

000 001 002 003 004 005 SUBQUADRATIC ALGORITHMS AND HARDNESS FOR 006 ATTENTION WITH ANY TEMPERATURE 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019

020 ABSTRACT 021

022 Despite the popularity of the Transformer architecture, the standard algorithm
023 for computing Attention suffers from quadratic time complexity in context length
024 n . Alman and Song showed that when the head dimension $d = \Theta(\log n)$, sub-
025 quadratic Attention is possible if and only if the inputs have small entries bounded
026 by $B = o(\sqrt{\log n})$ in absolute values, under the Strong Exponential Time Hy-
027 pothesis (SETH). Equivalently, subquadratic Attention is possible if and only if
028 the softmax is applied with high temperature for $d = \Theta(\log n)$. Running times of
029 these algorithms depend exponentially on B and thus they do not lead to even a
030 polynomial-time algorithm outside the specific range of B .

031 This naturally leads to the question: when can Attention be computed efficiently
032 without strong assumptions on temperature? Are there fast attention algorithms that
033 scale polylogarithmically with entry size B ? In this work, we resolve this question
034 and characterize when fast Attention for arbitrary temperatures is possible. First,
035 for all constant $d = O(1)$, we give the first subquadratic $\tilde{O}(n^{2-1/d} \cdot \text{polylog}(B))$
036 time algorithm for Attention with large B . Our result holds even for matrices with
037 large head dimension if they have low rank. Combined with a reduction from
038 Gradient Computation to Attention, we obtain a subquadratic algorithm for the full
039 LLM training process. Furthermore, we show that any substantial improvement
040 on our algorithm is unlikely. In particular, we show that even when $d = 2^{\Theta(\log^* n)}$,
041 Attention requires $n^{2-o(1)}$ time under SETH.

042 Finally, in the regime where $d = \text{poly}(n)$, the standard algorithm requires $O(n^2 d)$
043 time while previous lower bounds only ruled out algorithms with truly subquadratic
044 time in n . We close this gap and show that the standard algorithm is optimal under
045 popular fine-grained complexity assumptions.

050 1 INTRODUCTION 051

052 Large Language Models powered by the Transformer architecture (Vaswani et al., 2017) have been at
053 the heart of modern AI revolution completely reshaping the landscapes of natural language processing,
054 computer vision, and multitude of other applications. The Attention mechanism is the cornerstone
055 of the Transformer architecture. Attention computes correlations between different tokens of the
056 sequences, allowing Transformers to model dependencies regardless of the position of the tokens in
057 the sequences. Despite its popularity, standard algorithms for computing Attention require quadratic
058 time complexity, as they compute the Attention matrix explicitly.

059 Formally, the Attention mechanism is defined as follows. Let Q, K, V be size $n \times d$ matrices
060 (respectively query, key and value matrices). We call n the context length and d the head dimension.
061 The Attention matrix is obtained by applying softmax¹ to each row of QK^\top . Each entry in the matrix
062 represents the attention weight between a particular input token (query token Q) and output token
063 (key token K). Finally, Attention outputs the product of the Attention matrix with V .

064 We give the formal definition below. Note that $\exp(X)$ applies \exp to each entry of a matrix X .
065

066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1340
1341
1342
1343
1344
1345
1346
1347
1348<br

054 **Definition 1.1** (Attention). Given input matrices $Q, K, V \in \mathbb{R}^{n \times d}$, Attention on Q, K, V is defined
 055 $\text{Attention}(Q, K, V) := D^{-1}AV \in \mathbb{R}^{n \times d}$ where $A := \exp(QK^\top)$ ² and $D := \text{diag}(A1)$.
 056

057 In practice, there is an input $X \in \mathbb{R}^{n \times d}$ and weight matrices $W_Q, W_K, W_V \in \mathbb{R}^{d \times d}$ such that
 058 $Q = XW_Q, K = XW_K, V = XW_V$. Since Q, K, V can be computed from X, W_Q, W_K, W_V in
 059 $O(nd^2)$ time, we assume for simplicity that the inputs Q, K, V are given directly.

060 Typically, it suffices to *approximately* perform Attention computations. In particular, it is not necessary
 061 (or even reasonable) to expect Attention to be computed exactly due to the softmax operation. Thus,
 062 we study Approximate Attention, where each entry is computed with polynomial precision (i.e.
 063 inverse polynomial additive error).

064 **Definition 1.2** (Approximate Attention Computation $\text{AttC}(n, d, B, \varepsilon)$). Given matrices $Q, K, V \in$
 065 $[-B, B]^{n \times d}$ and $B, \varepsilon > 0$, compute $O \in \mathbb{R}^{n \times d}$ such that $\|O - \text{Attention}(Q, K, V)\|_\infty < \varepsilon$.
 066

067 The standard (and most widely used) algorithm for Attention (even in approximate form) requires
 068 quadratic time. The algorithm begins by explicitly computing matrix product QK^\top , applies softmax
 069 to obtain $D^{-1}A$ and then computes the matrix product $(D^{-1}A)V$. Using standard matrix multiplication,
 070 this requires $O(n^2d)$ time. Even ignoring computation time of matrix multiplication, explicitly
 071 computing the A matrix already requires $\Omega(n^2)$ time.

072 However, the inputs (and outputs) only have size $O(nd)$. Indeed, an algorithm that does not compute
 073 A explicitly could compute Attention in $O(nd)$ time, incurring only *linear* dependence on the context
 074 length n . This leads to the fundamental question concerning the complexity of Attention.

075 *Question 1: When can Attention be computed faster than n^2d time?*
 076

077 Towards answering this question, Alman & Song (2024a) showed that for $d = \Theta(\log n)$, Attention
 078 can be computed in $n^{1+o(1)}$ time whenever $B = o(\sqrt{\log n})$. Furthermore, whenever $B = \Omega(\sqrt{\log n})$
 079 and $d = \Theta(\log n)$, Attention requires $n^{2-o(1)}$ time under SETH, a popular hardness hypothesis.
 080

081 Yet there remain several shortcomings in our current understanding of Attention. Fast algorithms
 082 for Attention are only known for inputs with small entries (i.e. $B = o(\sqrt{\log n})$). Such a strong
 083 bound on the entries of Q, K essentially restricts the Attention mechanism to use softmax with high
 084 temperature (enforcing a near-uniform distribution over the value matrix). Temperature, denoted by
 085 T , is a key hyperparameter for Attention that dictates how random the output is. Formally, Attention
 086 with temperature T replaces $A := \exp(QK^\top)$ with $A := \exp(QK^\top/T)$ so that high temperature
 087 corresponds to high entropy (more likely to select keys with lower scores). In many tasks, temperature
 088 is a key hyperparameter with potentially significant impact on accuracy and stability (Agarwala
 089 et al., 2023; Xuan et al., 2025). Indeed, Alman & Song (2025b) prove that transformers with high
 090 temperature are provably less expressive. In contrastive learning, temperature has been found to
 091 significantly impact both the accuracy (Chen et al., 2020; Wang & Liu, 2021; Hu et al., 2021) as well
 092 as the learned representations (Wang & Isola, 2020; Wang & Liu, 2021; Robinson et al., 2021) of
 093 the model. Dynamically varying temperature throughout the training process can also help balance
 094 multiple training objectives (Khaertdinov et al., 2022; Kukleva et al., 2023; Manna et al., 2023). In
 095 instances where low entropy is required, no subquadratic algorithms are known.
 096

097 Furthermore, it is generally undesirable for the running time of an algorithm to scale poorly with
 098 the numerical values of the input. In fact for many fundamental problems (Knapsack, All-Pairs
 099 Shortest Paths, 3-SUM), having small entries makes the problems much easier. For example,
 100 there is a simple pseudo-polynomial time dynamic programming algorithm for Knapsack, while
 101 designing a polynomial time algorithm for Knapsack is NP-complete.³ Therefore, in this work we
 102 study algorithms for Attention that scale polynomially with the *representation length* of the entries.
 103 Equivalently, the algorithm should scale polylogarithmically with the entry size B .
 104

105 Currently, the only known algorithms for Attention beyond the standard $O(n^2d)$ algorithm scales
 106 *exponentially* with the entry size B (Alman & Song, 2024a). Following the terminology of pseudo-
 107 polynomial time, we will call an algorithm that is subquadratic but scaling polynomially (or worse)

²In practice, a scaled dot-product attention, defined as $A := (QK^\top/\sqrt{d})$, is also commonly used for training efficiency Vaswani et al. (2017).

³An algorithm runs in pseudo-polynomial time if its running time is polynomial in the numerical value of the input. A polynomial time algorithm must be polynomial in the length of the input.

108 with the numerical value of the input pseudo-subquadratic. We call an algorithm that is subquadratic
 109 and scales logarithmically with the numerical value of the inputs (non-pseudo-)subquadratic, or
 110 simply subquadratic. Following from our above discussion, the question of whether subquadratic
 111 algorithms for Attention exist remains open.⁴ Even if $d = O(1)$, there is a tantalizing gap between
 112 the $O(n^2)$ upper bound and the $\Omega(n)$ lower bound.

113 *Question 2: Is there a truly (non-pseudo-)subquadratic algorithm for Attention?*⁵

115 In our work, we resolve this question for almost all regimes of head dimension d . Our main result gives
 116 the first truly sub-quadratic algorithm for attention that scales polylogarithmically with entry-size B .
 117 Our algorithm obtains truly sub-quadratic time for constant d .⁶

118 **Theorem 1.1** (Main Theorem). *Let $d = O(1)$. There is an algorithm that computes $\text{AttC}(n, d, B, \varepsilon)$
 119 in $\tilde{O}(n^{2-1/d} \cdot \text{polylog}(B/\varepsilon))$ time.*

121 The result also generalizes to the case where the matrices Q, K have low rank.

123 **Theorem 1.2.** *Let $r = O(1)$. There is an $\tilde{O}(nd + n^{2-1/r} \cdot \text{polylog}(B/\varepsilon))$ time algorithm comput-
 124 ing $\text{AttC}(n, d, B, \varepsilon)$ where $r = \min(\text{rank}(Q), \text{rank}(K))$.*

125 As a side result, we complement this algorithm with a subquadratic algorithm for Attention Gradient
 126 Computation. In the training process, gradient descent tunes the weight matrices W_Q, W_K, W_V
 127 according to the input data. In contrast to previous algorithms which give ad hoc algorithms for
 128 gradient computation, we show that gradient computation can be generically reduced to attention
 129 computation. Combined with our previous result, we give a truly (non-pseudo-)subquadratic algorithm
 130 for the full LLM training process when $d = O(1)$.

131 **Theorem 1.3** (Informal Theorem B.1). *The Attention gradient can be computed with $O(d)$ calls to
 132 $\text{AttC}(n, d, B, \varepsilon/\Theta(ndB^3))$ with $O(nd^2)$ overhead. In particular, if $d = O(1)$ the Attention gradient
 133 can be computed in $\tilde{O}(n^{2-1/d}\text{polylog}(B/\varepsilon))$ time.*

135 Above, we obtain a sub-quadratic algorithm for constant d . When $d = \omega(1)$ is super-constant, the
 136 above algorithms requires $n^{2-o(1)}$ time. Is there a truly subquadratic algorithm for super-constant
 137 d ? Our remaining results provide stronger lower bounds for super-constant d . Alman & Song
 138 (2024a) show that $n^{2-o(1)}$ time is necessary when $d = \Omega(\log n)$ under the Strong Exponential Time
 139 Hypothesis (SETH). Under the same hardness assumption we provide a much stronger lower bound
 140 and show that Attention is hard even when $d = 2^{\Omega(\log^* n)}$.⁷

141 **Theorem 1.4** (Informal Theorem C.4). *Under SETH, $\text{AttC}(n, d, B, \varepsilon)$ requires $n^{2-o(1)}$ time for
 142 $d = 2^{\Omega(\log^* n)}$ and $B = \text{poly}(n)$.*

144 It suffices to consider instances with polynomial entry size $B = \text{poly}(n)$ since any (non-pseudo-)
 145 subquadratic algorithm must handle such instances in subquadratic time. Formally, we show that
 146 any fast algorithm for $\text{AttC}(n, d, B, \varepsilon)$ implies a fast algorithm for (Bichromatic) Maximum Inner
 147 Product (Max-IP) on d -dimensional vectors with integer entries. The (Bichromatic) Max-IP problem
 148 asks an algorithm given two sets of vectors $A, B \subseteq \mathbb{Z}^d$ to compute $\max_{a \in A, b \in B} a \cdot b$. Under SETH,
 149 this requires $n^{2-o(1)}$ time whenever $d = 2^{\Omega(\log^* n)}$ (Chen, 2018). Furthermore, the best known
 150 algorithms for Max-IP run in $n^{2-\Theta(1/d)}$ time (Yao, 1982; Agarwal et al., 1991; Matoušek, 1992) so
 151 that any algorithm improving significantly over Theorem 1.1 must improve upon the best known
 152 algorithms for Max-IP. Chen (2018) conjectures that no such algorithm exists under SETH.

153 **Stronger Lower Bounds for Large Head Dimension.** The head dimension d can often be relatively
 154 large with respect to the context length n (in some cases e.g. Vaswani et al. (2017), the head dimension
 155 d can even be larger than the context length n). In these settings, a large gap remains between the
 156 standard algorithm requiring $O(n^2d)$ time and the known $n^{2-o(1)}$ lower bound. We address this gap
 157 and shows that the standard algorithm is conditionally optimal.

158 ⁴Similarly, while there are pseudo-subcubic algorithms for APSP (e.g., Shoshan & Zwick (1999); Zwick
 159 (2002)), there is no truly subcubic ($O(n^{3-c})$ for some $c > 0$) algorithm.

160 ⁵An algorithm runs in truly subquadratic time if it runs in $O(n^{2-c})$ time for some $c > 0$

161 ⁶We use $\tilde{O}(\cdot)$ notation to suppress polylogarithmic factors.

162 ⁷ \log^* denotes the iterated logarithm. For example, $\log^*(16) = 3$ since $\log \log \log 16 \leq 1$.

162 Table 1: Summary of known results when $B = \text{poly}(n)$ and $\varepsilon = 1/\text{poly}(n)$. Sub-polynomial
 163 dependencies are suppressed for simplicity. Previous upper bounds that are not starred follow from
 164 the standard algorithm for computing attention (Vaswani et al., 2017). Previous lower bounds that are
 165 not starred are trivial and follow directly from input and output size. * The starred results are due
 166 to Alman & Song (2024a). For $d = \Theta(\log n)$, their lower bound holds when $B = \Omega(\sqrt{\log n})$ while
 167 ours holds even when $B \geq \log 2$.

d	Upper Bound		Lower Bound	
	Previous	New	Previous	New
$O(1)$	n^2	$n^{2-1/d}$ (1.1)	n	
$2^{\Theta(\log^* n)}$	n^2		n	$n^{2-o(1)}$ (1.4)
$\Theta(\log n)$	n^2		$n^{2-o(1)*}$	$n^{2-o(1)}$ (C.7)
$\text{poly}(n)$	$\mathsf{T}_{\text{MUL}}(n, d, n)$		$n^{2-o(1)*}$	$\mathsf{T}_{\text{MUL}}(n, d, n)^{1-o(1)}$ (1.5)

175
 176 Our conditional lower bound depends on a natural generalization of a popular hypothesis. The
 177 Orthogonal Vectors (OV) problem is among the most well studied problems in fine-grained complexity.
 178 In the OV problem, an algorithm is given two sets of n vectors $A, B \subseteq \{0, 1\}^d$ and is asked to
 179 determine if there exists an orthogonal pair $a \in A, b \in B$ such that $a \cdot b = 0$. The naive algorithm for
 180 this problem requires $O(n^2 d)$ time and the current best algorithm for OV achieves truly subquadratic
 181 time only for $d = O(\log n)$ (Abboud et al., 2015b; Chan & Williams, 2016). A central hypothesis
 182 (known as the OV Hypothesis) in fine-grained complexity states that there is no $n^{2-o(1)}$ algorithm
 183 for OV whenever $d = \omega(\log n)$, and the OV Hypothesis is known to hold under SETH (Williams,
 184 2004).

185 If $d = \text{poly}(n)$, one can compute $a \cdot b$ for all pairs $a \in A, b \in B$ using a matrix product between
 186 an $n \times d$ matrix containing the vectors in A as rows and a $d \times n$ matrix containing the vectors of
 187 B as columns. The above algorithm requires $O(\mathsf{T}_{\text{MUL}}(n, d, n))$ time, where $\mathsf{T}_{\text{MUL}}(a, b, c)$ is the
 188 time complexity for multiplying an $a \times b$ matrix with a $b \times c$ matrix. The High-Dimensional OV
 189 Hypothesis introduced by Dalaroooyard & Kaufmann (2021) hypothesized that when $d = n$, any
 190 algorithm computing OV requires $\mathsf{T}_{\text{MUL}}(n, n, n)^{1-o(1)} = n^{\omega-o(1)}$ time, where $\omega < 2.3714$ denotes
 191 the square matrix multiplication exponent (Alman et al., 2025). We consider a generalization of their
 192 hypothesis: the $\mathsf{T}_{\text{MUL}}(n, d, n)^{1-o(1)}$ running time is required for any $d = \text{poly}(n)$. We call it the
 193 Generalized High-Dimensional OV Hypothesis.

