK ,WV ∈ Rd1×d, compute Q = XWQ,K =
XWK , V = XWV and then Attention(Q,K, V). This preprocessing step requires only O(nd2)
time and does not change the running time of our algorithm. Via a simple modification (to either
our construction or (Alman & Yu, 2025)),9 it is possible to show that an Attention unit with MLP
Units can compute (Bichromatic) Max-IP. Our reductions from OV naturally hold for bichromatic
instances as well.

Variants of Attention and Transformers Several works have studied variants of attention and
transformers (Hu et al., 2024; Ke et al., 2025), including several which leverage the polynomial
method for fast computation (Alman & Song, 2023; 2025a).

Attention Computation in Alternative Settings. Attention has also been studied in several settings,
including differential privacy (Gao et al., 2023c), fine-tuning (Hu et al., 2025), dynamic updates
(Brand et al., 2023), quantum algorithms (Gao et al., 2023b), and I/O complexity (Saha & Ye, 2024).
Conditional lower bounds for Attention have been studied as well (Keles et al., 2023; Alman & Song,
2024a;b; Alman & Yu, 2025).

2 PRELIMINARIES

We begin with the relevant definitions. Let log denote the natural log. Let [n] = {1, 2, . . . , n}. For a
matrix M ∈ Rn×m, we denote its (i, j)-entry by Mi,j , its transpose M⊤, and its inverse M−1. Let
∥M∥∞ := maxi,j |Mi,j | and exp(M) denote applying ex entry-wise to M . Let 0 and 1 denote the
all zeros and all ones vectors. For a vector v ∈ Rn, diag(v) denotes the n×n diagonal matrix whose
(i, i)-entry equals vi.

8Map x 7→ (x, 0, rx) and y 7→ (y, ry, 0) for appropriate rx, ry so that ∥x− y∥2 = R − 2x · y for some
constant R.

9We describe how to obtain Q,K. Given sets of vectors A,B ⊂ Rd, let X ∈ Rn×2d consist of A in the first
d columns, B in the next d columns. Let WQ =

(
Id 0

)
and WK =

(
0 Id

)
.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Fine-grained Complexity Hypotheses. We establish new fine-grained lower bounds for the approxi-
mate attention computation problem AttC(n, d,B, ε). These lower bounds are conditional on some
well-known fine-grained complexity hypotheses, which we introduce below.

The Strong Exponential Time Hypothesis (SETH) was introduced by Impagliazzo & Paturi (2001).
They hypothesized that solving k-SAT for k ≥ 3 cannot be significantly improved beyond exhaustive
search.
Hypothesis 2.1 (Strong Exponential Time Hypothesis (SETH)). For every ε > 0, there is a positive
integer k ≥ 3 such that k-SAT on formulas with n variables cannot be solved in O(2(1−ε)n) time,
even by randomized algorithms.

SETH is a strengthening of the famous P ̸= NP conjecture and has later been used to derive
fine-grained lower bounds for many fundamental computational problems, from string edit distance
(Backurs & Indyk, 2018) to graph diameter (Roditty & Vassilevska Williams, 2013). Our lower
bounds under SETH will proceed via reduction to the Orthogonal Vectors (OV) Problem and the
Max-IP Problem.
Theorem 2.2 (Williams (2004)). Assuming SETH, for any δ > 0 there is a constant C such that any
randomized algorithm solving OV in dimension d = C log n with high probability requires Ω(n2−δ)
time.

The Max-IP problem asks to compute given sets of integer-valued vectors A,B ∈ Zd, maxa∈A,b∈B a·
b. Chen (2018) showed that computing Max-IP requires n2−o(1) time even when d = 2Θ(log∗ n).
Theorem 2.3 (Chen (2018)). Assuming SETH, for any δ > 0 there is a constant C such that any
exact algorithm for Max-IP in dimension d = C log∗ n with O(log n)-bit entries requires Ω(n2−δ)
time.

3 FAST ATTENTION FOR CONSTANT HEAD DIMENSION

In this section, we present our algorithms for computing Attention in truly subquadratic time for
constant head dimension d and polynomial entry size B.
Theorem 1.1 (Main Theorem). Let d = O(1). There is an algorithm that computes AttC(n, d,B, ε)

in Õ(n2−1/d · polylog(B/ε)) time.

The algorithm naturally extends to the case when d is large but the matrices are low dimensional.
Omitted proofs in this section may be found in Appendix A.2. A key tool we require is an efficient
data structure for the range searching problem.
Definition 3.1 (Simplex Range Searching). Preprocess a weighted point set {(ki, wi)}where ki ∈ Rd

and wi ∈ R so that given any simplex query σ, the data structure returns
∑

ki∈σ wi.

Matoušek gives an efficient data structure for the simplex range searching problem. In our work, we
will only query the data structure with halfspaces σ, which are special case of simplex queries (one
can imagine a simplex defined by the half-space and a sufficiently large bounding box that contains
all input points).
Theorem 3.1 (Matoušek (1992)). There is a data structure RSDS for the Simplex Range Searching
problem for n input points in d-dimension with O(n log n) preprocessing and Õ(n1−1/d) query time.

Given this data structure, we now present our algorithm for arbitrary head dimension d. Our inputs are
n× d matrices Q,K, V with entries in [−B,B]. Our goal is to compute the n× d output matrix O =

Attention(Q,K, V). We rewrite Oi,t =
∑

j pi,jVj,t where pi,j =
exp(Qi·Kj)∑
j′ exp(Qi·Kj′)

∝ exp(Qi ·Kj).

Step 1: Removing Irrelevant Keys. We begin by showing that removing irrelevant keys does not
significantly alter the quality of the approximation. Define for each i ∈ [n] the maximum probability
in the distribution pi,j as p(i)max = maxj pi,j . Let s(i)max denote the maximum integer s such that the
half-space {

x ∈ Rd : Qi · x ≥ s log(1 + ε)
}

contains at least one Kj vector. In particular, s(i)max is the largest integer satisfying maxj Qi ·Kj ≥
s
(i)
max log(1 + ε). We now define relevant and irrelevant keys.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Definition 3.2. Let j ∈ [n] be irrelevant with respect to Qi if Qi ·Kj < s
(i)
max log(1+ ε)− log(n/ε).

Otherwise j is relevant with respect to Qi. When Qi is clear, we simply say j is irrelevant or relevant.

We argue that we can discard irrelevant indices.

Lemma 3.2. Define p
(r)
i,j =

pi,j∑
relevant j pi,j

if j is relevant and 0 otherwise for all i, j ∈ [n]. Let

O
(r)
i,t =

∑
j p

(r)
i,j Vj,t for all i ∈ [n], t ∈ [d]. Then

∣∣∣O(r)
i,t −Oi,t

∣∣∣ ≤ 3εB.

Step 2: Polynomial Approximation of Exponential. We then show how to use polynomial
approximations of ex to efficiently estimate attention. We require the following result:

Lemma 3.3 (Aggarwal & Alman (2022); Alman & Song (2024a)). Let ε < 0.1. There is a
polynomial P : R→ R of degree g = Θ

(
max

(
log(1/ε)

log(log(1/ε)/B) , B
))

such that for all x ∈ [−B,B],

we have |P (x)−exp(x)| < ε exp(x). Moreover, its coefficients are rationals with poly(g)-bit integer
numerators and denominators and can be computed in poly(g)-time.

Consider an entry Oi,t. We first remove irrelevant j with respect to Qi and aim to approximate O
(r)
i,t .

Recall that

O
(r)
i,t =

∑
j

p
(r)
i,j Vj,t =

∑
relevant j exp(Qi ·Kj)Vj,t∑

relevant j exp(Qi ·Kj)
=

∑
relevant j exp(Qi ·Kj − c(Qi))Vj,t∑

relevant j exp(Qi ·Kj − c(Qi))

where c(Qi) := s
(i)
max log(1 + ε)− log(n/ε).

By the definition of s(i)max, we have that for all relevant j, Qi ·Kj−C(Qi) ∈ [0, log(n/ε)+log(1+ε)].
We then invoke Lemma 3.3 to obtain a g = polylog(n/ε)-degree polynomial P such that for all
x ∈ [0, log(n/ε) + log(1 + ε)] ⊂ [0, 2 log(n/ε)], |P (x)− exp(x)| ≤ ε exp(x). Define for relevant
j, p̂i,j ∝ P (Qi ·Kj − c(Qi)) as an approximation of p(r)i,j ∝ exp(Qi ·Kj − c(Qi)). For irrelevant j,

set p̂i,j = p
(r)
i,j = 0. Then, define Ôi,t =

∑
j p̂i,jVj,t. We claim Ôi,t is a good approximation.

Lemma 3.4. |Ôi,t −Oi,t| ≤ 7εB for all i ∈ [n], t ∈ [d].

Furthermore, we present an algorithm that computes Ô efficiently. The key ingredient to the algorithm
is the following data structure which utilizes the range searching data structure of Matoušek (1992).

Lemma 3.5. Given matrices Q,K, V ∈ Rn×d there exist functions ϕ0, . . . ϕd such that any entry
Ôi,t can be computed with gO(d) queries to ϕ0 and ϕt and gO(d) additional time.

Furthermore, for each ϕt with 0 ≤ t ≤ d there is a data structure with Õ
(
gO(d)n log n

)
preprocess-

ing and Õ
(
gO(d)n1−1/d log(B/ε)

)
query time.

Algorithm 1 ApproxAttention(Q,K, V)

Input :Matrices Q,K, V ∈ [−B,B]n.
Parameters :Error parameter ε
Output :Matrix Ô satisfying

∥∥∥Ô −Attention(q, k, v)
∥∥∥
∞
≤ 7εB.

