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ABSTRACT

Communication efficiency is a central challenge in distributed machine learning
training, and message compression is a widely used solution. However, standard
Error Feedback (EF) methods (Seide et al.| 2014)), though effective for smooth
unconstrained optimization with compression (Karimireddy et al., 2019), fail in
the broader and practically important setting of composite optimization, which
captures, e.g., objectives consisting of a smooth loss combined with a non-smooth
regularizer or constraints. The theoretical foundation and behavior of EF in the
context of the general composite setting remain largely unexplored. In this work,
we consider composite optimization with EF. We point out that the basic EF
mechanism and its analysis no longer stand when a composite part is involved.
We argue that this is because of a fundamental limitation in the method and its
analysis technique. We propose a novel method that combines Dual Averaging with
EControl (Gao et al.|,[2024a)), a state-of-the-art variant of the EF mechanism, and
achieves for the first time a strong convergence analysis for composite optimization
with error feedback. Along with our new algorithm, we also provide a new and
novel analysis template for inexact dual averaging method, which might be of
independent interest. We also provide experimental results to complement our
theoretical findings.

1 INTRODUCTION

Gradient methods, and in particular, distributed gradient methods, are the workhorse of modern
Machine Learning. In this work, we consider a simple yet powerful extension of the basic optimization
problem, namely, the composite optimization problem:
min {F(x) = f(x) +¢(x)}
x€dom)

where f : R?Y — R is smooth and ¢: R? — R U {+oc0} is a composite part. The composite
optimization problem is ubiquitous in machine learning, and it covers a wide range of variants of the
vanilla optimization problem, for example, regularized machine learning (Liu et al., [2015), signal
processing (Combettes & Pesquet, [2010), and image processing (Lukel 2020). Since 1) can take on
the value of infinity, it also naturally covers the constrained optimization problem.

The sizes of the datasets and models in modern Machine Learning have been growing drastically,
leading to unique challenges in the training process and demands optimization algorithms that
are tailored to these new settings. The distributed optimization paradigm has become a necessity
due to the fact that one simply does not have the capacity to accumulate the entire dataset while
training modern ML models. One of the most popular setup is to distribute the data across multiple
clients/workers, and coordinate the model update in one server. Many of the recent breakthrough
models are trained in such a setup (Shoeybi et al., 2019; Ramesh et al., 2021} 2022; Wang et al.,
2020).

One of the main bottlenecks in scaling up distributed training is the communication cost. Transmitting
the full large model updates between clients and the server can be prohibitively expensive when
performed naively (Seide et al., 2014; |Strom, [2015)). One of the most popular practical remedy is
communication compression with contractive compression (Deﬁnition@ (Lin et al., 2018} |Sun et al.,
2019; Vogels et al.l 2019). Contractive compressions are potentially biased, and naive aggregation of
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these biased compressed updates can lead to divergence (Beznosikov et al., [2023)). In the classical
setting when v = 0, one of the most basic and popular families of methods that are used to rectify
this issue in practice is the Error Feedback (EF) mechanism (Seide et al.l [2014; Paszke et al.,
2019; [Vogels et al.,[2019; Ramesh et al.},[2021)). Due to its vast practical importance, EF mechanism
has attracted significant interests in the theory community as well, where many works, though
restricted to 1) = 0, have attempted to theoretically explain the effectiveness of EF (Stich et al.,|2018;;
Karimireddy et al., 2019) or derive variants of EF that enjoy better theoretical properties than the
original form (Fatkhullin et al.| 2023};|Gao et al.| [2024a).

However, in the composite setting, the situation becomes much more complex, and the theory is much
less developed. The only work that goes beyond the classical unconstrained setting is (Islamov et al.|
2025)11_-] who proposed Safe-EF for constrained optimization. Specifically, they considered the case
where 1 is an indicator function of a convex set @, given as Q = {x € R¢ : ¢,(x) < 0,Vs € [m]},
assuming access to first-order information of all ¢,. Their analysis requires bounded gradients (both
f and g5), which we do not assume here. The goal of our work is to address the general composite
setting for the EF mechanism. We develop novel algorithmic and analytical tools, and we are the first
to obtain matching rates (or any rates) for EF when ¢) # 0. We achieve the

o (Rgo—2 . R2Vlo ﬁmg)

ne2 §2e%/2 de

convergence rate, matching the rates of state-of-the-art EF variants when ¢ = 0.

1.1 THE CLASSIC EF AND VIRTUAL ITERATION

Assuming that ¢ = 0, let us recall the classic EF mechanism and the main tool that is used to analyze
it, the virtual iteration framework (Mania et al.,|2017), to understand its drawbacks. On a high level,
we consider an update rule of the form x;; = x; — %gt, where g; is some estimate of the true
gradient g; = V f(x;). EF provides a way to construct such an g; when the gradient information can
only be communicated after being compressed by the compressor C. We can summarize the basic EF
mechanism in the following (for simplicity, we consider the deterministic and single client setup in
the introduction):

6p =gt — e 8 =C(), er1:=e +8 — 8, Y]
The basic (and essentially the only) tool that people have been using to analyze it is the virtual
iteration framework (Mania et al.,|2017)), which has been the foundation of most of the theoretical
works on EF since some of the first theoretical papers on EF (Stich et al.,2018). We consider the
virtual iterate X;, defined as:

it =Xt + %et.

The key insight here is that e; := Zz;t(gk — gk ), i.e. the accumulation of all the gradient errors,

and the virtual iterate takes the true gradients as the update, i.e. X;11 = X; — % g:, where again,

g: = V f(x¢). This enables the analysis to use the virtual iterate as a proxy for the gradient descent
trajectories.

However, the combination of EF with virtual iteration does not extend directly to the composite
setting. If we still construct g; by Equation (1)) but update via

. . 1
et = angin {h{g,x — ) + 0G0+ 51 - @
x€dom)

then the virtual iterate xX; := x; — h,e; is difficult to interpret, as it may lie outside dom v and thus

cannot serve as a feasible proxy.

To contrast, when 1) = 0 the iterates satisfy

t—1

Xy = X0 —

2=
0>

t—1
K=Xo— 5 ((ng) —et> :
k=0

TFatkhullin et al.| (2021) studied a proximal variant of EF21, which is more closely related to gradient-
difference compression methods. Their analysis applies to the non-convex, full-gradient regime and does not
cover the stochastic case. By contrast, our work focuses on the classical error feedback mechanism in the convex
composite setting with stochastic gradients.

k=0
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so x; is simply the cumulative sum of gradient estimates, and subtracting e; recovers the exact
gradient-descent trajectory. This additive structure is what makes the virtual iterate analysis effective.

When ¢ # 0, however, the proximal step in (Z) introduces distortions at each iteration. The iterates
x; can no longer be expressed as a clean sum of past gradient estimates, while e, remains a sum of
compression errors. This structural mismatch is precisely why the classical virtual-iterate argument
breaks down in the composite case.

1.2 OUR STRATEGIES

Following our discussions above, it is clear that the classical EF mechanism and the virtual iteration
framework need to be modified in order to handle the composite setting. In particular, we need to
restore the simple sum of gradient estimates in the iterates, so that e; can still be used to correct the
accumulated deviations from the true gradients. This reminds us of the Dual Averaging framework,
where the algorithm sums up all the past gradients and take one step from the initial point at each
step. In general, we consider the following update rule:

t

X¢41 = argmin {Zak g, x) +1(x)) + %Hx — X0||2} :
x€edomy

where ay,y; > 0 are some properly chosen coefficients. In this way, the iterates x; are defined

precisely by the (weighted) sum of all gradient estimates ZZ;B argi,. We can therefore consider the

(weighted) cumulative gradient error e; := ZZ;% ar(&r — i) and use it to correct the deviations of

x; from the true gradient trajectory, this time inside the proximal operator:

t
X41 = arg min {Zak gk, X) +¥(x)) — (e, x) + %HX - X0||2}

xedomy =0

t
= argmin {Z ax({gk, x) + ¥(x)) + %Hx — x0||2} .

x€domy k=0

It turns out that this intuitive modification of EF and the virtual iteration framework is precisely what
we need to address the composite setting.

2 PROBLEM FORMULATION AND ASSUMPTIONS

We consider the following distributed stochastic optimization problem:

F*= min |F(x)= f(x)+¢(x)|, where f(x Zf, 3

x€dom)

where x € R? are the parameters of a model that we train. We assume this problem has a solution
which we denote by x*. The objective function F' is a composite objective with the smooth part
f(x) = 1%"" | fi(x) and the composite part 1) : R? — R U {+00}. 1 is a simple proper closed
convex function. We write domt) C R? to be the set where 1) is finite. Each function f; is a local
loss function associated with a local data set D;, which can only be accessed by client i. There are in
total n clients indexed by 7 € {1,...,n}. The composite part ¢) can be accessed by the server.