194 Under this hypothesis, we show that the standard algorithm for computing Attention is optimal.
 195 Note that using fast matrix multiplication, one can easily obtain an algorithm for Attention using
 196 $O(\mathsf{T}_{\text{MUL}}(n, d, n))$ time.

197 **Theorem 1.5** (Informal Theorem C.5). *Under the Generalized High-Dimensional OV Hypothesis,
 198 $\text{AttC}(n, d, B, \varepsilon)$ requires $\mathsf{T}_{\text{MUL}}(n, d, n)^{1-o(1)}$ time for $d = \text{poly}(n)$.*

200 Table 1 summarizes our results. In particular, we tightly characterize the complexity of Attention
 201 (up to sub-polynomial factors) when $B = \text{poly}(n)$ for all regimes of d except $1 \ll d \ll 2^{\Theta(\log^* n)}$.
 202 Within this regime, our running time matches the best known algorithms for Max-IP (Yao, 1982;
 203 Agarwal et al., 1991; Matoušek, 1992), and as mentioned earlier, significant improvements over our
 204 algorithm will imply improvements over the current best known algorithms for Max-IP which will be
 205 a breakthrough.

206 1.1 TECHNICAL OVERVIEW

207 In this section, we give a high level overview of our algorithm. For simplicity, we focus on the $d = 1$
 208 case in this overview. Given inputs $q, k, v \in \mathbb{R}^n$, our goal is to compute $o_i = \sum_j p_{i,j} v_j$ for all i
 209 where $p_{i,j}$ are probabilities in the softmax distribution proportional to $\exp(q_i k_j)$.

210 Our first observation is that small key values can be discarded: in particular, we show that for each i
 211 it suffices to only consider keys where $q_i k_j$ is near the maximum. Assume without loss of generality
 212 that $q_i > 0$ and let $k_{\max} = \max_j k_j$. For an appropriate threshold t , we define j to be *irrelevant*
 213 (with respect to q_i) if $q_i k_j \leq q_i k_{\max} - t$ and *relevant* otherwise. By setting $t = \Theta(\log(n/\varepsilon))$, we
 214 can ensure that all softmax probabilities corresponding to irrelevant indices are negligible. Since

216
217
218
219
220
221
222
223
224
225
226

Relevant Indices →

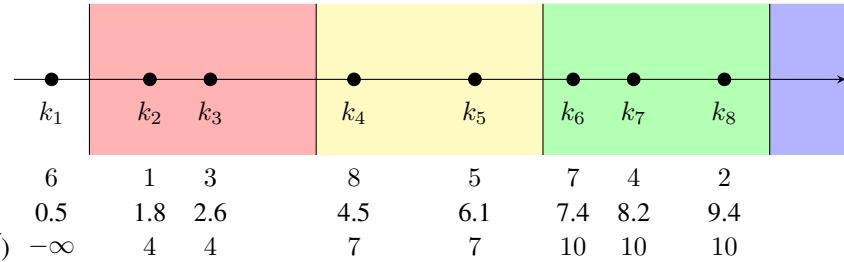


Figure 1: Rounding based algorithm for 1-dimensional Attention illustrated for $q_i = 1$. Each point is placed at k_j and has value v_j . Points (e.g. k_1) such that $q_i k_j < q_i k_{\max} - t$ are irrelevant and discarded (in this example $q_i k_{\max} - t = 1$). Relevant points with similar k_j (e.g. $\{k_2, k_3\}$ or $\{k_6, k_7, k_8\}$) are grouped together and assigned the same (rounded) key \bar{k} . The width of each region is $\log(1 + \varepsilon)$ (in this example $\log(1 + \varepsilon) = 3$). The algorithm outputs $\sum \bar{p}_j v_j$ where $\bar{p}_j \propto \exp(\bar{k}_j)$.

232
233

discarding such j does not significantly change the value of the output significantly, we consider only relevant j for the remainder of the overview.

234
235
236
237
238
239
240
241
242

Combining this observation with a simple rounding scheme, we already obtain a modest improvement over known algorithms for Attention. We illustrate this for the $d = 1$ case. Consider a relevant key k_j . If we round such k_j to \bar{k}_j such that $q_i k_j \leq q_i \bar{k}_j \leq q_i k_j + \log(1 + \varepsilon)$, then $e^{q_i \bar{k}_j}$ is a $(1 + \varepsilon)$ -multiplicative approximation of $e^{q_i k_j}$. This gives us good multiplicative approximations of the softmax probabilities. Plugging in these approximate probabilities, we obtain a good multiplicative approximation of the output.

243
244
245
246
247
248
249
250
251
252

Since the value of the output is bounded by entries of the value matrix V , (i.e. $o_i = O(B)$), this gives a εB -additive approximation of the output. To compute the approximation, we can now treat all keys k_j that are rounded to the same value \bar{k}_j as equivalent. Since relevant keys are within a range of length t and we round all keys within $\log(1 + \varepsilon)$ to the same value, we only need to consider $O(t/\log(1 + \varepsilon)) = \tilde{O}(1/\varepsilon)$ intervals for each query. Now, we leverage the fact that similar k_j lie in contiguous intervals to design an efficient data structure. In particular, we can preprocess the keys in $\tilde{O}(n)$ time to ensure that we can query the sum of all values in each continuous interval of keys $\tilde{O}(1)$ time. Repeating this procedure for all queries and scaling the approximation factor (recall that our goal is to compute an ε -additive approximation), we obtain an algorithm that computes an ε -additive approximation of attention in total time $\tilde{O}(nB/\varepsilon)$. Figure 1 illustrates the rounding scheme.

253
254
255
256
257

The above rounding method gives a polynomial dependence on the entry bound B , and is only subquadratic when $B = o(n)$. Although this already improves on Alman & Song (2024a)'s algorithm (which exhibits exponential dependence on B , and thus only worked for values of $B = o(\sqrt{\log n})$), we would like a truly subquadratic algorithm for all polynomial B . To do this, we leverage the powerful polynomial method in algorithm design (see e.g. Williams (2018); Abboud et al. (2015a)).

258
259
260
261
262
263
264

A natural attempt to utilize the polynomial method is to approximate e^x with a polynomial. As a simple case, by approximating $e^x \sim 1 + x$ we can compute $\exp(QK^T)V \sim \mathbf{1}\mathbf{1}^T V + QK^T V$ efficiently. However, e^x can only be approximated well by polynomials with degree p when $|x| \leq p$ (Aggarwal & Alman, 2022). For a rank $d = O(1)$ matrix QK^T , $\exp(QK^T)$ can be approximated with a rank $2^{O(B^2)}$ matrix. Using this observation (as in Alman & Song (2024a)) one can obtain a subquadratic algorithm by assuming $B = o(\sqrt{\log n})$, but this approach falls short of obtaining sub-quadratic algorithms for polynomial B .

265
266
267
268
269

We now describe how to obtain a truly sub-quadratic algorithm by leveraging the polynomial method only on relevant indices. For simplicity, consider 1-dimensional Attention. For $x = O(t)$, there is a low-degree polynomial P such that $|P(x) - \exp(x)| < \varepsilon \exp(x)$. In order to apply this approximation, we crucially use the fact that irrelevant indices are discarded, since the relevant indices have $q_i k_j$ lying within an interval of length $O(t)$. Since the probabilities are normalized, we can further assume that this interval lies around 0, allowing us to approximate \exp with a polynomial. Formally, we define

270 $c_i = \max_j q_i k_j - O(t)$ and observe that $\exp(q_i k_j)$ is proportional to $\exp(q_i k_j - c_i)$. Then, we can
 271 approximate $p_{i,j}$ which is proportional to $\exp(q_i k_j - c_i)$ with a polynomial P that approximates \exp
 272 on the range $O(t)$, since for all relevant indices $q_i k_j - c_i = O(t)$. We denote $\hat{p}_{i,j} \propto P(q_i k_j - c_i)$ as
 273 our approximate probabilities and output $\hat{o}_i = \sum_j \hat{p}_{i,j} v_j$. As above, if the approximate probabilities
 274 are accurate, our output is a good multiplicative approximation of attention computation.

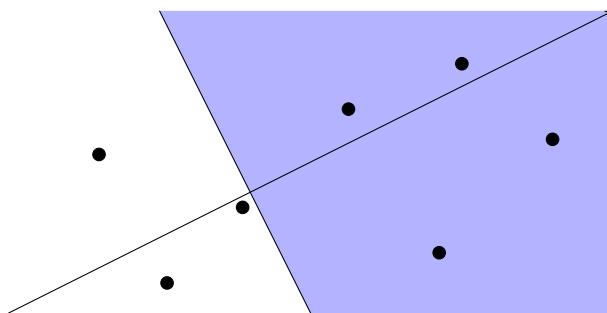
275 It remains to argue that our algorithm is efficient. Note that it suffices to describe how to compute
 276 $\sum_j P(q_i k_j - c_i) v_j$ over relevant j since we can compute \hat{o}_i by computing this quantity twice (once
 277 with v and once with v replaced by $\mathbf{1}$ for normalization). The idea is that in contrast to the exponential
 278 function, the polynomial $P(q_i k_j - c_i)$ can be decoupled into a product of terms that only depend on
 279 q_i and terms that only depend on k_j (see Equation (2) for example). As in the rounding scheme, we
 280 use the fact that relevant keys lie in a continuous interval to create a data-structure that preprocesses
 281 the terms depending on k_j in $\tilde{O}(n)$ time, while for each query q_i , efficiently supports queries to
 282 relevant precomputed values in $\tilde{O}(1)$ time.

283 **Generalizing to Higher Dimensions.** What happens when we try to generalize this algorithm to
 284 higher dimensions? In one dimension, we knew that for each i , the set of relevant j included all j
 285 where $q_i k_j \geq q_i k_{\max} - t$. In higher dimensions, our goal is similarly to compute a set of relevant
 286 indices j relative to each Q_i such that (1) discarding irrelevant indices outside this range does not
 287 significantly affect the additive error of our estimate and (2) the range of $Q_i \cdot K_j$ is now sufficiently
 288 restricted so that we can use a low-degree polynomial to approximate $\exp(Q_i \cdot K_j)$.

289 In one dimension, the set of all relevant j consists exactly of the set of sufficiently large k_j (either
 290 in the positive or negative direction). A simple interval searching data structure can support the
 291 necessary queries. In $d > 1$ dimensions, each row of Q, K (denoted Q_i, K_j) is now a d -dimensional
 292 vector. Even in 2 dimensions, different K_j may be larger with respect to different Q_i . Sorting all
 293 K_j with respect to each Q_i already requires n^2 time. Instead, the key observation is that the set of
 294 relevant j with respect to Q_i is exactly the set of K_j contained in the half-space

$$296 \quad \left\{ x \in \mathbb{R}^d : Q_i \cdot x \geq \max_j Q_i \cdot K_j - t \right\}.$$

297 This can be handled with a simplex range-searching data structure (Matoušek, 1992). In particular,
 298 we can initialize the data structure using points $\{K_j\}$ so that for each Q_i we can query the data
 299 structure for the appropriate half-space. Matoušek's data structure supports queries in $\tilde{O}(n^{1-1/d})$
 300 time and computes the sum of the weights assigned to all points in the half-space. Since in high
 301 dimensions, the number of monomials in the polynomial P grows exponentially in dimension d ,
 302 we need to instantiate and query $2^{\Omega(d)}$ instances of Matoušek's data structure. Still, for constant
 303 $d = O(1)$, this only occurs sub-polynomial factors in runtime. Using appropriate queries to the data
 304 structure over all i , our algorithm requires $\tilde{O}(n^{2-1/d})$ time. Figure 2 illustrates the algorithm.



305 Figure 2: Algorithm for d -dimensional Attention illustrated for $Q_i = (2, 1)$. Relevant points are in
 306 the shaded blue region. Irrelevant points are in the white region. Weights are omitted for clarity.

307 **Generalizing to Low Rank Matrices.** To generalize the algorithm for low-rank matrices Q, K with
 308 rank r , we may decompose $Q = U_Q V_Q^\top, K = U_K V_K^\top$ where U_Q, V_Q, U_K, V_K are $n \times r$ matrices.
 309 Then, we obtain Theorem 1.2 by applying Theorem 1.1 to $Q' = U_Q$ and $K'^\top = V_Q^\top U_K V_K^\top$ which
 310 may be computed in $O(nr)$ time.

324 **Outline.** We give our algorithm in Section 3. The reduction from gradient computation to Attention
 325 computation is given in Appendix B. Our lower bounds are presented in Appendix C.
 326

327 **1.2 RELATED WORK**

329 **Approximate Attention Computation.** In an orthogonal line of work, many approximate notions
 330 of Attention have been studied to reduce its compute constraints with the goal of computing an
 331 approximation in linear time (Brown et al., 2020; Beltagy et al., 2020; Choromanski et al., 2020;
 332 Daras et al., 2020; Katharopoulos et al., 2020; Kitaev et al., 2020; Wang et al., 2020; Zaheer et al.,
 333 2020; Chen et al., 2021; Choromanski et al., 2021; Xiong et al., 2021; Gao et al., 2023a; Panigrahi
 334 et al., 2023; Malladi et al., 2023). Several works obtain provable guarantees as well as practical
 335 improvements (Zandieh et al., 2023; Han et al., 2024; Kacham et al., 2024). However, these works
 336 only obtain theoretical guarantees with respect to matrix norms such as operator norm rather than
 337 any guarantee on the correctness of each entry. Indeed, our lower bounds show that linear time
 338 approximations do not obtain such strong approximation guarantees.

339 In the low dimension regime $d = o(\log n)$, the Fast Multipole Method gives fast algorithms for
 340 the related Gaussian Kernel Density Estimation (KDE) problem (Alman & Guan, 2024). However,
 341 these algorithms do not apply in our regime of polynomial entries. In particular, using the standard
 342 reduction from Attention to Gaussian KDE⁸ the error produced by the known KDE algorithms is
 343 amplified so that only Attention with subpolynomial entries $B = 2^{o(\log n)}$ can be computed efficiently,
 344 even with constant dimension $d = O(1)$.

345 **Attention with MLP Units.** Many works have studied the expressive power of Transformers (Sanford
 346 et al., 2023; 2024b;a; Yehudai et al., 2025) for classical algorithmic problems. In an independent work
 347 (Alman & Yu, 2025) show that an Attention unit with input and output MLP Layers can compute OV
 348 and (Monochromatic) Max-IP. While the constructions are similar, we reduce (Bichromatic) Max-IP
 349 to Attention, and thus obtain a strong conditional lower bound for $d = 2^{\Theta(\log^* n)}$ via (Chen, 2018).

350 Rather than allowing arbitrary inputs $Q, K, V \in \mathbb{R}^{n \times d}$, these works consider Attention with
 351 MLP Units: Given inputs $X \in \mathbb{R}^{n \times d_1}$ and $W_Q, W_K, W_V \in \mathbb{R}^{d_1 \times d}$, compute $Q = XW_Q, K =$
 352 $XW_K, V = XW_V$ and then $\text{Attention}(Q, K, V)$. This preprocessing step requires only $O(nd^2)$
 353 time and does not change the running time of our algorithm. Via a simple modification (to either
 354 our construction or (Alman & Yu, 2025)),⁹ it is possible to show that an Attention unit with MLP
 355 Units can compute (Bichromatic) Max-IP. Our reductions from OV naturally hold for bichromatic
 356 instances as well.

357 **Variants of Attention and Transformers** Several works have studied variants of attention and
 358 transformers (Hu et al., 2024; Ke et al., 2025), including several which leverage the polynomial
 359 method for fast computation (Alman & Song, 2023; 2025a).

360 **Attention Computation in Alternative Settings.** Attention has also been studied in several settings,
 361 including differential privacy (Gao et al., 2023c), fine-tuning (Hu et al., 2025), dynamic updates
 362 (Brand et al., 2023), quantum algorithms (Gao et al., 2023b), and I/O complexity (Saha & Ye, 2024).
 363 Conditional lower bounds for Attention have been studied as well (Keles et al., 2023; Alman & Song,
 364 2024a;b; Alman & Yu, 2025).

366 **2 PRELIMINARIES**

369 We begin with the relevant definitions. Let \log denote the natural log. Let $[n] = \{1, 2, \dots, n\}$. For a
 370 matrix $M \in \mathbb{R}^{n \times m}$, we denote its (i, j) -entry by $M_{i,j}$, its transpose M^\top , and its inverse M^{-1} . Let
 371 $\|M\|_\infty := \max_{i,j} |M_{i,j}|$ and $\exp(M)$ denote applying e^x entry-wise to M . Let $\mathbf{0}$ and $\mathbf{1}$ denote the
 372 all zeros and all ones vectors. For a vector $v \in \mathbb{R}^n$, $\text{diag}(v)$ denotes the $n \times n$ diagonal matrix whose
 373 (i, i) -entry equals v_i .

374
 375 ⁸Map $x \mapsto (x, 0, r_x)$ and $y \mapsto (y, r_y, 0)$ for appropriate r_x, r_y so that $\|x - y\|^2 = R - 2x \cdot y$ for some
 376 constant R .