1 Compute s
(i)
max for all i ∈ [n] using Theorem 3.1

2 Compute c(Qi)← s
(i)
max log(1 + ε)− log(n/ε) for all i ∈ [n]

3 Compute a g-degree polynomial P (x) for range [0, 2 log(n/ε)] using Lemma 3.3
4 Initialize the data structure for queries ϕt(i, ℓ1, . . . , ℓd) for all 0 ≤ t ≤ d using Lemma 3.5
5 Compute Ôi,t for all (i, t) ∈ [n]× [d] using queries to Lemma 3.5
6 return Ô

We bound the running time of Algorithm 1.

Lemma 3.6. ApproxAttention (Algorithm 1) runs in time Õ
(
n2−1/d · polylog(B/ε)

)
.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

To conclude the proof of Theorem 1.1, we run Algorithm 1 with error parameter ε′ ≤ ε
7B . We note

that we can generalize our result to obtain an algorithm for computing Attention when the input
matrices have low rank. We defer the proof to Appendix A.3.

Theorem 1.2. Let r = O(1). There is an Õ
(
nd+ n2−1/r · polylog(B/ε)

)
time algorithm comput-

ing AttC(n, d,B, ε) where r = min(rank(Q), rank(K)).

4 CONCLUSION

We conclude with some open questions. The most natural question is settling the complexity of
Max-IP when 1≪ d≪ 2Θ(log∗ n). We have shown several conditional lower bounds for Attention
computation. Is Attention fine-grained equivalent to any well-studied problem? If such a relationship
can be established, then breakthroughs on well-studied problems in fine-grained complexity can lead
to breakthroughs on Attention computation. While this work focuses on characterizing the complexity
of training a single Attention unit, the complexity of computing a full transformer remains open:
perhaps the cost of computing many Attention units is less than computing each of them separately.

REFERENCES

Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA. SIAM, 2015a.

Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 218–230. SIAM, 2015b.

Pankaj K. Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl. Euclidean minimum
spanning trees and bichromatic closest pairs. Discrete and Computational Geometry, 6:407–422,
1991.

Atish Agarwala, Samuel Stern Schoenholz, Jeffrey Pennington, and Yann N. Dauphin. Temperature
check: theory and practice for training models with softmax-cross-entropy losses. Trans. Mach.
Learn. Res., 2023, 2023.

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials and
gaussian kernel density estimation. In 37th Computational Complexity Conference (CCC), 2022.

Josh Alman and Yunfeng Guan. Finer-grained hardness of kernel density estimation. In Rahul
Santhanam (ed.), 39th Computational Complexity Conference, 2024.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix softmax
attention to kronecker computation. arXiv preprint arXiv:2310.04064, 2023.

Josh Alman and Zhao Song. Fast attention requires bounded entries. In Proceedings of the 37th
International Conference on Neural Information Processing Systems. Curran Associates Inc.,
2024a.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024b.

Josh Alman and Zhao Song. Fast rope attention: Combining the polynomial method and fast fourier
transform. arXiv preprint arXiv:2505.11892, 2025a.

Josh Alman and Zhao Song. Only large weights (and not skip connections) can prevent the perils of
rank collapse. arXiv preprint arXiv:2505.16284, 2025b.

Josh Alman and Hantao Yu. Fundamental limitations on subquadratic alternatives to transformers. In
The Thirteenth International Conference on Learning Representations, 2025.

Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou.
More asymmetry yields faster matrix multiplication. In Proceedings of the 2025 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 2005–2039. SIAM, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic time
(unless SETH is false). SIAM J. Comput., 47(3):1087–1097, 2018.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention
maintenance in large language models. arXiv preprint arXiv:2304.02207, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Neural Information
Processing Systems, NeurIPS, 2020.

Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and more: Quickly
derandomizing Razborov-Smolensky. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 1246–1255. SIAM, 2016.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Unifying
sparse and low-rank attention. In Neural Information Processing Systems, NeurIPS, 2021.

Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum inner product. In
Proceedings of the 33rd Computational Complexity Conference (CCC), 2018.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of the 37th International Conference
on Machine Learning, ICML, volume 119 of Proceedings of Machine Learning Research, pp.
1597–1607. PMLR, 2020.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Ben-
jamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with performers. In
International Conference on Learning Representations, ICLR, 2021.

Mina Dalirrooyfard and Jenny Kaufmann. Approximation algorithms for min-distance problems in
dags. In 48th International Colloquium on Automata, Languages, and Programming ICALP, 2021.

Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf-efficient attention
using asymmetric clustering. Advances in Neural Information Processing Systems, 33:6476–6489,
2020.

Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulating single
layer attention in llm based on tensor and svm trick, and solving it in matrix multiplication time.
arXiv preprint arXiv:2309.07418, 2023a.

Yeqi Gao, Zhao Song, Xin Yang, and Ruizhe Zhang. Fast quantum algorithm for attention computa-
tion. arXiv preprint arXiv:2307.08045, 2023b.

Yeqi Gao, Zhao Song, Xin Yang, and Yufa Zhou. Differentially private attention computation. arXiv
preprint arXiv:2305.04701, 2023c.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Conference
on Learning Representations, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

John Hopcroft and Ravi Kannan. Singular value decomposition (svd). https://www.cs.cmu.
edu/~venkatg/teaching/CStheory-infoage/book-chapter-4.pdf. Accessed:
2024-12-21.

Jerry Yao-Chieh Hu, Weimin Wu, Zhuoru Li, Sophia Pi, Zhao Song, and Han Liu. On statistical
rates and provably efficient criteria of latent diffusion transformers (dits). Advances in Neural
Information Processing Systems, 37:31562–31628, 2024.

Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song, and Han Liu. Computational limits of
low-rank adaptation (lora) fine-tuning for transformer models. In ICLR 2025 Workshop on Deep
Generative Model in Machine Learning: Theory, Principle and Efficacy, 2025.

Qianjiang Hu, Xiao Wang, Wei Hu, and Guo-Jun Qi. Adco: Adversarial contrast for efficient learning
of unsupervised representations from self-trained negative adversaries. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, pp. 1074–1083. Computer Vision Foundation /
IEEE, 2021.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer and
System Sciences, 62(2):367–375, 2001.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketching polynomial kernels. In Forty-first International Conference on Machine Learning, 2024.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. On computational
limits and provably efficient criteria of visual autoregressive models: A fine-grained complexity
analysis. arXiv preprint arXiv:2501.04377, 2025.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational
complexity of self-attention. In International Conference on Algorithmic Learning Theory, pp.
597–619. PMLR, 2023.

Bulat Khaertdinov, Stylianos Asteriadis, and Esam Ghaleb. Dynamic temperature scaling in con-
trastive self-supervised learning for sensor-based human activity recognition. IEEE Trans. Biom.
Behav. Identity Sci., 4(4):498–507, 2022.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, ICLR, 2020.

Anna Kukleva, Moritz Böhle, Bernt Schiele, Hilde Kuehne, and Christian Rupprecht. Temperature
schedules for self-supervised contrastive methods on long-tail data. In The Eleventh International
Conference on Learning Representations, ICLR, 2023.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

Siladittya Manna, Soumitri Chattopadhyay, Rakesh Dey, Saumik Bhattacharya, and Umapada
Pal. Dystress: Dynamically scaled temperature in self-supervised contrastive learning. CoRR,
abs/2308.01140, 2023.

Jiří Matoušek. Efficient partition trees. Discrete and Computational Geometry, 8(1):315–334, 1992.

Abhishek Panigrahi, Sadhika Malladi, Mengzhou Xia, and Sanjeev Arora. Trainable transformer in
transformer. In Fortieth International Conference on Machine Learning (ICML), 2023.

Joshua Robinson, Li Sun, Ke Yu, Kayhan Batmanghelich, Stefanie Jegelka, and Suvrit Sra. Can
contrastive learning avoid shortcut solutions? In Advances in Neural Information Processing
Systems NeurIPS 34, 2021.

12

https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/book-chapter-4.pdf
https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/book-chapter-4.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the diameter and
radius of sparse graphs. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum (eds.), Symposium
on Theory of Computing Conference, STOC. ACM, 2013.

Tim Roughgarden and Gregory Valiant. The singular value decomposition (svd) and low-rank matrix
approximations. https://web.stanford.edu/class/cs168/l/l9.pdf. Accessed:
2024-12-21.

Barna Saha and Christopher Ye. I/O complexity of attention, or how optimal is FlashAttention? In
Proceedings of the 41st International Conference on Machine Learning, 2024.

Clayton Sanford, Daniel J. Hsu, and Matus Telgarsky. Representational strengths and limitations of
transformers. In Advances in Neural Information Processing Systems, 2023.

Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
algorithms. In Advances in Neural Information Processing Systems, 2024a.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computation, and logarith-
mic depth. In Forty-first International Conference on Machine Learning, ICML, 2024b.

Avi Shoshan and Uri Zwick. All pairs shortest paths in undirected graphs with integer weights. In
Proceedings of the 40th Annual Symposium on Foundations of Computer Science (FOCS), pp.
605–615. IEEE Computer Society, 1999.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing Systems
NeurIPS, 2017.

Feng Wang and Huaping Liu. Understanding the behaviour of contrastive loss. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR, pp. 2495–2504. Computer Vision Foundation
/ IEEE, 2021.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In Proceedings of the 37th International Conference
on Machine Learning, ICML, volume 119 of Proceedings of Machine Learning Research, pp.
9929–9939. PMLR, 2020.

R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput., 47(5),
2018.

