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ABSTRACT

Communication efficiency is a central challenge in distributed machine learning
training, and message compression is a widely used solution. However, standard
Error Feedback (EF) methods (Seide et al.| 2014)), though effective for smooth
unconstrained optimization with compression (Karimireddy et al., 2019), fail in
the broader and practically important setting of composite optimization, which
captures, e.g., objectives consisting of a smooth loss combined with a non-smooth
regularizer or constraints. The theoretical foundation and behavior of EF in the
context of the general composite setting remain largely unexplored. In this work,
we consider composite optimization with EF. We point out that the basic EF
mechanism and its analysis no longer stand when a composite part is involved.
We argue that this is because of a fundamental limitation in the method and its
analysis technique. We propose a novel method that combines Dual Averaging with
EControl (Gao et al.|,[2024a)), a state-of-the-art variant of the EF mechanism, and
achieves for the first time a convergence analysis for convex composite optimization
with error feedback that matches the best-known results in the uncomposite setting.
Along with our new algorithm, we also provide a new and novel analysis template
for inexact dual averaging method, which might be of independent interest. We
also provide experimental results to complement our theoretical findings.

1 INTRODUCTION

Gradient methods, and in particular, distributed gradient methods, are the workhorse of modern
Machine Learning. In this work, we consider a simple yet powerful extension of the basic optimization
problem, namely, the composite optimization problem:
i F =
Qi {F(x) = f(x) +$(x)},

where f : R?Y — R is smooth and ¢: R? — R U {+oc0} is a composite part. The composite
optimization problem is ubiquitous in machine learning, and it covers a wide range of variants of the
vanilla optimization problem, for example, regularized machine learning (Liu et al., [2015), signal
processing (Combettes & Pesquet, [2010), and image processing (Lukel 2020). Since 1) can take on
the value of infinity, it also naturally covers the constrained optimization problem.

The sizes of the datasets and models in modern Machine Learning have been growing drastically,
leading to unique challenges in the training process and demands optimization algorithms that
are tailored to these new settings. The distributed optimization paradigm has become a necessity
due to the fact that one simply does not have the capacity to accumulate the entire dataset while
training modern ML models. One of the most popular setup is to distribute the data across multiple
clients/workers, and coordinate the model update in one server. Many of the recent breakthrough
models are trained in such a setup (Shoeybi et al., 2019; Ramesh et al., 2021} 2022; Wang et al.,
2020).

One of the main bottlenecks in scaling up distributed training is the communication cost. Transmitting
the full large model updates between clients and the server can be prohibitively expensive when
performed naively (Seide et al., 2014; |Strom, [2015)). One of the most popular practical remedy is
communication compression with contractive compression (Deﬁnition@ (Lin et al., 2018} |Sun et al.,
2019; Vogels et al.l 2019). Contractive compressions are potentially biased, and naive aggregation of
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these biased compressed updates can lead to divergence (Beznosikov et al., [2020)). In the classical
setting when v = 0, one of the most basic and popular families of methods that are used to rectify
this issue in practice is the Error Feedback (EF) mechanism (Seide et al.l [2014; Paszke et al.,
2019; [Vogels et al.,[2019; Ramesh et al.},[2021)). Due to its vast practical importance, EF mechanism
has attracted significant interests in the theory community as well, where many works, though
restricted to 1) = 0, have attempted to theoretically explain the effectiveness of EF (Stich et al.,|2018;;
Karimireddy et al., 2019) or derive variants of EF that enjoy better theoretical properties than the
original form (Fatkhullin et al.| 2023};|Gao et al.| [2024a).

However, in the composite setting, the situation becomes much more complex, and the theory is
much less developed. Existing works in the composite setting either impose some further restrictions
on the objective (Islamov et al.,[2025)), cannot handle stochastic gradients (Condat et al., 2022)), or
have suboptimal rates (Qian et al., 2020).

The goal of our work is to address the general composite setting for the EF mechanism. We develop
novel algorithmic and analytical tools, and we are the first to obtain rates for EF in the convex
composite setting that matches the uncomposite counterpart. We achieve the
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convergence rate, matching the rates of state-of-the-art EF variants when ¢ = 0.

1.1 THE CLASSIC EF AND VIRTUAL ITERATION

Assuming that ¢ = 0, let us recall the classic EF mechanism and the main tool that is used to analyze
it, the virtual iteration framework (Mania et al.,|2017), to understand its drawbacks. On a high level,
we consider an update rule of the form x;41 = x; — %gt, where g; is some estimate of the true
gradient g; = V f(x;). EF provides a way to construct such an g; when the gradient information can
only be communicated after being compressed by the compressor C. We can summarize the basic EF
mechanism in the following (for simplicity, we consider the deterministic and single client setup in
the introduction):

op =gt —e, & :=C(0), e :=e +8 — 8, (H
The basic (and essentially the only) tool that people have been using to analyze it is the virtual
iteration framework (Mania et al., |2017)), which has been the foundation of most of the theoretical
works on EF since some of the first theoretical papers on EF (Stich et al.,2018). We consider the
virtual iterate X, defined as:

X; =X + %et.

The key insight here is that e; := Z;;g(gk — g ), i.e. the accumulation of all the gradient errors,
and the virtual iterate takes the true gradients as the update, i.e. X;11 = X¢ — % g:, where again,

g+ = Vf(x¢). This enables the analysis to use the virtual iterate as a proxy for the gradient descent
trajectories.

However, the combination of EF with virtual iteration does not extend directly to the composite
setting. If we still construct g; by Equation (1)) but update via

. R 1
X;41 = argmin {htth,x —x¢) +(x)] + §||X — Xt|2} , 2)
x€edomy

then the virtual iterate X; := x; — hye; is difficult to interpret, as it may lie outside dom v and thus
cannot serve as a feasible proxy.

To contrast, when 1) = 0 the iterates satisfy

t—1 t—1
Z k=X0—$<(ng)—et>7
k=0 k=0

so x; is simply the cumulative sum of gradient estimates, and subtracting e; recovers the exact
gradient-descent trajectory. This additive structure is what makes the virtual iterate analysis effective.

1=}

Xt =X —

2=
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When 1) # 0, however, the proximal step in (Z) introduces distortions at each iteration. The iterates
x; can no longer be expressed as a clean sum of past gradient estimates, while e, remains a sum of
compression errors. This structural mismatch is precisely why the classical virtual-iterate argument
breaks down in the composite case.

1.2 OUR STRATEGIES

Following our discussions above, it is clear that the classical EF mechanism and the virtual iteration
framework need to be modified in order to handle the composite setting. In particular, we need to
restore the simple sum of gradient estimates in the iterates, so that e; can still be used to correct the
accumulated deviations from the true gradients. This reminds us of the Dual Averaging framework,
where the algorithm sums up all the past gradients and take one step from the initial point at each
step. In general, we consider the following update rule:

t

. A Ve

X1 = arg min {Zak<<gk,x> + () + o x — x0||2} ,
xedomp k—0

where ay,y; > 0 are some properly chosen coefficients. In this way, the iterates x; are defined

precisely by the (weighted) sum of all gradient estimates 22;10 argi,. We can therefore consider the

(weighted) cumulative gradient error e; := Zz;lo ar(&r — k) and use it to correct the deviations of
x; from the true gradient trajectory, this time inside the proximal operator:

t
%01 :-argmm{zak ((gr.x >+w<x>>—<et7x>+’§x—><o||2}

x€domy h—0

= arg min {Z ar((gr, x) + ¥(x)) + %Hx — x0||2} .

xedoma)

It turns out that this intuitive modification of EF and the virtual iteration framework is precisely what
we need to address the composite setting.