377 ⁹We describe how to obtain Q, K . Given sets of vectors $A, B \subset \mathbb{R}^d$, let $X \in \mathbb{R}^{n \times 2d}$ consist of A in the first
 378 d columns, B in the next d columns. Let $W_Q = (I_d \quad 0)$ and $W_K = (0 \quad I_d)$.

378 **Fine-grained Complexity Hypotheses.** We establish new fine-grained lower bounds for the approxi-
 379 mate attention computation problem $\text{AttC}(n, d, B, \varepsilon)$. These lower bounds are conditional on some
 380 well-known fine-grained complexity hypotheses, which we introduce below.

381 The Strong Exponential Time Hypothesis (**SETH**) was introduced by [Impagliazzo & Paturi \(2001\)](#).
 382 They hypothesized that solving k -**SAT** for $k \geq 3$ cannot be significantly improved beyond exhaustive
 383 search.

384 **Hypothesis 2.1** (Strong Exponential Time Hypothesis (**SETH**)). *For every $\varepsilon > 0$, there is a positive
 385 integer $k \geq 3$ such that k -**SAT** on formulas with n variables cannot be solved in $O(2^{(1-\varepsilon)n})$ time,
 386 even by randomized algorithms.*

388 SETH is a strengthening of the famous $\mathbf{P} \neq \mathbf{NP}$ conjecture and has later been used to derive
 389 fine-grained lower bounds for many fundamental computational problems, from string edit distance
 390 ([Backurs & Indyk, 2018](#)) to graph diameter ([Roditty & Vassilevska Williams, 2013](#)). Our lower
 391 bounds under SETH will proceed via reduction to the Orthogonal Vectors (OV) Problem and the
 392 Max-IP Problem.

393 **Theorem 2.2** ([Williams \(2004\)](#)). *Assuming SETH, for any $\delta > 0$ there is a constant C such that any
 394 randomized algorithm solving OV in dimension $d = C \log n$ with high probability requires $\Omega(n^{2-\delta})$
 395 time.*

396 The Max-IP problem asks to compute given sets of integer-valued vectors $A, B \in \mathbb{Z}^d$, $\max_{a \in A, b \in B} a \cdot b$. [Chen \(2018\)](#) showed that computing Max-IP requires $n^{2-o(1)}$ time even when $d = 2^{\Theta(\log^* n)}$.

397 **Theorem 2.3** ([Chen \(2018\)](#)). *Assuming SETH, for any $\delta > 0$ there is a constant C such that any
 398 exact algorithm for Max-IP in dimension $d = C^{\log^* n}$ with $O(\log n)$ -bit entries requires $\Omega(n^{2-\delta})$
 399 time.*

402 3 FAST ATTENTION FOR CONSTANT HEAD DIMENSION

404 In this section, we present our algorithms for computing Attention in truly subquadratic time for
 405 constant head dimension d and polynomial entry size B .

406 **Theorem 1.1** (Main Theorem). *Let $d = O(1)$. There is an algorithm that computes $\text{AttC}(n, d, B, \varepsilon)$ in $\tilde{O}(n^{2-1/d} \cdot \text{polylog}(B/\varepsilon))$ time.*

409 The algorithm naturally extends to the case when d is large but the matrices are low dimensional.
 410 Omitted proofs in this section may be found in Appendix [A.2](#). A key tool we require is an efficient
 411 data structure for the range searching problem.

412 **Definition 3.1** (Simplex Range Searching). Preprocess a weighted point set $\{(k_i, w_i)\}$ where $k_i \in \mathbb{R}^d$
 413 and $w_i \in \mathbb{R}$ so that given any simplex query σ , the data structure returns $\sum_{k_i \in \sigma} w_i$.

415 Matoušek gives an efficient data structure for the simplex range searching problem. In our work, we
 416 will only query the data structure with halfspaces σ , which are special case of simplex queries (one
 417 can imagine a simplex defined by the half-space and a sufficiently large bounding box that contains
 418 all input points).

419 **Theorem 3.1** ([Matoušek \(1992\)](#)). *There is a data structure **RSDS** for the Simplex Range Searching
 420 problem for n input points in d -dimension with $O(n \log n)$ preprocessing and $\tilde{O}(n^{1-1/d})$ query time.*

422 Given this data structure, we now present our algorithm for arbitrary head dimension d . Our inputs are
 423 $n \times d$ matrices Q, K, V with entries in $[-B, B]$. Our goal is to compute the $n \times d$ output matrix $O =$
 424 $\text{Attention}(Q, K, V)$. We rewrite $O_{i,t} = \sum_j p_{i,j} V_{j,t}$ where $p_{i,j} = \frac{\exp(Q_i \cdot K_j)}{\sum_{j'} \exp(Q_i \cdot K_{j'})} \propto \exp(Q_i \cdot K_j)$.

425 **Step 1: Removing Irrelevant Keys.** We begin by showing that removing irrelevant keys does not
 426 significantly alter the quality of the approximation. Define for each $i \in [n]$ the maximum probability
 427 in the distribution $p_{i,j}$ as $p_{\max}^{(i)} = \max_j p_{i,j}$. Let $s_{\max}^{(i)}$ denote the maximum integer s such that the
 428 half-space

$$\{x \in \mathbb{R}^d : Q_i \cdot x \geq s \log(1 + \varepsilon)\}$$

430 contains at least one K_j vector. In particular, $s_{\max}^{(i)}$ is the largest integer satisfying $\max_j Q_i \cdot K_j \geq$
 431 $s_{\max}^{(i)} \log(1 + \varepsilon)$. We now define relevant and irrelevant keys.

432 **Definition 3.2.** Let $j \in [n]$ be *irrelevant* with respect to Q_i if $Q_i \cdot K_j < s_{\max}^{(i)} \log(1 + \varepsilon) - \log(n/\varepsilon)$.
 433 Otherwise j is *relevant* with respect to Q_i . When Q_i is clear, we simply say j is irrelevant or relevant.
 434

435 We argue that we can discard irrelevant indices.

436 **Lemma 3.2.** Define $p_{i,j}^{(r)} = \frac{p_{i,j}}{\sum_{\text{relevant } j} p_{i,j}}$ if j is relevant and 0 otherwise for all $i, j \in [n]$. Let
 437 $O_{i,t}^{(r)} = \sum_j p_{i,j}^{(r)} V_{j,t}$ for all $i \in [n], t \in [d]$. Then $|O_{i,t}^{(r)} - O_{i,t}| \leq 3\varepsilon B$.
 438

440 **Step 2: Polynomial Approximation of Exponential.** We then show how to use polynomial
 441 approximations of e^x to efficiently estimate attention. We require the following result:
 442

443 **Lemma 3.3** (Aggarwal & Alman (2022); Alman & Song (2024a)). *Let $\varepsilon < 0.1$. There is a
 444 polynomial $P : \mathbb{R} \rightarrow \mathbb{R}$ of degree $g = \Theta\left(\max\left(\frac{\log(1/\varepsilon)}{\log(\log(1/\varepsilon)/B)}, B\right)\right)$ such that for all $x \in [-B, B]$,
 445 we have $|P(x) - \exp(x)| < \varepsilon \exp(x)$. Moreover, its coefficients are rationals with $\text{poly}(g)$ -bit integer
 446 numerators and denominators and can be computed in $\text{poly}(g)$ -time.*

447 Consider an entry $O_{i,t}$. We first remove irrelevant j with respect to Q_i and aim to approximate $O_{i,t}^{(r)}$.
 448 Recall that

$$449 O_{i,t}^{(r)} = \sum_j p_{i,j}^{(r)} V_{j,t} = \frac{\sum_{\text{relevant } j} \exp(Q_i \cdot K_j) V_{j,t}}{\sum_{\text{relevant } j} \exp(Q_i \cdot K_j)} = \frac{\sum_{\text{relevant } j} \exp(Q_i \cdot K_j - c(Q_i)) V_{j,t}}{\sum_{\text{relevant } j} \exp(Q_i \cdot K_j - c(Q_i))}$$

450 where $c(Q_i) := s_{\max}^{(i)} \log(1 + \varepsilon) - \log(n/\varepsilon)$.

451 By the definition of $s_{\max}^{(i)}$, we have that for all relevant j , $Q_i \cdot K_j - C(Q_i) \in [0, \log(n/\varepsilon) + \log(1 + \varepsilon)]$.
 452 We then invoke Lemma 3.3 to obtain a $g = \text{polylog}(n/\varepsilon)$ -degree polynomial P such that for all
 453 $x \in [0, \log(n/\varepsilon) + \log(1 + \varepsilon)] \subset [0, 2\log(n/\varepsilon)]$, $|P(x) - \exp(x)| \leq \varepsilon \exp(x)$. Define for relevant
 454 j , $\hat{p}_{i,j} \propto P(Q_i \cdot K_j - c(Q_i))$ as an approximation of $p_{i,j}^{(r)} \propto \exp(Q_i \cdot K_j - c(Q_i))$. For irrelevant j ,
 455 set $\hat{p}_{i,j} = p_{i,j}^{(r)} = 0$. Then, define $\hat{O}_{i,t} = \sum_j \hat{p}_{i,j} V_{j,t}$. We claim $\hat{O}_{i,t}$ is a good approximation.

456 **Lemma 3.4.** $|\hat{O}_{i,t} - O_{i,t}| \leq 7\varepsilon B$ for all $i \in [n], t \in [d]$.

457 Furthermore, we present an algorithm that computes \hat{O} efficiently. The key ingredient to the algorithm
 458 is the following data structure which utilizes the range searching data structure of Matoušek (1992).

459 **Lemma 3.5.** *Given matrices $Q, K, V \in \mathbb{R}^{n \times d}$ there exist functions ϕ_0, \dots, ϕ_d such that any entry
 460 $\hat{O}_{i,t}$ can be computed with $g^{O(d)}$ queries to ϕ_0 and ϕ_t and $g^{O(d)}$ additional time.*

461 Furthermore, for each ϕ_t with $0 \leq t \leq d$ there is a data structure with $\tilde{O}(g^{O(d)} n \log n)$ preprocessing
 462 and $\tilde{O}(g^{O(d)} n^{1-1/d} \log(B/\varepsilon))$ query time.

471 **Algorithm 1** ApproxAttention(Q, K, V)

472 **Input** : Matrices $Q, K, V \in [-B, B]^n$.

473 **Parameters** : Error parameter ε

474 **Output** : Matrix \hat{O} satisfying $\|\hat{O} - \text{Attention}(q, k, v)\|_\infty \leq 7\varepsilon B$.

475 1 Compute $s_{\max}^{(i)}$ for all $i \in [n]$ using Theorem 3.1
 476 2 Compute $c(Q_i) \leftarrow s_{\max}^{(i)} \log(1 + \varepsilon) - \log(n/\varepsilon)$ for all $i \in [n]$
 477 3 Compute a g -degree polynomial $P(x)$ for range $[0, 2\log(n/\varepsilon)]$ using Lemma 3.3
 478 4 Initialize the data structure for queries $\phi_t(i, \ell_1, \dots, \ell_d)$ for all $0 \leq t \leq d$ using Lemma 3.5
 479 5 Compute $\hat{O}_{i,t}$ for all $(i, t) \in [n] \times [d]$ using queries to Lemma 3.5
 480 6 **return** \hat{O}

481 We bound the running time of Algorithm 1.

482 **Lemma 3.6.** ApproxAttention (Algorithm 1) runs in time $\tilde{O}(n^{2-1/d} \cdot \text{polylog}(B/\varepsilon))$.

486 To conclude the proof of Theorem 1.1, we run Algorithm 1 with error parameter $\varepsilon' \leq \frac{\varepsilon}{7B}$. We note
 487 that we can generalize our result to obtain an algorithm for computing Attention when the input
 488 matrices have low rank. We defer the proof to Appendix A.3.

489 **Theorem 1.2.** *Let $r = O(1)$. There is an $\tilde{O}(nd + n^{2-1/r} \cdot \text{polylog}(B/\varepsilon))$ time algorithm comput-
 490 ing $\text{AttC}(n, d, B, \varepsilon)$ where $r = \min(\text{rank}(Q), \text{rank}(K))$.*

492 4 CONCLUSION

493 We conclude with some open questions. The most natural question is settling the complexity of
 494 Max-IP when $1 \ll d \ll 2^{\Theta(\log^* n)}$. We have shown several conditional lower bounds for Attention
 495 computation. Is Attention fine-grained equivalent to any well-studied problem? If such a relationship
 496 can be established, then breakthroughs on well-studied problems in fine-grained complexity can lead
 497 to breakthroughs on Attention computation. While this work focuses on characterizing the complexity
 498 of training a single Attention unit, the complexity of computing a full transformer remains open:
 499 perhaps the cost of computing many Attention units is less than computing each of them separately.

502 REFERENCES

503 Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More applications of the polynomial
 504 method to algorithm design. In *Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
 505 on Discrete Algorithms, SODA*. SIAM, 2015a.

506 Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More applications of the polynomial
 507 method to algorithm design. In *Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
 508 on Discrete Algorithms (SODA)*, pp. 218–230. SIAM, 2015b.

509 Pankaj K. Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl. Euclidean minimum
 510 spanning trees and bichromatic closest pairs. *Discrete and Computational Geometry*, 6:407–422,
 511 1991.

512 Atish Agarwala, Samuel Stern Schoenholz, Jeffrey Pennington, and Yann N. Dauphin. Temperature
 513 check: theory and practice for training models with softmax-cross-entropy losses. *Trans. Mach.
 514 Learn. Res.*, 2023, 2023.

515 Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials and
 516 gaussian kernel density estimation. In *37th Computational Complexity Conference (CCC)*, 2022.

517 Josh Alman and Yunfeng Guan. Finer-grained hardness of kernel density estimation. In Rahul
 518 Santhanam (ed.), *39th Computational Complexity Conference*, 2024.

519 Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix softmax
 520 attention to kronecker computation. *arXiv preprint arXiv:2310.04064*, 2023.

521 Josh Alman and Zhao Song. Fast attention requires bounded entries. In *Proceedings of the 37th
 522 International Conference on Neural Information Processing Systems*. Curran Associates Inc.,
 523 2024a.

524 Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
 525 language models. *arXiv preprint arXiv:2402.04497*, 2024b.

526 Josh Alman and Zhao Song. Fast rope attention: Combining the polynomial method and fast fourier
 527 transform. *arXiv preprint arXiv:2505.11892*, 2025a.

528 Josh Alman and Zhao Song. Only large weights (and not skip connections) can prevent the perils of
 529 rank collapse. *arXiv preprint arXiv:2505.16284*, 2025b.

530 Josh Alman and Hantao Yu. Fundamental limitations on subquadratic alternatives to transformers. In
 531 *The Thirteenth International Conference on Learning Representations*, 2025.

532 Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou.
 533 More asymmetry yields faster matrix multiplication. In *Proceedings of the 2025 Annual ACM-SIAM
 534 Symposium on Discrete Algorithms (SODA)*, pp. 2005–2039. SIAM, 2025.

540 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic time
 541 (unless SETH is false). *SIAM J. Comput.*, 47(3):1087–1097, 2018.
 542

543 Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
 544 *arXiv preprint arXiv:2004.05150*, 2020.

545 Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention
 546 maintenance in large language models. *arXiv preprint arXiv:2304.02207*, 2023.
 547

548 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
 549 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
 550 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
 551 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
 552 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
 553 Sutskever, and Dario Amodei. Language models are few-shot learners. In *Neural Information
 554 Processing Systems, NeurIPS*, 2020.

555 Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and more: Quickly
 556 derandomizing Razborov-Smolensky. In *Proceedings of the Twenty-Seventh Annual ACM-SIAM
 557 Symposium on Discrete Algorithms (SODA)*, pp. 1246–1255. SIAM, 2016.
 558

559 Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Unifying
 560 sparse and low-rank attention. In *Neural Information Processing Systems, NeurIPS*, 2021.

561 Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum inner product. In
 562 *Proceedings of the 33rd Computational Complexity Conference (CCC)*, 2018.
 563

564 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for
 565 contrastive learning of visual representations. In *Proceedings of the 37th International Conference
 566 on Machine Learning, ICML*, volume 119 of *Proceedings of Machine Learning Research*, pp.
 567 1597–1607. PMLR, 2020.

568 Krzysztof Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea Gane, Tamas
 569 Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
 570 with performers. *arXiv preprint arXiv:2009.14794*, 2020.
 571

572 Krzysztof Marcin Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea Gane,
 573 Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Ben-
 574 jamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with performers. In
 575 *International Conference on Learning Representations, ICLR*, 2021.

576 Mina Dalirrooyfard and Jenny Kaufmann. Approximation algorithms for min-distance problems in
 577 dags. In *48th International Colloquium on Automata, Languages, and Programming ICALP*, 2021.

578 Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf-efficient attention
 579 using asymmetric clustering. *Advances in Neural Information Processing Systems*, 33:6476–6489,
 580 2020.
 582

583 Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulating single
 584 layer attention in ILM based on tensor and svm trick, and solving it in matrix multiplication time.
 585 *arXiv preprint arXiv:2309.07418*, 2023a.