Ryan Williams. A new algorithm for optimal constraint satisfaction and its implications. In Proceed-
ings of the 31st International Colloquium on Automata, Languages and Programming (ICALP),
2004.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, 2021.

Hao Xuan, Bokai Yang, and Xingyu Li. Exploring the impact of temperature scaling in softmax for
classification and adversarial robustness. CoRR, abs/2502.20604, 2025.

Andrew Chi-Chih Yao. On constructing minimum spanning trees in k-dimensional spaces and related
problems. Siam Journal on Computing, 11(4):721–736, 1982.

Gilad Yehudai, Clayton Sanford, Maya Bechler-Speicher, Orr Fischer, Ran Gilad-Bachrach, and
Amir Globerson. Depth-width tradeoffs in algorithmic reasoning of graph tasks with transformers.
CoRR, abs/2503.01805, 2025.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird:
Transformers for longer sequences. In Neural Information Processing Systems, NeurIPS, 2020.

13

https://web.stanford.edu/class/cs168/l/l9.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via
kernel density estimation. In International Conference on Machine Learning, pp. 40605–40623.
PMLR, 2023.

Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM,
49(3):289–317, 2002.

A OMITTED PROOFS FOR ALGORITHMS

A.1 WARM-UP: d = 1

For simplicity, we begin with our algorithm for the d = 1 case and explain how to generalize to the
constant head dimension case later. Formally, we prove in this section the following result.

Lemma A.1. There is an algorithm computing AttC(n, 1, B, ε) in Õ(n · polylog(B/ε)) time.

In the above, Attention(q, k, v) is defined by viewing vectors q, k, v ∈ Rn×1 as matrices. When
d = 1, the input is given by vectors q, k, v ∈ [−B,B]n. In the output vector, we hope to compute the
entries

oi =

∑
j e

qikjvj∑
j e

qikj

for all i. Define the softmax probabilities

pi,j =
eqikj∑
j′ e

qikj′

so that oi =
∑

j pi,jvj .

We begin with an overview of our algorithm. Without loss of generality, we assume qi ≥ 0 are
non-negative for all i. In particular, if we compute Attention(|q|, k, v) and Attention(|q|,−k, v),
where |q| is a vector where we take entrywise absolute value of q, we can recover the entries of
Attention(q, k, v) from the two outputs. If qi ≥ 0, we read the output from Attention(|q|, k, v) and
otherwise we read the output from Attention(|q|,−k, v).

Let kmax denote the maximum value of k and p
(i)
max = maxj pi,j be the corresponding maximum

probability for some fixed i. First, we argue that we may ignore all indices where kj ≪ kmax. Since
all of these indices have exponentially small pi,j , ignoring these indices incurs only a small additive
error to the output estimate ôi. Second, we argue that the remaining values of kj satisfy the property
that qikj lie in a small range. In particular, on this range, we use the low-degree polynomial P from
Aggarwal & Alman (2022) to give a low-error approximation of the exponential function. Using this
polynomial approximation, we instead compute

ôi =

∑
j P (qikj − c)vj∑
j P (qikj − c)

≈
∑

j e
qikj−cvj∑

j e
qikj−c

=

∑
j e

qikjvj∑
j e

qikj
= oi

for some value c that guarantees qikj − c lies in a bounded interval around 0 for the remaining values
kj .

Consider a monomial mℓx
ℓ of P . Then

∑
j(qikj − c)ℓ =

∑ℓ
b=0

(
ℓ
b

)
(−c)ℓ−bqbi

∑
j k

b
j . This allows

to pre-compute
∑

j k
b
j for all exponents b in a pre-processing phase, and then efficiently compute ôi

using the pre-computed values. We now describe the algorithm in more detail.

Step 1: Removing Irrelevant Keys. We argue that we can ignore irrelevant keys kj (Definition 3.2)
with only small additive error in the estimate.

Since qi ≥ 0, by rearranging, note that for all irrelevant j, we have qikj − qikmax ≤ − log(n/ε).
Then, we conclude

pi,j

p
(i)
max

= eqi(kj−kmax) ≤ ε

n
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Summing over all such indices j,∑
irrelevant j

pi,j ≤
∑

irrelevant j

p(i)max

ε

n
≤ ε.

Thus, if we define

p
(r)
i,j =

{
pi,j∑

relevant j′ pi,j′
j is relevant,

0 o/w,

we can obtain the guarantees for all relevant j

pi,j ≤ p
(r)
i,j ≤

pi,j
1− ε

.

Then, define
o
(r)
i =

∑
j

p
(r)
i,j vj

so that ∣∣∣o(r)i − oi

∣∣∣ ≤
∣∣∣∣∣∣
∑

relevant j

(p
(r)
i,j − pi,j)vj

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

irrelevant j

(p
(r)
i,j − pi,j)vj

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

relevant j

ε

1− ε
pi,jvj

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

irrelevant j

pi,jvj

∣∣∣∣∣∣
≤ ε

1− ε
B + εB

≤ 3εB

where we assume ε < 1
2 .

Step 2: Polynomial Approximation of Exponential. We now show how we use polynomial
approximations of ex to efficiently estimate attention.

Our goal is to approximate o(r):

o
(r)
i =

∑
relevant j

p
(r)
i,j vj =

∑
relevant j e

qikjvj∑
relevant j e

qikj
=

∑
relevant j e

qikj−c(qi)vj∑
relevant j e

qikj−c(qi)

where c(qi) = qi · kmax − log(n/ε). In particular, we have qikj − c(qi) ∈ [0, log(n/ε)] for every
relevant j.

On this interval, by Lemma 3.3, there is a polynomial P of degree

g = O

(
max

(
log(1/ε)

log(log(1/ε)/ log(n/ε))
, log(n/ε)

))
= O (log(n/ε))

such that |P (x) − exp(x)| ≤ ε exp(x) for all x ∈ [0, log(n/ε)]. Then, we define p̂i,j =
P (qikj−c(qi))∑

relevant j′ P (qikj′−c(qi))
for relevant j and p̂i,j = 0 otherwise. Next, define ôi =

∑
j p̂i,jvj . First,

we prove the desired approximation guarantee. For all relevant j,

1− ε

1 + ε
p
(r)
i,j ≤ p̂i,j ≤

1 + ε

1− ε
p
(r)
i,j

so that ∣∣∣ôi − o
(r)
i

∣∣∣ ≤ B
∑

relevant j

∣∣∣p̂i,j − p
(r)
i,j

∣∣∣
≤ B

∑
relevant j

4εp
(r)
i,j ≤ 4εB.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Combined with our previous bound using triangle inequality, we get

∥ô− o∥∞ ≤
∥∥∥ô− o(r)

∥∥∥
∞

+
∥∥∥o(r) − o

∥∥∥
∞
≤ 7εB. (1)

Now, we describe how to compute ô efficiently. Consider a monomial mℓx
ℓ of P . Then,

mℓ(qikj − c(qi))
ℓ = mℓ

ℓ∑
b=0

(
ℓ

b

)
qbik

b
j (−c(qi))

ℓ−b

Summing over the indices j,∑
relevant j

mℓ(qikj − c(qi))
ℓ = mℓ

∑
relevant j

ℓ∑
b=0

(
ℓ

b

)
qbik

b
j (−c(qi))

ℓ−b

= mℓ

ℓ∑
b=0

(
ℓ

b

)
qbi (−c(qi))

ℓ−b
∑

relevant j

kbj

Let ϕ(i, b) =
∑

relevant j k
b
j be the sum of kbj for all j relevant with respect to qi. In particular,∑

relevant j

P (qikj − c(qi)) =
∑

relevant j

P (qikj − c(qi))

=
∑

relevant j

∑
ℓ

mℓ (qikj − c(qi))
ℓ

=
∑
ℓ

mℓ

ℓ∑
b=0

(
ℓ

b

)
qbi (−c(qi))

ℓ−b
ϕ(i, b).

Following similar computations we obtain∑
j

P (qikj − c(qi))vj =
∑
ℓ

mℓ

ℓ∑
b=0

(
ℓ

b

)
qbi (−c(qi))

ℓ−b
ϕv(i, b) (2)

where ϕv(i, b) =
∑

relevant j k
b
jvj .

The following lemmas show that we can compute ô efficiently.
Lemma A.2. Let b ≥ 1 and k1 ≥ k2 ≥ . . . ≥ kn. Let q1, . . . , qn be arbitrary. Then, ϕ(i, b), ϕv(i, b)
can be computed for all i in time O(n log n) time.

Proof. Given b, we can compute
∑J

j=1 k
b
j for all 1 ≤ J ≤ n in O(n) time. Then, for each i, we

use binary search to find Ji, the maximum index j where kj ≥ maxj kj − log(n/ε)/qi, i.e., kj is
relevant with respect to qi. Then we assign ϕ(i, b) =

∑Ji

j=1 k
b
j . Over all i, this takes O(n log n) time.

We can compute ϕv(i, b) similarly.

Algorithm 2 VectorAttention(q, k, v)

Input :Vectors q, k, v ∈ [−B,B]n.
Parameters :Error parameter ε
Output :Vector ô satisfying ∥ô−Attention(q, k, v)∥∞ ≤ εB.

7 Compute a polynomial P (x) =
∑

ℓ mℓx
ℓ for range [0, log(n/ε)] using Lemma 3.3.

8 Compute kmax ← maxj kj and sort {kj}.
9 Compute ϕ(i, b), ϕv(i, b) for all 1 ≤ i ≤ n, 1 ≤ b ≤ g using Lemma A.2.

10 for 1 ≤ i ≤ n do
11 Compute ôi ←

∑
relevant j P (qikj−c(qi))vj∑
relevant j P (qikj−c(qi))

using Lemma A.3.