Let us define the problem class that we consider in this paper. There are two type of agents in this
problem: the server and the clients. The server has access to the proximal oracle for any g, x € R?
and 7y € Ry, defined as arg min, ¢ gomy [(8: x') +¥(x) + 3% - >§’||2]. We assume that each
client ¢ can access only the function f; and only via the stochastic gradient oracle as follows:

Assumption 2.1. For any x € dom), g;(x,£%) isa stochastic gradient oracle for f; at x, where £his
the randomness used by the oracle. We assume that g;(x, £*) is unbiased and has bounded variance:

E[gi(x.&)] = Vfi(x), Ee [|lgi(x,€) — V)] < o> 4)

We consider the distributed setting where the communication from the client to the server is expensive,
and compressed communication is needed to reduce the communication cost. By (contractive)
compression, we mean the following:
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Definition 2.2. We say that a (possibly randomized) mapping C(-,¢): R? — R is a contractive
compression operator if for some constant 0 < § < 1 it holds

E¢ [lIC(s,¢) = sl’] < (1-d)llslI* Vs e R™. Q)
Here ( is some possible randomness used by the compressor. For simplicity, we will often omit ¢ in
the notation when there is no confusion.

In addition, we assume that the cost of communication from the server to each client is negli-
gible (Karimireddy et al., 2019} |Richtarik et al., 2021} |Gao et al., [2024a)), while the client can
communicate to the server with the following two types of channels:

+ Compressed channel: The client can send a compressed vector C(x, () € R to the server, where
C is a contractive compression operator (see Definition[2.2)). The cost of sending one compressed
vector is 1.

* Uncompressed channel: The client can send a vector g € R? to the server without any compres-
sion. The cost of sending one uncompressed vector is m > 1.

When the compressor is the Top-K compressor (i.e. the client only sends the top K elements of the
gradient), then the cost of sending one uncompressed vector in R? is at most ¢/k. In general, given
any d-compression in the sense of Definition , we can combine at most (’)(% log %) compressed
messages to recover an ¢’-compression for any 6’ > 0 (He et al., 2023). In this sense, one can
typically approximate an uncompressed channel with a compressed channel with an O(%) additional
multiplicative overhead. That is, we can typically think of m to be of the order %

In this work, we are interested in minimizing the total (client to server, uplink) communication
cost of the algorithm (for each client). Suppose that throughout the algorithm, each client makes
a compressed communications and b uncompressed communications to the server, then the total
communication cost is a + mb. This is roughly proportionate to a + g. We do not consider the
communication cost from the server to the client (broadcast, downlink cost) since it is typically much
lower than the uplink cost, which is conventional in prior works (Karimireddy et al.l 2019; Richtarik
et al.,[2021}; \Gao et al., [2024a).

Let us now list the assumptions on the objective functions that we make in the paper. First, we make
the standard assumption that f is convex.

Assumption 2.3. We assume that the function f and v are convex, closed and proper over the convex
domain doma.

We also assume that f is L-smooth, which is standard in the literature (Stich et al.|[2018; |Karimireddy
et al.L |2019; Richtarik et al., 2021} |Gao et al., 2024a)).

Assumption 2.4. We assume that the objective function f has L-Lipschitz gradients, i.e. for all

X,y € doma, it holds
IVf(x) = V¥l < Llx =yl (6)

We also assume the following smoothness condition for the local functions f;.
Assumption 2.5. We assume that there exists some ¢ > 0 such that for all x,y € dom(¢)), it holds

1 n
EZHVfi(X) - Viy)l? < £lx -yl @)
=1

Remark 2.6. Note that this is a weaker condition than what many existing works assume, e.g.
(Richtarik et al., 20215 |Li & Richtarik, 2021), where they assume that all f;’s are Ly,,x-smooth. In
contrast, we only require that they are in some sense smooth on average, which is strictly weaker.

We point out that by Jensen’s inequality, we always have that I < /. In the analysis of our main
method, Algorithm 2] we eventually only need Assumption [2.5] However, Assumption [2.4]is still
important for the analysis of the inexact dual averaging framework that we propose, as it does not
presume any finite-sum structure of f.

3 THE INEXACT DUAL AVERAGING METHOD

In this section, we take a step back from the distributed optimization problem with communication
compression that we consider in the rest of the paper, and consider solving a general stochastic
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Algorithm 1 Inexact Dual Averaging

Imput: x¢ and {a;, 7 € Ry }i=0... 0o- ¢ is non-decreasing.
fort =0,1,... do
| Obtain g; ~ g; = g(x¢, &), & is an independent copy of &.

| X441 = argmin, {‘I’t(x) == ZZ:O ap(f(xXk) + (8r, X — Xi) + (X)) + L[|x — XOHQ}

R

composite optimization problem of the form F* = minxedomy [F(x) = f(x) + ¥(x)]. This
perspective allows us to develop the core analytical tool that underpins our later analysis with
compressed communication. Here, we do not assume that f has a finite-sum structure. We make
Assumptions [2.3] and [2.4] for the objective in this section. We assume that we have access to a
stochastic gradient oracle g(x, &) satisfying Assumptlonnbelow

Assumption 3.1. For any x € dom), g(x, &) is a stochastic gradient oracle for f at x. We assume
that g(x, £) is unbiased and has bounded variance:

Elg(x. &) =VI(x), E¢l[llg(x &) - VIXI] <o ®)

We study the convergence of the general inexact dual averaging algorithm, as summarized in Algo-
rithm 1} for solving this problem. The algorithm gets some inexact gradient g, that approximates the
stochastic gradient g; := g(x¢, ;) at each iteration. It uses these gradient estimates to perform a dual
averaging update, with stepsize parameters a; and ;. We assume that ~y; is non-decreasing.

We analyze the convergence of this method from the perspective of the virtual iterates, which are
defined in Equation (9). We note that these virtual iterates are not explicitly computed or stored
anywhere in the algorithm. However, since our convergence analysis will be given in terms of the
suboptimality of a convex combination of or random sample of the virtual iterates, an immediate
question would be how to output such a convex combination or random sample at the end of the
algorithm without explicitly storing and computing the virtual iterates. We will addres this in

Section 311

Let’s write g; := 22:0 argr. We define the following virtual iteration, with Xg = xg:

%01 = argmm{ Zak (g% — x8) + D (x >>+”;||x—><o|2}
x€domp ©
- {900 3 el
Now, we define the accumulative error of the compressions:
e =y an(8r — &) (10)

We first show that the distance between the virtual iterate X; and the actual iterate X is controlled by
the accumulated error e;:

Lemma 3.2. For anyt > 0, we have:

~ 1
% — x:* < ,yTlletHz (11)
t—1

We simply write y_; = o. Note that ey = 0. With this, we can give the main convergence theorem
for the virtual iterates:

Theorem 3.3. Given Assumptions[2.3|and 2.4 and v, > 4a,L, then for any x € domy) and any
T > 1, we have

ajol
E [||e:|” +Z

(12)

> E[an(F(Ree1) = FOON+T5E [flx — %] < Pt x—xo*+L

0
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In addition, we have the following upper bound on the distance between consecutive iterates:

T-1 T—1
+ vi—1 — ai L . 1
SR g V) xers —x0) ) € Fot 5 S (Beod — Bupty)s (13)
t=0 2a 2

where we write 3; = ""_aizt*l

o7 = |Ixp — X0, 72 = ||x¢1 — X¢||? and Fy == F(xq) — F*.
Again, we note that Equation deals with the virtual iterates. When ¢ = 0, typically we can
bound the distance between f(x;) and f(x;) simply by E [|e;||?]. This is however unclear when
1 Z 0. It is possible to directly analyze the behavior of x; without using the virtual iterates at all, but
the analysis obtained that way will be weaker due to the presence of ¢ (see Appendix [[| for a more
detailed discussion, we further comment here that the techniques employed in Appendix [[|can also be
used to obtain an analysis of the proxmial method without dual averaging, albeit with similarly weak
guarantees). It remains an open question whether it is possible to directly analyze x; without using
the virtual iterates and still obtain a result as strong as Theorem [3.3]

In addition, we also obtain an upper bound on the distance betwen x;; and x;, which will be useful
later. Similar upper bounds on the distance between consecutive iterates have been used in many
existing works that applied the gradient difference compression strategies (Richtarik et al.l 2021}
Fatkhullin et al.| 2023} |Gao et al., 2024a), but these are typically upper bounding the individual
distances. Due to the dual averaging strategies, our analysis here is significantly different, and we are
only able to upper bound the sum of the distances.

We point out that controlling the error ||g; — V f(x;)||? is method-dependent, that is, it depends on
how we constructed the approximate g;. Therefore we do not further analyze this term here, and we
discuss this term in more details when we present the analysis of our main algorithm in this work.

3.1 A SAMPLING PROCEDURE FOR THE VIRTUAL ITERATES

Provided that the errors are sufficiently small, Theorem @] allows us to establish the convergence
rate in terms of ,TlT Ez:ol at[F(X¢+1) — F*], where X; are the virtual iterates rather than the real

iterates x;.