586 Yeqi Gao, Zhao Song, Xin Yang, and Ruizhe Zhang. Fast quantum algorithm for attention computa-
 587 tion. *arXiv preprint arXiv:2307.08045*, 2023b.
 588

589 Yeqi Gao, Zhao Song, Xin Yang, and Yufa Zhou. Differentially private attention computation. *arXiv
 590 preprint arXiv:2305.04701*, 2023c.
 591

592 Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
 593 Hyperattention: Long-context attention in near-linear time. In *The Twelfth International Conference
 594 on Learning Representations*, 2024.

594 John Hopcroft and Ravi Kannan. Singular value decomposition (svd). <https://www.cs.cmu.edu/~venkatg/teaching/CSTheory-Infoage/book-chapter-4.pdf>. Accessed: 595 2024-12-21.

596

597 Jerry Yao-Chieh Hu, Weimin Wu, Zhuoru Li, Sophia Pi, Zhao Song, and Han Liu. On statistical 598 rates and provably efficient criteria of latent diffusion transformers (dits). *Advances in Neural 599 Information Processing Systems*, 37:31562–31628, 2024.

600

601 Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song, and Han Liu. Computational limits of 602 low-rank adaptation (lora) fine-tuning for transformer models. In *ICLR 2025 Workshop on Deep 603 Generative Model in Machine Learning: Theory, Principle and Efficacy*, 2025.

604

605 Qianjiang Hu, Xiao Wang, Wei Hu, and Guo-Jun Qi. Adco: Adversarial contrast for efficient learning 606 of unsupervised representations from self-trained negative adversaries. In *IEEE Conference on 607 Computer Vision and Pattern Recognition, CVPR*, pp. 1074–1083. Computer Vision Foundation / 608 IEEE, 2021.

609

610 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. *Journal of Computer and 611 System Sciences*, 62(2):367–375, 2001.

612

613 Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via 614 sketching polynomial kernels. In *Forty-first International Conference on Machine Learning*, 2024.

615

616 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: 617 Fast autoregressive transformers with linear attention. In *International conference on machine 618 learning*, pp. 5156–5165. PMLR, 2020.

619

620 Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. On computational 621 limits and provably efficient criteria of visual autoregressive models: A fine-grained complexity 622 analysis. *arXiv preprint arXiv:2501.04377*, 2025.

623

624 Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational 625 complexity of self-attention. In *International Conference on Algorithmic Learning Theory*, pp. 626 597–619. PMLR, 2023.

627

628 Bulat Khaertdinov, Stylianos Asteriadis, and Esam Ghaleb. Dynamic temperature scaling in con- 629 trastive self-supervised learning for sensor-based human activity recognition. *IEEE Trans. Biom. 630 Behav. Identity Sci.*, 4(4):498–507, 2022.

631

632 Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In 633 *International Conference on Learning Representations, ICLR*, 2020.

634

635 Anna Kukleva, Moritz Böhle, Bernt Schiele, Hilde Kuehne, and Christian Rupprecht. Temperature 636 schedules for self-supervised contrastive methods on long-tail data. In *The Eleventh International 637 Conference on Learning Representations, ICLR*, 2023.

638

639 Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev 640 Arora. Fine-tuning language models with just forward passes. *Advances in Neural Information 641 Processing Systems*, 36:53038–53075, 2023.

642

643 Siladitya Manna, Soumitri Chattopadhyay, Rakesh Dey, Saumik Bhattacharya, and Umapada 644 Pal. Dystress: Dynamically scaled temperature in self-supervised contrastive learning. *CoRR*, 645 abs/2308.01140, 2023.

646

647 Jiří Matoušek. Efficient partition trees. *Discrete and Computational Geometry*, 8(1):315–334, 1992.

648

649 Abhishek Panigrahi, Sadhika Malladi, Mengzhou Xia, and Sanjeev Arora. Trainable transformer in 650 transformer. In *Fortieth International Conference on Machine Learning (ICML)*, 2023.

651

652 Joshua Robinson, Li Sun, Ke Yu, Kayhan Batmanghelich, Stefanie Jegelka, and Suvrit Sra. Can 653 contrastive learning avoid shortcut solutions? In *Advances in Neural Information Processing 654 Systems NeurIPS 34*, 2021.

648 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the diameter and
 649 radius of sparse graphs. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum (eds.), *Symposium
 650 on Theory of Computing Conference, STOC*. ACM, 2013.

651

652 Tim Roughgarden and Gregory Valiant. The singular value decomposition (svd) and low-rank matrix
 653 approximations. <https://web.stanford.edu/class/cs168/1/19.pdf>. Accessed:
 654 2024-12-21.

655 Barna Saha and Christopher Ye. I/O complexity of attention, or how optimal is FlashAttention? In
 656 *Proceedings of the 41st International Conference on Machine Learning*, 2024.

657 Clayton Sanford, Daniel J. Hsu, and Matus Telgarsky. Representational strengths and limitations of
 658 transformers. In *Advances in Neural Information Processing Systems*, 2023.

659

660 Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
 661 Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
 662 algorithms. In *Advances in Neural Information Processing Systems*, 2024a.

663 Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computation, and logarithmic
 664 depth. In *Forty-first International Conference on Machine Learning, ICML*, 2024b.

665

666 Avi Shoshan and Uri Zwick. All pairs shortest paths in undirected graphs with integer weights. In
 667 *Proceedings of the 40th Annual Symposium on Foundations of Computer Science (FOCS)*, pp.
 668 605–615. IEEE Computer Society, 1999.

669 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
 670 Kaiser, and Illia Polosukhin. Attention is all you need. In *Neural Information Processing Systems
 671 NeurIPS*, 2017.

672 Feng Wang and Huaping Liu. Understanding the behaviour of contrastive loss. In *IEEE Conference
 673 on Computer Vision and Pattern Recognition, CVPR*, pp. 2495–2504. Computer Vision Foundation
 674 / IEEE, 2021.

675

676 Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
 677 linear complexity. *arXiv preprint arXiv:2006.04768*, 2020.

678 Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
 679 ment and uniformity on the hypersphere. In *Proceedings of the 37th International Conference
 680 on Machine Learning, ICML*, volume 119 of *Proceedings of Machine Learning Research*, pp.
 681 9929–9939. PMLR, 2020.

682 R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. *SIAM J. Comput.*, 47(5),
 683 2018.

684

685 Ryan Williams. A new algorithm for optimal constraint satisfaction and its implications. In *Proceed-
 686 ings of the 31st International Colloquium on Automata, Languages and Programming (ICALP)*,
 687 2004.

688 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
 689 Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. In
 690 *Proceedings of the AAAI conference on artificial intelligence*, volume 35, 2021.

691

692 Hao Xuan, Bokai Yang, and Xingyu Li. Exploring the impact of temperature scaling in softmax for
 693 classification and adversarial robustness. *CoRR*, abs/2502.20604, 2025.

694 Andrew Chi-Chih Yao. On constructing minimum spanning trees in k-dimensional spaces and related
 695 problems. *Siam Journal on Computing*, 11(4):721–736, 1982.

696

697 Gilad Yehudai, Clayton Sanford, Maya Bechler-Speicher, Orr Fischer, Ran Gilad-Bachrach, and
 698 Amir Globerson. Depth-width tradeoffs in algorithmic reasoning of graph tasks with transformers.
 699 *CoRR*, abs/2503.01805, 2025.

700

701 Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
 702 Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird:
 703 Transformers for longer sequences. In *Neural Information Processing Systems, NeurIPS*, 2020.

702 Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via
 703 kernel density estimation. In *International Conference on Machine Learning*, pp. 40605–40623.
 704 PMLR, 2023.

705 Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication. *J. ACM*,
 706 49(3):289–317, 2002.

709 **A OMITTED PROOFS FOR ALGORITHMS**

710 **A.1 WARM-UP: $d = 1$**

713 For simplicity, we begin with our algorithm for the $d = 1$ case and explain how to generalize to the
 714 constant head dimension case later. Formally, we prove in this section the following result.

715 **Lemma A.1.** *There is an algorithm computing $\text{AttC}(n, 1, B, \varepsilon)$ in $\tilde{O}(n \cdot \text{polylog}(B/\varepsilon))$ time.*

717 In the above, $\text{Attention}(q, k, v)$ is defined by viewing vectors $q, k, v \in \mathbb{R}^{n \times 1}$ as matrices. When
 718 $d = 1$, the input is given by vectors $q, k, v \in [-B, B]^n$. In the output vector, we hope to compute the
 719 entries

$$720 \quad o_i = \frac{\sum_j e^{q_i k_j} v_j}{\sum_j e^{q_i k_j}}$$

723 for all i . Define the softmax probabilities

$$724 \quad p_{i,j} = \frac{e^{q_i k_j}}{\sum_{j'} e^{q_i k_{j'}}}$$

727 so that $o_i = \sum_j p_{i,j} v_j$.

729 We begin with an overview of our algorithm. Without loss of generality, we assume $q_i \geq 0$ are
 730 non-negative for all i . In particular, if we compute $\text{Attention}(|q|, k, v)$ and $\text{Attention}(|q|, -k, v)$,
 731 where $|q|$ is a vector where we take entrywise absolute value of q , we can recover the entries of
 732 $\text{Attention}(q, k, v)$ from the two outputs. If $q_i \geq 0$, we read the output from $\text{Attention}(|q|, k, v)$ and
 733 otherwise we read the output from $\text{Attention}(|q|, -k, v)$.

734 Let k_{\max} denote the maximum value of k and $p_{\max}^{(i)} = \max_j p_{i,j}$ be the corresponding maximum
 735 probability for some fixed i . First, we argue that we may ignore all indices where $k_j \ll k_{\max}$. Since
 736 all of these indices have exponentially small $p_{i,j}$, ignoring these indices incurs only a small additive
 737 error to the output estimate \hat{o}_i . Second, we argue that the remaining values of k_j satisfy the property
 738 that $q_i k_j$ lie in a small range. In particular, on this range, we use the low-degree polynomial P from
 739 [Aggarwal & Alman \(2022\)](#) to give a low-error approximation of the exponential function. Using this
 740 polynomial approximation, we instead compute

$$741 \quad \hat{o}_i = \frac{\sum_j P(q_i k_j - c) v_j}{\sum_j P(q_i k_j - c)} \approx \frac{\sum_j e^{q_i k_j - c} v_j}{\sum_j e^{q_i k_j - c}} = \frac{\sum_j e^{q_i k_j} v_j}{\sum_j e^{q_i k_j}} = o_i$$

744 for some value c that guarantees $q_i k_j - c$ lies in a bounded interval around 0 for the remaining values
 745 k_j .

746 Consider a monomial $m_\ell x^\ell$ of P . Then $\sum_j (q_i k_j - c)^\ell = \sum_{b=0}^\ell \binom{\ell}{b} (-c)^{\ell-b} q_i^b \sum_j k_j^b$. This allows
 747 to pre-compute $\sum_j k_j^b$ for all exponents b in a pre-processing phase, and then efficiently compute \hat{o}_i
 748 using the pre-computed values. We now describe the algorithm in more detail.

750 **Step 1: Removing Irrelevant Keys.** We argue that we can ignore irrelevant keys k_j (Definition 3.2)
 751 with only small additive error in the estimate.

753 Since $q_i \geq 0$, by rearranging, note that for all irrelevant j , we have $q_i k_j - q_i k_{\max} \leq -\log(n/\varepsilon)$.
 754 Then, we conclude

$$755 \quad \frac{p_{i,j}}{p_{\max}^{(i)}} = e^{q_i(k_j - k_{\max})} \leq \frac{\varepsilon}{n}.$$

756 Summing over all such indices j ,

$$758 \sum_{\text{irrelevant } j} p_{i,j} \leq \sum_{\text{irrelevant } j} p_{\max}^{(i)} \frac{\varepsilon}{n} \leq \varepsilon.$$

760 Thus, if we define

$$762 p_{i,j}^{(r)} = \begin{cases} \frac{p_{i,j}}{\sum_{\text{relevant } j'} p_{i,j'}} & j \text{ is relevant,} \\ 0 & \text{o/w,} \end{cases}$$

764 we can obtain the guarantees for all relevant j

$$766 p_{i,j} \leq p_{i,j}^{(r)} \leq \frac{p_{i,j}}{1 - \varepsilon}.$$

768 Then, define

$$769 o_i^{(r)} = \sum_j p_{i,j}^{(r)} v_j$$

771 so that

$$\begin{aligned} 773 |o_i^{(r)} - o_i| &\leq \left| \sum_{\text{relevant } j} (p_{i,j}^{(r)} - p_{i,j}) v_j \right| + \left| \sum_{\text{irrelevant } j} (p_{i,j}^{(r)} - p_{i,j}) v_j \right| \\ 774 &\leq \left| \sum_{\text{relevant } j} \frac{\varepsilon}{1 - \varepsilon} p_{i,j} v_j \right| + \left| \sum_{\text{irrelevant } j} p_{i,j} v_j \right| \\ 775 &\leq \frac{\varepsilon}{1 - \varepsilon} B + \varepsilon B \\ 776 &\leq 3\varepsilon B \end{aligned}$$

782 where we assume $\varepsilon < \frac{1}{2}$.

784 **Step 2: Polynomial Approximation of Exponential.** We now show how we use polynomial
785 approximations of e^x to efficiently estimate attention.

787 Our goal is to approximate $o^{(r)}$:

$$789 o_i^{(r)} = \sum_{\text{relevant } j} p_{i,j}^{(r)} v_j = \frac{\sum_{\text{relevant } j} e^{q_i k_j} v_j}{\sum_{\text{relevant } j} e^{q_i k_j}} = \frac{\sum_{\text{relevant } j} e^{q_i k_j - c(q_i)} v_j}{\sum_{\text{relevant } j} e^{q_i k_j - c(q_i)}}$$

792 where $c(q_i) = q_i \cdot k_{\max} - \log(n/\varepsilon)$. In particular, we have $q_i k_j - c(q_i) \in [0, \log(n/\varepsilon)]$ for every
793 relevant j .

794 On this interval, by Lemma 3.3, there is a polynomial P of degree

$$796 g = O \left(\max \left(\frac{\log(1/\varepsilon)}{\log(\log(1/\varepsilon)/\log(n/\varepsilon))}, \log(n/\varepsilon) \right) \right) = O(\log(n/\varepsilon))$$

798 such that $|P(x) - \exp(x)| \leq \varepsilon \exp(x)$ for all $x \in [0, \log(n/\varepsilon)]$. Then, we define $\hat{p}_{i,j} =$
799 $\frac{P(q_i k_j - c(q_i))}{\sum_{\text{relevant } j'} P(q_i k_{j'} - c(q_i))}$ for relevant j and $\hat{p}_{i,j} = 0$ otherwise. Next, define $\hat{o}_i = \sum_j \hat{p}_{i,j} v_j$. First,
800 we prove the desired approximation guarantee. For all relevant j ,

$$802 \frac{1 - \varepsilon}{1 + \varepsilon} p_{i,j}^{(r)} \leq \hat{p}_{i,j} \leq \frac{1 + \varepsilon}{1 - \varepsilon} p_{i,j}^{(r)}$$

804 so that

$$\begin{aligned} 806 |\hat{o}_i - o_i^{(r)}| &\leq B \sum_{\text{relevant } j} |\hat{p}_{i,j} - p_{i,j}^{(r)}| \\ 807 &\leq B \sum_{\text{relevant } j} 4\varepsilon p_{i,j}^{(r)} \leq 4\varepsilon B. \end{aligned}$$

810 Combined with our previous bound using triangle inequality, we get
 811

$$812 \|\hat{o} - o\|_{\infty} \leq \|\hat{o} - o^{(r)}\|_{\infty} + \|o^{(r)} - o\|_{\infty} \leq 7\varepsilon B. \quad (1)$$

814 Now, we describe how to compute \hat{o} efficiently. Consider a monomial $m_{\ell}x^{\ell}$ of P . Then,
 815

$$816 m_{\ell}(q_i k_j - c(q_i))^{\ell} = m_{\ell} \sum_{b=0}^{\ell} \binom{\ell}{b} q_i^b k_j^b (-c(q_i))^{\ell-b}$$

819 Summing over the indices j ,
 820

$$821 \sum_{\text{relevant } j} m_{\ell}(q_i k_j - c(q_i))^{\ell} = m_{\ell} \sum_{\text{relevant } j} \sum_{b=0}^{\ell} \binom{\ell}{b} q_i^b k_j^b (-c(q_i))^{\ell-b}$$

$$824 = m_{\ell} \sum_{b=0}^{\ell} \binom{\ell}{b} q_i^b (-c(q_i))^{\ell-b} \sum_{\text{relevant } j} k_j^b$$

827 Let $\phi(i, b) = \sum_{\text{relevant } j} k_j^b$ be the sum of k_j^b for all j relevant with respect to q_i . In particular,
 828

$$829 \sum_{\text{relevant } j} P(q_i k_j - c(q_i)) = \sum_{\text{relevant } j} P(q_i k_j - c(q_i))$$

$$830 = \sum_{\text{relevant } j} \sum_{\ell} m_{\ell} (q_i k_j - c(q_i))^{\ell}$$

$$834 = \sum_{\ell} m_{\ell} \sum_{b=0}^{\ell} \binom{\ell}{b} q_i^b (-c(q_i))^{\ell-b} \phi(i, b).$$

837 Following similar computations we obtain

$$839 \sum_j P(q_i k_j - c(q_i)) v_j = \sum_{\ell} m_{\ell} \sum_{b=0}^{\ell} \binom{\ell}{b} q_i^b (-c(q_i))^{\ell-b} \phi_v(i, b) \quad (2)$$

841 where $\phi_v(i, b) = \sum_{\text{relevant } j} k_j^b v_j$.
 842

843 The following lemmas show that we can compute \hat{o} efficiently.

844 **Lemma A.2.** *Let $b \geq 1$ and $k_1 \geq k_2 \geq \dots \geq k_n$. Let q_1, \dots, q_n be arbitrary. Then, $\phi(i, b), \phi_v(i, b)$
 845 can be computed for all i in time $O(n \log n)$ time.*
 846

847 *Proof.* Given b , we can compute $\sum_{j=1}^J k_j^b$ for all $1 \leq J \leq n$ in $O(n)$ time. Then, for each i , we
 848 use binary search to find J_i , the maximum index j where $k_j \geq \max_j k_j - \log(n/\varepsilon)/q_i$, i.e., k_j is
 849 relevant with respect to q_i . Then we assign $\phi(i, b) = \sum_{j=1}^{J_i} k_j^b$. Over all i , this takes $O(n \log n)$ time.
 850 We can compute $\phi_v(i, b)$ similarly. \square
 851

853 **Algorithm 2** VectorAttention(q, k, v)

854 **Input** : Vectors $q, k, v \in [-B, B]^n$.