12 return ô

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Lemma A.3. Let P (x) =
∑

ℓ mℓx
ℓ be a degree g-polynomial with poly(g)-bit coefficients. Given

qi, ϕ(i, b), ϕv(i, b), there is an algorithm computing ôi in poly(g) time.

Proof. We recall that

ôi =
∑
j

p̂i,jvj =

∑
j P (qikj − c(qi))vj∑
j P (qikj − c(qi))

.

From Equation (2), we note∑
j

P (qikj − c(qi))vj =
∑
ℓ

mℓ

ℓ∑
b=0

(
ℓ

b

)
qbi (−c(qi))

ℓ−b
ϕv(i, b)

so that given access to ϕv(i, b), we can compute the numerator in poly(g)-time. Similarly, by
accessing ϕ(i, b), we can compute the denominator as well.

To conclude the proof of Lemma A.1, we apply Algorithm 2 with ε′ = ε
7B so we obtain ε-

approximation under Equation (1). In particular, the degree of the polynomial required is

g = O (log(n/ε′)) = O (log(nB/ε)) .

Then, Algorithm 2 takes time Õ(n · polylog(B/ε)).

A.2 CONSTANT HEAD DIMENSION

We provide the omitted proofs for Theorem 1.1.

Lemma 3.4. |Ôi,t −Oi,t| ≤ 7εB for all i ∈ [n], t ∈ [d].

This follows from identical arguments as to those in the one-dimensional warm-up.
Lemma 3.5. Given matrices Q,K, V ∈ Rn×d there exist functions ϕ0, . . . ϕd such that any entry
Ôi,t can be computed with gO(d) queries to ϕ0 and ϕt and gO(d) additional time.

Furthermore, for each ϕt with 0 ≤ t ≤ d there is a data structure with Õ
(
gO(d)n log n

)
preprocess-

ing and Õ
(
gO(d)n1−1/d log(B/ε)

)
query time.

Proof. Recall that Ôi,t =
∑

relevant j P (Qi·Kj−c(Qi))Vj,t∑
relevant j P (Qi·Kj−c(Qi))

where P is the polynomial of degree g

obtained from Lemma 3.3.

We begin with describing how to compute the numerator of Ôi,t. Suppose P (x) =
∑g

ℓ=0 mℓx
ℓ.∑

relevant j

P (Qi ·Kj − c(Qi))Vj,t

=
∑

relevant j

∑
ℓ

mℓ(Qi ·Kj − c(Qi))
ℓVj,t

=
∑
ℓ

mℓ

∑
relevant j

∑
ℓ0+ℓ1+...+ℓd=ℓ

(
ℓ

ℓ0, ℓ1, . . . , ℓd

)
(−c(Qi))

ℓ0

d∏
k=1

(Qi,kKj,k)
ℓk Vj,t

=
∑
ℓ

mℓ

∑
ℓ0+ℓ1+...+ℓd=ℓ

(
ℓ

ℓ0, ℓ1, . . . , ℓd

)
(−c(Qi))

ℓ0

d∏
k=1

Qℓk
i,k

∑
relevant j

d∏
k=1

Kℓk
j,kVj,t

=
∑
ℓ

mℓ

∑
ℓ0+ℓ1+...+ℓd=ℓ

(
ℓ

ℓ0, ℓ1, . . . , ℓd

)
(−c(Qi))

ℓ0

d∏
k=1

Qℓk
i,kϕt(i, ℓ1, . . . , ℓd)

where we define the function ϕt(i, ℓ1, . . . , ℓd) =
∑

relevant j

∏d
k=1 K

ℓk
j,kVj,t. Similarly, define the

function

ϕ0(i, ℓ1, . . . , ℓd) =
∑

relevant j

d∏
k=1

Kℓk
j,k

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

so that∑
j

P (Qi ·Kj − c(Qi)) =

∑
ℓ

mℓ

∑
ℓ0+ℓ1+...+ℓd=ℓ

(
ℓ

ℓ0, ℓ1, . . . , ℓd

)
(−c(Qi))

ℓ0

d∏
k=1

Qℓk
i,kϕ0(i, ℓ1, . . . , ℓd).

The following lemma describes how to build the appropriate data structures.

Lemma A.4. Let ℓ1, . . . , ℓd be nonnegative integers. Let 0 ≤ t ≤ d. Given matrices Q,K, V , there
is a data structure with O(nd+ n log n) preprocessing time that answers queries ϕt(i, ℓ1, . . . , ℓd) in
Õ
(
n1−1/d log(dB/ε)

)
time.

Proof. We initialize two RSDS data structures using Theorem 3.1, one with unweighted point set

{Kj} and one with weighted point set
{(

Kj ,
∏d

k=1 K
ℓk
j,kVj,t

)}n

j=1
. By Theorem 3.1, this requires

O(n log n) preprocessing. Computing each weight requires O(nd) time.

Now, consider a query ϕt(i, ℓ1, . . . , ℓd) for some i ∈ [n]. We compute s(i)max using binary search with
the first RSDS data structure. Since |Qi ·Kj | ≤ dB2 there are at most O(dB2/ log(1 + ε)) values
to search through. This requires O(log(dB/ε)) queries which requires Õ

(
n1−1/d log(dB/ε)

)
overall time by Theorem 3.1. The set of j relevant to Qi is the set of Kj such that Qi · Kj ≥
s
(i)
max log(1 + ε) − log(n/ε). This can easily be captured by a simplex query with the half-space
Qi ·x ≥ s

(i)
max log(1+ ε)− log(n/ε) and thus requires one query to the second RSDS instance.

Our data structure for Lemma 3.5 is simply the combination of all data structures that answer
queries ϕt(i, ℓ1, . . . , ℓd). Since P is degree g and ℓ1 + ℓ2 + . . . + ℓd ≤ ℓ ≤ g, there are at most
(g + d)O(d) = gO(d) distinct tuples ℓ1, . . . , ℓd since d is a constant. In particular, we can initialize all
the necessary data structures to compute queries of ϕt in Õ

(
gO(d)(nd+ n log n)

)
time.

We now show to compute an entry of Ôi,t. Note that numerator sums over ℓ, tuples ℓ0, . . . , ℓd of
which there are at most gO(d) summands. Each summand can be computed with one query to ϕt and
gO(d) additional time. Since the denominator can be computed similarly (instead querying ϕ0) the
total time to compute Ôi,t is Õ

(
gO(d)n1−1/d log(dB/ε)

)
.

Lemma 3.6. ApproxAttention (Algorithm 1) runs in time Õ
(
n2−1/d · polylog(B/ε)

)
.

Proof. We now analyze the running time. From Lemma 3.3, we have

g = O

(
max

(
log(1/ε)

log(log(1/ε)/ log(n/ε))
, log(n/ε)

))
= O(log(n/ε)).

Then, to initialize all the necessary data structures, we invoke Lemma 3.5 a total of d+ 1 times, thus
requiring preprocessing time (recall d is a constant)

Õ (n · polylog(1/ε)) .

Then, computing all Ôi,t requires time

Õ
(
ngO(d)

(
n1−1/d log(B/ε)

))
= Õ

(
n2−1/d · polylog(B/ε)

)
.

A.3 GENERALIZATION TO LOW RANK MATRICES

To prove Theorem 1.2, we require the following standard result on computing a representation of
low-rank matrices.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Lemma A.5 (e.g., Hopcroft & Kannan; Roughgarden & Valiant). Let A be a n× d matrix of rank r
with entries in [−B,B]. Then, there is an O(ndr) time algorithm computing an n× r matrix UA and
a d× r matrix VA such that A = UAV

⊤
A . Furthermore, UA, VA have entries bounded by poly(Bnd).

Suppose we are given n × d input matrices Q,K of rank rQ, rK respectively. Then, we apply
Lemma A.5 to compute UQ, VQ, UK , VK in time O(ndmax(rQ, rK)) = O(nd). Suppose without
loss of generality rQ ≤ rK . Then, we compute

Q′ = UQ , K ′⊤ = V ⊤
Q UKV ⊤

K

in time O(rQrKn) = O(n) and note that Q′,K ′ have entries bounded by poly(Bnd).

We then apply Theorem 1.1 to approximate Attention(Q′,K ′, V) = Attention(Q,K, V) which is
an instance of AttC(n,min(rQ, rK),poly(Bnd), ε) which requires time

Õ
(
n2−1/min(rQ,rK) · polylog(B/ε)

)
to compute an output Ô such that

∥∥∥Ô −Attention(Q,K, V)
∥∥∥
∞
≤ ε. This completes the proof of

Theorem 1.2.

B THE COMPLEXITY OF ATTENTION GRADIENT COMPUTATION

In this section, we leverage our algorithm for approximate attention computation to obtain the
corresponding upper bounds for approximate attention gradient computation. We begin by formalizing
the notion of attention optimization:

Definition B.1 (Attention Optimization). Given input matrices A1, A2, A3, E ∈ Rn×d and Y ∈
Rd×d, find a matrix X ∈ Rd×d that minimizes the objective:

L(X) :=
1

2

∥∥D(X)−1AV − E
∥∥2
F
,

where A := exp(A1XA⊤
2), V := A3Y , and D(X) := diag(A1n) ∈ Rn×n. 10

The gradient of the objective function L(X) with respect to X is then used to optimize the atten-
tion mechanism by iteratively adjusting X to minimize L(X). Formally, we define the following
approximate version of the gradient computation problem for attention optimization:

Definition B.2 (Approximate Gradient Computation for Attention Optimization AAttLGC(n, d, ε)).
Given A1, A2, A3, E ∈ [−B,B]n×d, Y ∈ [−B,B]d×d, and ε > 0, compute a matrix g ∈ Rd×d

such that ∥∥∥∥g − dL(X)

dX

∥∥∥∥
∞
≤ ε.