2 PROBLEM FORMULATION AND ASSUMPTIONS

We consider the following distributed stochastic optimization problem:

F*= min |[F(x) = f(x)+¢¥(x)], where f(x) = 1 Zfi(x), 3)

x€Edomy) n <

where x € R? are the parameters of a model that we train. We assume this problem has a solution
which we denote by x*. The objective function F' is a composite objective with the smooth part
f(x) = L1%"" | fi(x) and the composite part 1) : R? — R U {+00}. ¢ is a simple proper closed
convex function. We write domt) C R? to be the set where 1) is finite. Each function f; is a local
loss function associated with a local data set D;, which can only be accessed by client i. There are in
total n clients indexed by ¢ € {1,...,n}. The composite part ¢) can be accessed by the server.

Let us define the problem class that we consider in this paper. There are two type of agents in this
problem: the server and the clients. The server has access to the proximal oracle for any g, x € R?
and 7y € Ry, defined as arg min, ¢ gomy [(8: x') +y(x) + 3 x - >§’||2]. We assume that each
client ¢ can access only the function f; and only via the stochastic gradient oracle as follows:

Assumption 2.1. For any x € dom), g;(x,¢%) is a stochastic gradient oracle for f; at x, where £lis
the randomness used by the oracle. We assume that g;(x, £*) is unbiased and has bounded variance:

E[gi(x,.&)] = Vfi(x), Ee [|lgi(x,€") — Vix)|?] < o> “4)

We consider the distributed setting where the communication from the client to the server is expensive,
and compressed communication is needed to reduce the communication cost. By (contractive)
compression, we mean the following:
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Definition 2.2. We say that a (possibly randomized) mapping C(-,¢): R? — R is a contractive
compression operator if for some constant 0 < § < 1 it holds

E¢ [lIC(s,¢) = sl’] < (1-d)lls|I* Vs e R™. Q)

Here ( is some possible randomness used by the compressor. For simplicity, we will often omit ¢ in
the notation when there is no confusion.

In addition, we assume that the cost of communication from the server to each client is negli-
gible (Karimireddy et al.l 2019; Richtarik et al., 2021} |Gao et al., |2024a), while the client can
communicate to the server with the following two types of channels:

+ Compressed channel: The client can send a compressed vector C(x, () € R to the server, where
C is a contractive compression operator (see Definition[2.2). The cost of sending one compressed
vector is 1.

+ Uncompressed channel: The client can send a vector g € R to the server without any compres-
sion. The cost of sending one uncompressed vector is m > 1.

When the compressor is the Top-K compressor (i.e. the client only sends the top K elements of the
gradient), then the cost of sending one uncompressed vector in R? is at most ¢/k. In general, given
any d-compression in the sense of Definition , we can combine at most O(% log %) compressed
messages to recover an ¢’-compression for any 6’ > 0 (He et al., 2023). In this sense, one can
typically approximate an uncompressed channel with a compressed channel with an O(%) additional

multiplicative overhead. That is, we can typically think of m to be of the order %

In this work, we are interested in minimizing the total (client to server, uplink) communication
cost of the algorithm (for each client). Suppose that throughout the algorithm, each client makes
a compressed communications and b uncompressed communications to the server, then the total
communication cost is a + mb. This is roughly proportionate to a + g. We do not consider the
communication cost from the server to the client (broadcast, downlink cost) since it is typically much
lower than the uplink cost, which is conventional in prior works (Karimireddy et al.,2019; Richtarik
et al.,[2021}; Gao et al., [2024a).

Let us now list the assumptions on the objective functions that we make in the paper. First, we make
the standard assumption that f is convex.

Assumption 2.3. We assume that the function f and v are convex, closed and proper over the convex
domain domza.

We note that we do not assume that each local function f; is convex. We also assume that f is
L-smooth, which is standard in the literature (Stich et al., 2018} [Karimireddy et al., 2019} |[Richtarik
et al.l 2021} |Gao et al.| 2024a).

Assumption 2.4. We assume that the objective function f has L-Lipschitz gradients, i.e. for all
x,y € domu, it holds

IVf(x) =Vl < Lilx -yl (6)

We also assume the following smoothness condition for the local functions f;.

Assumption 2.5. We assume that there exists some ¢ > 0 such that for all x,y € dom(¢)), it holds
1 n
=~ IVFilx) = VAP < 2llx -yl ™
i=1

Remark 2.6. Note that this is a weaker condition than what many existing works assume, e.g.
(Richtarik et al., 2021} |Li & Richtarik, 2021), where they assume that all f;’s are Ly,,x-smooth. In
contrast, we only require that they are in some sense smooth on average, which is strictly weaker.

We point out that by Jensen’s inequality, we always have that I < £. In the analysis of our main
method, Algorithm 2] we eventually only need Assumption [2.5] However, Assumption [2.4]is still
important for the analysis of the inexact dual averaging framework that we propose, as it does not
presume any finite-sum structure of f.



Under review as a conference paper at ICLR 2026

Algorithm 1 Inexact Dual Averaging

: Input: x¢ and {a;,v: € Ry }=0,... 0o- ¢ is non-decreasing.
:fort=0,1,... do
| Obtain g; ~ g; = g(x¢, &), & is an independent copy of &.

| e = argming [B,(x) = Yok ak(F0xk) + (e x — x6) + 0(0) + % x — o]

R

3 THE INEXACT DUAL AVERAGING METHOD

In this section, we take a step back from the distributed optimization problem with communication
compression that we consider in the rest of the paper, and consider solving a general stochastic
composite optimization problem of the form F* = minxedomy [F(x) = f(x) + ¥(x)]. This
perspective allows us to develop the core analytical tool that underpins our later analysis with
compressed communication. Here, we do not assume that f has a finite-sum structure. We make
Assumptions [2.3] and [2.4] for the objective in this section. We assume that we have access to a
stochastic gradient oracle g(x, &) satisfying Assumptionbelow:

Assumption 3.1. For any x € dom, g(x, £) is a stochastic gradient oracle for f at x. We assume
that g(x, &) is unbiased and has bounded variance:

Elg(x.&)] = VI(x), E¢l[llg(x &) - VX)) <o ®

We study the convergence of the general inexact dual averaging algorithm, as summarized in Algo-
rithm (1} for solving this problem. The algorithm gets some inexact gradient g, that approximates the
stochastic gradient g; := g(x;, &) at each iteration. It uses these gradient estimates to perform a dual
averaging update, with stepsize parameters a; and ;. We assume that -y, is non-decreasing.

We analyze the convergence of this method from the perspective of the virtual iterates, which are
defined in Equation (9). We note that these virtual iterates are not explicitly computed or stored
anywhere in the algorithm. However, since our convergence analysis will be given in terms of the
suboptimality of a convex combination of or random sample of the virtual iterates, an immediate
question would be how to output such a convex combination or random sample at the end of the
algorithm without explicitly storing and computing the virtual iterates. We will addres this in
Section 3.1

Let’s write g; = 22:0 argr. We define the following virtual iteration, with Xo = xg:

¢
Xyy1 = argmin {i't(x) = Zak(f(xk) +{(gr,x —xz) + (%)) + %HX - X0|2}
k=0

xedomyy
t ©)
= argmin § (g, %) +¥(x) Y+ 1 llx = xol -
x€edomy k=0
Now, we define the accumulative error of the compressions:
t—1
e =Y ax(&r — &) (10)
k=0

We first show that the distance between the virtual iterate X; and the actual iterate x; is controlled by
the accumulated error e;:

Lemma 3.2. For anyt > 0, we have:

% — x4 <

1 2
e (11)
72 [et]]

We simply write 7_; = 7. Note that ey = 0. With this, we can give the main convergence theorem
for the virtual iterates:
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Theorem 3.3. Given Assumptions[3.1| 2.3|and 2.4 and v, > 4a,L, then for any x € dom) and
any T > 1, we have