855 **Parameters** : Error parameter ε

856 **Output** : Vector \hat{o} satisfying $\|\hat{o} - \text{Attention}(q, k, v)\|_{\infty} \leq \varepsilon B$.

857 7 Compute a polynomial $P(x) = \sum_{\ell} m_{\ell} x^{\ell}$ for range $[0, \log(n/\varepsilon)]$ using Lemma 3.3.

858 8 Compute $k_{\max} \leftarrow \max_j k_j$ and sort $\{k_j\}$.

859 9 Compute $\phi(i, b), \phi_v(i, b)$ for all $1 \leq i \leq n, 1 \leq b \leq g$ using Lemma A.2.

860 10 **for** $1 \leq i \leq n$ **do**

861 11 | Compute $\hat{o}_i \leftarrow \frac{\sum_{\text{relevant } j} P(q_i k_j - c(q_i)) v_j}{\sum_{\text{relevant } j} P(q_i k_j - c(q_i))}$ using Lemma A.3.

862 12 **return** \hat{o}

864 **Lemma A.3.** Let $P(x) = \sum_\ell m_\ell x^\ell$ be a degree g -polynomial with $\text{poly}(g)$ -bit coefficients. Given
 865 $q_i, \phi(i, b), \phi_v(i, b)$, there is an algorithm computing \hat{o}_i in $\text{poly}(g)$ time.
 866

867 *Proof.* We recall that

$$868 \quad \hat{o}_i = \sum_j \hat{p}_{i,j} v_j = \frac{\sum_j P(q_i k_j - c(q_i)) v_j}{\sum_j P(q_i k_j - c(q_i))}.$$

$$869$$

$$870$$

871 From Equation (2), we note

$$872 \quad \sum_j P(q_i k_j - c(q_i)) v_j = \sum_\ell m_\ell \sum_{b=0}^\ell \binom{\ell}{b} q_i^b (-c(q_i))^{\ell-b} \phi_v(i, b)$$

$$873$$

$$874$$

875 so that given access to $\phi_v(i, b)$, we can compute the numerator in $\text{poly}(g)$ -time. Similarly, by
 876 accessing $\phi(i, b)$, we can compute the denominator as well. \square
 877

878 To conclude the proof of Lemma A.1, we apply Algorithm 2 with $\varepsilon' = \frac{\varepsilon}{7B}$ so we obtain ε -
 879 approximation under Equation (1). In particular, the degree of the polynomial required is

$$880 \quad g = O(\log(n/\varepsilon')) = O(\log(nB/\varepsilon)).$$

$$881$$

882 Then, Algorithm 2 takes time $\tilde{O}(n \cdot \text{polylog}(B/\varepsilon))$.

884 A.2 CONSTANT HEAD DIMENSION

885 We provide the omitted proofs for Theorem 1.1.

886 **Lemma 3.4.** $|\hat{O}_{i,t} - O_{i,t}| \leq 7\varepsilon B$ for all $i \in [n], t \in [d]$.

887 This follows from identical arguments as to those in the one-dimensional warm-up.

888 **Lemma 3.5.** Given matrices $Q, K, V \in \mathbb{R}^{n \times d}$ there exist functions ϕ_0, \dots, ϕ_d such that any entry
 889 $\hat{O}_{i,t}$ can be computed with $g^{O(d)}$ queries to ϕ_0 and ϕ_t and $g^{O(d)}$ additional time.

890 Furthermore, for each ϕ_t with $0 \leq t \leq d$ there is a data structure with $\tilde{O}(g^{O(d)} n \log n)$ preprocessing
 891 and $\tilde{O}(g^{O(d)} n^{1-1/d} \log(B/\varepsilon))$ query time.

892 *Proof.* Recall that $\hat{O}_{i,t} = \frac{\sum_{\text{relevant } j} P(Q_i \cdot K_j - c(Q_i)) V_{j,t}}{\sum_{\text{relevant } j} P(Q_i \cdot K_j - c(Q_i))}$ where P is the polynomial of degree g
 893 obtained from Lemma 3.3.

894 We begin with describing how to compute the numerator of $\hat{O}_{i,t}$. Suppose $P(x) = \sum_{\ell=0}^g m_\ell x^\ell$.

$$895 \quad \sum_{\text{relevant } j} P(Q_i \cdot K_j - c(Q_i)) V_{j,t}$$

$$896 \quad = \sum_{\text{relevant } j} \sum_\ell m_\ell (Q_i \cdot K_j - c(Q_i))^\ell V_{j,t}$$

$$897 \quad = \sum_\ell m_\ell \sum_{\text{relevant } j} \sum_{\ell_0 + \ell_1 + \dots + \ell_d = \ell} \binom{\ell}{\ell_0, \ell_1, \dots, \ell_d} (-c(Q_i))^{\ell_0} \prod_{k=1}^d (Q_{i,k} K_{j,k})^{\ell_k} V_{j,t}$$

$$898 \quad = \sum_\ell m_\ell \sum_{\ell_0 + \ell_1 + \dots + \ell_d = \ell} \binom{\ell}{\ell_0, \ell_1, \dots, \ell_d} (-c(Q_i))^{\ell_0} \prod_{k=1}^d Q_{i,k}^{\ell_k} \sum_{\text{relevant } j} \prod_{k=1}^d K_{j,k}^{\ell_k} V_{j,t}$$

$$899 \quad = \sum_\ell m_\ell \sum_{\ell_0 + \ell_1 + \dots + \ell_d = \ell} \binom{\ell}{\ell_0, \ell_1, \dots, \ell_d} (-c(Q_i))^{\ell_0} \prod_{k=1}^d Q_{i,k}^{\ell_k} \phi_t(i, \ell_1, \dots, \ell_d)$$

$$900$$

$$901$$

$$902$$

$$903$$

$$904$$

$$905$$

$$906$$

$$907$$

$$908$$

$$909$$

$$910$$

$$911$$

$$912$$

$$913$$

914 where we define the function $\phi_t(i, \ell_1, \dots, \ell_d) = \sum_{\text{relevant } j} \prod_{k=1}^d K_{j,k}^{\ell_k} V_{j,t}$. Similarly, define the
 915 function

$$916 \quad \phi_0(i, \ell_1, \dots, \ell_d) = \sum_{\text{relevant } j} \prod_{k=1}^d K_{j,k}^{\ell_k}$$

$$917$$

918 so that

$$\begin{aligned}
 919 \quad & \sum_j P(Q_i \cdot K_j - c(Q_i)) = \\
 920 \quad & \sum_{\ell} m_{\ell} \sum_{\ell_0 + \ell_1 + \dots + \ell_d = \ell} \binom{\ell}{\ell_0, \ell_1, \dots, \ell_d} (-c(Q_i))^{\ell_0} \prod_{k=1}^d Q_{i,k}^{\ell_k} \phi_0(i, \ell_1, \dots, \ell_d). \\
 921 \\
 922 \\
 923 \\
 924 \\
 925
 \end{aligned}$$

The following lemma describes how to build the appropriate data structures.

927 **Lemma A.4.** *Let ℓ_1, \dots, ℓ_d be nonnegative integers. Let $0 \leq t \leq d$. Given matrices Q, K, V , there
928 is a data structure with $O(nd + n \log n)$ preprocessing time that answers queries $\phi_t(i, \ell_1, \dots, \ell_d)$ in
929 $\tilde{O}(n^{1-1/d} \log(dB/\varepsilon))$ time.*

931 *Proof.* We initialize two **RSDS** data structures using Theorem 3.1, one with unweighted point set
932 $\{K_j\}$ and one with weighted point set $\left\{ \left(K_j, \prod_{k=1}^d K_{j,k}^{\ell_k} V_{j,t} \right) \right\}_{j=1}^n$. By Theorem 3.1, this requires
933 $O(n \log n)$ preprocessing. Computing each weight requires $O(nd)$ time.

934 Now, consider a query $\phi_t(i, \ell_1, \dots, \ell_d)$ for some $i \in [n]$. We compute $s_{\max}^{(i)}$ using binary search with
935 the first **RSDS** data structure. Since $|Q_i \cdot K_j| \leq dB^2$ there are at most $O(dB^2 / \log(1 + \varepsilon))$ values
936 to search through. This requires $O(\log(dB/\varepsilon))$ queries which requires $\tilde{O}(n^{1-1/d} \log(dB/\varepsilon))$
937 overall time by Theorem 3.1. The set of j relevant to Q_i is the set of K_j such that $Q_i \cdot K_j \geq$
938 $s_{\max}^{(i)} \log(1 + \varepsilon) - \log(n/\varepsilon)$. This can easily be captured by a simplex query with the half-space
939 $Q_i \cdot x \geq s_{\max}^{(i)} \log(1 + \varepsilon) - \log(n/\varepsilon)$ and thus requires one query to the second **RSDS** instance. \square

940 Our data structure for Lemma 3.5 is simply the combination of all data structures that answer
941 queries $\phi_t(i, \ell_1, \dots, \ell_d)$. Since P is degree g and $\ell_1 + \ell_2 + \dots + \ell_d \leq \ell \leq g$, there are at most
942 $(g+d)^{O(d)} = g^{O(d)}$ distinct tuples ℓ_1, \dots, ℓ_d since d is a constant. In particular, we can initialize all
943 the necessary data structures to compute queries of ϕ_t in $\tilde{O}(g^{O(d)}(nd + n \log n))$ time.

944 We now show to compute an entry of $\hat{O}_{i,t}$. Note that numerator sums over ℓ , tuples ℓ_0, \dots, ℓ_d of
945 which there are at most $g^{O(d)}$ summands. Each summand can be computed with one query to ϕ_t and
946 $g^{O(d)}$ additional time. Since the denominator can be computed similarly (instead querying ϕ_0) the
947 total time to compute $\hat{O}_{i,t}$ is $\tilde{O}(g^{O(d)} n^{1-1/d} \log(dB/\varepsilon))$. \square

948 **Lemma 3.6.** ApproxAttention (Algorithm 1) runs in time $\tilde{O}(n^{2-1/d} \cdot \text{polylog}(B/\varepsilon))$.

949 *Proof.* We now analyze the running time. From Lemma 3.3, we have

$$950 \quad g = O \left(\max \left(\frac{\log(1/\varepsilon)}{\log(\log(1/\varepsilon)/\log(n/\varepsilon))}, \log(n/\varepsilon) \right) \right) = O(\log(n/\varepsilon)).$$

951 Then, to initialize all the necessary data structures, we invoke Lemma 3.5 a total of $d+1$ times, thus
952 requiring preprocessing time (recall d is a constant)

$$953 \quad \tilde{O}(n \cdot \text{polylog}(1/\varepsilon)).$$

954 Then, computing all $\hat{O}_{i,t}$ requires time

$$955 \quad \tilde{O} \left(n g^{O(d)} \left(n^{1-1/d} \log(B/\varepsilon) \right) \right) = \tilde{O} \left(n^{2-1/d} \cdot \text{polylog}(B/\varepsilon) \right).$$

\square

A.3 GENERALIZATION TO LOW RANK MATRICES

956 To prove Theorem 1.2, we require the following standard result on computing a representation of
957 low-rank matrices.

972 **Lemma A.5** (e.g., Hopcroft & Kannan; Roughgarden & Valiant). Let A be a $n \times d$ matrix of rank r
 973 with entries in $[-B, B]$. Then, there is an $O(ndr)$ time algorithm computing an $n \times r$ matrix U_A and
 974 a $d \times r$ matrix V_A such that $A = U_A V_A^\top$. Furthermore, U_A, V_A have entries bounded by $\text{poly}(Bnd)$.
 975

976 Suppose we are given $n \times d$ input matrices Q, K of rank r_Q, r_K respectively. Then, we apply
 977 Lemma A.5 to compute U_Q, V_Q, U_K, V_K in time $O(nd \max(r_Q, r_K)) = O(nd)$. Suppose without
 978 loss of generality $r_Q \leq r_K$. Then, we compute

$$979 \quad Q' = U_Q, \quad K'^\top = V_Q^\top U_K V_K^\top$$

981 in time $O(r_Q r_K n) = O(n)$ and note that Q', K' have entries bounded by $\text{poly}(Bnd)$.
 982

983 We then apply Theorem 1.1 to approximate $\text{Attention}(Q', K', V) = \text{Attention}(Q, K, V)$ which is
 984 an instance of $\text{AttC}(n, \min(r_Q, r_K), \text{poly}(Bnd), \varepsilon)$ which requires time

$$985 \quad \tilde{O}\left(n^{2-1/\min(r_Q, r_K)} \cdot \text{polylog}(B/\varepsilon)\right)$$

987 to compute an output \hat{O} such that $\|\hat{O} - \text{Attention}(Q, K, V)\|_\infty \leq \varepsilon$. This completes the proof of
 988 Theorem 1.2.
 989

991 B THE COMPLEXITY OF ATTENTION GRADIENT COMPUTATION

993 In this section, we leverage our algorithm for approximate attention computation to obtain the
 994 corresponding upper bounds for approximate attention gradient computation. We begin by formalizing
 995 the notion of *attention optimization*:

996 **Definition B.1** (Attention Optimization). Given input matrices $A_1, A_2, A_3, E \in \mathbb{R}^{n \times d}$ and $Y \in \mathbb{R}^{d \times d}$,
 997 find a matrix $X \in \mathbb{R}^{d \times d}$ that minimizes the objective:
 998

$$999 \quad L(X) := \frac{1}{2} \|D(X)^{-1} A V - E\|_F^2,$$

1001 where $A := \exp(A_1 X A_2^\top)$, $V := A_3 Y$, and $D(X) := \text{diag}(A \mathbf{1}_n) \in \mathbb{R}^{n \times n}$.¹⁰
 1002

1003 The gradient of the objective function $L(X)$ with respect to X is then used to optimize the attention
 1004 mechanism by iteratively adjusting X to minimize $L(X)$. Formally, we define the following
 1005 approximate version of the gradient computation problem for attention optimization:

1006 **Definition B.2** (Approximate Gradient Computation for Attention Optimization AAttLGC(n, d, ε)).
 1007 Given $A_1, A_2, A_3, E \in [-B, B]^{n \times d}$, $Y \in [-B, B]^{d \times d}$, and $\varepsilon > 0$, compute a matrix $g \in \mathbb{R}^{d \times d}$
 1008 such that

$$1009 \quad \left\| g - \frac{dL(X)}{dX} \right\|_\infty \leq \varepsilon.$$

1012 B.1 NOTATION

1014 Throughout this section we use the following notation. We overload the diag operator. In this
 1015 section, the diag operator indicates turning all the non-diagonal entries to zero. The \circ operator
 1016 indicates entry-wise multiplication. The \otimes operator denotes the Kronecker product, as defined by
 1017 $Z[(i-1)n + \ell, (j-1)d + k] = X[i, j] \cdot Y[\ell, k]$ where $X, Y \in \mathbb{R}^{n \times d}$ and $Z \in \mathbb{R}^{n^2 \times d^2}$. The \otimes_r
 1018 operator denotes row-wise Kronecker product, as defined by $Z[i, (j-1)d + k] = X[i, j] \cdot Y[i, k]$
 1019 where $X, Y \in \mathbb{R}^{n \times d}$ and $Z \in \mathbb{R}^{n \times d^2}$. We use $e^{\langle i, j \rangle}$ as shorthand to denote $e^{a_{1i} \cdot a_{2j}}$, where a_{1i} and
 1020 a_{2j} are rows of A_1 and A_2 respectively. If M is a matrix, we use M_i to denote the i -th row of M ,
 1021 $M_{*,i}$ to denote the i -th column of M . We use $M[i][j]$ to denote the (i, j) -th entry of M (since our
 1022 matrices have subscripts, the previous notation $M_{i,j}$ is confusing).