B.1 NOTATION

Throughout this section we use the following notation. We overload the diag operator. In this
section, the diag operator indicates turning all the non-diagonal entries to zero. The ◦ operator
indicates entry-wise multiplication. The ⊗ operator denotes the Kronecker product, as defined by
Z[(i − 1)n + ℓ, (j − 1)d + k] = X[i, j] · Y [ℓ, k] where X,Y ∈ Rn×d and Z ∈ Rn2×d2

. The ⊗r

operator denotes row-wise Kronecker product, as defined by Z[i, (j − 1)d+ k] = X[i, j] · Y [i, k]

where X,Y ∈ Rn×d and Z ∈ Rn×d2

. We use e⟨i,j⟩ as shorthand to denote ea1i
·a2j , where a1i and

a2j are rows of A1 and A2 respectively. If M is a matrix, we use Mi to denote the i-th row of M ,
M∗,i to denote the i-th column of M . We use M [i][j] to denote the (i, j)-th entry of M (since our
matrices have subscripts, the previous notation Mi,j is confusing).

10Alman & Song (2024b) scale the Attention matrix A by d for training efficiency, becoming A :=

exp
(

A1XA⊤
2

d

)
. Since our algorithms scale polylogarithmically with entry size, we can safely ignore this

scaling term.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.2 UPPER BOUND ON ATTENTION BACKWARD COMPUTATION

We show that the backwards pass for approximate attention can be computed in time
Õ
(
n2−1/d · polylog(B/ε)

)
when d = O(1).

Theorem B.1 (Formal Theorem 1.3). AAttLGC(n, d,B, ε) is reducible to O(d) calls to
AAttC(n, d,B, ε

Θ(ndB3)) using O(nd2) time.

Corollary B.2. Let d = O(1). There exists an algorithm that computes AAttLGC(n, d,B, ε) in time
Õ
(
n2−1/d · polylog(B/ε)

)
.

Proof of Corollary B.2. This follows directly from Theorem B.1 and Theorem 1.1.

Proof of Theorem B.1. We begin by recalling the following definitions from Alman & Song (2024b),
which we will use to define the gradient computation formula.

Definition B.3. Let A1, A2 ∈ Rn×d be two matrices and let A = A1 ⊗A2 ∈ Rn2×d2

. Let x ∈ Rd2

be the vectorization of the matrix X ∈ Rd×d in Definition B.1. We define Aj0 ∈ Rn×d2

to be the
n× d2 size sub-block of A consisting of rows {(j0 − 1)n+ j1}nj1=1. Let f(x) be the n× n matrix
whose j0-th row, denoted f(x)j0 , is given by:

f(x)j0 := (⟨exp(Aj0x)︸ ︷︷ ︸
n×1

, 1n︸︷︷︸
n×1

⟩−1 exp(Aj0x)︸ ︷︷ ︸
n×1

)⊤.

Note that f(x) = exp(A1XA⊤
2) · diag(exp(A1XA⊤

2)1n). Therefore f(x)Z, where Z is an n× d
matrix, is evaluated by Attention(A1, A2, X).

Definition B.4. Let Y ∈ Rd×d denote the matrix representation of y ∈ Rd2

and Y∗,i0 indicate the
i0-th column of Y . h(y) ∈ Rn×d is defined as the matrix whose i0-th column is h(y)i0 , which is
defined as follows:

h(y)i0 := A3︸︷︷︸
n×d

Y∗,i0︸︷︷︸
d×1

.

Note that throughout this section, we occasionally use h as a shorthand for h(y). It is clear that h(y)
can be computed in TMUL(n, d, d) time.

Definition B.5. Let c(x) be an n× d matrix defined as follows:

c(x)︸︷︷︸
n×d

= f(x)︸︷︷︸
n×n

h(y)︸︷︷︸
n×d

− E︸︷︷︸
n×d

.

We can approximate c(y) by evaluating Attention(A1X,A2, h(y)) to get f(x)h(y), then subtracting
E which takes O(nd) time.

From Alman & Song (2024b) we have the following formula for attention gradient computation:

dL(x)

dx
= A⊤

1 [f(x) ◦ (c(x)h(y)⊤)]A2 −A⊤
1 f(x) diag[f(x)c(x)h(y)

⊤]A2

= A⊤
1 [f(x) ◦ ((f(x)h(y)− E)h(y)⊤)]A2 −A⊤

1 f(x) diag[f(x)c(x)h(y)
⊤]A2

= A⊤
1 [f(x) ◦ (f(x)h(y)h(y)⊤)]A2 −A⊤

1 [f(x) ◦ (Eh(y)⊤)]A2

−A⊤
1 f(x) diag[f(x)c(x)h(y)

⊤]A2.

The first line comes from the characterization of the gradient as dL(x)
dx = A⊤

1 p(x)A2 where p(x) =
p1(x)− p2(x) (see Appendix D.4-D.6 of Alman & Song (2024b)). In the notation of Alman & Song
(2024b), the first term corresponds to p1(x) := f(x) ◦ q(x) := f(x) ◦ (c(x)h(y)⊤). The second
term corresponds to p2(x) which is an n× n matrix whose j0-th column is f(x)j0f(x)

⊤
j0
q(x)j0 :=

f(x)j0f(x)
⊤
j0
c(x)h(y)⊤j0 . Note that p2(x) := f(x) diag[f(x)q(x)] = f(x) diag[f(x)c(x)h(y)⊤].

Note that q(x) = c(x)h(y)⊤ is notation in Alman & Song (2024b) which we do not use here.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Let us denote

B1 := [f(x) ◦ (f(x)h(y)h(y)⊤)]A2,

B2 := [f(x) ◦ (E)h(y)⊤)]A2,

B3 := f(x) diag[f(x)c(x)h(y)⊤]A2.

We now have the following formula which can clearly be computed in O(nd) time if given B1, B2,
and B3:

dL(x)

dx
= A⊤

1︸︷︷︸
d×n

B1︸︷︷︸
n×d

− A⊤
1︸︷︷︸

d×n

B2︸︷︷︸
n×d

− A⊤
1︸︷︷︸

d×n

B3︸︷︷︸
n×d

.

Note that for each attention computation we perform in order to evaluate the attention gradient, we
do with ε2 = ε

poly(d,B)n additive error.

Computing B3. Given f(x), c(x), and h(y), we can approximate B3 using a series of matrix
multiplications and attention computations, which are illustrated below in the following equations.
Ci denotes the intermediate matrix products from each of these matrix multiplications/attention
computations. We compute an approximation of B3 as follows:

B3 = f(x) diag[f(x)︸︷︷︸
n×n

c(x)︸︷︷︸
n×d

h(y)⊤]A2

= f(x) diag[C1︸︷︷︸
n×d

h(y)⊤︸ ︷︷ ︸
d×n

]A2

= f(x) C2︸︷︷︸
n×n

A2︸︷︷︸
n×d

= f(x) C3︸︷︷︸
n×d

.

We begin by computing C1 = f(x)c(x) by evaluating Attention(A1X,A2, c(x)). Next, we compute
C2 = diag[C1h(y)

⊤], which consists of the diagonal of the matrix product C1h(y)
⊤. Since we only

need the diagonal entries, this step takes O(nd2) time. We then compute C3 = C2A2. As C2 is a
diagonal matrix, this matrix multiplication can be performed in O(nd) time. Finally, we compute
B3 = f(x)C3 by evaluating Attention(A1X,A2, C3).

We argue that our computed output is a good approximation of B3. Let B̃3 denote the computed
matrix. For any matrix Z, Z̃ indicates an approximation of Z derived by a step in our algorithm.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Then, ∥∥∥B3 − B̃3

∥∥∥
∞
≤
∥∥∥f(x)C3 − AttC(A1X,A2, C̃3)

∥∥∥
∞

≤
∥∥∥f(x)C3 − f(x)C̃3

∥∥∥
∞

+ ε2

≤
∥∥∥C3 − C̃3

∥∥∥
∞

+ ε2

=
∥∥∥diag[C1h(y)

⊤]A2 − diag[C̃1h(y)
⊤]A2

∥∥∥
∞

+ ε2

=
∥∥∥[diag[C1h(y)

⊤]− diag[C̃1h(y)
⊤]
]
A2

∥∥∥
∞

+ ε2

≤ ∥A2∥∞
∥∥∥diag[C1h(y)

⊤]− diag[C̃1h(y)
⊤]
∥∥∥
∞

+ ε2

≤ ∥A2∥∞
∥∥∥C1h(y)

⊤ − C̃1h(y)
⊤
∥∥∥
∞

+ ε2

≤ d ∥A2∥∞ ∥h(y)∥∞
∥∥∥C1 − C̃1

∥∥∥
∞

+ ε2

≤ d ∥A2∥∞ ∥h(y)∥∞
∥∥∥f(x)c(x)− AttC(A1X,A2, c̃(x))

∥∥∥
∞

+ ε2

≤ d ∥A2∥∞ ∥h(y)∥∞ (ε2 +
∥∥∥f(x)c(x)− f(x)c̃(x)

∥∥∥
∞
) + ε2

≤ d ∥A2∥∞ ∥h(y)∥∞ (ε2 +
∥∥∥c(x)− c̃(x)

∥∥∥
∞
) + ε2

≤ 2dB2ε2 + ε2.