2 2
tag

T—1 T—1 T—1
- yr-— ~ yr-— a a
> Elan(F(Xi1) — Fx)+-5—F [[x — %] < T2 x—x0*+L Y ——E [[le]*]+> .
t=0 2 2 =0 Tt-1 —o -1
(12)

In addition, we have the following upper bound on the distance between consecutive iterates:

Tl Wl =
-1 .
> (t;aT? + (& = Vf(xt), X1 — Xt>> <Fo+g > (Bt = Bipiia), (13)
=0 t t=0
where we write 3 = ==L p2 = ||x; — Xol|?, 77 = ||x¢41 — x¢||? and Fy = F(x0) — F*.

at

Again, we note that Equation (I2)) deals with the virtual iterates. When ¢) = 0, typically we can
bound the distance between f(x;) and f(x;) simply by E [||le;||?]. This is however unclear when
1 # 0. It is possible to directly analyze the behavior of x; without using the virtual iterates at all, but
the analysis obtained that way will be weaker due to the presence of ¢ (see Appendix [[| for a more
detailed discussion, we further comment here that the techniques employed in Appendix [[|can also be
used to obtain an analysis of the proxmial method without dual averaging, albeit with similarly weak
guarantees). It remains an open question whether it is possible to directly analyze x; without using
the virtual iterates and still obtain a result as strong as Theorem [3.3]

In addition, we also obtain an upper bound on the distance betwen x;; and x;, which will be useful
later. Similar upper bounds on the distance between consecutive iterates have been used in many
existing works that applied the gradient difference compression strategies (Richtarik et al., 2021}
Fatkhullin et al., 2023} |Gao et al., [2024a), but these are typically upper bounding the individual
distances. Due to the dual averaging strategies, our analysis here is significantly different, and we are
only able to upper bound the sum of the distances.

We point out that controlling the error ||g; — V f(x;)||? is method-dependent, that is, it depends on
how we constructed the approximate g;. Therefore we do not further analyze this term here, and we
discuss this term in more details when we present the analysis of our main algorithm in this work.

3.1 A SAMPLING PROCEDURE FOR THE VIRTUAL ITERATES

Provided that the errors are sufficiently small, Theorem 3.3]allows us to establish the convergence

rate in terms of ﬁ ZtT;Ol a[F(X¢41) — F*], where X, are the virtual iterates rather than the real
iterates x; and we write 4; = Zi;é Q.

Therefore, after T' steps, we would like to return a randomly chosen point among {Xj, ..., X7} with
the probabilities proportional to a;. This can be implemented as follows: at each iteration ¢, we keep

tracks of the accumulated true gradients g; = Zi:o asgs and update g to g; when 7, = 1, and it

remains unchanged when 7, = 0, where 7; is a bernoulli variable with probability Pr [r = 1] = A(fljrl .

This way, at step T' — 1, g is a random sample from the set {gt}te{o,,,, ,7—1) with probabilities
proportional to a;. Using g, we can easily compute a random sample X7 from the set {it}tzl,__.7T
as follows:

T—1

xr = argmin | (g, %) +1(x) > a; + 2 [x — xo?| -
xedom) =0 2

We summarize this procedure in Algorithm [3|]in Appendix [E]

It is easy to show that g is a random variable over the set {g;};c{o,...,r—1} With probabilities

proportional to a, see Proposition[E.T} As a consequence, we have the following:

Lemma 3.4. The output X from Algorithm is a random variable over the set {X; }c[r], where
X; is defined in Equation @I) In particular, we have for any x € dom(v)) (that are independent of
{§t7 Tt}te[T—l])-'

T-1
1 -
Ery o irps forontrs [F(Rr) = F(I] = 72 3 aiBey o gry [F(en) = Fl. (14)
t=0
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Algorithm 2 EControl with Dual Averaging

1: Input: xo,7n, e} = 0,8" ; = Vf;(x0,&}).

2: fort=0,1,... do

3: Server:

4: Sample 7, = 1 with prob. H%l and 7; = 0 otherwise. Send 7; to all clients.
5: clients: . . ‘ 4 4 4

6: g = V fi(x¢,&;) where &} is independent copy of £'. g} = g} + g}

7: g' = g if 7 = 1 otherwise g' remains.

8 | di=gl—gi | —nel, Al =C(5,¢}) where (} is independent copy of ('
9 | &i=8&_1+AL e =ei+8 —g
10: | send A! to the server
11: server

12: | g =81+ 5 2ing A

130 | x1 = argming {8 (x) = Y00 (f (%) + (s, X — xs) + (%)) + % [x —x0]1%}

14: client: send g’ to the server
15: server:

s lym i
16: 8= 5218
17: X = argmin, {(g,x) + (7 + 1)¥(x) + L ||x — x0||?} where 7 is the last ¢ s.t. 7, = 1.

4 EControl wiTH DUAL AVERAGING

In this section, we apply the general framework discussed in Section 3| to the particular case of
distributed optimization with communication compression. In such a setting, the stochastic gradient in
Assumption[3.1]is the average of the stochastic gradient of each client ¢, which follows Assumption[2.T}

Therefore, aé =

of g where each g! is each clients’ estimate of its local gradient gi := g(x;,&}), which can be
communicated to the server using compressed communication channels.

2 . . . . A .
2~ where n is the number of clients. Now the gradient estimate g; is the average

The sampling procedure in Section [3.T|can be easily implemented in such a setting. The variables
g: and g do not need to be maintained and communicated by the server throughout the algorithm;
instead, we can simply ask the workers to maintain their local g and g°, using the same random bit
7¢ (which costs 1 bit of communication). At the end of the algorithm, we use one full communication
round to collect the local g' and compute the output X. In total, the above procedure costs exactly 1
round of full communication plus one extra bit in each of the 7' communication rounds.

Now, as the main focus of this section, we present a specific mechanism of generating the g; ~ g;,
the EControl method (summarized in Algorithm E] in Appendix , using mainly compressed
communication channels. We assume that a; = 1 for all ¢. For simplicity, in this section we also
assume that ; = ~ for all ¢ for some constant v > 0. In Appendix [H] we present a more advanced
analysis of Algorithm [4] that handles variable 7;. The variable stepsize analysis for EControl
mechanism is unknown prior to this work due to the complexity of 7 parameter in EControl and
we have to employ a scaling/rescaling strategy in the analysis to handle it. We slightly modified
the presentation from (Gao et al., 2024a) to suit our setup better. We can put Algorithms [T} [3|and 4]
together to get our final algorithm, EControl with Dual Averaging, summarized in Algorithm [2|(see
Appendix [F| for a more detailed walk-through of the algorithm). We highlight the EControl module
with green color.

We note that EControl mechanism was first proposed in (Gao et al.,|20244a) and analyzed under the
condition ¢y = 0. In Appendix we briefly discuss some intuitions behind the design of EControl.
Here we present a more systematic and hopefully cleaner analysis. We simply bound the sum of
errors by the average of stochastic gradient differences. We note that the following upper bounds are
entirely the consequences of the EControl mechanism, independent of the specific properties of the
objectives and oracles.
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Lemma 4.1. Letn = then:

)
3VI—0(14++/1-3)’
T T—2
i 81(1 —6)*(1+v1—0)*
ZHetHQS ZHgH-l g%,
t=1

264
15)

T—1 T—2
~ i 36(1 — )(1+\/1 —90)?
ZHgt —gil? < Z”gt-H g%

Remark 4.2. We point out that in the analysis of the class1cal EF mechanism, upper bounding
L5 L ||e}]|? relies on upper bounding £ 37 ||V f;(x;)||?, which leads to the data heterogeneity
assumption, but more importantly, requires upper bounds on ||V f(x;)||? in terms of the function
residuals. When ) = 0, this follows directly from the smoothness of f. However, in the composite
setting, this is no longer possible unless V f (x*) = 0, which is not true in general. In contrast,
EControl uses the gradient dlfference compression technique to obtain a better handle on the errors
and we only need to upper bound + ZL gt —g!||%, which again can be done via Assurnption
and Equation (T3).