1023 ¹⁰ Alman & Song (2024b) scale the Attention matrix A by d for training efficiency, becoming $A :=$
 1024 $\exp\left(\frac{A_1 X A_2^\top}{d}\right)$. Since our algorithms scale polylogarithmically with entry size, we can safely ignore this
 1025 scaling term.

1026 B.2 UPPER BOUND ON ATTENTION BACKWARD COMPUTATION
10271028 We show that the backwards pass for approximate attention can be computed in time
1029 $\tilde{O}(n^{2-1/d} \cdot \text{polylog}(B/\varepsilon))$ when $d = O(1)$.1030 **Theorem B.1** (Formal Theorem 1.3). $\text{AAttLGC}(n, d, B, \varepsilon)$ is reducible to $O(d)$ calls to
1031 $\text{AAttC}(n, d, B, \frac{\varepsilon}{\Theta(ndB^3)})$ using $O(nd^2)$ time.
10321033 **Corollary B.2.** Let $d = O(1)$. There exists an algorithm that computes $\text{AAttLGC}(n, d, B, \varepsilon)$ in time
1034 $\tilde{O}(n^{2-1/d} \cdot \text{polylog}(B/\varepsilon))$.
10351036 *Proof of Corollary B.2.* This follows directly from Theorem B.1 and Theorem 1.1. \square
10371038 *Proof of Theorem B.1.* We begin by recalling the following definitions from Alman & Song (2024b),
1039 which we will use to define the gradient computation formula.
10401041 **Definition B.3.** Let $A_1, A_2 \in \mathbb{R}^{n \times d}$ be two matrices and let $A = A_1 \otimes A_2 \in \mathbb{R}^{n^2 \times d^2}$. Let $x \in \mathbb{R}^{d^2}$
1042 be the vectorization of the matrix $X \in \mathbb{R}^{d \times d}$ in Definition B.1. We define $A_{j_0} \in \mathbb{R}^{n \times d^2}$ to be the
1043 $n \times d^2$ size sub-block of A consisting of rows $\{(j_0 - 1)n + j_1\}_{j_1=1}^n$. Let $f(x)$ be the $n \times n$ matrix
1044 whose j_0 -th row, denoted $f(x)_{j_0}$, is given by:
1045

1046
$$f(x)_{j_0} := (\underbrace{\langle \exp(A_{j_0}x), \mathbf{1}_n \rangle}_{n \times 1})^{-1} \underbrace{\exp(A_{j_0}x)}_{n \times 1}^\top.$$

1047

1048 Note that $f(x) = \exp(A_1 X A_2^\top) \cdot \text{diag}(\exp(A_1 X A_2^\top) \mathbf{1}_n)$. Therefore $f(x)Z$, where Z is an $n \times d$
1049 matrix, is evaluated by $\text{Attention}(A_1, A_2, X)$.
10501051 **Definition B.4.** Let $Y \in \mathbb{R}^{d \times d}$ denote the matrix representation of $y \in \mathbb{R}^{d^2}$ and Y_{*,i_0} indicate the
1052 i_0 -th column of Y . $h(y) \in \mathbb{R}^{n \times d}$ is defined as the matrix whose i_0 -th column is $h(y)_{i_0}$, which is
1053 defined as follows:
1054

1055
$$h(y)_{i_0} := \underbrace{A_3}_{n \times d} \underbrace{Y_{*,i_0}}_{d \times 1}.$$

1056

1057 Note that throughout this section, we occasionally use h as a shorthand for $h(y)$. It is clear that $h(y)$
1058 can be computed in $\text{T}_{\text{MUL}}(n, d, d)$ time.
10591060 **Definition B.5.** Let $c(x)$ be an $n \times d$ matrix defined as follows:
1061

1062
$$\underbrace{c(x)}_{n \times d} = \underbrace{f(x)}_{n \times n} \underbrace{h(y)}_{n \times d} - \underbrace{E}_{n \times d}.$$

1063

1064 We can approximate $c(y)$ by evaluating $\text{Attention}(A_1 X, A_2, h(y))$ to get $f(x)h(y)$, then subtracting
1065 E which takes $O(nd)$ time.
10661067 From Alman & Song (2024b) we have the following formula for attention gradient computation:
1068

1069
$$\begin{aligned} \frac{dL(x)}{dx} &= A_1^\top [f(x) \circ (c(x)h(y)^\top)] A_2 - A_1^\top f(x) \text{diag}[f(x)c(x)h(y)^\top] A_2 \\ &= A_1^\top [f(x) \circ ((f(x)h(y) - E)h(y)^\top)] A_2 - A_1^\top f(x) \text{diag}[f(x)c(x)h(y)^\top] A_2 \\ &= A_1^\top [f(x) \circ (f(x)h(y)h(y)^\top)] A_2 - A_1^\top [f(x) \circ (Eh(y)^\top)] A_2 \\ &\quad - A_1^\top f(x) \text{diag}[f(x)c(x)h(y)^\top] A_2. \end{aligned}$$

1070

1071 The first line comes from the characterization of the gradient as $\frac{dL(x)}{dx} = A_1^\top p(x) A_2$ where $p(x) =$
1072 $p_1(x) - p_2(x)$ (see Appendix D.4-D.6 of Alman & Song (2024b)). In the notation of Alman & Song
1073 (2024b), the first term corresponds to $p_1(x) := f(x) \circ q(x) := f(x) \circ (c(x)h(y)^\top)$. The second
1074 term corresponds to $p_2(x)$ which is an $n \times n$ matrix whose j_0 -th column is $f(x)_{j_0} f(x)_{j_0}^\top q(x)_{j_0} :=$
1075 $f(x)_{j_0} f(x)_{j_0}^\top c(x)h(y)^\top$. Note that $p_2(x) := f(x) \text{diag}[f(x)q(x)] = f(x) \text{diag}[f(x)c(x)h(y)^\top]$.
1076 Note that $q(x) = c(x)h(y)^\top$ is notation in Alman & Song (2024b) which we do not use here.
1077

1080

Let us denote

1081

1082

1083

1084

$$B_1 := [f(x) \circ (f(x)h(y)h(y)^\top)]A_2,$$

1085

$$B_2 := [f(x) \circ (E)h(y)^\top]A_2,$$

1086

$$B_3 := f(x) \text{diag}[f(x)c(x)h(y)^\top]A_2.$$

1088

1089

1090

1091

We now have the following formula which can clearly be computed in $O(nd)$ time if given B_1, B_2 , and B_3 :

1093

1094

1095

1096

$$\frac{dL(x)}{dx} = \underbrace{A_1^\top}_{d \times n} \underbrace{B_1}_{n \times d} - \underbrace{A_1^\top}_{d \times n} \underbrace{B_2}_{n \times d} - \underbrace{A_1^\top}_{d \times n} \underbrace{B_3}_{n \times d}.$$

1099

1100

1101

1102

1103

Note that for each attention computation we perform in order to evaluate the attention gradient, we do with $\varepsilon_2 = \frac{\varepsilon}{\text{poly}(d, B)n}$ additive error.

1104

1105

1106

1107

1108

Computing B_3 . Given $f(x), c(x)$, and $h(y)$, we can approximate B_3 using a series of matrix multiplications and attention computations, which are illustrated below in the following equations. C_i denotes the intermediate matrix products from each of these matrix multiplications/attention computations. We compute an approximation of B_3 as follows:

1109

1110

1111

1112

1113

1114

1115

$$\begin{aligned} B_3 &= f(x) \text{diag}[\underbrace{f(x)}_{n \times n} \underbrace{c(x)}_{n \times d} \underbrace{h(y)^\top}_{d \times n}]A_2 \\ &= f(x) \text{diag}[\underbrace{C_1}_{n \times d} \underbrace{h(y)^\top}_{d \times n}]A_2 \\ &= f(x) \underbrace{C_2}_{n \times n} \underbrace{A_2}_{n \times d} \\ &= f(x) \underbrace{C_3}_{n \times d}. \end{aligned}$$

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

We begin by computing $C_1 = f(x)c(x)$ by evaluating $\text{Attention}(A_1X, A_2, c(x))$. Next, we compute $C_2 = \text{diag}[C_1h(y)^\top]$, which consists of the diagonal of the matrix product $C_1h(y)^\top$. Since we only need the diagonal entries, this step takes $O(nd^2)$ time. We then compute $C_3 = C_2A_2$. As C_2 is a diagonal matrix, this matrix multiplication can be performed in $O(nd)$ time. Finally, we compute $B_3 = f(x)C_3$ by evaluating $\text{Attention}(A_1X, A_2, C_3)$.

1128

1129

1130

1131

1132

1133

We argue that our computed output is a good approximation of B_3 . Let \widetilde{B}_3 denote the computed matrix. For any matrix Z , \widetilde{Z} indicates an approximation of Z derived by a step in our algorithm.

1134 Then,
1135

$$\begin{aligned}
\|B_3 - \widetilde{B}_3\|_\infty &\leq \|f(x)C_3 - \text{AttC}(A_1X, A_2, \widetilde{C}_3)\|_\infty \\
&\leq \|f(x)C_3 - f(x)\widetilde{C}_3\|_\infty + \varepsilon_2 \\
&\leq \|C_3 - \widetilde{C}_3\|_\infty + \varepsilon_2 \\
&= \|\text{diag}[C_1h(y)^\top]A_2 - \text{diag}[\widetilde{C}_1h(y)^\top]A_2\|_\infty + \varepsilon_2 \\
&= \|\left[\text{diag}[C_1h(y)^\top] - \text{diag}[\widetilde{C}_1h(y)^\top]\right]A_2\|_\infty + \varepsilon_2 \\
&\leq \|A_2\|_\infty \|\text{diag}[C_1h(y)^\top] - \text{diag}[\widetilde{C}_1h(y)^\top]\|_\infty + \varepsilon_2 \\
&\leq \|A_2\|_\infty \|C_1h(y)^\top - \widetilde{C}_1h(y)^\top\|_\infty + \varepsilon_2 \\
&\leq d \|A_2\|_\infty \|h(y)\|_\infty \|C_1 - \widetilde{C}_1\|_\infty + \varepsilon_2 \\
&\leq d \|A_2\|_\infty \|h(y)\|_\infty \|f(x)c(x) - \text{AttC}(A_1X, A_2, \widetilde{c}(x))\|_\infty + \varepsilon_2 \\
&\leq d \|A_2\|_\infty \|h(y)\|_\infty (\varepsilon_2 + \|f(x)c(x) - f(x)\widetilde{c}(x)\|_\infty) + \varepsilon_2 \\
&\leq d \|A_2\|_\infty \|h(y)\|_\infty (\varepsilon_2 + \|c(x) - \widetilde{c}(x)\|_\infty) + \varepsilon_2 \\
&\leq 2dB^2\varepsilon_2 + \varepsilon_2.
\end{aligned}$$

1158 Above, step 1 follows from how our algorithm approximates B_3 , step 2 follows from our ε_2 -error
1159 approximation of attention and the triangle inequality, step 3 follows from the fact that $f(x)$ is a
1160 stochastic matrix and distributivity of matrix multiplication, step 4 follows from our definition of C_3 ,
1161 step 5 follows from the distributivity of matrix multiplication, and step 6 follows from basic properties
1162 of the ∞ -norm and diagonal matrices. Step 7 follows from the fact that the diag operator simply
1163 zeroes out the off-diagonal entries, making the off-diagonal elements of $C_1h(y)^\top$ and $\widetilde{C}_1h(y)^\top$
1164 identical. Step 8 follows from basic properties of the ∞ -norm, step 9 follows from how our algorithm
1165 approximates C_1 , step 10 follows from the triangle inequality and our ε_2 approximation of attention,
1166 step 11 follows from similar arguments as steps 9 and 10, and step 12 follows from entry bounds.
1167

1168 **Computing B_1 .** We now show how to compute B_1 . We begin by noting that $B_1 =$
1169 $\sum_{p=0}^d (f(x)(h(y)_{*,p} \otimes_r A_2)) \otimes_r (f(x)h(y))_{*,p}$, a fact we will prove later. Using this fact, we
1170 can compute B_1 efficiently, as illustrated in the following:
1171

$$\begin{aligned}
B_1 &= \sum_{p=0}^d (f(x)(h(y)_{*,p} \otimes_r A_2)) \otimes_r (f(x)h(y))_{*,p} \\
&= \sum_{p=0}^d (f(x)(\underbrace{h(y)_{*,p}}_{n \times 1} \otimes_r \underbrace{A_2}_{n \times d}) \otimes_r C_{5_{*,p}}) \\
&= \sum_{p=0}^d (f(x) \underbrace{C_{6,p}}_{n \times d} \otimes_r C_{5_{*,p}}) \\
&= \sum_{p=0}^d \underbrace{C_{7,p}}_{n \times d} \otimes_r \underbrace{C_{5_{*,p}}}_{n \times 1} \\
&= \sum_{p=0}^d C_{8,p}.
\end{aligned}$$

We begin by approximating $C_5 = f(x)h(y)$ by evaluating $\text{Attention}(A_1X, A_2, h(y))$. Next, for each $1 \leq p \leq d$, we compute the matrix $C_{6,p} = h(y)_{*,p} \otimes_r A_2$. Each matrix requires $O(nd)$ time to compute, so constructing all d matrices incurs a total cost of $O(nd^2)$.

We then compute each matrix $C_{7,p} = f(x)C_{6,p}$ by evaluating $\text{Attention}(A_1X, A_2, C_{6,p})$ across all $p \in [d]$. Computing the row-wise Kronecker products $C_{8,p} = C_{7,p} \otimes_r C_{5_{*,p}}$ takes $O(nd)$ time for each $p \in [d]$, totaling $O(nd^2)$. Finally, summing over all $C_{8,p}$ requires an additional $O(nd^2)$ time.

We argue that our algorithm returns a close approximation of B_1 . Let \widetilde{B}_1 indicate our computation of B_1 . For any matrix Z , \widetilde{Z} indicates an approximation of Z derived by a step in our algorithm.

$$\begin{aligned}
\|\widetilde{B}_1 - B_1\|_\infty &= \left\| \sum_{p=0}^d \widetilde{C}_{8,p} - \sum_{p=0}^d C_{8,p} \right\|_\infty \\
&\leq d \max_p \left\{ \|\widetilde{C}_{8,p} - C_{8,p}\|_\infty \right\} \\
&\leq d \max_p \left\{ \left\| \widetilde{C}_{7,p} \otimes_r \widetilde{C}_{5_{*,p}} - C_{7,p} \otimes_r C_{5_{*,p}} \right\|_\infty \right\} \\
&\leq d \max_p \left\{ \left\| \widetilde{C}_{7,p} - C_{7,p} \right\|_\infty \left\| \widetilde{C}_{5_{*,p}} - C_{5_{*,p}} \right\|_\infty \right. \\
&\quad \left. + \left\| \widetilde{C}_{7,p} - C_{7,p} \right\|_\infty \|C_{5_{*,p}}\|_\infty \right. \\
&\quad \left. + \left\| \widetilde{C}_{5_{*,p}} - C_{5_{*,p}} \right\|_\infty \|C_{7,p}\|_\infty \right\} \\
&= d \max_p \left\{ \|\text{AttC}(A_1X, A_2, C_{6,p}) - f(x)C_{6,p}\|_\infty \|\text{AttC}(A_1X, A_2, h(y))_{*,p} - C_{5_{*,p}}\|_\infty \right. \\
&\quad \left. + \|\text{AttC}(A_1X, A_2, C_{6,p}) - f(x)C_{6,p}\|_\infty \|C_{5_{*,p}}\|_\infty \right. \\
&\quad \left. + \|\text{AttC}(A_1X, A_2, h(y))_{*,p} - C_{5_{*,p}}\|_\infty \|C_{7,p}\|_\infty \right\} \\
&\leq d \max_p \left\{ \varepsilon_2^2 + \varepsilon_2 \|(f(x)h(y))_{*,p}\|_\infty + \varepsilon_2 \|f(x)(h(y)_{*,p} \otimes_r A_2)\|_\infty \right\} \\
&\leq d \max_p \left\{ \varepsilon_2^2 + \varepsilon_2 \|h(y)\|_\infty + \varepsilon_2 \|h(y)_{*,p} \otimes_r A_2\|_\infty \right\} \\
&\leq d \max_p \left\{ \varepsilon_2^2 + \varepsilon_2 \|h(y)\|_\infty + \varepsilon_2 \|h(y)_{*,p}\|_\infty \|A_2\|_\infty \right\} \\
&\leq d (\varepsilon_2^2 + \varepsilon_2 B^2 + \varepsilon_2 B^3) = d\varepsilon_2^2 + d\varepsilon_2 B + d\varepsilon_2 B^2.
\end{aligned}$$

Step 1 follows from our definition of $C_{8,p}$, step 2 follows from the triangle inequality, and step 3 follows from how we define $C_{8,p}$. Step 4 follows from analyzing the entry-wise error in the row-wise Kronecker product. Let $a = C_{7,p}[i][j]$, $b = C_{5_{*,p}}[i][j]$, and let e_1 and e_2 denote the entry-wise approximation errors in $C_{7,p}[i][j]$ and $C_{5_{*,p}}[i][j]$, respectively. Then the approximated entry is $\widetilde{c} = (\widetilde{C}_{7,p} \otimes_r \widetilde{C}_{5_{*,p}})[i][j] = (a + e_1)(b + e_2) = ab + be_1 + ae_2 + e_1e_2$. Therefore, the entry-wise error in the approximation is $\widetilde{c} - c = be_1 + ae_2 + e_1e_2$, where $(c = C_{7,p} \otimes_r C_{5_{*,p}})[i][j]$.