Therefore, after T' steps, we would like to return a randomly chosen point among {Xj, ..., X7} with
the probabilities proportional to a;. This can be implemented as follows: at each iteration ¢, we keep

tracks of the accumulated true gradients g; = Zi:o asgs and update g to g; with probability <%

A
and it remains unchanged with probability 1 — This way, at step 7' — 1, g is a random sample

at
A1’

from the set {g¢ }+c(o,...,r—13 With probabilities proportional to a;. Using g, we can easily compute
a random sample X from the set {X;};=1,... 7 as follows:

T-1

X7 = argmin | (g, X) + ¥ (x) Z a; + %Hx — x0l2
xedomy) =0

We summarize this procedure in Algorithm 3]in Appendix [E]

It is easy to show that g is a random variable over the set {g;}scqo,...,7—1} With probabilities
proportional to a;, see Proposition[E.T] As a consequence, we have the following:

Lemma 3.4. The output Xt from Algorithm is a random variable over the set {X; }c[r], where
X; is defined in Equation @]) In particular, we have for any x € dom(v)) (that are independent of
{§t7 Tt}te[T—l])f

T—1
1 N
Erg,ooirro160vro [F(Xr) = F(x)] = Ay > e, er, [F(Ripr) — F(x)] (14)
t=0

4 EControl wiTH DUAL AVERAGING

In this section, we apply the general framework discussed in Section [3| to the particular case of
distributed optimization with communication compression. In such a setting, the stochastic gradient in
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Algorithm 2 EControl with Dual Averaging

1: Input: Xoﬂ%ed =0,8" , = Vfi(x0,&).

2: fort=0,1,... do

3: Server:

4: Sample 7; = 1 with prob. = and 7y = 0 otherwise. Send 7; to all clients.
5: clients: . . ‘ 4 4 4

6: g = V fi(x¢,&;) where &} is independent copy of £'. g} = g} + g}

7: g' = g if 7 = 1 otherwise g' remains.

8 | di=gl—gi | —nel, Al =C(5,¢}) where (} is independent copy of ('
9 | &i=8&_1+AL e =ei+8 —g
10: | send A! to the server
11: server

12: | G =81+~ > Al

13| xpq1 = argming {®(x) = 20 (f(xs) + (&8s, X — Xa) + P(x)) + F [[x — x0[*}
14: client: send g’ to the server
15: server:

s lym i
16: g =722 18
17: X = argmin, {(g,x) + (7 + 1)¥(x) + L ||x — x0||?} where 7 is the last ¢ s.t. 7, = 1.

Assumption[3.1]is the average of the stochastic gradient of each client ¢, which follows Assumption[2.T}]
2 . . . . ~ .
Therefore, Ué = 2- where n is the number of clients. Now the gradient estimate g; is the average

of g where each g! is each clients’ estimate of its local gradient g! := g(x;,£}), which can be
communicated to the server using compressed communication channels.

The sampling procedure in Section [3.1]can be easily implemented in such a setting. The variables
g: and g do not need to be maintained and communicated by the server throughout the algorithm;
instead, we can simply ask the workers to maintain their local g} and g°, using the same random bit
7¢ (which costs 1 bit of communication). At the end of the algorithm, we use one full communication
round to collect the local g° and compute the output X7. In total, the above procedure costs exactly 1
round of full communication plus one extra bit in each of the 7' communication rounds.

Now, as the main focus of this section, we present a specific mechanism of generating the g; ~ g,
the EControl method (summarized in Algorithm [ in Appendix [G), using mainly compressed
communication channels. We assume that a; = 1 for all £. For simplicity, in this section we also
assume that v, = «y for all ¢ for some constant v > 0. In Appendix [H} we present a more advanced
analysis of Algorithm l 4| that handles variable ~;. The variable steps1ze analysis for EControl
mechanism is unknown prior to this work due to the complexity of 1 parameter in EControl and
we have to employ a scaling/rescaling strategy in the analysis to handle it. We slightly modified
the presentation from (Gao et al} [2024a) to suit our setup better. We can put Algorithms|T} [3|and 4]
together to get our final algorithm, EControl with Dual Averaging, summarized in Algorithm [2|(see
Appendix [F| for a more detailed walk-through of the algorithm). We highlight the EControl module
with green color.

We note that the specific behaviours of the EControl mechanism has been analyzed in (Gao et al.|
2024a) under the condition that ¢ = 0. Here we present a more systematic and hopefully cleaner
analysis. We simply bound the sum of errors by the average of stochastic gradient differences. We
note that the following upper bounds are entirely the consequences of the EControl mechanism,
independent of the specific properties of the objectives and oracles.

Lemma 4.1. Let n= m, then:

T T2

; 81(1 —6)*(1+v1—0)*
ZHetHQS 951 ZHgtH gl
t=1

T—1
> llg — il?
t=0

(15)

IN

360~ )(1 + Z”gt—H gtH2
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Remark 4.2. We point out that in the analysis of the classical EF mechanism, upper bounding
L5 |lel||? relies on upper bounding + =7 ||V f;(x;)||?, which leads to the data heterogeneity
assumption, but more importantly, requires upper bounds on ||V f(x;)||? in terms of the function
residuals. When ¢ = 0, this follows directly from the smoothness of f. However, in the composite
setting, this is no longer possible unlesss V f(x*) = 0, which is not true in general. In contrast,
EControl uses the gradient difference compression technique to obtain a better handle on the errors
and we only need to upper bound £ 3" [|gi; — g}||?, which again can be done via Assumption
and Equation (T3).

Next, we invoke the specific properties regarding the smooth objective f and the stochastic oracles,
and apply Theorem to get an upper bound on the sum of ||g;, ; — g; 2 and consequently, an

upper bound on the sum of ||e¢||2.

Lemma 4.3. Given Assumptionsand t0 and let n = m, vz 24}/@, then

we have: )
I ; 21 8062 )
; o ;]E [”gt—H — gl ] < WFO +TTo (16)
Therefore, by Lemmald.1| we also have
1 5760£2 4536T o2
= Z [llet]|] Fo+ — (17)
— o

Finally, combining all of the pieces in Sections 3] [3.I]and ] we can give the overall convergence
guarantee of our final Algorithm 2]

Theorem 4.4. Given Assumptionsto and setting a; = 1,y =, and

s
= 3/Ts(1+v10)
taking one initial stochastic gradient step from X to x(, if  Z 0 and setting

_ 24V20  [To? 17T/20'/26"
7y = max 5 nRg’ R3/354/3 )

16R20%  561R2V{lo  96v/2(R2
ne? 52e%/2 de
iterations of Algorithm[2|to get E [F(x1) — F*] < e.

then it takes at most

T =

In particular, this means that with three rounds of uncompressed communication (one for the initial
stochastic gradient step, one communicating &_1 and one communicating g), and T’ rounds of
compressed communications, Algorithm 2| reaches the desired accuracy. Assuming that the cost of
sending compressed vectors is 1 and sending uncompressed vectors is m, it costs at most

16R%20%  561R2Vi0c  96v/2(R3
ne? 52/ de
in communications for Algorithm[2|to get:

E[F(Xr) — F*] < e.

+ 3m

Remark 4.5. In the statement of Theorem [4.4] we let the algorithm take one initial exact stochastic
gradient step in the composite setting. This comes from the fact that we need one gradient step in the
composite setting to upper bound Fy by LRZ (see Lemmau This is satisfied automatically in
the classical unconstrained setting. Without the extra initial step, the algorithm would still converge
(with properly chosen step size) but the rate would additionally depend on Fj (though it would still
be a desirable (9( —) term). We refer to Appendix |G| for more details.

5 EXPERIMENTS

In this section, we present some experimental results on a synthetic softmax objective with ¢; regu-
larization to complement our theoretical analysis. Details of the experimental setup (including data
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(a) Achieving linear speedup. Performance of (b) Virtual Iterates vs Real Iterates. The perfor-

EControl with Dual Averaging ith increasing num- mance of the virtual and real iterates of EControl
ber of clients n. We fix y to be 0.0001. The error with Dual Averaging. We see that the virtual iter-
that the algorithm stabilizes around decreases as n ates and real iterates perform similarly.

increases.
Figure 1: Synthetic regularized softmax objective

generation) and an additional experiment on the FashionMNIST dataset can be found in Appendix
All our codes for the experiments can be found at this anonymized link.

The softmax objective with 121 regularization is given as:
min, cpa {F(x) = ulog (Zle exp {WD + )\Hxﬂl}, where p controls the smooth-
ness, and we set it to ;¢ = 0.1. We set the regularization parameter A = 0.1. We set the dimension

d = 200 and the total number of samples k = 2048. We simulate the stochastic gradient by adding
Gaussian noise to the gradients. We use Top-K compressor with /4 = 0.1.

Linear speedup with n: one of the key characteristics of EF-style algorithms is that the leading
(stochastic) term in its rate improves linearly with the number of clients n and is §-free. We prove
that EControl with Dual Averaging does satisfy this quality—with the catch that the theory only
applies to (the random sample of) virtual iterates. Here we verify this property experimentally for the
real iterates directly. We fix 2 = 25 and a small enough  to be 0.0001, and increase the number of
clients n. The results are summarized in Figure[Ta] We see that the error that real iterates stabilize
around decreases linearly with n, verifying the linear speedup for real iterates as well.