Next, we invoke the specific properties regarding the smooth objective f and the stochastic oracles,
and apply Theorem to get an upper bound on the sum of |g; ; — g; 2, and consequently, an
upper bound on the sum of ||e¢||2.

Lemma 4.3. Given Assumptionsand t() and let n = m’ N> 24:556, then
we have:

ZO

- : : 80¢2
Z (g1 —gill] < 5~ Fo + 7T (16)

Therefore, by Lemmad.1] we also have.

E [Jle}ll”] <

3\>—‘

’ﬂ

M:

5760€2 4536T o>
FO + T .

L1
- (17)
t=0 n’L

1

Finally, combining all of the pieces in Sections [3 [3.T]and @} we can give the overall convergence
guarantee of our final Algorithm[2]

Theorem 4.4. Given AssumptionstOE] and setting ay = 1,yp =y, n = m, and

taking one initial stochastic gradient step from x to x{, if 1) £ 0 and setting

B 24V20  [To? 17T/0"/*6"
Y = max 5\ nR2 R§/364/3 )

T 16R20> N 561R2Vlo 9620 R?
~ ne? §2e°/2 de
iterations of Algorithm[2|to get E [F(xr) — F*] < e. Here, Ry = ||xo — x*|.

then it takes at most

In particular, this means that with three rounds of uncompressed communication (one for the initial
stochastic gradient step, one communicating &_1 and one communicating g), and T' rounds of
compressed communications, Algorithm|2|reaches the desired accuracy. Assuming that the cost of
sending compressed vectors is 1 and sending uncompressed vectors is m, it costs at most

16R20%  561RZV/io  96v/2(R3
ne2 §2e%2 de
in communications for Algorithm[2|to get:
E[F(xr)— F*] <e.
Remark 4.5. In the statement of Theorem- we let the algorithm take one initial exact stochastic
gradient step in the composite setting. This comes from the fact that we need one gradient step in the
composite setting to upper bound Fyy by LR? (see Lemmau This is satisfied automatically in the
classical unconstrained setting. Without the extra initial step, the algorithm would still converge (with
properly chosen step size) but the rate would additionally depend on F{, (though it would still be a
desirable (’)( - ) term). We refer to Appendix @for more details. We note that the rate in Theorem{
matches the rate of EControl (Gao et al.,|20244d) in the basic uncomposite setting when 1) = 0.

+ 3m,
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(a) Achieving linear speedup. Performance of (b) Virtual Iterates vs Real Iterates. The perfor-

EControl with Dual Averaging ith increasing num- mance of the virtual and real iterates of EControl
ber of clients n. We fix y to be 0.0001. The error with Dual Averaging. We see that the virtual iter-
that the algorithm stabilizes around decreases as n ates and real iterates perform similarly.

increases.
Figure 1: Synthetic regularized softmax objective

5 EXPERIMENTS

In this section, we present some experimental results on a synthetic softmax objective with ¢; regu-
larization to complement our theoretical analysis. Details of the experimental setup (including data
generation) and an additional experiment on the FashionMNIST dataset can be found in Appendix
All our codes for the experiments can be found at this link.

The softmax objective with 4y regularization is given as:
min, cpd {F(x) = plog (Zle exp {%D + )\Hxﬂl}, where p controls the smooth-

ness, and we set it to ¢ = 0.1. We set the regularization parameter A = 0.1. We set the dimension
d = 200 and the total number of samples & = 2048. We simulate the stochastic gradient by adding
Gaussian noise to the gradients. We use Top-K compressor with £/a = 0.1. For both of the following

experiments, we set o? = 25.

Linear speedup with n: one of the key characteristics of EF-style algorithms is that the leading
(stochastic) term in its rate improves linearly with the number of clients n and is J-free. We prove
that EControl with Dual Averaging does satisfy this quality—with the catch that the theory only
applies to (the random sample of) virtual iterates. Here we verify this property experimentally for
the real iterates directly. We fix a small enough v to be 0.0001, and increase the number of clients
n. The results are summarized in Figure[Ta] We see that the error that real iterates stabilize around
decreases linearly with n, verifying the linear speedup for real iterates as well.

Virtual iterates vs real iterates: while we can do the sampling procedure to obtain convergence in
terms of the virtual iterates, this is ultimately still somewhat clumsy in practice. The real iterates, on
the other hand, do not enjoy theories that are as good. Here, we compare the suboptimality of the
virtual and the real iterates. The results are summarized in Figure[Ib] We see that the virtual and
real iterates perform almost identically in the suboptimality. This suggests that the real iterates might
also be amenable to a strong theory; future work might explore refining our analytical template in
Appendix [[| to achieve this, or construct lower bound examples to demonstrate a gap between the
virtual and real iterates.

6 CONCLUSION

In this work, we addressed the open challenge of combining error feedback with composite opti-
mization. We showed that the classical virtual-iterate approach breaks down in this setting, as the
composite update destroys the additive structure that underpins its analysis. To resolve this, we
introduced the first framework that integrates error feedback with dual averaging, which restores the
summation structure and enables control of accumulated compression errors. Our analysis extends
the theory of error feedback to the convex composite case and recovers the best-known results in the
unconstrained setting when ¢ = 0.

Looking ahead, our inexact dual averaging analysis provides a versatile template for problems where
iterative updates are distorted by approximation, noise, or constraints. This opens up promising
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directions in domains such as safe reinforcement learning, constrained distributed optimization, and
large-scale learning under resource limitations. An exciting avenue for future work is to connect our
approach with recent efforts that aim to simplify error-feedback methods for practical use, potentially
leading to more robust and scalable communication-efficient algorithms.
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A  RELATED WORKS ON ERROR FEEDBACK AND COMMUNICATION
COMPRESSION

In this section we survey some most relevant works on EF. We note that while there’s a rich body of
literature on EF in the uncomposite setting, the extension to the composite setting is less developed.
Stich et al| (2018)); [Alistarh et al| (2018)); [Karimireddy et al.| (2019) were among the first to explore
the theoretical properties of the practical EF mechanism proposed by [Seide et al.|(2014), but their
analyses are restricted to the single-client setting. Under certain forms of bounded data heterogeneity
assumption (e.g. bounded gradient, bounded gradient dissimilarity, or bounded local objective gap
at optimum), (Cordonnier| (2018)); [ATistarh et al| (2018)); [Stich & Karimireddy| (2020) extended the
analysis to the more realistic multi-client settings. But these data heterogeneity assumptions are
indeed very limiting factors. These theories were further refined in (Beznosikov et al.,[2020; [Stich|

2020).

Another line of work parallel to the classic EF variants is the gradient difference compression mech-
anism. Mishchenko et al|(2019) added an additional unbiased compressor for gradient difference
into the EF framework to address the issue of data heterogeneity and obtained the DIANA algorithm.
Another of follow-up works include [Gorbunov et al| —orunov eta 12()2_(|')) Stich| (2020); [Qian et al| (2021b)), and
culminated in the EF21 algonthm (Richtarik et al.,2021). The EF21 algorithm is the the first to
fully support contractive compression in the full gradient regime. However, it is not compatible with
stochastic gradients and leads to non-convergence up to the variance of the stochastic oracle. This
was later addressed by adding momentum in [Fatkhullin et al.|(2023), or by a more careful blend of EF
and gradient difference compression in|Gao et al|(2024a). The latter work proposed the EControl
mechanism, which is the basis of Algorithm [|in this paper.