Step 5 follows from how our algorithm approximates $C_{7,p}$ and $C_{5_{*,p}}$. Step 6 follows from the fact that $\widetilde{C}_6 = C_6$ and our ε_2 approximation of the attention computation. Step 7 follows from the fact that $f(x)$ is a stochastic matrix, step 8 is based on the linearity of the Kronecker product, and step 9 follows from entry bounds.

We defined $B_1 := [f(x) \circ (f(x)h(y)h(y)^\top)]A_2$. We now show We begin by noting that the format of each entry of B_1 is as follows, where $1 \leq i \leq n$ and $1 \leq j \leq d$:

$$\begin{aligned}
B_1[i, j] &= \sum_{\ell=0}^n \frac{e^{\langle i, \ell \rangle}}{\sum_{k=0}^n e^{\langle i, k \rangle}} \left[\sum_{m=0}^n \frac{e^{\langle i, m \rangle}}{\sum_{k=0}^n e^{\langle i, k \rangle}} \sum_{p=0}^d h[\ell, p]h[m, p] \right] A_2[\ell, j] \\
&= \sum_{p=0}^d \sum_{\ell=0}^n \frac{e^{\langle i, \ell \rangle}}{\sum_{k=0}^n e^{\langle i, k \rangle}} \left[\sum_{m=0}^n \frac{e^{\langle i, m \rangle}}{\sum_{k=0}^n e^{\langle i, k \rangle}} h[m, p] \right] h[\ell, p]A_2[\ell, j].
\end{aligned}$$

1242 We now compute the sum $\sum_{p=0}^d C_{8,p}$ and verify that
 1243

$$1244 \quad 1245 \quad \left[\sum_{p=0}^d C_{8,p} \right] [i, j] = B_2[i, j]. \\ 1246$$

1247 Let $C_5 = f(x)h(y)$. For $1 \leq i \leq n$ and $1 \leq p \leq d$, we have:
 1248

$$1249 \quad 1250 \quad C_5[i, p] = \sum_{m=0}^n \frac{e^{\langle i, m \rangle}}{\sum_{k=0}^n e^{\langle i, k \rangle}} h(y)[m, p]. \\ 1251$$

1252 Let $C_{6,p} = h(y)_{*,p} \otimes_r A_2$. For $1 \leq \ell \leq n$ and $1 \leq j \leq d$, this gives:
 1253

$$1254 \quad C_{6,p}[\ell, j] = h(y)[j, \ell] \cdot A_2[\ell, j]. \\ 1255$$

1256 We define $C_{7,p} = f(x)C_{6,p}$, so:
 1257

$$1258 \quad 1259 \quad C_{7,p}[i, j] = \sum_{\ell=0}^n \frac{e^{\langle i, \ell \rangle}}{\sum_{k=0}^n e^{\langle i, k \rangle}} h(y)[j, \ell] A_2[\ell, j]. \\ 1260$$

1261 Let $C_{8,p} = f(x)C_{7,p} \otimes_r C_{5*,p}$. Then for $1 \leq i \leq n$, $1 \leq j \leq d$:
 1262

$$1263 \quad C_{8,p}[i, j] = \left(\sum_{\ell=0}^n \frac{e^{\langle i, \ell \rangle}}{\sum_{k=0}^n e^{\langle i, k \rangle}} h(y)[j, \ell] A_2[\ell, j] \right) \left(\sum_{m=0}^n \frac{e^{\langle i, m \rangle}}{\sum_{k=0}^n e^{\langle i, k \rangle}} h(y)[m, p] \right) \\ 1264 \\ 1265 \quad = \sum_{\ell=0}^n \sum_{m=0}^n \frac{e^{\langle i, \ell \rangle}}{\sum_{k=0}^n e^{\langle i, k \rangle}} \cdot \frac{e^{\langle i, m \rangle}}{\sum_{k=0}^n e^{\langle i, k \rangle}} \cdot h(y)[m, p] \cdot h(y)[\ell, p] \cdot A_2[\ell, j]. \\ 1266 \\ 1267$$

1268 Summing over all p , we recover:
 1269

$$1270 \quad 1271 \quad B_2[i, j] = \sum_{p=0}^d C_{8,p}[i, j]. \\ 1272 \\ 1273$$

1274 **Computing B_2 .** We begin by noting that $B_2 = \sum_{p=0}^d [f(x)(h(y)_{*,p} \otimes_r A_2)] \otimes_r E_{*,p}$, a fact that
 1275 we will prove later on. Using this fact, we use the following procedure to compute an approximation
 1276 of B_2 :
 1277

$$1278 \quad B_2 = \sum_{p=0}^d [f(x) \underbrace{(h(y)_{*,p} \otimes_r A_2)}_{n \times 1 \quad n \times d}] \otimes_r E_{*,p} \\ 1279 \\ 1280 \quad = \sum_{p=0}^d [f(x) \underbrace{C_{9,p}}_{n \times d}] \otimes_r E_{*,p} \\ 1281 \\ 1282 \quad = \sum_{p=0}^d \underbrace{C_{10,p}}_{n \times d} \otimes_r \underbrace{E_{*,p}}_{n \times 1} \\ 1283 \\ 1284 \quad = \sum_{p=0}^d \underbrace{C_{11,p}}_{n \times d}. \\ 1285 \\ 1286 \\ 1287 \\ 1288 \\ 1289 \\ 1290 \\ 1291$$

1292 We start by approximating the set of d matrices, $C_{9,p} = h(y)_{*,p} \otimes_r A_2$. For each $1 \leq p \leq d$,
 1293 computing $C_{9,p}$ takes $O(nd)$ time, so this takes $O(nd^2)$ time in total. We approximate each $C_{10,p} =$
 1294 $f(x)C_{9,p}$ by evaluating $\text{Attention}(A_1 X, A_2, C_{9,p})$. Next, we compute all $C_{11,p} = C_{10,p} \otimes_r E_{*,p}$
 1295 which takes $O(nd^2)$ time in total. Finally, summing over $C_{11,p}$ takes $O(nd^2)$ time.
 1296

1296 We now analyze the error from approximating B_2 using the method we just described. For any matrix
 1297 Z , \tilde{Z} indicates an approximation of Z derived by a step in our algorithm.
 1298

1299

1300

$$\begin{aligned}
 \|B_2 - \tilde{B}_2\|_\infty &= \left\| \sum_{p=0}^d C_{11,p} - \sum_{p=0}^d \tilde{C}_{11,p} \right\|_\infty \\
 &\leq d \max_p \left\{ \|C_{11,p} - \tilde{C}_{11,p}\|_\infty \right\} \\
 &= d \max_p \left\{ \|C_{10,p} \otimes_r E_{*,p} - \tilde{C}_{10,p} \otimes_r E_{*,p}\|_\infty \right\} \\
 &= d \max_p \left\{ \|[C_{10,p} - \tilde{C}_{10,p}] \otimes_r E_{*,p}\|_\infty \right\} \\
 &\leq d \max_p \left\{ \|E_{*,p}\|_\infty \|C_{10,p} - \tilde{C}_{10,p}\|_\infty \right\} \\
 &= d \max_p \left\{ \|E_{*,p}\|_\infty \|f(x)(h(y)_{*,p} \otimes_r A_2) - \text{AttC}(A_1 X, A_2, h(y)_{*,p} \otimes_r A_2)\|_\infty \right\} \\
 &\leq d \max_p \left\{ \varepsilon_2 \|E_{*,p}\|_\infty \right\} \\
 &\leq d \varepsilon_2 B.
 \end{aligned}$$

1316

1317

1318

1319 Above, step 1 follows from our definition of $C_{11,p}$, step 2 is follows from the triangle inequality,
 1320 and step 3 follows from our definition of $C_{11,p}$. Step 4 follows from the linearity of the row-wise
 1321 Kronecker product and step 5 follows from the fact that the row-wise Kronecker product scales every
 1322 element in $C_{10,p}$ by an element in $E_{*,p}$. Step 6 follows from how we approximate $C_{10,p}$ in our
 1323 algorithm, step 7 follows from our ε_2 -error approximation of attention, and step 8 follows from our
 1324 defined entry bounds.

1325 We defined $B_2 := [f(x) \circ (E)h(y)^\top]A_2$. Finally, we show that $B_2 = \sum_{p=0}^d [f(x)(h(y)_{*,p} \otimes_r
 1326 A_2)] \otimes_r E_{*,p}$, which can be proven by showing that $B_2[i, j] = \sum_{p=0}^d C_{11,p}[i, j]$ for all $1 \leq i \leq n$
 1327 and $1 \leq j \leq d$. We note the following:
 1328

1329

1330

$$\begin{aligned}
 B_2[i, j] &= \sum_{\ell=0}^n \frac{e^{\langle i, \ell \rangle}}{\sum_{k=0}^n e^{\langle i, k \rangle}} \left[\sum_{p=0}^d E[i, p]h[\ell, p] \right] A_2[\ell, j] \\
 &= \sum_{p=0}^d \sum_{\ell=0}^n \frac{e^{\langle i, \ell \rangle}}{\sum_{k=0}^n e^{\langle i, k \rangle}} E[i, p]h[\ell, p]A_2[\ell, j],
 \end{aligned}$$

1337

1338

1339 and it is clear that the following is true:

1340

1341

$$C_{11,p}[i, j] = \sum_{\ell=0}^n \frac{e^{\langle i, \ell \rangle}}{\sum_{k=0}^n e^{\langle i, k \rangle}} E[i, p]h[\ell, p]A_2[\ell, j].$$

1345

1346

1347

1348 **Bounding Approximation Error.** Now all that is left is to show our procedure gives us an
 1349 approximation of the gradient with ε additive error. Recall that we did all the attention calculations
 with $\varepsilon_2 = \frac{\varepsilon}{\text{poly}(d, B)n}$ additive error. Let $\widetilde{\frac{dL(x)}{dx}}$ denote the matrix our procedure returns and let $\widetilde{c(x)}$

1350 be the approximation of $c(x)$ given by $\text{Attention}(A_1 X, A_2, h(y))$.

$$\begin{aligned}
 1352 \quad & \left\| \frac{dL(x)}{dx} - \widetilde{\frac{dL(x)}{dx}} \right\|_\infty = \left\| A_1^\top B_1 - A_1^\top B_2 - A_1^\top B_3 - (A_1^\top \sum_{p=0}^d C_{8,p} - A_1^\top \sum_{p=0}^d C_{11,p} - A_1^\top f(x) C_3) \right\|_\infty \\
 1353 \quad & = \left\| A_1^\top \left[(B_1 - \sum_{p=0}^d C_{8,p}) + (B_2 - \sum_{p=0}^d C_{11,p}) + (B_3 - f(x) C_3) \right] \right\|_\infty \\
 1354 \quad & \leq n \|A_1^\top\|_\infty \left\| (B_1 - \sum_{p=0}^d C_{8,p}) + (B_2 - \sum_{p=0}^d C_{11,p}) + (B_3 - f(x) C_3) \right\|_\infty \\
 1355 \quad & \leq n \|A_1^\top\|_\infty \left[\left\| B_1 - \sum_{p=0}^d C_{8,p} \right\|_\infty + \left\| B_2 - \sum_{p=0}^d C_{11,p} \right\|_\infty + \|B_3 - f(x) C_3\|_\infty \right] \\
 1356 \quad & \leq nB((d\varepsilon_2^2 + d\varepsilon_2 B + d\varepsilon_2 B^2) + d\varepsilon_2 B + (2dB^2\varepsilon_2 + \varepsilon_2)) \\
 1357 \quad & = O(ndB^3\varepsilon_2) = \varepsilon.
 \end{aligned}$$

1367 Above, steps 1 and 2 follow from definitions and rearranging terms, step 3 follows from basic
1368 properties of the ∞ -norm, step 4 follows from the triangle inequality, and step 5 was justified
1369 previously.

□

1372 C NEW LOWER BOUNDS FOR ATTENTION

1374 In this section, we prove Theorem 1.4 which shows Attention is hard even with $d = 2^{\Theta(\log^* n)}$ and
1375 Theorem 1.5 which shows that the standard algorithm is optimal for $d = \text{poly}(n)$. We begin with a
1376 generic self-reduction (Lemma C.1) that shows it suffices to prove lower bounds for Attention without
1377 normalization. We also prove Theorem C.7 which shows that Attention is hard for $d = \Omega(\log n)$
1378 even for constant entry size.

1379 Recall that in the attention computation $\text{Attention}(Q, K, V) = D^{-1}AV$, the diagonal matrix D^{-1}
1380 applies a normalization to each row of A . In our reductions, however, it is necessary to work directly
1381 with the unnormalized entries of A . As a key lemma, we show that given oracle access to AttC
1382 with ε -additive error approximation, one can approximately recover the row sums of A up to $O(\varepsilon)$ -
1383 multiplicative errors, hence recovering the unnormalized entries of A . Specifically, if S_i is the actual
1384 row sum of the i -th row of A , then the reduction computes an approximation \hat{S}_i such that

$$1386 \quad |\hat{S}_i - S_i| < O(\varepsilon)S_i.$$

1387 It turns out that multiplicative error approximation on the row sums is sufficient for our lower bound
1388 proofs.

1389 **Lemma C.1.** *Let $0 < \varepsilon = O(1)$. Given matrices $Q, K \in [-B, B]^{n \times d}$ with $B \geq 1$, we can estimate
1390 the row sums of $A = \exp(QK^\top)$ up to $O(\varepsilon)$ -multiplicative error in time*

$$1391 \quad O((\log \log n + \log(dB/\varepsilon))\mathsf{T}_{\text{ATTc}}(n+1, d+1, B, \varepsilon)).$$

1393 *Proof.* We use a parallel binary search approach to estimate the row sums. In order to implement
1394 parallel binary search, it suffices to perform the following task \mathcal{T} :

1395 Given an array of numbers $\mathbf{c} = [c_1, \dots, c_n]^\top$, output an array $\mathbf{b} \in \{0, 1\}^n$ such that if $S_i \geq (1 + \varepsilon)c_i$,
1396 then $b_i = 1$; if $S_i \leq (1 - \varepsilon)c_i$, then $b_i = 0$. Otherwise, b_i can be arbitrary.

1397 Indeed, at each round we let $c_i := (1 + \varepsilon)^{f_i-1}$ for some f_i . We use the indicator $b_i = 1$ to perform
1398 binary search for the smallest f_i such that $(1 + \varepsilon)^{f_i} \geq S_i$ for all i . Such an f_i gives the guarantee that
1399 $S_i \leq (1 + \varepsilon)^{f_i} < (1 + \varepsilon)S_i$, which is an ε -multiplicative approximation of S_i . Note that the value of
1400 each row sum S_i belongs to the range $[n \exp(-B^2d), n \exp(B^2d)]$, so we just need to binary search
1401 for the correct $f_i \in [\log_{1+\varepsilon}(n \exp(-B^2d)), \log_{1+\varepsilon}(n \exp(B^2d))]$. Therefore, the number of rounds
1402 for binary search (i.e., for performing the task \mathcal{T}) is given by

$$1403 \quad O(\log_2 \log_{1+\varepsilon}(n \exp(2B^2d))) = O(\log \log n + \log(dB/\varepsilon)).$$

1404 It now remains to show how to perform the task \mathcal{T} . We claim the following:
 1405

1406 **Claim C.2.** *The task \mathcal{T} can be completed with one oracle call to $\text{AttC}(n+1, d+1, B, \varepsilon/100)$ and
 1407 $O(nd)$ additional time.*

1408
 1409 *Proof.* We create the following matrices as inputs to the oracle $\text{AttC}(n+1, d+1, B, \varepsilon)$:

$$1410 \\ 1411 \\ 1412 \\ 1413 \\ 1414 Q' := \begin{bmatrix} \ln \mathbf{c} & Q \\ 0 & \mathbf{0}_d^\top \end{bmatrix}, K' := \begin{bmatrix} 1 & \mathbf{0}_d^\top \\ \mathbf{0}_n & K \end{bmatrix}, V' := \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{bmatrix}.$$

1415 Then,

$$1416 \\ 1417 Q' K'^\top = \begin{bmatrix} \ln \mathbf{c} & Q K^\top \\ 0 & \mathbf{0}_d^\top \end{bmatrix},$$

1418 so the $(i, 1)$ -th entry of $\text{Attention}(Q', K', V') = D'^{-1} A' V'$ would be
 1419

$$1420 \\ 1421 o_i = \frac{S_i}{c_i + S_i}.$$

1422 Assume we have an $(\varepsilon/100)$ -additive approximation of o_i (denoted by \hat{o}_i). Then, we set $b_i = 1$ if
 1423 $\hat{o}_i \geq \frac{1}{2}$ and $b_i = 0$ otherwise. We now show that all entries of \mathbf{b} are correctly set. If $S_i \geq (1 + \varepsilon)c_i$,
 1424 then
 1425

$$1426 \\ 1427 \hat{o}_i \geq o_i - \varepsilon/100 \geq \frac{S_i}{c_i + S_i} - \varepsilon/100 \geq \frac{1 + \varepsilon}{2 + \varepsilon} - \varepsilon/100 > \frac{1}{2}.$$