Virtual iterates vs real iterates: while we can do the sampling procedure to obtain convergence in
terms of the virtual iterates, this is ultimately still somewhat clumsy in practice. The real iterates,
on the other hand, do not enjoy theories that are as good. Here, we compare the suboptimality of
the virtual and the real iterates. We use o2 = 25. The results are summarized in Figure We see
that the virtual and real iterates perform almost identically in the suboptimality. This suggests that
the real iterates might also be amenable to a strong theory; future work might explore refining our
analytical template in Appendix [[|to achieve this, or construct lower bound examples to demonstrate
a gap between the virtual and real iterates.

6 CONCLUSION

In this work, we addressed the open challenge of combining error feedback with composite opti-
mization. We showed that the classical virtual-iterate approach breaks down in this setting, as the
composite update destroys the additive structure that underpins its analysis. To resolve this, we
introduced the first framework that integrates error feedback with dual averaging, which restores the
summation structure and enables control of accumulated compression errors. Our analysis extends
the theory of error feedback to the convex composite case and recovers the best-known results in the
unconstrained setting when ¢ = 0.

Looking ahead, our inexact dual averaging analysis provides a versatile template for problems where
iterative updates are distorted by approximation, noise, or constraints. This opens up promising
directions in domains such as safe reinforcement learning, constrained distributed optimization, and
large-scale learning under resource limitations. An exciting avenue for future work is to connect our
approach with recent efforts that aim to simplify error-feedback methods for practical use, potentially
leading to more robust and scalable communication-efficient algorithms.
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A  RELATED WORKS ON ERROR FEEDBACK AND COMMUNICATION
COMPRESSION

In this section we survey some most relevant works on EF. We note that while there’s a rich body of
literature on EF in the uncomposite setting, the extension to the composite setting is less developed.
Stich et al| (2018)); [Alistarh et al| (2018)); [Karimireddy et al.|(2019) were among the first to explore
the theoretical properties of the practical EF mechanism proposed by |Seide et al.| (2014), but their
analyses are restricted to the single-client setting. Under certain forms of bounded data heterogeneity
assumption (e.g. bounded gradient, bounded gradient dissimilarity, or bounded local objective gap

at optimum), [Cordonnier] (2018)); [ATistarh et al.| (2018)); [Stich & Karimireddy| (2020) extended the

analysis to the more realistic multi-client settings. But these data heterogeneity assumptions are
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Figure 2: Superior performance Comparison of the performance of EControl with Dual Averaging, proximal
EF, and proximal EF21 on the FashionMNIST classification problem with ¢; regularization. We use Top-K
compression with § = 0.1. We see that EControl with Dual Averaging significantly outperforms the other
methods.

indeed very limiting factors. These theories were further refined in (Beznosikov et al., [2020; |Stich,
2020).

Another line of work parallel to the classic EF variants is the gradient difference compression mech-
anism. Mishchenko et al|(2019) added an additional unbiased compressor for gradient difference
into the EF framework to address the issue of data heterogeneity and obtained the DIANA algorithm.
Another of follow-up works include |Gorbunov et al.| (2020); Stich| (2020); |Q1an et al.| (2021}, and
culminated in the EF21 algorithm (Richtarik et al., 2021). The EF21 algorithm, though comes
with EF in its name, is purely a gradient difference compression mechanism, and is the the first to
fully support contractive compression in the full gradient regime. However, it is not compatible with
stochastic gradients and leads to non-convergence up to the variance of the stochastic oracle. This
was later addressed by adding momentum in |Fatkhullin et al.|(2023), or by a more careful blend of EF
and gradient difference compression in|Gao et al.[(2024a)). The latter work proposed the EControl
mechanism, which is the basis of Algorithm|in this paper.

All of the above focuses on the uncomposite setting, and their extensions to the composite setting
remain largely unexplored. Notably, Fatkhullin et al.| (2021) analyzed a proximal version of EF21,
but only in the nonconvex and full gradient regime. In the convex regime, it is believed that the
convergence of proximal EF21 critically relies on the bounded domain assumption, which we do not
assume in our work (Islamov et al.,|2025). More closely related to our work, Islamov et al.| (2025)
analyzed a variant of EF, called Safe-EF, when 4 is an indicator function of some convex set Q).
Their analysis requires that the constraint set () be described as an intersection of sublevel sets of
functions, with first-order information of these functions available. Under this structural assumption,
their method blends updates in the direction of both the objective and the constraint functions,
enabling the virtual iterate to account for constraints. While this represents an important innovation
in adapting EF beyond the smooth case, it does not directly extend to the more general composite
objectives. Safe-EF also assumes that the stochastic gradients are bounded, which circumvents the
issue of upper bounding ||V f(x;)||? in the smooth case.

B ADDITIONAL EXPERIMENTS AND DETAILS

In this section, we provide some additional experimental details for our experiments in Section[5} and
an additional experiment on the FashionMNIST dataset.

B.1 SYNTHETIC SOFTMAX OBJECTIVE

We generate the data {a;, b;} randomly, following [Moshtaghifar et al.| (2024): we generate i.i.d.
vectors &; whose entries are sampled from [—1, 1] uniformly at random. Each b; is generated the

same way. This leads to a preliminary objective f. We then set a;, == a; — V f (0). The resulting
{a;, b;} gives us the desired objective f with O being the minimizer.

For the experiment comparing the virtual and the real iterates, we perform a grid search for the
stepsize parameters over % € {0.1,0.05,0.01,0.005, 0.001, 0.0005, 0.0001 }.

13
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B.2 REGULARIZED FASHIONMNIST CLASSIFICATION

We now consider a logistic regression problem with ¢; regularization on the FashionMNIST
dataset (Xiao et al., 2017). We set the regularization parameter A = 0.001. We compare the
performance of EControl with Dual Averaging against the proximal EF and the proximal EF21
methods. Following our synthetic experiments, we choose to evaluate the performance of EControl
with Dual Averaging directly with the real iterates. We split the FashionMNIST dataset into n = 10
clients, and distribute half of the dataset randomly to each client, and assign the rest of the dataset
according to their labels, i.e. data with label ¢ is distributed to client :. We use Top-K compressor
with K/q = 0.1. We use batch size 64. We perform a grid search for the stepsize parameters over
% € {0.1,0.01,0.001,0.0001}. The results are summarized in Figure We see that EControl with
Dual Averaging significantly outperforms the other methods. In additional, we note that EControl
with Dual Averaging admits a much larger stepsize than the other methods, which might explain its
superior performance.

C AUXILIARY FACTS AND RESULTS

In this section we collect some auxiliary facts and results that are useful for the analysis of our
algorithms. The first one is a simple fact regarding the square of the norm of a sum of vectors.

Fact C.1. For any v1,...,7yr, we have:

T T
1> %l < T el (18)
t=1 t=1

The next lemma upper bounds an exponentially weighted sum of positive sequences:

Lemma C.2. Given a sequence of non-negative values {cv }e[r—1], and some other sequences
{ut }reqr—1)- If there exists v € (0, 1) such that the following holds:

arp1 < (1 =By +ug, =0, (19)

then we have:

1 T
FZ uf (20)

QNI

t
1
a?—u < B Z(l
k=0
Proof. Since ayp = 0, we have:

t
a1 < 2(1 - B)*
k=0
Squaring both sides, and applying Jensen’s inequality, we have:
1
04?+1 < S Z(l
¢ k=0

where S; := 3" _,(1 — B)'*. It’s easy to check that S; < %
Equation (20). Now summing this from ¢t = 0 to T', we get:

Zat+1 < Z Z )~ k)uka

k=0 t=k

and therefore we get the first part of

Note that Zf: L= )k < %, and therefore we get the second part of Equation l| O

Now we show that one gradient step will lead to an upper bound on the objective value.

Lemma C.3. Let f be convex and L-smooth, and x¢ € dom(v) and gq satisfying Assumption
consider x{, defined as the following:

xj, = argmin [ £ (xo) + (g0 X — Xo) + () + 5 [x — x|’

14
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then for any y € domy and ||y — %¢||*> < R?, if we choose ~yo = max{2L, %}, we have:

R
E[F(x)) — F(y)] < LR® + 7; JE [ly — xp]%] < 2R? @1)

Proof.
F(x0) + (g0: % = x0) +1h(xp) + 5 x5 = xll” + 1y — x5
<F(x0) + (80 = %) + U(¥) + [y — xoll
=f(x0) + (Vf(x0),y — x0) + ¥(y) + %Hy —xo||* + (g0 — V/f(%0),y — Xo)

<F(y) + 5y = %ol + (80 — ¥ (x0), ¥ — x0)

On the other hand, we have:
o Y0
f(x0) + (g0, X0 — Xo) + 1(xg) + 5||X6 —xo* + EHY - x|1?