All of the above focuses on the uncomposite setting, and their extensions to the composite setting
remain largely unexplored. considered a proximal variant of the EF mechanism,
which they called EC-ProxSGD. However, their work considered the finite-sum stochastic setting,
and their convergence rates has O( 6%) dependence on the compression quality, which is suboptimal
compared to the state-of-the-art EF variants in the uncomposite setting. Perhaps more relevant to our
work is their EC-RDA algorithm, which is a dual averaging variant of the basic EF mechanism in the
finite-sum setting. However, the analysis of EC-RDA relies on (in addition to smoothness) a number
of bounded gradient assumptions on the objectives and the regularizers which we do not assume in our
work, and their rates have a cubic dependence on § which is even more undesirable. In (Qian et al
[2021a), the authors proposed and analyzed several variant-reduced EF algorithms in the comp051te
setting, but these algorithms are designed for the finite-sum setting and are not applicable to our
setting. In particular, their EC-LSVRG requires periodic access to full gradients. Their EC-Quartz
and EC-SDCA considers a more specific form of composite objectives and requires access to the first
order information of the conjugates of the regularizers. More recently, [slamov et al| (2025) analyzed
a variant of EF, called Safe-EF, when 1/ is an indicator function of some convex set ). Their analysis
requires that the constraint set () be described as an intersection of sublevel sets of functions, with
first-order information of these functions available. Under this structural assumption, their method
blends updates in the direction of both the objective and the constraint functions, enabling the virtual
iterate to account for constraints. Safe-EF also assumes that the stochastic gradients are bounded,
which circumvents the issue of upper bounding |V f(x;)||? in the smooth case.

Since |Richtarik et al.|(2021)) first analyzed EF21 in the non-composite full gradient regime, there have
been some attempts to extend EF21 to the composite setting. In particular, [Fatkhullin et al.| (2025))
analyzed a proximal version of EF21, but only in the nonconvex and full gradient regime. Condat
proposed the EF-BV algorithm, which (in addition to unifying EF21 with DIANA)
extends the analysis of EF21 to the composite setting. But EF-BV’s analysis is also restricted to the
full gradient regime, and assumes either the PL or KL condition with strictly positive constants. It is
unclear whether their analysis can be extended to the general convex setting even with full gradients.
Recently, [Islamov et al.| (2025) extended the analysis of EF21 to the general convex composite
setting, but noted that their analysis requires a bounded domain assumption, which we do not assume
in our work.
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Figure 2: Superior performance Comparison of the performance of EControl with Dual Averaging, proximal
EF, and proximal EF21 on the FashionMNIST classification problem with ¢; regularization. We use Top-K
compression with § = 0.1. We see that EControl with Dual Averaging significantly outperforms the other
methods.

B ADDITIONAL EXPERIMENTS AND DETAILS

In this section, we provide some additional experimental details for our experiments in Section[5} and
an additional experiment on the FashionMNIST dataset.

B.1 SYNTHETIC SOFTMAX OBJECTIVE

We generate the data {a;, b;} randomly, following Moshtaghifar et al.| (2024): we generate i.i.d.
vectors &; whose entries are sampled from [—1, 1] uniformly at random. Each b; is generated the
same way. This leads to a preliminary objective f . Wethenseta; :=a;, —V f (0). The resulting
{a;, b;} gives us the desired objective f with O being the minimizer.

For the experiment comparing the virtual and the real iterates, we perform a grid search for the
stepsize parameters over % € {0.1,0.05,0.01,0.005, 0.001, 0.0005, 0.0001 }.

B.2 REGULARIZED FASHIONMNIST CLASSIFICATION

We now consider a logistic regression problem with ¢; regularization on the FashionMNIST
dataset (Xiao et al., 2017). We set the regularization parameter A = 0.001. We compare the
performance of EControl with Dual Averaging against the proximal EF and the proximal EF21
methods. Following our synthetic experiments, we choose to evaluate the performance of EControl
with Dual Averaging directly with the real iterates. We split the FashionMNIST dataset into n = 10
clients, and distribute half of the dataset randomly to each client, and assign the rest of the dataset
according to their labels, i.e. data with label 7 is distributed to client . We use Top-K compressor
with K/q = 0.1. We use batch size 64. We perform a grid search for the stepsize parameters over
% € {0.1,0.01,0.001,0.0001}. The results are summarized in Figure We see that EControl with
Dual Averaging significantly outperforms the other methods. In additional, we note that EControl
with Dual Averaging admits a much larger stepsize than the other methods, which might explain its
superior performance.

C AUXILIARY FACTS AND RESULTS

In this section we collect some auxiliary facts and results that are useful for the analysis of our
algorithms. The first one is a simple fact regarding the square of the norm of a sum of vectors.

Fact C.1. For any 74, ...,y7, we have:

T T
1> w2 <7 vl (18)
t=1 t=1

The next lemma upper bounds an exponentially weighted sum of positive sequences:

Lemma C.2. Given a sequence of non-negative values {cv }c[r—1], and some other sequences
{ut}epr—1]- If there exists v € (0,1) such that the following holds:

arr1 < (1 =Py +ug, =0, (19)
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then we have:

(20)

Mq
Q‘,_.

gMﬂ
ww

t
1
at2+1 < 8 Z(l
k=0
Proof. Since ag = 0, we have:

a1 <Y (1=p)"
k=0

Squaring both sides, and applying Jensen’s inequality, we have:

t

1 _
O‘t2+1 = S, Z(l - p) k“iv

k=0

where S == >t _ (1 — B)'F. It’s easy to check that S; <
Equation (20). Now summing this from ¢ = 0 to T', we get:

Zat+1<zz )" k) U,

k=0 t=k

5, and therefore we get the first part of

Note that ZtT: L= )k < %, and therefore we get the second part of Equation lb O

Now we show that one gradient step will lead to an upper bound on the objective value.

Lemma C.3. Let f be convex and L-smooth, and xo € dom(v) and gy satisfying Assumption
consider x{, defined as the following:

X(, = arg min [f(xo) + (80, X — Xo) + ¥(x) + %”X - X0H2} .

then for any y € domy and ||y — %¢||?> < R?, if we choose ~yo = max{2L, %}, we have:

R
E[F(x)) — F(y)] < LR* + 7; E[lly — xh)?] <2R% @1)

Proof.
£(x0) + (0, %) = Xo) + 1(x5) + T x = xol|” + 2 ly = x5
<F(x0) + (g0,Y = X0) +%(¥) + Flly — o
=F(x0) + (VF(x0).¥ = X0) +%(¥) + Iy = x0ll” + (g0 = V£ (x0),¥ —x0)
SF(y)+ g lly —oll* + (g0 — Vf(x0), ¥ — x0)

On the other hand, we have:

Y0 Yo
f(x0) + (80, x( — xo) + ¥(xp) + *||X6 —xo” + EHY - X6H2

gl il
=1(x0) + (V£ (x0), X = x0) + () + (g0 — V[ (x0), X = x0) + 5 1x6 = xoll” + Iy = x5
Yo — il
>F(xp) + (g0 — V. (x0), %) = x0) + =[x = x0* + - ly = x|

Yo — 2L Bl
2F<xa>f%||g07w<xwu2+ o = xol® + Flly — x|

Putting these together, we have:

_2LH
4

Yo Yo
F(xé)—F(y)+5lly—x6||2+

15

Yo 1
x(—xo||* < 5||y—X0H2+%||g0—Vf(X0)||2+<g0—vf(xo)aY—X0>-
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Now by Assumption[3.1] we take the expectation and get:

0.2

E | L lgo - Vo)l + (g0 — Vi(x0),y —x0)| < &
o Yo

Therefore, assuming that vy > 2L, we have:
2
Yo o o
E[F(xp) = F(¥)] + o-E [[ly = xp[°] < 5 R+ —.
2 2 Yo
Now we pick 7o = max{2L, %}, then we have:

E[F(x;) ~ Fly)] < LR + 7.