Above, step 1 follows from how our algorithm approximates B3, step 2 follows from our ε2-error
approximation of attention and the triangle inequality, step 3 follows from the fact that f(x) is a
stochastic matrix and distributivity of matrix multiplication, step 4 follows from our definition of C3,
step 5 follows from the distributivity of matrix multiplication, and step 6 follows from basic properties
of the∞-norm and diagonal matrices. Step 7 follows from the fact that the diag operator simply
zeroes out the off-diagonal entries, making the off-diagonal elements of C1h(y)

⊤ and C̃1h(y)
⊤

identical. Step 8 follows from basic properties of the∞-norm, step 9 follows from how our algorithm
approximates C1, step 10 follows from the triangle inequality and our ε2 approximation of attention,
step 11 follows from similar arguments as steps 9 and 10, and step 12 follows from entry bounds.

Computing B1. We now show how to compute B1. We begin by noting that B1 =∑d
p=0(f(x)(h(y)∗,p ⊗r A2)) ⊗r (f(x)h(y))∗,p, a fact we will prove later. Using this fact, we

can compute B1 efficiently, as illustrated in the following:

B1 =

d∑
p=0

(f(x)(h(y)∗,p ⊗r A2))⊗r (f(x)h(y))∗,p

=

d∑
p=0

(f(x)(h(y)∗,p︸ ︷︷ ︸
n×1

⊗r A2︸︷︷︸
n×d

)⊗r C5∗,p

=

d∑
p=0

(f(x)C6,p︸︷︷︸
n×d

)⊗r C5∗,p

=

d∑
p=0

C7,p︸︷︷︸
n×d

⊗r C5∗,p︸ ︷︷ ︸
n×1

=

d∑
p=0

C8,p.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

We begin by approximating C5 = f(x)h(y) by evaluating Attention(A1X,A2, h(y)). Next, for
each 1 ≤ p ≤ d, we compute the matrix C6,p = h(y)∗,p ⊗r A2. Each matrix requires O(nd) time to
compute, so constructing all d matrices incurs a total cost of O(nd2).

We then compute each matrix C7,p = f(x)C6,p by evaluating Attention(A1X,A2, C6,p) across all
p ∈ [d]. Computing the row-wise Kronecker products C8,p = C7,p ⊗r C5∗,p takes O(nd) time for
each p ∈ [d], totaling O(nd2). Finally, summing over all C8,p requires an additional O(nd2) time.

We argue that our algorithm returns a close approximation of B1. Let B̃1 indicate our computation of
B1. For any matrix Z, Z̃ indicates an approximation of Z derived by a step in our algorithm.

∥∥∥B̃1 −B1

∥∥∥
∞

=

∥∥∥∥∥
d∑

p=0

C̃8,p −
d∑

p=0

C8,p

∥∥∥∥∥
∞

≤ dmax
p

{∥∥∥C̃8,p − C8,p

∥∥∥
∞

}
≤ dmax

p

{∥∥∥C̃7,p ⊗r C̃5∗,p − C7,p ⊗r C5∗,p

∥∥∥
∞

}
≤ dmax

p

{∥∥∥C̃7,p − C7,p

∥∥∥
∞

∥∥∥C̃5∗,p − C5∗,p

∥∥∥
∞

+
∥∥∥C̃7,p − C7,p

∥∥∥
∞

∥∥C5∗,p

∥∥
∞

+
∥∥∥C̃5∗,p − C5∗,p

∥∥∥
∞
∥C7,p∥∞

}
= dmax

p

{
∥AttC(A1X,A2, C6,p)− f(x)C6,p∥∞

∥∥AttC(A1X,A2, h(y))∗,p − C5∗,p

∥∥
∞

+ ∥AttC(A1X,A2, C6,p)− f(x)C6,p∥∞
∥∥C5∗,p

∥∥
∞

+
∥∥AttC(A1X,A2, h(y))∗,p − C5∗,p

∥∥
∞ ∥C7,p∥∞

}
≤ dmax

p

{
ε22 + ε2 ∥(f(x)h(y))∗,p∥∞ + ε2 ∥f(x)(h(y)∗,p ⊗r A2)∥∞

}
≤ dmax

p

{
ε22 + ε2 ∥h(y)∥∞ + ε2 ∥h(y)∗,p ⊗r A2∥∞

}
≤ dmax

p

{
ε22 + ε2 ∥h(y)∥∞ + ε2 ∥h(y)∗,p∥∞ ∥A2∥∞

}
≤ d

(
ε22 + ε2B

2 + ε2B
3
)
= dε22 + dε2B + dε2B

2.

Step 1 follows from our definition of C8,p, step 2 follows from the triangle inequality, and step 3
follows from how we define C8,p. Step 4 follows from analyzing the entry-wise error in the row-wise
Kronecker product. Let a = C7,p[i][j], b = C5∗,p [i][j], and let e1 and e2 denote the entry-wise
approximation errors in C7,p[i][j] and C5∗,p [i][j], respectively. Then the approximated entry is
c̃ = (C̃7,p ⊗r C̃5∗,p)[i][j] = (a+ e1)(b+ e2) = ab+ be1 + ae2 + e1e2. Therefore, the entry-wise
error in the approximation is c̃− c = be1 + ae2 + e1e2, where (c = C7,p ⊗r C5∗,p)[i][j].

Step 5 follows from how our algorithm approximates C7,p and C5∗,p . Step 6 follows from the fact
that C̃6 = C6 and our ϵ2 approximation of the attention computation. Step 7 follows from the fact
that f(x) is a stochastic matrix, step 8 is based on the linearity of the Kronecker product, and step 9
follows from entry bounds.

We defined B1 := [f(x) ◦ (f(x)h(y)h(y)⊤)]A2. We now show We begin by noting that the format
of each entry of B1 is as follows, where 1 ≤ i ≤ n and 1 ≤ j ≤ d:

B1[i, j] =

n∑
ℓ=0

e⟨i,ℓ⟩∑n
k=0 e

⟨i,k⟩

[
n∑

m=0

e⟨i,m⟩∑n
k=0 e

⟨i,k⟩

d∑
p=0

h[ℓ, p]h[m, p]

]
A2[ℓ, j]

=

d∑
p=0

n∑
ℓ=0

e⟨i,ℓ⟩∑n
k=0 e

⟨i,k⟩

[
n∑

m=0

e⟨i,m⟩∑n
k=0 e

⟨i,k⟩h[m, p]

]
h[ℓ, p]A2[ℓ, j].

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

We now compute the sum
∑d

p=0 C8,p and verify that[
d∑

p=0

C8,p

]
[i, j] = B2[i, j].

Let C5 = f(x)h(y). For 1 ≤ i ≤ n and 1 ≤ p ≤ d, we have:

C5[i, p] =

n∑
m=0

e⟨i,m⟩∑n
k=0 e

⟨i,k⟩h(y)[m, p].

Let C6,p = h(y)∗,p ⊗r A2. For 1 ≤ ℓ ≤ n and 1 ≤ j ≤ d, this gives:

C6,p[ℓ, j] = h(y)[j, ℓ] ·A2[ℓ, j].

We define C7,p = f(x)C6,p, so:

C7,p[i, j] =

n∑
ℓ=0

e⟨i,ℓ⟩∑n
k=0 e

⟨i,k⟩h(y)[j, ℓ]A2[ℓ, j].

Let C8,p = f(x)C7,p ⊗r C5∗,p . Then for 1 ≤ i ≤ n, 1 ≤ j ≤ d:

C8,p[i, j] =

(
n∑

ℓ=0

e⟨i,ℓ⟩∑n
k=0 e

⟨i,k⟩h(y)[j, ℓ]A2[ℓ, j]

)(
n∑

m=0

e⟨i,m⟩∑n
k=0 e

⟨i,k⟩h(y)[m, p]

)

=

n∑
ℓ=0

n∑
m=0

e⟨i,ℓ⟩∑n
k=0 e

⟨i,k⟩ ·
e⟨i,m⟩∑n
k=0 e

⟨i,k⟩ · h(y)[m, p] · h(y)[ℓ, p] ·A2[ℓ, j].

Summing over all p, we recover:

B2[i, j] =

d∑
p=0

C8,p[i, j].

Computing B2. We begin by noting that B2 =
∑d

p=0[f(x)(h(y)∗,p ⊗r A2)]⊗r E∗,p, a fact that
we will prove later on. Using this fact, we use the following procedure to compute an approximation
of B2:

B2 =

d∑
p=0

[f(x) (h(y)∗,p︸ ︷︷ ︸
n×1

⊗r A2︸︷︷︸
n×d

)]⊗r E∗,p

=

d∑
p=0

[f(x)C9,p︸︷︷︸
n×d

]⊗r E∗,p

=

d∑
p=0

C10,p︸ ︷︷ ︸
n×d

⊗r E∗,p︸︷︷︸
n×1

=

d∑
p=0

C11,p︸ ︷︷ ︸
n×d

.

We start by approximating the set of d matrices, C9,p = h(y)∗,p ⊗r A2. For each 1 ≤ p ≤ d,
computing C9,p takes O(nd) time, so this takes O(nd2) time in total. We approximate each C10,p =
f(x)C9,p by evaluating Attention(A1X,A2, C9,p). Next, we compute all C11,p = C10,p ⊗r E∗,p
which takes O(nd2) time in total. Finally, summing over C11,p takes O(nd2) time.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

We now analyze the error from approximating B2 using the method we just described. For any matrix
Z, Z̃ indicates an approximation of Z derived by a step in our algorithm.