= F(x0) + (V£ (x0), %) = Xo) + 1(x5) + (g0 — Vf(x0),X§ = x0) + 1 = xol|” + 2 lly = x5
Y — L
2

Yo — 2L 0
T Ixo— xol|* + 5y = xq?

Y0
>F(xq) + (80 — Vf(%0), X0 — Xo) + I — xoll* + o lly = xq[”

, 1
>F(xq) — %Hgo — Vf(xo)|I* +

Putting these together, we have:

70 Yo — 2L Yo 1
F(Xf))—F(Y)‘F?||y—X6||2+7HX/o—Xo||2 < 5||y—xo\|2—|—%||g0—Vf(x0)||2+<go—Vf(xo),y—x0>

4

Now by Assumption[3.1] we take the expectation and get:

1 2
E |—|lgo — Vf(x0)]|I” + (80 — Vf(%0),y —X0)| < —
Yo Yo

Therefore, assuming that vy > 2L, we have:

E[F(x.) — F EE — x"1? <ER2 12
[F(xy) = F(y)] + DE [y = xp/1%] < TR+
Yo

Now we pick 7o = max{2L, %}, then we have:

In addition, we have:
E [||y — xg\ﬂ <R>+ 27302 < 2R?

D ANALYSIS OF INEXACT DUAL AVERAGING

In this section we give the missing proofs for the analysis of Algorithm[I} We first introduce the
following notation:

Of = By(Xep1), Pf = Dy(Xes1),
the optimum of the virtual and real subproblems at ¢.

We now present the proof of Lemma 3.2}
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Lemma 3.2. For anyt > 0, we have:

- 1
1%e — x¢]|* < ——Ilex|? (11)
t—1

Proof. By the definition of @t, ®, and x;, we have:

X¢41 = argmin {&)t(x) + <et+17X>}
xE€dom(v))

Therefore, we have for any x € dom(¢)):
Bo(x) + (e1,%) = Belxr1) + (ers1, %) + o [x — Xt
> @+ (err i) 4 x = e+ %1 — e |
Now plug in the choice x := X1, we have:

(€141, K1 — Xe41) = Ve[ Kew1 — Xeq |2

Note that we have (€141, X¢+1 — Xpr1) < ||€c1||||Xe+1 O

We now present the proof for Theorem 3.3}

Theorem 3.3. Given Assumptions[2.3|and[2.4and ~,_, > 4aL, then for any x € dom) and any
T > 1, we have

T—

ZEat (Rer) = PO 15 E [ — 7] < 75 E [letI’]

) (12 >_

In addition, we have the following upper bound on the distance between consecutive iterates:

T-1 71
+ -1 —aL .
> (WT? + (& — Vf(xe), xe41 — Xt>) <Fo+5 Z Bip} = Bepia), (13)
t=0 t
where we write B = 1=11=2 52 = ||x; — x¢|%, 77 = ||x¢31 — x¢||? and Fy := F(xq) — F*.

at

Proof. By the definition of X;, we have for any x € domz):
Bi(x) = &f + L llx = Koo

‘We also have:

t t

Bi(x) = 3 an(f ) + (V) x —xu) +9(x) + > anlge — V()% — xi) + 2 [xc — xo]?

2
k=0 k=0
(i) & :
< 2 owF 00+ 3 ol — VS 0x)x ) + = ol

where in (7) we used the convexity of f. Note that the gradient noise g — V f(xy,) is independent of
x — Xy, for fixed x independent of the algorithm (in particular, for x*). Therefore, taking expectation

on both sides:
t
Ee,....c [B1(%)] < ;OakF(x) + 2o ?
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Now by the definition of X;, we have:

OF = By 1 (Xps1) + ar(f(xe) + (VF(xe), K1 — Xe) + (XKey1))
+ai(ge — VF(xt), X1 — Xe) +

Yt — V-1~
g — 0
9 =, V-1~ ~ 12 ~ ~
> 7+ 9 X1 — Xe||” + ae(f(xe) + (VF(xe), X1 — X¢) + P (Xeg1))
+ (g — VIxe), K1 = xi) + L Rt — o
(@) ~ L _ N _ L
> Op + %thﬂ = %¢|1? + a(f (RKeg1) + 0 (Xeg1) — 5\\Xt+1 —x¢)?)
+ai(gr — VI(xe), Xep1 — x¢) + Je T et
> (5:_1+’Yt71

B [[%e+1 — o]
2

1K1 — X2+ ar(F(Xey1) — Ll Xes1 — %e))? — LIXe — x4)1?)
+a(gr — VI(xe), Xep1 — X¢) +
(v) ~

Yt — V-1 Hit-&-l —XOH
2
_1—2a;L
2 q)z(il_"_ Yt—1 ag

5 [Xet1 = Xel|* + @ F(Res1) — @ L)% — %2
+ai(ge — VF(xt), Xe41 — Xt)

where in (i7) we used the strong convexity of @, and in (iii) we used Assumption In (iv) we
used Young’s inequality and in (v) we used that assumption that +; is non-decreasing.Note that the
gradient noise g; — V f(x;) is independent of x; and X;, we have:
E &)* T x Yt—1 — 2atL ~ ~ 2 ~ ~ 2
e |Pr10s - | 2 Be, |P7 g + 3 1Xe11 — Xel|” + ae F(Xeq1) — ar L% — %47 [0,
+ a:Be, [(g8¢ — V f(xt), X1 — X¢) o,
~ —1—4a
> R, {q):_l 4 o1 T s

"'7£t1:|
6]
L~ 02 = = 2
1 [Xe4+1 = Xe || + @ F'(Xe1) — aLl| % — x¢]|%[€0,
a2o?
Yt—1

. a§t—1:|

Now rearranging and summing from ¢t = 0 to 7' — 1, and using the law of total expectation, we get:

T-1

~ Vi1 —4ar L - ~
> ailBey er [F(Xtﬂ) + f”xﬂrl - Xt||2}
t=0

T-1

rer S t=o t—1
= YT-1
S]E‘E()wwséT—l [(I)Tfl(x)} - 9 E
T-1

€0,--6T—1 [HX - iTHQ]

+ LY ale, e, (1% — x|

T—1
afoé
1+

t=0 =0 11

T-1

Yr—1 2 IT-1
< F _ _
7;:0% (x) + 5 Ix — xo|

9 EEO ,,,,, Er—1 [||X_§T||2]
T-1 T-1 2 2
~ 2 4t9g
LY ke, e, (IR —x*] +
t=0 t=o Vi1
Rearranging, we get the desired result.
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~ Yi—1 — 4da L . ~ Yr—1 ~
> By [@F i) = )+ P2 R~ %l + o [l %]
’YT 1 -« = 16@02
=0l + LY ey, 1% — ] + 3 2L
t=0 t—o Jt-1

For Equation (T3), by definition of x;, we have:

OF = Broa () + an(FO00) (B X — X0+ U(x40)) + T g = o
2y T () + (B — ) k) + L o
=07, + b||Xt+1 —x¢|? A ar(f(xe) + (VF (%), Xep1 — Xe) + (8 — VF(Xe), Xeq1 — Xe) + 1(Xe41))
T e = ol
a4 M P (POx) + (8~ TG %1 )+ T i —

2
where in (vi) we used the strong convexity of ®; and in (i) we used Assumption[2.4]

2

Again by the definition of x;1, we have:

(viii)

O+ Llxe = xil? < @ulx)

Yt — V-1

= @iy +aF (%) + =

2
lx¢ —xol%
where in (viii) we used the strong convexity of ®; 1.

Putting these together, we have:

Ve + Ye—1 — az L Y& — V-1

%41 — Xe[|” + ap(F(xp41) + (8 — VF(Xe), X1 — Xe)) + [ x¢41 — xol|?

’ 2
<aF(xi) + L e — o
Now divide both sides by a; and sum from ¢t = 0 to 7" — 1, we have:
S T-1
Yo+ i1 —all X )
Z <tf2at"|xt+1 = x4||* + (& — Vf(x¢), X441 — xt>> < F(xq)— +§ (B2 —Bep?,r)
= t=0

O

E SAMPLING PROCEDURE FOR VIRTUAL ITERATES

Algorithm 3 Sampling Procedure for Virtual Iterates

1 g7g0 =
2 fort:O,l,t..1 do
Atfzs:oas

Sample 7, = = 0 otherwise.

3
4
5: Obtain g; ~ g; = g(x, ft)
6:
7
8

8t = 8t—1 + a8y ' '
g = g; if 7 = 1 otherwise g remains.
: Update x;41
9: X = argmin, [(g,%) + ¥(x)Ar 41 + L |lx — x0||?] where 7 is the last ¢ such that 7, = 1.

10: A‘r+1 = Z;—:O at

18
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In this section we prove the missing results for the sampling procedure for the virtual iterates in
Section[3.1] We first summarize the procedure for clarity as Algorithm 3]

Now a simple proposition regarding the sampling procedure. This is folklore knowledge and the
proof is taken directly from (Gao et al.l 2024b).