E[|ly — xb|I*] < R*+2730% < 2R~

In addition, we have:

D ANALYSIS OF INEXACT DUAL AVERAGING

In this section we give the missing proofs for the analysis of Algorithm[I] We first introduce the
following notation:

O = y(Rip), B = Dy(xip1),
the optimum of the virtual and real subproblems at ¢.

We now present the proof of Lemma 3.2}
Lemma 3.2. For anyt > 0, we have:

e (11)

[[xe — x4 <
t—1

Proof. By the definition of <T>t, ®, and x;, we have:
X;y11 = argmin {:Igt(x) + <et+17x>} .
xedom(v)

Therefore, we have for any x € dom(¢)):
Bo(x) + (e11,%) = Belxr1) + (ers1, %) + 4 x = Xt
> &} + (ersr xi) + Ll = x|’ + FlReer = xea |
Now plug in the choice x := X1, we have:

1 Xer1 — Xep1) > el X1 — X ||”
(e ) = el 12

Note that we have (e;y1,X¢+1 — Xet1) < |lecti||||Xet1 — Xe41]], we get the desired result. O

We now present the proof for Theorem 3.3}

Theorem 3.3. Given Assumptions[3.1)2.3|and 24 and ~,—1 > 4a,L, then for any x € domy and
any T > 1, we have

T-1
Z E [ay(F(Xy41) F(x))}ﬂTQ—lE [Ix — %r[?] < %HX_XOH%L 3

t=0 t=0 't—1

a2o?
010g

T—
E [Jle]?] Z

t=!
(12)

In addition, we have the following upper bound on the distance between consecutive iterates:

T-1 71
+ -1 — aL .
Z (WTE + (8t — Vf(xt), Xe41 — Xt>> <Fo+3 Z Bipi = Biri1), (13)
t=0 t
where we write B = 1122 p2 = ||x; — x¢|%, 77 = ||x¢31 — x¢||? and Fy = F(xo) — F*.

at
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Proof. By the definition of X;, we have for any x € domu:

Bi(x) > &f + L llx = Koo |*.

We also have:

t
gl
- lIx = ol

®4(x) = Zak(f(xk) +(Vf(xk),x — x) +1(x)) + Zak<gk = Vf(xk),x —xp) + 5

k=0

k=0

t
akF(x) + 7Y arlgr = VF(x).x = xi) + 5 1x = 0%
k=0

INS
w1l

k=0

where in (i) we used the convexity of f. Note that the gradient noise gz — V f(xx) is independent of
x — xy, for fixed x independent of the algorithm (in particular, for x*). Therefore, taking expectation

on both sides:

t
£ i
Egy....c | 8:(x)| < " arF(x) + 4 lix = xol|*.
k=0

Now by the definition of X;, we have:

O = By 1 (Ker1) + ar(f(x0) + (VF(x1), Keg1 — %e) + (Xi11))
+a(gr — VI(xe), Xep1 — X¢) + %Hitﬂ — xo|

Tb %y — %2+ 0 (F (1) + (VF(X0), K1 — ) + 6(%rg1))

(Z) FYa
= Ft-1 T

+ (g — VIxe), K1 — i) + L Rt — o
() ~ o _ _ _ L _

> 87y + T [Rer — Rl + an(FRen) + ¥(&ee1) = 5 1Reer —x]?)

+ai(ge — VF(xe), Xep1 — X¢) + %Hit+l — x|

(i) ~ V-1 1~ ~ 2 < = =2 = 2
2 @iy + X = Xl + @ (F(Xerr) = LliXers = Xel” = L% —xe]%)

+a(ge — VI(xe), Xep1 — X¢) + %Hit-&-l — xo|

(v) ~ 1 —=2a:L ~ ~ ~
> o7, + %lftﬂxtﬂ = X¢|* + @ F(Xep1) — @i L% — x|

+ai(ge — VF(Xt), Xe41 — Xt),
where in (i7) we used the strong convexity of ®; and in (iii) we used Assumption. In (iv) we

used Young’s inequality and in (v) we used that assumption that +; is non-decreasing.Note that the
gradient noise g; — V f(x;) is independent of x; and X;, we have:

= =~ 1 —2a¢L - - _
Ee, | 270, - - - 7&—1} > Ee, |:(I)t—1 + Mft\\xtﬂ = X¢||? + @ F (Xe41) — ae L% — x4 [0, - - - @t-l}
+ a'tEgt [<gt - vf(xt)7it+1 - it>|§0a cee 7§t—1]
"7£t1:|

~ Ye—1 —4dar L ~ - ~
Z Fe. [(I)zl * %thﬂ = X¢||? + a F(Xes1) — ar L% — x4]|% (o, -
a2o?

Yt—1 )
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Now rearranging and summing from ¢ = 0 to 7' — 1, and using the law of total expectation, we get:

~ Ye—1 —4CLtL ~ ~
S By [P + P R - %
t=0
T-1 T-1 a 0_2
t
Egyotrs | Bra| + LY aBeers (R — x| + Y 7%
t=0 =0 Jt—1

x 'YT 1 ~
<Egros [O1-1(0)| = 2 Egy e [foxTHz]

T-1 — 2
+ LY e, er 1% —xil’] + Z s
t=0 t=0

t_

T-1
YT—-1 VYT-1 ~
<Y aF ) + 2 x = ol = B e [Ix — Rrl?]
s=0
T—1 T—-1 a20_2
~ t
+ L Z at]Eg()v“-»fT—l [”Xt - Xt||2] + Z 5.
t=0 t—o -1

Rearranging, we get the desired result.

T-1
~ Ye—1 — 4as L ~ ’YT 1 ~
S Bevs [aF ) - F09) + P2 R~ R + o (I %]
t=0
’}/ T-1 T—-1
T—1
I ol + LY ey gr [ — )
t=0 t=o Vi1

For Equation (T3)), by definition of x; 1, we have:

OF = Oy (x41) + ac(f(xe) + (&, Xeq1 — X¢) + V(Xeq1)) + %”Xt-i—l — %02

(vi) R — Yi—
> 0F_y + L ke = xell? + @ (x0) + (&1 X1 — Xe) + Y1) + T e — ol
=07, + %2 Hllxeer = xel® A+ a(F(xe) + (V) Xegr — %) + (8 — VF(xe), X1 — Xe) + ¥(Xe11))
+ I e — o
C 1 —a L 9 . Yt N-1 2
> &+ f“xt-&-l = X"+ ar(F(xe41) + (& — Vf(xe), X1 — X)) + T”Xt+1 —xo|%,
where in (vi) we used the strong convexity of ®, and in (i) we used Assumption[2.4]
Again by the definition of x;1, we have:
v , (vid)
Of + Slixers —x® = @ulxe)
= Of_y + arF(x:) + T e — x|,
where in (viii) we used the strong convexity of @ 1.
Putting these together, we have:
+v—1 — ar L R — Y
P s = o (P () + (8 = V(o)1 = xa)) + T8 e = Xl
<P (x0) + T e — o

18
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Now divide both sides by a; and sum from ¢ = 0 to 7' — 1, we have:

5
L

(ﬂtﬂ%*ﬂtpfﬂ )-

DO | =

T-1
+yt-1 —aL .
S (AU sl (= V) xens — x0)) < Flo)—Flxr )+
t=0 t

~+
i
o

O

E SAMPLING PROCEDURE FOR VIRTUAL ITERATES

Algorithm 3 Sampling Procedure for Virtual Iterates

Ay =g as
Sample 7, = 1 with prob.

at

3

4 i Atta
5: Obtain g; ~ g; = g(x¢, &)
6: g

7

8

and 7 = 0 otherwise.