∥∥∥B2 − B̃2

∥∥∥
∞

=

∥∥∥∥∥
d∑

p=0

C11,p −
d∑

p=0

C̃11,p

∥∥∥∥∥
∞

≤ dmax
p

{∥∥∥C11,p − C̃11,p

∥∥∥
∞

}
= dmax

p

{∥∥∥C10,p ⊗r E∗,p − C̃10,p ⊗r E∗,p

∥∥∥
∞

}
= dmax

p

{∥∥∥[C10,p − C̃10,p]⊗r E∗,p

∥∥∥
∞

}
≤ dmax

p

{
∥E∗,p∥∞

∥∥∥C10,p − C̃10,p

∥∥∥
∞

}
= dmax

p

{
∥E∗,p∥∞ ∥f(x)(h(y)∗,p ⊗r A2)− AttC(A1X,A2, h(y)∗,p ⊗r A2)∥∞

}
≤ dmax

p

{
ε2 ∥E∗,p∥∞

}
≤ dε2B.

Above, step 1 follows from our definition of C11,p, step 2 is follows from the triangle inequality,
and step 3 follows from our definition of C11,p. Step 4 follows from the linearity of the row-wise
Kronecker product and step 5 follows from the fact that the row-wise Kronecker product scales every
element in C10,p by an element in E∗,p. Step 6 follows from how we approximate C10,p in our
algorithm, step 7 follows from our ε2-error approximation of attention, and step 8 follows from our
defined entry bounds.

We defined B2 := [f(x) ◦ (E)h(y)⊤)]A2. Finally, we show that B2 =
∑d

p=0[f(x)(h(y)∗,p ⊗r

A2)]⊗r E∗,p, which can be proven by showing that B2[i, j] =
∑d

p=0 C11,p[i, j] for all 1 ≤ i ≤ n
and 1 ≤ j ≤ d. We note the following:

B2[i, j] =

n∑
ℓ=0

e⟨i,ℓ⟩∑n
k=0 e

⟨i,k⟩

[
d∑

p=0

E[i, p]h[ℓ, p]

]
A2[ℓ, j]

=

d∑
p=0

n∑
ℓ=0

e⟨i,ℓ⟩∑n
k=0 e

⟨i,k⟩E[i, p]h[ℓ, p]A2[ℓ, j],

and it is clear that the following is true:

C11,p[i, j] =

n∑
ℓ=0

e⟨i,ℓ⟩∑n
k=0 e

⟨i,k⟩E[i, p]h[ℓ, p]A2[ℓ, j].

Bounding Approximation Error. Now all that is left is to show our procedure gives us an
approximation of the gradient with ε additive error. Recall that we did all the attention calculations

with ε2 = ε
poly(d,B)n additive error. Let d̃L(x)

dx denote the matrix our procedure returns and let c̃(x)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

be the approximation of c(x) given by Attention(A1X,A2, h(y)).∥∥∥∥∥dL(x)dx
− d̃L(x)

dx

∥∥∥∥∥
∞

=

∥∥∥∥∥A⊤
1 B1 −A⊤

1 B2 −A⊤
1 B3 − (A⊤

1

d∑
p=0

C8,p −A⊤
1

d∑
p=0

C11,p −A⊤
1 f(x)C3)

∥∥∥∥∥
∞

=

∥∥∥∥∥A⊤
1

[
(B1 −

d∑
p=0

C8,p) + (B2 −
d∑

p=0

C11,p) + (B3 − f(x)C3)

]∥∥∥∥∥
∞

≤ n
∥∥A⊤

1

∥∥
∞

∥∥∥∥∥(B1 −
d∑

p=0

C8,p) + (B2 −
d∑

p=0

C11,p) + (B3 − f(x)C3)

∥∥∥∥∥
∞

≤ n
∥∥A⊤

1

∥∥
∞

∥∥∥∥∥B1 −
d∑

p=0

C8,p

∥∥∥∥∥
∞

+

∥∥∥∥∥B2 −
d∑

p=0

C11,p

∥∥∥∥∥
∞

+ ∥B3 − f(x)C3∥∞


≤ nB(

(
dε22 + dε2B + dε2B

2
)
+ dε2B + (2dB2ε2 + ε2))

= O(ndB3ε2) = ε.

Above, steps 1 and 2 follow from definitions and rearranging terms, step 3 follows from basic
properties of the ∞-norm, step 4 follows from the triangle inequality, and step 5 was justified
previously.

C NEW LOWER BOUNDS FOR ATTENTION

In this section, we prove Theorem 1.4 which shows Attention is hard even with d = 2Θ(log∗ n) and
Theorem 1.5 which shows that the standard algorithm is optimal for d = poly(n). We begin with a
generic self-reduction (Lemma C.1) that shows it suffices to prove lower bounds for Attention without
normalization. We also prove Theorem C.7 which shows that Attention is hard for d = Ω(log n)
even for constant entry size.

Recall that in the attention computation Attention(Q,K, V) = D−1AV , the diagonal matrix D−1

applies a normalization to each row of A. In our reductions, however, it is necessary to work directly
with the unnormalized entries of A. As a key lemma, we show that given oracle access to AttC
with ε-additive error approximation, one can approximately recover the row sums of A up to O(ε)-
multiplicative errors, hence recovering the unnormalized entries of A. Specifically, if Si is the actual
row sum of the i-th row of A, then the reduction computes an approximation Ŝi such that

|Ŝi − Si| < O(ε)Si.

It turns out that multiplicative error approximation on the row sums is sufficient for our lower bound
proofs.
Lemma C.1. Let 0 < ε = O(1). Given matrices Q,K ∈ [−B,B]n×d with B ≥ 1, we can estimate
the row sums of A = exp(QK⊤) up to O(ε)-multiplicative error in time

O((log log n+ log(dB/ε))TATTC(n+ 1, d+ 1, B, ε)).

Proof. We use a parallel binary search approach to estimate the row sums. In order to implement
parallel binary search, it suffices to perform the following task T :

Given an array of numbers c = [c1, . . . , cn]
⊤, output an array b ∈ {0, 1}n such that if Si ≥ (1+ε)ci,

then bi = 1; if Si ≤ (1− ε)ci, then bi = 0. Otherwise, bi can be arbitrary.

Indeed, at each round we let ci := (1 + ε)fi−1 for some fi. We use the indicator bi = 1 to perform
binary search for the smallest fi such that (1+ ε)fi ≥ Si for all i. Such an fi gives the guarantee that
Si ≤ (1 + ε)fi < (1 + ε)Si, which is an ε-multiplicative approximation of Si. Note that the value of
each row sum Si belongs to the range [n exp(−B2d), n exp(B2d)], so we just need to binary search
for the correct fi ∈ [log1+ε(n exp(−B2d)), log1+ε(n exp(B2d))]. Therefore, the number of rounds
for binary search (i.e., for performing the task T) is given by

O(log2 log1+ε(n exp(2B2d)) = O(log log n+ log(dB/ε)).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

It now remains to show how to perform the task T . We claim the following:

Claim C.2. The task T can be completed with one oracle call to AttC(n+ 1, d+ 1, B, ε/100) and
O(nd) additional time.

Proof. We create the following matrices as inputs to the oracle AttC(n+ 1, d+ 1, B, ε):

Q′ :=

[
ln c Q
0 0⊤

d

]
,K ′ :=

[
1 0⊤

d
0n K

]
, V ′ :=


0 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 .

Then,

Q′K ′⊤ =

[
ln c QK⊤

0 0⊤
d

]
,

so the (i, 1)-th entry of Attention(Q′,K ′, V ′) = D′−1A′V ′ would be

oi =
Si

ci + Si
.

Assume we have an (ε/100)-additive approximation of oi (denoted by ôi). Then, we set bi = 1 if
ôi ≥ 1

2 and bi = 0 otherwise. We now show that all entries of b are correctly set. If Si ≥ (1 + ε)ci,
then

ôi ≥ oi − ε/100 ≥ Si

ci + Si
− ε/100 ≥ 1 + ε

2 + ε
− ε/100 >

1

2
.

On the other hand, if Si ≤ (1− ε)ci, then

ôi ≤ oi + ε/100 ≤ Si

ci + Si
+ ε/100 ≤ 1− ε

2− ε
+ ε/100 <

1

2
.

In the first inequality, we use 1+ε
2+ε > 1

2 + ε
6 and in the second we use 1−ε

2−ε < 1
2 −

ε
6 . Thus, the

algorithm will output bi = 1 in the former case and bi = 0 in the latter case, as desired.

This completes the proof of Lemma C.1.

C.1 LOWER BOUND FOR ATTENTION WITH SMALL HEAD DIMENSION

In this section, we show via a reduction from the Max-IP problem that AttC(n, d,B, ε) requires
n2−o(1) time when d = 2Ω(log∗ n), B = poly(n), and ε = O(1) additive approximation error. In
particular, we note that we are able to compute Max-IP exactly even with oracle access to AttC that
allows ε = O(1) additive error.

Lemma C.3. Let ε > 0. Max-IP(n, d,B) can be computed exactly in time

O((log log n+ log(dB/ε))TATTC(n+ 1, d+ 1, O(B log n), ε)).

Proof. Given a δ, we choose a C = C(δ) and set d = 2C log ∗(n). Let A = {a1, . . . , an},B =
{b1, . . . , bn} ⊆ Zd be two sets of d-dimensional integer-valued vectors with entries bounded by
B ≥ 1. Let k = lnn and we choose the smallest integer C > 0 such that

0.5C > 1 + logn(1 + ε) and − 0.5C < logn(1− ε).