Proposition E.1. Given a stream of points {x;,}32, in R? and positive scalars {hy}3,, we can
maintain, at each step k > 1, the random variable X, where t(k) is a random index from

{1,...,k} chosen with probabilities Pr(t(k) = i) = }}k i=1,...,k where H; := Zle h;. This

requires only O(d) memory and computation.

Proof. We maintain the variables X;, € R? and H;, € R which are both initialized to 0 at step k& = 0.
Then, at each step k > 1, we update Hy < Hy_1 + hi and also, with probability IZ—’;, we update
X < X (or, with probability 1 — I%’ keep the old X, = X;_1). The memory and computation
costs are O(d). Note that, for any 1 < i < k, the event X, = x; happens iff X was updated at step 4

and then not updated at each step j = ¢ + 1, ..., k. Hence, for any 1 < ¢ < k, we have
hi T h\  hi Ty H; hi
szi:i‘ 1-2)==. Il - O
ve=xi) = |1 ( Hj> a1l H, ~ H
j=i+1 j=i+1

F DESCRIPTION OF FULL ALGORITHM

In this section, we describe Algorithm 2] in more details for clarity. The algorithm combines
Algorithms [T) and [3]and Algorithm []together.

At each iteration, the server samples a bernoulli random variable 7; to decide whether to update the g’
vector, the cumulative gradient sample for all clients. The clients then proceed to compute their local
stochastic gradient g?, and add it to their local cumulative gradient g¢. If 7, = 1, the client updates
its cumulative gradient sample g’ to g!, otherwise it remains unchanged. Then the client make the
EControl update, where it updates the local error € ; and the local gradient estimate g;. The client
then sends the compressed local gradient difference Al to the server. Now the server collects the
gradient differences A? from all clients and updates the global gradient estimate &; and makes a dual
averaging update to the primal variable x; ;.

Finally, the server collects the cumulative gradient samples g* from all clients via a full communication
and computes g. The final output is then computed using g so that it becomes a random sample of
the virtual iterates (which are not explicitly computed and stored).

G ANALYSIS OF THE EControl MECHANISM

Algorithm 4 EControl

1: Input: X0, 1, eé = Oa gil = Vfi(x()agg))'
2: fort=0,1,... do
3: clients:

4 | gl =gi(xs, &), & is independent copy of ¢!
50| 0 =g} — &1 —nej, Ap =C(0))

6: gi = ggﬂ + AZ‘, ]

7| e =e 8 g

8: send A} to the server

9: server

100 | Ay=1%0 Al

11: g =81+

In this section we present the missing proofs for the analysis of Algorithm[2] For ease of understanding,
we also summarize thet EControl mechanism in Algorithm 4]
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Again, we remind the readers that for now we restrict ourselves to the setting where a; = 1 and y; = 7.
Please refer to Appendix [H|for more details on the case where ~; is changing (and non-decreasing).

2. both in terms of the sum of

We first present an upper bound on each sums of ||e}|? and ||g} — g}
gt — gt

Lemma 4.1. Letn = then:

s
3v1=3(1+1/1-0)’

T T—-2

; 81(1 —0)%(1 ++/1—-0)*
Z\Ietllzé ZHgm gill’,
t=1

264
(15)

T—1 T—2
< i 36(1 — )(1 ‘|' V1—9)?
> llgi — il < legm gil?

Proof. By the definition of e}, we have:
€1 =8 —gte =& 1 TA —g +e; =4 -0+ (1-1ej,
Therefore, by triangular inequality, we have:
letall < (X =mlletll + 1A} — 61l < (1 = n)llejll + v1 = 8]a3l,
where in the last inequality we used the definition of the compressor. Now by Lemma|C.2] we get:

T

; 1
> llel? <
t=1

s

Next we note the following:
5§+1 = g§+1 -8 - 779%4-1
=g —& — (& —g +e) T8 8
= (1+n)(gt — &) —ne; +8ip1 — &
= (1+n)(6 — A} + net) ne; +8ii1 — 8
= (1 +m) (0 — A} +1°e; + g1 — 8-
Similar as before, we now apply triangular inequality and definition of the compressor and get:

168411l < (1 +m)VT =016, 1l +n*lle]l + llgir — gl

Let’s write =1 — (1 +n)v/1 — ¢ . Now we apply Lemmamagain and Young’s inequality, and
note that 3 = 0, we get:

i2 < Q2 i 012
ZII5 "= 3 Z nlledl® + llgt i — gtl*)-
t=0

Now we plug in the upper bound on the sum of ||ef|| (and note that e}, = 0):

2T3

ZWIIQ 20— ) ZW ﬁQantH gl

Rearranging, we have:

Z||5z”2 2 Z||gt+1 gt”

Therefore, we have:

2 o ( 5
ZHetH = B2 )t & Z |gt+1 gl?
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Next, we note the following:
g —gi = Al — (g — &1 —ne}) + e}
= A} - &, +nej

Therefore, by Young’s inequality, we have:

T-1
> llsi —ell? < 2(1 - ZIWII2 + 20 leetll2
t=0

A N Y R ) 2 Z||gt+1 gt”
p t=0
For the choice of n and 3, we choose 3 = QMU- Since =1 — M(l +n), we have:
_ 1) B 20
T 3o+ vio) h= 31+ v1-9)
Putting this back, we get the desired results. O

Lemma 4.3. Given Assumptionsand to and let n = m, v 2> 243/@, then

we have: oy
—~ 1 ; ; 8042
EZ]E [”gt+1 _gtH2] F0+7T 2 (16)
t=0 ' i=1
Therefore, by Lemma[.1} we also have:
T—1 n
1 576002 4536702
— E < F 17
252 [letl] < =5 —Fo + — (17)

Proof. For simplicity, let’s write 77 = ||x¢+1 — x¢||>. By Assumptions [2.1{and 2.5| we have:

T—1 1 n ‘ ) T—1
~> Elllgiy —ill’] <262 Y E[rf] + 470
t=0 ' i=1 o
Therefore,
n 36( )(1+ /72T—21 n . .
Z ZE ‘ gt” 52 ZEZE |gt+1_gt”2]
i= t=0 ' i=1
2(1 — — T2 _ —5\2 2
- 7202(1 = 8)(1 4+ v/1—10)? S E[] + 1447(1 = §)(1 + /1 = 6)%0
02 52
t=0
28802 2 576T o2
=52 E [Tﬂ + 52
t=0
By Theorem@ we have:
9 — L T—2
Z 9 Tt + Z gt Vf(xt) Xt41 — Xt> < F(XO) F(XT)
t=0 t=0

Therefore, we have:

Z 2] <E[F(x) — F

S

5’\*
HHM

—1
E[llg: — Vf(x:)[?]

T—

1 2T o2
<EI[F t § E [||g: — g
< E[F(x0) - )]+ P IIgt gl ]+ n
T—2
288¢2 578T o2
<EI[F -F = E[r2] + ——
< E[Fxo) = Foer)] + =5~ 2 [re] + 52
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Now assuming that v > 247‘/55, and rearranging, we have:

Y E[rf] < %E [F(x0) — F(xz)] + 128570

2A/2
t=0 J 7
Therefore,
=1 . o1 8002 257002T o2 )
25 i:1IE (gt — gillI’] < 9y EF(x0) = Flxr)] + — 53— + 4T

O
Theorem 4.4. Given Assumptionsm@ and setting a; = 1,y =, n = m, and

taking one initial stochastic gradient step from x to x{, if 1) Z 0 and setting

B 24V20  [To? 17T/20'/26"
Y = max S 5 nRg; R(Q)/364/3 )

16R20%  561RZV/io  96V/2(R3
ne2 52e°/2 de
iterations of Algorithm2]to get E [F (xr) — F*] < e.

then it takes at most

T =

In particular, this means that with three rounds of uncompressed communication (one for the initial
stochastic gradient step, one communicating &_1 and one communicating g), and T' rounds of
compressed communications, Algorithm|2|reaches the desired accuracy. Assuming that the cost of
sending compressed vectors is 1 and sending uncompressed vectors is m, it costs at most
16R%20%  561R2Vioc  96v/2(R3
ne? 52/ de
in communications for Algorithm[2)to get:

E[F(xr) — F*] <e

+ 3m

Proof. For simplicity of notation, let’s write F} = F(X;) — F(x*).
By Lemma and Theorem we have, when v > 247‘/@:

!

—1 n

1 'yRO L 1 o?
T 2 E[F1] < 5T ﬁ; [llet 1] Wl
R? 5760€2 4536Lo% o2
= 72TO sorp 10T —aer oo
gl gl n
_ 24v3¢ ULV PR 3755 o17V/3L 3% .
Now we choose 7 = max { =, e o i , we have:

XT: E[F) mRO 11L1/4£1/2F5/4R§)/2‘+ R20®  21R)’L'*0%
s i = 20T onT 27%/35%

Therefore, after:

8R202  99RIVILo | BURY 1LY 2R R
2ne? §2e%/2 de de ’
iterations of Algorithm 2] we have:

T =

1 T
TX;E[Ft}ga
t=
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Note that this already gives us the desirable convergence rate. We can further simplify the above
rates and remove the dependence on Fj by taking one additional stochastic gradient step initially to
get x),. By Lemma we have E [F(x)) — F*] < LR? + £92 and R} = E [||x) — x*||?] < 2R3.