1428 On the other hand, if $S_i \leq (1 - \varepsilon)c_i$, then
 1429

$$1430 \\ 1431 \hat{o}_i \leq o_i + \varepsilon/100 \leq \frac{S_i}{c_i + S_i} + \varepsilon/100 \leq \frac{1 - \varepsilon}{2 - \varepsilon} + \varepsilon/100 < \frac{1}{2}.$$

1432 In the first inequality, we use $\frac{1+\varepsilon}{2+\varepsilon} > \frac{1}{2} + \frac{\varepsilon}{6}$ and in the second we use $\frac{1-\varepsilon}{2-\varepsilon} < \frac{1}{2} - \frac{\varepsilon}{6}$. Thus, the
 1433 algorithm will output $b_i = 1$ in the former case and $b_i = 0$ in the latter case, as desired. \square
 1434

1435 This completes the proof of Lemma C.1. \square
 1436

1437 C.1 LOWER BOUND FOR ATTENTION WITH SMALL HEAD DIMENSION

1438 In this section, we show via a reduction from the Max-IP problem that $\text{AttC}(n, d, B, \varepsilon)$ requires
 1439 $n^{2-o(1)}$ time when $d = 2^{\Omega(\log^* n)}$, $B = \text{poly}(n)$, and $\varepsilon = O(1)$ additive approximation error. In
 1440 particular, we note that we are able to compute Max-IP exactly even with oracle access to AttC that
 1441 allows $\varepsilon = O(1)$ additive error.
 1442

1443 **Lemma C.3.** *Let $\varepsilon > 0$. $\text{Max-IP}(n, d, B)$ can be computed exactly in time*

$$1444 \\ 1445 O((\log \log n + \log(dB/\varepsilon)) \mathsf{T}_{\text{ATTC}}(n+1, d+1, O(B \log n), \varepsilon)).$$

1446
 1447 *Proof.* Given a δ , we choose a $C = C(\delta)$ and set $d = 2^{C \log^*(n)}$. Let $\mathcal{A} = \{a_1, \dots, a_n\}$, $\mathcal{B} =$
 1448 $\{b_1, \dots, b_n\} \subseteq \mathbb{Z}^d$ be two sets of d -dimensional integer-valued vectors with entries bounded by
 1449 $B \geq 1$. Let $k = \ln n$ and we choose the smallest integer $C > 0$ such that
 1450

$$0.5C > 1 + \log_n(1 + \varepsilon) \quad \text{and} \quad -0.5C < \log_n(1 - \varepsilon).$$

1451 Define the following matrices $Q, K \in \mathbb{R}^{n \times d}$:

$$1452 \\ 1453 \\ 1454 \\ 1455 \\ 1456 \\ 1457 Q := \begin{bmatrix} _ & a_1^\top & _ \\ _ & a_2^\top & _ \\ \vdots & _ & _ \\ _ & a_n^\top & _ \end{bmatrix}, K := kC \cdot \begin{bmatrix} _ & b_1^\top & _ \\ _ & b_2^\top & _ \\ \vdots & _ & _ \\ _ & b_n^\top & _ \end{bmatrix}. \quad (3)$$

1458 By Lemma C.1, we get the $(1 \pm \varepsilon)$ -multiplicative approximations of the row sums of $\exp(QK^\top)$ in
 1459 time

$$1460 \quad O((\log \log n + \log(k^2 C^2 B^2 d/\varepsilon)) \mathsf{T}_{\text{ATT C}}(n+1, d+1, kCB, \varepsilon)).$$

1461 Here, note that $kCB = O(B \log n)$. Note that the i -th row sum is given by

$$1463 \quad S_i = \sum_{j=1}^n e^{kC(a_i \cdot b_j)} = \sum_{j=1}^n n^{C(a_i \cdot b_j)}.$$

1465 Let S'_i be the $(1 \pm \varepsilon)$ -multiplicative approximation for S_i and let $M_i := \max_j a_i \cdot b_j$ (note that all
 1466 inner products are integers) be the maximum inner product over all vectors in \mathcal{B} for a fixed $a_i \in \mathcal{A}$.
 1467 We claim that M_i can be recovered *exactly* by

$$1468 \quad M_i = \left\lfloor \frac{\log_n S'_i}{C} + 0.5 \right\rfloor.$$

1471 Note that each non-maximum term on a single row can be bounded by $0 < n^{C(a_i \cdot b_j)} \leq n^{CM_i}$, so we
 1472 can bound the row sum by

$$1473 \quad n^{CM_i} \leq S_i \leq n \cdot n^{CM_i} = n^{CM_i+1}.$$

1474 Thus, applying $(1 \pm \varepsilon)$ -approximation to the upper and lower bounds respectively we get

$$1475 \quad (1 - \varepsilon)n^{CM_i} \leq S'_i \leq (1 + \varepsilon)n^{CM_i+1}.$$

1476 If we can show $M_i \leq (\log_n S'_i)/C + 0.5 < M_i + 1$ then we are done. Indeed, using our definition
 1477 for C we get

$$1478 \quad \frac{\log_n S'_i}{C} + 0.5 \leq \frac{CM_i + 1 + \log_n(1 + \varepsilon)}{C} + 0.5 = M_i + \frac{1 + \log_n(1 + \varepsilon)}{C} + 0.5 < M_i + 1,$$

1480 and

$$1481 \quad \frac{\log_n S'_i}{C} + 0.5 > \frac{CM_i + \log_n(1 - \varepsilon)}{C} + 0.5 = M_i + \frac{\log_n(1 - \varepsilon)}{C} + 0.5 > M_i.$$

1483 \square

1484 Combining the above reduction with the conditional lower bound for Max-IP (Theorem 2.3), we
 1485 obtain Theorem 1.4.

1486 **Theorem C.4** (Formal Theorem 1.4). *Fix $\varepsilon = \Theta(1)$ and $B = \text{poly}(n)$. For all $\delta > 0$, there exists
 1487 $C = C(\delta)$ and $d = 2^{C \log^* n}$ such that any algorithm computing $\text{AttC}(n, d, B, \varepsilon)$ requires $n^{2-\delta}$ time
 1488 under SETH.*

1490

1491 C.2 LOWER BOUND FOR ATTENTION WITH LARGE HEAD DIMENSION

1492

1493 In this section, we study the case of large head dimension where $d = \text{poly}(n)$. Through a reduction
 1494 from the OV problem, we show that computing $\text{AAttC}(n, d, B, \varepsilon)$ requires explicitly computing the
 1495 matrix product QK^\top when $d = \text{poly}(n)$, $B = O(\sqrt{\log n})$, and $\varepsilon = O(1)$ (additive approximation
 1496 error). Furthermore, we establish a similar lower bound from the OV problem when $d = \text{poly}(n)$,
 1497 $B = O(1)$, and $\varepsilon = O\left(\frac{1}{\text{poly}(n)}\right)$.

1498

1499 **Theorem C.5** (Formal Theorem 1.5). *Fix $d = \text{poly}(n)$. There exists $B = O(\sqrt{\log n})$ and $\varepsilon = O(1)$
 1500 such that any algorithm computing $\text{AttC}(n, d, B, \varepsilon)$ requires $\mathsf{T}_{\text{MUL}}(n, d, n)^{1-o(1)}$ time under the
 1501 Generalized High-Dimensional OV Hypothesis.*

1502

1503 We show the following lemma to prove Theorem C.5.

1504

1505 **Lemma C.6.** *The OV problem can be computed exactly with one call to $\text{AttC}(n, d, B = O(\sqrt{\log n}), \varepsilon = O(1))$ and $O(nd)$ additional time.*

1506

1507 *Proof.* Let $\mathcal{A} = \{a_1, \dots, a_n\}$, $\mathcal{B} = \{b_1, \dots, b_n\} \subseteq \{0, 1\}^d$ be two sets of vectors. We chose a
 1508 constant c such that $\varepsilon < c < 1$ and a constant k such that $k < \frac{1-c}{n(1+c)}$. We then define $Q, K \in \mathbb{R}^{n \times d}$:

$$1509 \quad Q := -\sqrt{|\ln k|} \cdot \begin{bmatrix} \quad & a_1^\top & \quad \\ \quad & a_2^\top & \quad \\ \vdots & & \vdots \\ \quad & a_n^\top & \quad \end{bmatrix}, \quad K := \sqrt{|\ln k|} \cdot \begin{bmatrix} \quad & b_1^\top & \quad \\ \quad & b_2^\top & \quad \\ \vdots & & \vdots \\ \quad & b_n^\top & \quad \end{bmatrix}. \quad (4)$$

1512 Due to Lemma C.1, we can recover the row sums of $\exp(QK^\top)$ up to ε -multiplicative error in
 1513 $O((\log \log n + \log(dB/\varepsilon))\mathsf{T}_{\text{ATTc}}(n+1, d+1, B, \varepsilon))$ time. Let S_i be the $(1 \pm \varepsilon)$ -approximation
 1514 of the i -th row sum.

1515

1516 $S_i := (1 \pm \varepsilon) \sum_{j=1}^n e^{\ln(k)(a_i \cdot b_j)} = (1 \pm \varepsilon) \sum_{j=1}^n k^{a_i \cdot b_j},$

1519 which implies

1520 $(1 - \varepsilon) \sum_{j=1}^n k^{a_i \cdot b_j} \leq S_i \leq (1 + \varepsilon) \sum_{j=1}^n k^{a_i \cdot b_j}.$

1523 If there are no orthogonal pairs of vectors in \mathcal{A} and \mathcal{B} , then $a_i \cdot b_j$ is a positive integer for all
 1524 $1 \leq i, j \leq n$. Consequently, because $0 < k < 1$, the maximum value of $k^{a_i \cdot b_j}$ is k . From this it
 1525 follows that if there are no pairs of orthogonal vectors, all of the sums S_i, \dots, S_n will be less than
 1526 $1 - c$:

1527

1528 $S_i \leq (1 + \varepsilon) \sum_{j=1}^n k^{a_i \cdot b_j} \leq (1 + \varepsilon)nk < \frac{(1 + \varepsilon)(1 - c)}{(1 + c)} \leq \frac{(1 + c)(1 - c)}{(1 + c)} = 1 - c.$

1531

1532 On the other hand, when there are one or more pairs of orthogonal vectors in \mathcal{A} and \mathcal{B} , there will be
 1533 at least one $k^{a_i \cdot b_j} = 1$ and a row sum S_i will exist such that $S_i \geq 1 - c$:

1534

1535 $S_i \geq (1 - \varepsilon) \sum_{j=1}^n k^{a_i \cdot b_j} > (1 - \varepsilon)1 \geq 1 - c.$

1537

1538 By checking for the existence of a row sum S_i that is greater than or equal to $1 - c$ we can determine
 1539 whether there is a pair of orthogonal vectors in \mathcal{A} and \mathcal{B} . \square

1540

1541 We also show that when $d = \Theta(\log n)$, Attention is hard under SETH even with constant entry size
 1542 B .

1543 **Theorem C.7.** *For all $\delta > 0$, there exists $C = C(\delta)$, $d = C \log n$ and $\varepsilon = n^{-C}$ such that any
 1544 algorithm computing $\text{AttC}(n, d, \log 2, \varepsilon)$ requires $\Omega(n^{2-\delta})$ time under SETH.*

1545

1546 We show the following lemma to prove Theorem C.7.

1547 **Lemma C.8.** *The OV problem on vectors of dimension d can be computed with high probability in
 1548 time*

1549 $\tilde{O}\left((\log n)(d + \log n)\mathsf{T}_{\text{ATTc}}\left(n+1, d+1, \log 2, \frac{1}{10n2^d}\right)\right).$

1550

1551 Given the above lemma, suppose we have an algorithm computing AttC . Given a δ define $\delta' = \delta/2$
 1552 and let $C' = C'(\delta')$ and $d = C' \log n$ as required in Theorem 2.2. Then, let $\varepsilon = \frac{1}{10n2^d} = n^{-C}$ for
 1553 some large constant $C = C(\delta) \geq C'$. Any algorithm computing $\mathsf{T}_{\text{ATTc}}(n+1, d+1, \log 2, \varepsilon)$ then
 1554 requires $\Omega(n^{2-\delta})$ time, proving Theorem C.7.

1555

1556 *Proof.* Let $\mathcal{A} = \{a_1, \dots, a_n\}$, $\mathcal{B} = \{b_1, \dots, b_n\} \subseteq \{0, 1\}^d$ be two sets of vectors. Define $Q, K \in$
 1557 $\mathbb{R}^{n \times d}$ to be the matrices whose rows are formed by the vectors in \mathcal{A} and \mathcal{B} , respectively, i.e.,

1558 $Q := \log(2) \begin{bmatrix} \cdots & a_1^\top & \cdots \\ \cdots & a_2^\top & \cdots \\ \vdots & & \vdots \\ \cdots & a_n^\top & \cdots \end{bmatrix}, K := \log(2) \begin{bmatrix} \cdots & b_1^\top & \cdots \\ \cdots & b_2^\top & \cdots \\ \vdots & & \vdots \\ \cdots & b_n^\top & \cdots \end{bmatrix}.$

1562

1563 Note that

1564

1565

$$QK^\top = \begin{bmatrix} \log(2) \cdot a_1 \cdot b_1 & \cdots & \log(2) \cdot a_1 \cdot b_n \\ \vdots & \ddots & \vdots \\ \log(2) \cdot a_n \cdot b_1 & \cdots & \log(2) \cdot a_n \cdot b_n \end{bmatrix}.$$

1566 and the i -th row sum of $\exp(QK^\top)$ is given by $\sum_{j=1}^n 2^{a_i \cdot b_j}$. In particular, note that all row sums are
 1567 integers satisfying $n \leq S_i \leq n2^d$. From Lemma C.1, we can recover the row sums up to $\frac{1}{10n2^d}$ and
 1568 therefore $\frac{1}{10}$ -additive error in time
 1569

$$1570 \quad 1571 \quad O\left((\log \log n + \log(dn2^d))\mathsf{T}_{\text{ATTC}}\left(n+1, d+1, \log 2, \frac{1}{10n2^d}\right)\right).$$

1572 Given the $\frac{1}{10}$ -additive approximation of S_i , we may recover S_i by rounding since they are integers.
 1573 Note that $S_i \leq n2^d$ and can therefore be represented in $O(d + \log n)$ bits.

1574 If there are no orthogonal pairs of vectors in \mathcal{A} and \mathcal{B} , then $a_i \cdot b_j$ is a positive integer for all
 1575 $1 \leq i, j \leq n$, which means $2^{a_i \cdot b_j}$ is an even number. It follows that all of the sums S_1, \dots, S_n are
 1576 also even numbers.
 1577

1578 Conversely, when an orthogonal pair of vectors exists in \mathcal{A} and \mathcal{B} , we would like to detect this based
 1579 on the sums S_1, \dots, S_n as well. Note that when $a_i \cdot b_j = 0$ we have $2^{a_i \cdot b_j} = 1$, which may potentially
 1580 make the sum into an odd number. However, when there are an even number of such orthogonal pairs,
 1581 the sum remains even, and we cannot distinguish from the previous case. The workaround is to use a
 1582 standard sampling method, so that with high probability, we include exactly one pair of orthogonal
 1583 vectors in the sample, and therefore the corresponding sum will be odd.
 1584

1585 Fix an index $1 \leq i \leq n$ such that $a_i \in \mathcal{A}$ is orthogonal to some vector in \mathcal{B} . Let b^* be the last vector
 1586 in \mathcal{B} orthogonal to a_i . Without loss of generality, we may assume that the zero vector $\mathbf{0}_d \notin \mathcal{A}$, since
 1587 we can check this in $O(nd)$ time and immediately accept the input if this is the case. Given $\mathbf{0}_d \notin \mathcal{A}$,
 1588 we know that vector $\mathbf{1}_d$ is not orthogonal to any vector in \mathcal{A} . Consider the following sampling
 1589 procedure:

1590 Construct \mathcal{B}' by including each vector of \mathcal{B} with probability $\frac{1}{2}$ independently and padding with $\mathbf{1}_d$
 1591 to ensure \mathcal{B}' has n vectors. Note that with probability exactly $\frac{1}{2}$ we have that \mathcal{B}' contains an odd
 1592 number of orthogonal vectors to a_i (i.e. b^* is included with probability $\frac{1}{2}$). In particular, sampling \mathcal{B}'
 1593 $O(\log n)$ -times allows us to detect an odd row sum with high probability.

1594 Thus, the overall algorithm requires involves $O(\log n)$ loops, where in each loop we check for an
 1595 odd row-sum using Lemma C.1. The overall time is therefore
 1596

$$1597 \quad 1598 \quad \tilde{O}\left((\log n)(d + \log n)\mathsf{T}_{\text{ATTC}}\left(n+1, d+1, \log 2, \frac{1}{10n2^d}\right)\right).$$

□

1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619