Define the following matrices Q,K ∈ Rn×d:

Q :=


a⊤1
a⊤2
...
a⊤n

 , K := kC ·


b⊤1
b⊤2
...
b⊤n

 . (3)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

By Lemma C.1, we get the (1± ε)-multiplicative approximations of the row sums of exp(QK⊤) in
time

O((log log n+ log(k2C2B2d/ε))TATTC(n+ 1, d+ 1, kcB, ε)).

Here, note that kCB = O(B log n). Note that the i-th row sum is given by

Si =

n∑
j=1

ekC(ai·bj) =

n∑
j=1

nC(ai·bj).

Let S′
i be the (1± ε)-multiplicative approximation for Si and let Mi := maxj ai · bj (note that all

inner products are integers) be the maximum inner product over all vectors in B for a fixed ai ∈ A.
We claim that Mi can be recovered exactly by

Mi =

⌊
logn S

′
i

C
+ 0.5

⌋
.

Note that each non-maximum term on a single row can be bounded by 0 < nC(ai·bj) ≤ nCMi , so we
can bound the row sum by

nCMi ≤ Si ≤ n · nCMi = nCMi+1.

Thus, applying (1± ε)-approximation to the upper and lower bounds respectively we get

(1− ε)nCMi ≤ S′
i ≤ (1 + ε)nCMi+1.

If we can show Mi ≤ (logn S
′
i)/C + 0.5 < Mi + 1 then we are done. Indeed, using our definition

for C we get
logn S

′
i

C
+ 0.5 ≤ CMi + 1 + logn(1 + ε)

C
+ 0.5 = Mi +

1 + logn(1 + ε)

C
+ 0.5 < Mi + 1,

and
logn S

′
i

C
+ 0.5 >

CMi + logn(1− ε)

C
+ 0.5 = Mi +

logn(1− ε)

C
+ 0.5 > Mi.

Combining the above reduction with the conditional lower bound for Max-IP (Theorem 2.3), we
obtain Theorem 1.4.
Theorem C.4 (Formal Theorem 1.4). Fix ε = Θ(1) and B = poly(n). For all δ > 0, there exists
C = C(δ) and d = 2C log∗ n such that any algorithm computing AttC(n, d,B, ε) requires n2−δ time
under SETH.

C.2 LOWER BOUND FOR ATTENTION WITH LARGE HEAD DIMENSION

In this section, we study the case of large head dimension where d = poly(n). Through a reduction
from the OV problem, we show that computing AAttC(n, d,B, ε) requires explicitly computing the
matrix product QK⊤ when d = poly(n), B = O

(√
log n

)
, and ε = O(1) (additive approximation

error). Furthermore, we establish a similar lower bound from the OV problem when d = poly(n),
B = O(1), and ε = O

(
1

poly(n)

)
.

Theorem C.5 (Formal Theorem 1.5). Fix d = poly(n). There exists B = O(
√
log n) and ε = O(1)

such that any algorithm computing AttC(n, d,B, ε) requires TMUL(n, d, n)
1−o(1) time under the

Generalized High-Dimensional OV Hypothesis.

We show the following lemma to prove Theorem C.5.
Lemma C.6. The OV problem can be computed exactly with one call to AttC(n, d,B =
O(
√
log n), ε = O(1)) and O(nd) additional time.

Proof. Let A = {a1, . . . , an},B = {b1, . . . , bn} ⊆ {0, 1}d be two sets of vectors. We chose a
constant c such that ε < c < 1 and a constant k such that k < 1−c

n(1+c) . We then define Q,K ∈ Rn×d:

Q := −
√
| ln k| ·


a⊤1
a⊤2
...
a⊤n

 , K :=
√
| ln k| ·


b⊤1
b⊤2
...
b⊤n

 . (4)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Due to Lemma C.1, we can recover the row sums of exp(QK⊤) up to ε-multiplicative error in
O ((log log n+ log(dB/ε))TATTC(n+ 1, d+ 1, B, ε)) time. Let Si be the (1 ± ϵ)-approximation
of the i-th row sum.

Si := (1± ϵ)

n∑
j=1

eln(k)(ai·bj) = (1± ϵ)

n∑
j=1

kai·bj ,

which implies

(1− ϵ)

n∑
j=1

kai·bj ≤ Si ≤ (1 + ϵ)

n∑
j=1

kai·bj .

If there are no orthogonal pairs of vectors in A and B, then ai · bj is a positive integer for all
1 ≤ i, j ≤ n. Consequently, because 0 < k < 1, the maximum value of kai·bj is k. From this it
follows that if there are no pairs of orthogonal vectors, all of the sums Si, . . . , Sn will be less than
1− c:

Si ≤ (1 + ϵ)

n∑
j=1

kai·bj ≤ (1 + ϵ)nk <
(1 + ϵ)(1− c)

(1 + c)
≤ (1 + c)(1− c)

(1 + c)
= 1− c.

On the other hand, when there are one or more pairs of orthogonal vectors in A and B, there will be
at least one kai·bj = 1 and a row sum Si will exist such that Si ≥ 1− c:

Si ≥ (1− ϵ)

n∑
j=1

kai·bj > (1− ϵ)1 ≥ 1− c.

By checking for the existence of a row sum Si that is greater than or equal to 1− c we can determine
whether there is a pair of orthogonal vectors in A and B.

We also show that when d = Θ(log n), Attention is hard under SETH even with constant entry size
B.
Theorem C.7. For all δ > 0, there exists C = C(δ), d = C log n and ε = n−C such that any
algorithm computing AttC(n, d, log 2, ε) requires Ω

(
n2−δ

)
time under SETH.

We show the following lemma to prove Theorem C.7.
Lemma C.8. The OV problem on vectors of dimension d can be computed with high probability in
time

Õ

(
(log n)(d+ log n)TATTC

(
n+ 1, d+ 1, log 2,

1

10n2d

))
.

Given the above lemma, suppose we have an algorithm computing AttC. Given a δ define δ′ = δ/2
and let C ′ = C ′(δ′) and d = C ′ log n as required in Theorem 2.2. Then, let ε = 1

10n2d
= n−C for

some large constant C = C(δ) ≥ C ′. Any algorithm computing TATTC(n+ 1, d+ 1, log 2, ε) then
requires Ω(n2−δ) time, proving Theorem C.7.

Proof. Let A = {a1, . . . , an},B = {b1, . . . , bn} ⊆ {0, 1}d be two sets of vectors. Define Q,K ∈
Rn×d to be the matrices whose rows are formed by the vectors in A and B, respectively, i.e.,

Q := log(2)


a⊤1
a⊤2
...
a⊤n

 , K := log(2)


b⊤1
b⊤2
...
b⊤n

 .

Note that

QK⊤ =

log(2) · a1 · b1 · · · log(2) · a1 · bn
...

...
. . .

...
log(2) · an · b1 · · · log(2) · an · bn

 .

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

and the i-th row sum of exp(QK⊤) is given by
∑n

j=1 2
ai·bi . In particular, note that all row sums are

integers satisfying n ≤ Si ≤ n2d. From Lemma C.1, we can recover the row sums up to 1
10n2d

and
therefore 1

10 -additive error in time

O

(
(log log n+ log(dn2d))TATTC

(
n+ 1, d+ 1, log 2,

1

10n2d

))
.

Given the 1
10 -additive approximation of Si, we may recover Si by rounding since they are integers.

Note that Si ≤ n2d and can therefore be represented in O(d+ log n) bits.

If there are no orthogonal pairs of vectors in A and B, then ai · bj is a positive integer for all
1 ≤ i, j ≤ n, which means 2ai·bj is an even number. It follows that all of the sums S1, . . . , Sn are
also even numbers.

Conversely, when an orthogonal pair of vectors exists in A and B, we would like to detect this based
on the sums S1, . . . , Sn as well. Note that when ai ·bj = 0 we have 2ai·bj = 1, which may potentially
make the sum into an odd number. However, when there are an even number of such orthogonal pairs,
the sum remains even, and we cannot distinguish from the previous case. The workaround is to use a
standard sampling method, so that with high probability, we include exactly one pair of orthogonal
vectors in the sample, and therefore the corresponding sum will be odd.

Fix an index 1 ≤ i ≤ n such that ai ∈ A is orthogonal to some vector in B. Let b∗ be the last vector
in B orthogonal to ai. Without loss of generality, we may assume that the zero vector 0d /∈ A, since
we can check this in O(nd) time and immediately accepts the input if this is the case. Given 0d /∈ A,
we know that vector 1d is not orthogonal to any vector in A. Consider the following sampling
procedure:

Construct B′ by including each vector of B with probability 1
2 independently and padding with 1d

to ensure B′ has n vectors. Note that with probability exactly 1
2 we have that B′ contains an odd

number of orthogonal vectors to ai (i.e. b∗ is included with probability 1
2). In particular, sampling B′

O(log n)-times allows us to detect an odd row sum with high probability.

Thus, the overall algorithm requires involves O(log n) loops, where in each loop we check for an
odd row-sum using Lemma C.1. The overall time is therefore

Õ

(
(log n)(d+ log n)TATTC

(
n+ 1, d+ 1, log 2,

1

10n2d

))
.

30

	Introduction
	Technical Overview
	Related Work

	Preliminaries
	Fast Attention for Constant Head Dimension
	Conclusion
	Omitted Proofs for Algorithms
	Warm-up: d = 1
	Constant Head Dimension
	Generalization to Low Rank Matrices

	The Complexity of Attention Gradient Computation
	Notation
	Upper Bound on Attention Backward Computation

	New Lower Bounds for Attention
	Lower Bound for Attention with Small Head Dimension
	Lower Bound for Attention with Large Head Dimension