V2
Therefore if we start our algorithm at x{, then we have:

yR%  57600*R%2  4073(3Roo  4536(0% o2
— E | F; < - - —.
T Z [Fea] < T 34T + 384T + 244 + yn

t=0

Note that for the third term, we have the following due Young’s inequality and the assumption that
v > 24V/2¢.
= S .
407303 Roor < 407304 R3 40730202 _ 4073(*R3  61(0?
384T T 29354T 29364T —  29304T ~243
Therefore, we have:

T-1

1 YR TT9TCARZ 4597002 o2
N E[F4) < .
P L A LT

Now we pick:

7 24v20  [To? 17T"/20'26"
V= max § 7\ nR% R3/364/3 ’

24{ ERU R202  17RJ*0'/26%*
T ZE [Fi] < nT %36/

and we have:

Therefore, we need only.

T_16R302 561R2Vl0  961/2(R?

ne? 52e°/2 de
iterations.
O
H EControl WITH VARIABLE STEPSIZE
Consider Theorem [3.3] when the stepsize 7, is changing, we have to upper bound the sum of lle* I
t—1
This extra weight has to be handled directly in the analysis.
_ b .
Lemma H.1. Let n= m, we have:
T | T—2 | 4
3 lezl|* _ 81(1—0)*(1 +v1—0)* Z Hg£+1 gill”
Y1 T 20 ’
t=1
(22)

T—1 |~ i T—2 i
3 & —gtl* _ 36(1—9)(1+ v1—6)” > lgis1 — il
- 50°

1
t=0 Tt t=0

Proof. By the definition of e} ;, we have:
e§+1 =g —g te =8 +A —g +ef=A; -6+ (1-ney,
Therefore, by triangular inequality, we have:
letall < (X =mlletll + 17 — 8l < (1 = n)llejll + v1 = 8]ld I,

where in the last inequality we used the definition of the compressor. Now divide both sides by 772,
and noting that y; > 7.1, we have:
el e! V1 =46
| t—;lH <(kmll ill [0zl

o ora oram
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Now by Lemma|C.2] we get:

Z leill” _ 1- Z l9211*
=1 Vi —o Vi1
Next we note the following:
5§+1 = g§+1 — 8 - 7le§+1
=g —& — (& —g +e) T8 8
= (1+n)(g: — &) —ne; + gt — &
= (L+n)(8; - A-Hwﬁ e+ gii1 — 8
= (L+n)(6; — AY) +n’e; + g1y — gt
Similar as before, we now apply triangular inequality and definition of the compressor and get:
188 ll < (1 +m)VI=SlI6E] +n*llet]l + gty — gtl-
Again, we divide both sides by 47 and note that vy, > v;_1:
|I52§;1H <a+ )ﬁllézll n2!eill L gt - gill
Vi ’Yt 1 Yi-1 i

Let’s write 5 =1 — (1 +n)v/1 — . Now we apply Lemma again and Young’s inequality, and
note that d; = 0, we get:

Tf 1512 _
t=0

T .
Z n Het”2 ||g2+1 gtH ).
=

%— i—1 %

Now we plug in the upper bound on the sum of ||ef|| (and note that e}, = 0):

T-1 T-3
3 loE1% _ Uk Z ||51H2 Z ||gt+1 gl
t=0 7752—1 t=0 ,Yt 1

Rearranging, we have:

Z ||51||2 2 Z ||gt+1 gtH

=0 Vi1 t=0
Therefore, we have:

12

Z ||efH2 2(1—-9) Z Hgt-i-l g
5277 —-2(1-

t=1 %—
Next, we note the following:
g —gi = Al — (g — &1 —e;) + ne
=A; — 0y +ne;
Therefore, by Young’s inequality, we have:

Z Hgt gt

I

8(1 —5)

||gt+1 gt”
<
T Z 7

For the choice of 7 and 3, we choose 5 = 2v/1 — dn. Since 5 =1 — +/1 — §(1 + n), we have:
) 5= 26
3WI=6(1+v1-9) 3(1+v1-19)

Putting this back, we get the desired results. ]

77:
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Lemma H.2. Given AssumptionsHand Hloﬁ and n= m7 v > %6@ we have:
z‘: 1 Z Hgm gil’] _ 3202F, | 73988¢ — 23
N - 8 7562 part V2

Therefore, by Lemma we also have:

L1 G E[lell?] | 252FR 22002 (R o2
YooY <t e Y (24)
= Vim il 70 %0 =0 Jt

Proof. For simplicity, let’s write 77 = ||x;+1 — X;||?. By Assumptions [2.1|and[2.5| we have:

- Hgt+1 gt” ] —E [7’?] = 40
Z Z e D
i= t=0 t =0 Tt
Therefore,
T-1, n i i T-2 ., n i i
3 1g-Ellgt —etl’] _360—0)(1+v1-0)° ¢~ 15~E[let —il]
1 = 7252 2
=0 "ot Tt 00 =0 i T
7202(1 - 5)(1+ V1 —=0)2 <= E[r2] 14401 — )(1+\/1— 3)? ' o2
JealUR IR & U >
t=0 t t—o Tt
28802 & Z | 576 « 2
189° = TRE

Recall the following from the proof of Theorem@] (with a; = 1):

+n-1—L 5 — -
%T? + F(x¢41) + (8 — Vf(Xe), X1 — X¢) + %”Xtﬂ - X0||2
<F(x) + 5 e = o

Upper bounding (g; — V f(x;),X;+1 — X¢), and dividing both sides by +; and summing from ¢ = 0
to 1l — 1, we have:

_1%—2L Z

F(x¢41) P Z M + Z Bipt — Bip+1),

=0 4} —o o 7
where 3] = % Note that since ; is non-decreasing, we also have:
Tz‘l Flx) = Flxin) _ Fxo) = F(x)  Fla) = F(x) | Fla) = F(x*)  Flxa) = F(x")
po 7 % o0 " "
n F(xp_1) — F(x*) B F(xp)— F(x*)
Vo1 Vo1
F(xo) - F(x*) F(x1)—F(x*) F(x1)—F(x*) F(x2)—F(x*)
< 3 - 3 + 3 — 3 4+ ..
Y0 71 7 72
n F(xr1) - F(x*)  F(xr) - F(x*)
Vi1 7t
_ Flxo) — Fx*)
> 3
Yo

Taking expectation on both sides, and applying Assumption 2.1} we have:

n T— 1

— v —2L s = ||gt gtll =
e E [r?] +4Z Z +Z +Z (Blp: — Bipisr)
-0 t i= = t=0
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Now we use the assumption that 3] is non-increasing and eliminate the last term. Further, we plug in
the upper bound for the sum of ||g; — g, we get:

T-1 o T—2 2
¥ —2L - o Fy  1152¢ E [rt 2312
E Ejry| < —=+ g E
t=0 4 [ t] 78 7862 t=0 e 7362 t=0
Suppose that y; > 4L, then we have:
i _ 8Fy 92162 TZZ’ [th] 18496 j
t=0 f2 73 092 t=0 7 t=0

Ifvo > %, then we have:

=1_ ., 16F, | 36992 = o2
TE [Tt] = A2852
—o Tt 7 '705 0 7
Finally, we have:
S Ly Ellsi —sill] 5208 | 730880 5 o2
o v TN 1%00% =
Therefore, by Lemma[H.T}
i 1N E [Het” 215€2F0 9262 =1 2
- = 3 252 ~2
=1 " iz Vi 7o %00 =0 Tt
O
Theorem H.3. Given Assumptions to and we seta; = 1, n == m, and we take

one initial stochastic gradient step from xg to x(, if ) Z 0 and set

_ 1360 J2to? 6460272t/
"= nR2 R 55

then it takes at most

288R%202  6692L/>R%0  552(R}
ne? 52e%> de

iterations of Algorithm[2)to get E [F (Xr) — F*] < €

T =

In particular, this means that with three rounds of uncompressed communication (one for the initial
stochastic gradient step, one communicating g_1 and one communicating g), and T rounds of
compressed communications, Algorithm|2|reaches the desired accuracy. Assuming that the cost of
sending compressed vectors is 1 and sending uncompressed vectors is m, it costs at most

288R20%  6692L"*R%0  552(R?
T — 0 0 0
ne2 T 52e°/2 + de = 3m
in communications for Algorithm2)to get:

E[F(xr) — F*] <e

Proof. By Lemma and Theorem and setting n = m, and assuming that

Yo = % and that ] is non-increasing in ¢ (this can be easily verified once we give the precise
definitions of ~;), we have:

T

1

T-1 2

’YT 1 ’YT 1 - ||et|| g
E[Fi] + RT > RO T Z Z Z nTv—1

ni4 'Yt1

Nl

t

Il
=]

= 2T o 54y 3T « oty 2T — nypa T
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We consider the following stepsize:

_ 1860 RLPRS ot 512000
=TS 53(1)/2 nR2 33/354/3

First we note that ~; is non-decreasing. Further, it can be verified that with such a choice of ~;, we
have 8] = ;” L is non-increasing in t.

Noting that 3/ ' < (T — 1), then we have:

tlp—p

1 Z_: B 1 < B9LRS N 16LY4 02 )/ . 38413 R o™ . 3v2Ro0
T t+1] > 5T 5R(1)/2T 64/3T2/3 /TJT
Therefore, after at most:
288R20%  60199LY2R2c  276(R2  6ALY*('F)/*
+

T =
ne? 52/ oe SR’e

iterations, we have E [F(xr1)] < e.

This is already a desirable convergence rate, but we can also eliminate the term dependent on Fj,

using one initial stochastic gradient step. By Lemma we have E [F(x{,) — F*] < LR% + 1325

and R, .= E [||x}, — x*||?| < 2R2. Therefore if we start our algorithm at x/,, then we have:
0 0 0 g 0

T—1 9

T-1
1 ’yT e 2OURE | 2PPR0 { 226(52 o
— > ER, R2 § §
T & Fen] < 0 ST T e < §497T & nyy T

For the third term, due to Young’s inequality, we have:
2B 3 Royo 215€4R3 " 215252 < 2B B Ryo n 24140
ST T ST ST T ST ot

Therefore, we have:

T— T-1
1 ’yT 1 21644 p2 220
T > E[Fi] < Ro C+)

T-1
o
+
4T — §4y2T ; ny1T

Now we pick:
_136e  Jato? 6460"/°0°/3¢"/
TS nR2 R 5%

and after at most:
288R20%  6692L'°*R%0  552(R?

ne? §2e%/2 oe

T:

iterations, we get
E[F(xr)— F*]| <e

I ANALYSIS OF THE REAL ITERATES

In this section, we present an analysis of the real iterates generated by Algorithm [I] which can
be immediately combined with our analysis in Section 4] and give the convergence guarantee for
Algorithm 2] purely in terms of the real iterates x;. We note that this analysis does not rely on the
virtual iterates X, at all, and is therefore also applicable to the basic proximal algorithm without dual
averaging. We believe that this analysis might be of independent interest.

We first note that the guarantees for the real iterates is weaker than that of Theorem 3.3
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Theorem L.1. Given Assumptions[3.1| 2.3|and[2.4} then for any x € domt), we have:

= Vo1 — 2a; L ) ’YT 1 E [[led]?] = afo?
Z E lai(F(x¢41) — F(x)) + ———|Ixe41 — x| [[x—xol| +22 — 12 z —
=0 4 V-1 —o Jt—1
(25)
Proof. By the definition of ®;, we have for any x € dom(¢):
* 1 2
() > ¥+ Jlx —xel
We also have:
Vi 9
Zak {8k, x = Xs) + 9 (%)) + 5 llx = %0
k=0
: gl
= Zak + (V(xk),x = %) + (%) + Y ar(@r — VI (xr),x — x5) + %HX - Xol[?
k=0

(i) ! Ve
< F o - Tk — xo|?
< k§:0ak (%) + > ar(@r — VF(xk),x — Xp) + 5 [l = oI,

k=0

where in (¢) we used the convexity of f. Taking expectations on both sides, we get:
t
IEPIUECE 2l = o

Now by the definition of x;1:

Yt — V-1

(I): = @tfl(XtJrl) + at(f(xt) + <gt7xt+1 - Xt> + 1p<xt+1)) + 2

l[x¢+1 —X0H2

(i)
> Oy + 5 e — x|+ ar(£0x0) + (B Xee1 —Xi) + $(xe4))

’Yt1

=0 4+ ——lxe1 — xe|® + ar(f(xe) + (VF(xe), X1 — Xe) + (Xe41)) + a(§ — VF(xe), X1 — X¢)

(#47) R
> Q7+ M%thﬂ —x¢||? 4 @ F(x41) + a(& — Vf(xe), Xe41 — X4),

where in (ii) we used the 1-strong convexity of ®; and in (i) we used Assumption 2.4}

Now rearranging and summing from¢ = 0 to 7" — 1, we get:

Z |:afF Xf+1 2 HXt+1 *Xf|| }

T-1
<E [®7_,] — Z Elai (g — Vf(xt), Xt+1 — Xu)]
t=0
<E (@] = T2E [x = xr 2] = 3 @ [(8 — VF(x0) Xer1 —x0)]
t=0
<D aF(x)+ Y @B (g — VF(xe),x = xi)] + ToLE [Jx — o]
= t=0

_ Tt

E [Hx - XTHQ} - i aE[(&r — Vf(%t), Xt41 — X¢)]
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Rearranging, we get:

3 Yi-1 —atL
Z - {at(F(XtJd) - F(x))+ 1=
Py

e —xﬂ

2
1 T-1
<5lx— o> = E [Ipx = xr[*]) + D> aB (& — V(1) % = xu11)]
t=0
Note that by the definition of e;, we have:
T—1 T-1 T-1
ar(gr — VF(xe),x = Xeq1) = (€141 — €6, X —Xeq1) + > ar(ge — Vf(xe), X = Xp41)

t=0 t=0 t=0

= Z<et+1ax = X¢41) — (€, X — X¢) + (€4, Xp 1 — X¢)

t=0
T—1
+ at(ge — Vf(xt), X — X¢q1)
t=0
T—1 T—1
= (er,x —x7) + > _(en,Xe11 —x) + Y ar(g — V(%)X — X¢41)
t=0 t=0
lerl?  yroallx —xrl? = 2lledl® | veeilxe — xialf?
< + +>( - )
2v1r—1 2 Ve—1 8
T—1
+ Z ar(gt — V[(x¢), X — X¢q1)
t=0

Taking expectation on both sides, and noting that the noise g; — V f(x;) is independent on both x
and x;, we have:

T-1
> aE (g — VI(xe), %X — Xe41)]
t=0
< ler|? e 1HX —xr|? i Z 2||et||2 n Z Yeo1llxe — x| n 2Til afoé
T 2971 = v o 4 = V-1
Now we put these together and get:
T-1 T—1 2 2
—1 —2a;L T ||et|| a;o
D _E [m(F(xtH) — P(x)) + X i — xtn?] T o +2Z 12y -k
t=0 o V-1

O

Remark 1.2. Comparing to Theorem [3.3] we note that the key difference here is that the error in

Equation is 2 ZT ]E[Het ” ] , while in Equation itis L ZT ]E[llitl‘ ) The — multiplica-
t—1

tive difference here is crumal and allows the stepsize ; to control the errors much more effectively.
Therefore, Theorem [.T| would lead to a weaker convergence guarantee.

With this, we can now directly combine Theorem [L.I] with Lemma [4.3] to obtain the following
convergence guarantee for Algorithm [2]in terms of the real iterates x;. For simplicity, we use the
fixed stepsizes y; = 7.

Theorem L.3. Given Assumptions to and we set ay = 1,1 = m, and we set:

N 24+/2¢ 3262/3F 1350VT
— Imax
! o 7 gsRrI T PR
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then it takes at most:

_ T2900R30® | 48VAURE 64(¢R2)72F/?

26
§4e2 de §*se (26)
iterations ofAlgorzthm@to get & Zt o ( (x¢41) — F*) <e
Proof. We plug Equation l| into Equation , and assume that v > 24f 20 and get:
T-1
1 yR%Z 1152002 907402
— F —F < F
T t:O( (k1) = F*) < o + T PO + 52
Now we set )
24V/2¢ 320%°F,* 1350\/T
Y= maX{ 5 43 23 0 2R }
02 R, 0
and we have:
T-1 1
1 24v/20R%  32(0R2)FYT 1
T (F(xt41) — F*) < gRO + E (H;EJ/Z,T . 325\1;0:7
t=0 02T
Therefore, it takes at most:
p_ T2900R30> | ASVOURY 64(¢R2)2F,?
dde? de d*se
iterations of Algorithm[2]to get:
1 71
7 2 (Flts) - F7) <e
t=0
O

Remark 1.4. We emphasize that here we only achieved an O (- 5752 ) convergence rate in the deter-
ministic term, which is worse than the O( - ) rate achieved in Theorem4.4{in terms of §. Perhaps
more importantly, in the stochastic case (o2 > 0), we only achieve a O( Fic 2) rate, which does not
improve linearly as n increases and is not delta-free, unlike the rate in Theorem@ and Theorem [H.3]
It is unclear whether this limitation is a fundamental property of the algorithm or an artifact of the
analysis. We leave it for future work to resolve this question.

Remark 1.5. We also briefly note that the rate in Theorem [[.3] can be slightly improved using the
restart strategy and a more careful analys1s of the number of steps and parameter settings in each
stage. This way we can remove the (9( 13- ) term, and instead get a O(W) term overall. We will
however have to assume that dom®) is bounded, and do O(log é) number of restarts which requires
one full communication at each stage. For simplicity, we omit the details here.
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