8t = gi—1 + 18y . .
g = g; if 7 = 1 otherwise g remains.
: Update x¢41
9: X7 = argmin, [(g,x) + ¥ (x)A-11 + F||x — x¢|?] where 7 is the last ¢ such that 7, = 1.

10: AT+1 = ZZ:O Qy

In this section we prove the missing results for the sampling procedure for the virtual iterates in
Section[3.1] We first summarize the procedure for clarity as Algorithm 3]

Now a simple proposition regarding the sampling procedure. This is folklore knowledge and the
proof is taken directly from (Gao et al., 2024b)).

Proposition E.1. Given a stream of points {x;,}32, in R? and positive scalars {hy}3,, we can
maintain, at each step k > 1, the random variable X, where t(k) is a random index from
{1,...,k} chosen with probabilities Pr(t(k) = i) = I’}; i=1,...,k where H; = Zle h;. This
requires only O(d) memory and computation.

Proof. We maintain the variables X, € R< and Hj, € R which are both initialized to 0 at step k = 0.
Then, at each step k > 1, we update Hy < Hjy_1 + hi and also, with probability Z—’;, we update

X +— Xy (or, with probability 1 — ;}—’;, keep the old X;, = Xx—1). The memory and computation
costs are O(d). Note that, for any 1 < i < k, the event X, = x; happens iff X was updated at step 4

and then not updated at each step j =7 + 1, ..., k. Hence, for any 1 < ¢ < k, we have

k k

h; h h; Hi o\ h

Pr(X, = x;) = — - 1— 2 ) = v, i O

r(xe =xi) = g H ( Hj> o 1 g T m,
Jj=i+1 J=i+1

F DESCRIPTION OF FULL ALGORITHM

In this section, we describe Algorithm [2] in more details for clarity. The algorithm combines
Algorithms|[T]and [3]and Algorithm []together.

At each iteration, the server samples a bernoulli random variable 7; to decide whether to update the g
vector, the cumulative gradient sample for all clients. The clients then proceed to compute their local
stochastic gradient g?, and add it to their local cumulative gradient g¢. If 7, = 1, the client updates
its cumulative gradient sample g° to g¢, otherwise it remains unchanged. Then the client make the
EControl update, where it updates the local error €}, ; and the local gradient estimate g;. The client
then sends the compressed local gradient difference Al to the server. Now the server collects the
gradient differences A? from all clients and updates the global gradient estimate &; and makes a dual
averaging update to the primal variable x; ;.

19
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Finally, the server collects the cumulative gradient samples g’ from all clients via a full communication
and computes g. The final output is then computed using g so that it becomes a random sample of
the virtual iterates (which are not explicitly computed and stored).

G ANALYSIS OF THE EControl MECHANISM

Algorithm 4 EControl

I: Input: X0, 1, e(i) = 0) gl—l = Vfi(X07§6)‘
2: fort=0,1,... do
3: clients:

4: g = gz(xt7 ft) &} is independent copy of ¢’
5: 5Z = gt g1 —net, A = C(dy

6: gt =g, +4]

T € =€ + gt gt

8: send AZ to the server

9: server _

10: | Ay=130 A

11: g =811+ 4

In this section we present the missing proofs for the analysis of Algorithm[2] For ease of understanding,
we also summarize thet EControl mechanism in Algorithm

The EControl mechanism is a blend of two different techniques. The first is the classical EF
mechanism, which keeps track of the (local) compression errors ei and feedbacks them to the
compressor. The second is the gradient difference compression technique, which compresses the
difference between the current gradient and the previous estimates. As was discussed in|Gao et al.
(2024a)), directly mixing the two methods might lead to suboptimal dependence on the compression
quality 4 in the convergence rate. The key innovation of EControl is to introduce a scaling factor 7
on the error feedback term. Note that the historical estimates g! also carries some information on the
error, and the error feedback term should be scaled down to balance the two sources of information.
The specific choice of 7, as we explain below, is carefully chosen to optimize the dependence on ¢ in
the final convergence rate.

Again, we remind the readers that for now we restrict ourselves to the setting where a; = 1 and v; = 7.
Please refer to Appendix [H|for more details on the case where -y, is changing (and non-decreasing).

We first present an upper bound on each sums of e} [|? and ||g — g||?, both in terms of the sum of
(B

Lemma 4.1. Letn = then:

5
3v1—3(1+y/1-03)’

T T—2
o S0 0201+ VI 8)*
ZHet”2§ ZHgtJrl gt||2

244

15)

2T2
ZH |2 < P00V antﬂ il

Proof. By the definition of e’ 11, we have:
e =8 —gte =& 1 TA —g +e; =4 -0+ (1-1e,
Therefore, by triangular inequality, we have:
letpall < (1= m)lletll + 1A = ;1 < (1 = m)lleyll + V1 = dlo]),
where in the last inequality we used the definition of the compressor. Now by Lemma|[C.2] we get:

T

o 1
> lledll? <
t=1

2.

20
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Next we note the following:
5§+1 = g§+1 — & - Uei-s-l
=gl — & - —gi+e) +gl gl
= (L+n)(gt — &) — et + 841 — &
= (L+0)(8; — A} +1e;) — ey + gy — g

= (1 +m) (0 — A} +1°e; +gi1 — 8-

Similar as before, we now apply triangular inequality and definition of the compressor and get:
188441l < (1 + VLT =olI6E] +n*llef]l + gt — gtl-

Let’s write =1 — (1 +n)v/1 — § . Now we apply Lemmaagam and Young’s inequality, and
note that 65 = 0, we get:

T-2
X:IWII2 <3 Z(n4llei|\2 + gt — gl
t=0

Now we plug in the upper bound on the sum of ||e?|| (and note that e} = 0):
0 T-3

ann? 20— O ZII6’||2 ﬁ22||gt+1 gil|2.

Rearranging, we have:

ZIWII2 a0 0p ZHgm gill”.

Therefore, we have:

ZHetHQ = B2 o ZHgtJrl gt”

Next, we note the followmg:
& —8 =40 — (81— 81 —ner) e
= Al — 5] +nel.

Therefore, by Young’s inequality, we have:

T-1 T-1 T-1
D olgt —eill> <200-6) > 116117 + 20 Y et
t=0 t=0 t=1

)
< 52 2 ZHgt+1 gt”
For the choice of 1 and 3, we choose 3 = 2/1 — o). Since 3 =1 — /1 — §(1 + 7)), we have:
B ) = 26
T 31+ vid) 31+ v1_d)
Putting this back, we get the desired results. O
Lemma 4.3. Given Assumptionsand to and letn = m, Y2 24}/55, then
we have: oy
1 « 8042
> 52 Ellein - &il’) < - Fo + 770 (16)
t=0 i=1
Therefore, by Lemma[.1} we also have:
T-1 n
1 5760@2 45367 0>
= E[lleill?] Fo+ ———. (17)
t=0 n i=1 7 0
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Proof. For simplicity, let’s write 17 = ||x¢11 — X¢||2. By Assumptions[2.1]and[2.5] we have:

- n T-1

. , ,
2D Ellgh — il <20 3 E[rf] + 470"
t=0 ' i=1 t=0
Therefore,
g : 36(1 = 0)(1+VI—0)% = 1 & : .
Z n Z gt||2] < 52 Z n ZE gi1 — gt||2]
t=0 i=1 t=0 =1
7202(1 — 8) (1 + V1 —0) = LT -9+ V1=10)202
< Z E[r
52 - 52
28802 X . 576To?
= 52 ; i [Tt} + 52
By Theorem[3.3] we have:
T2, T—
Z Z = Vf(xy),xe41 — %) < F(xg) — F(xp).
t=0 =0

Therefore, we have:

T-1
- L 2 1
—EF <E[F — — IE \Y
> 5Bl <ElF ) + 57 L E [l - V7))
T-1
1 2T 02
< E[F(x0) — F(xr)] + = Ellg —gl’] +
28802 578T 0>
<E[F(x0) - Fxr)] + —; E[rf]+—
02y — 02~
Now assuming that v > %T\/ﬂ, and rearranging, we have:
T-1
40 1285T ¢
2
; E[rf] < oy B (x0) = Fler)] + =53
Therefore,
1< 25700*T 52
Z ZE ||gt+1 gl ] E[F(x0) — F(x7)] + — = + 4T o>,
P 6%y
O
Theorem 4.4. Given Assumptionsto and setting a; = 1,yp =, n = m, and

taking one initial stochastic gradient step from x to x{, if 1p #Z 0 and setting

- 24\/20 | Ta2 17730353
= X
7 § "\ nRY R;/ﬁ 53 ’

_ 16R%0%  561R3V/lc = 96/2(R}
 ne? §2e%> de 7
iterations of Algorithm[2)to get E [F (Xr) — F*] < e. Here, Ry = |xo — x*|.

then it takes at most

In particular, this means that with three rounds of uncompressed communication (one for the initial
stochastic gradient step, one communicating g§_1 and one communicating g), and T rounds of

22
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compressed communications, Algorithm|2|reaches the desired accuracy. Assuming that the cost of
sending compressed vectors is 1 and sending uncompressed vectors is m, it costs at most

16R20%  561R2\Vl0  961/2(R3 am
ne? §2e%/2 de ’
in communications for Algorithm[2|to get:

E[F(xr) — F*] <¢

Proof. For simplicity of notation, let’s write F; := F(X;) — F(x*).
By Lemma and Theorem we have, when v > 247\/@:

T-1

1 ’yRO L 1
E [F; — + — —
t:() t+1] < 9T 2T Z 0 ; ”etH
R2 576062 4536Lo? o2
= ’Y2To 354 Fot —ga—+
v364T 24 yn
L1/4€1/2F1/4 1/3 13 2/3
Now we choose ¥ = max { 24:;/55, = T o/ QnT}gg , 21TR§/§54/;’ }, we have:

l iE [F] < 17£R% n ].]_L1/4£1/2F01/4R3/2 . R(Q)O_z 21Ré/3L1/302/3
= "= eT 20T 2nT 2T%/3 543

Therefore, after:

_ 8R30% | 99R3VIo | 34(R . 1LY/ 02 R R
2ne? §2e%/2 de de ’
iterations of Algorithm [2| we have:

1 T
T;E[Ft}ga
t=

Note that this already gives us the desirable convergence rate. We can further simplify the above
rates and remove the dependence on Fjy by taking one additional stochastic gradient step initially to

get x)). By Lemma we have E[F(xp) — F*] < LR§ + 252 and Ry = E [||x — x*[|?] < 2R3,

Therefore if we start our algorithm at x{, then we have:

i E[F vRQ 576004 R3 N 407303 Roor N 453600 N o?
=0 i V204T 7304T 7264 yn’

’ﬂ \

Note that for the third term, we have the following due Young’s inequality and the assumption that
y > 24v2¢.
- 6 .
407303 Roo _ 4073(*R2  4073(%0> < 40730*R3 61002
Y364 T 24364T 27364T = 29304T 253

Therefore, we have:

— WRO TT9TUAR:Z 4597002 o2
Z [Fia] < 354 a5l T o
por 384T ~v26 n

_ 24v20  [To? 17T/20/°6"
TEREN TS\ wRe Rsvs |

23
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and we have:

24V/2URG | [R3o® 17R) 02 0™
ZE F] < 57
T T nT T?/35%3
Therefore, we need only.

16R20%  561R2\Vl0  96v/2(R2

T =
ne2 §2e%/? de

iterations.

H EControl wiTH VARIABLE STEPSIZE

Consider Theorem |3.3| when the stepsize 7, is changing, we have to upper bound the sum of @
t—1

This extra weight has to be handled directly in the analysis.

Lemma H.1. Let n= m, we have:
T i T-2
el 5100 VT 5 ot
P Vo1 254 7

(22)

T—1 T-2
Z Hgt gt||2 < 36(1 — )(1+ V31— 2 Z ||gt+1 gt”

t=

Proof. By the definition of e} |, we have:
=& — gt =&+ A - gl e = AL d + (1 -n)ej,
Therefore, by triangular inequality, we have:
letall < (X =mletll + 147 = 61l < (1 = n)llejl] + v1 = ]8I,

where in the last inequality we used the definition of the compressor. Now divide both sides by 77,
and noting that y; > v;_1, we have:

7 7 1— 51
Het-gl” <(1—n) lezll | v —dlldll

Yt %2— 1 ’Yt 1

Now by Lemma|C.2] we get:

Z IIetH2 1- Z l9211*
=1 Vi1 —o Vi1
Next we note the following:
5§+1 = gi+1 - gi - neiﬂ
=g — & — (& —8i +ei) T8l gl
= (1 +n)(g — &) —ne} + 811 — &
= (L+0)(6 — A} +1je}) — e} + 8141 — &
= (L+m)(0; — A +1e; + 8141 — 81
Similar as before, we now apply triangular inequality and definition of the compressor and get:
167411l < (L +m)VI =016} 1l +n*llet]l + llgir — el
Again, we divide both sides by 77 and note that vy, > v;_1:

Wl (g 50 Pleil | gk — il
2
>

t Vi1 % 1 'Yt
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Let’s write f =1 — (1 4+ n)v1 — ¢ . Now we apply Lemmamagam and Young’s inequality, and
note that ) = 0, we get:

- T—

Z ||5’||2 Z U Hetll2 n gt —sill® )
v, T 6 v?

t=0 t t=0 t 1 t

Now we plug in the upper bound on the sum of ||ef|| (and note that e}, = 0):

T-3
Z ||<5Z||2 Ui oy 1o IoF1* Z gt — gil? sil*
=0 Vi1 P Vi1 ﬂQ o0

Rearranging, we have:

s

Z H‘sZ”Q <5 i — Z Hgf+1 28

t07t1

Therefore, we have:

5l HeiIIQ .20 Z ||gt+1 gl
= B2n? —2( 1 -
Next, we note the following:

g — gl =A]— (g — & _, —ne;) +nej
= Al § el

Therefore, by Young’s inequality, we have:

T2 i i
8(1 -0 ||gt+1 _gt||2
B 2l-0E A A

For the choice of 7 and 3, we choose 5 = 2v/1 — d7. Since 5 =1 — +/1 — §(1 + n), we have:

B 0 5= 26
To 3 s(l1vioo) " 31+vi_o)
Putting this back, we get the desired results. O
. . 136€
Lemma H.2. Given Assumpnonsand to andn = W, v > we have:
- llg —gil?] _ 3202F,  73988(° = o>
S 1y Bl el 200, TS @
i= 70 %00 t=0 Vi
Therefore, by Lemmad.1} we also have:
T T—1
1 ||e I 21502 F, 22642 o?
Yoy HEH 2R Bo e e
=1 "o - 7o V0% =5 i

Proof. For simplicity, let’s write r? = ||x;11 — x¢||%. By Assumptions[2.1]and[2.5] we have:

T-1 n i _Si2 T-1 2 T-1 2
ZEZE[H&HQ gil?] §2£2ZE[7;] _,_24%.
t=0 "ol Tt t=0 't =0 Tt
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Therefore,
_ n T-2 n i i
le Hgt gt“ ] < 36(1—0)(1+v1-19)? Zl E [llgii: —8il*]
i—o "o B 50° =0 "V im1 0
7202(1 - 0) 1+ VI—0)2 = E[r?]  144(1 - 6)(1+ VI—10)? = o2
< 252 Z 2 + 252 Z 7
+t=0 ’Yt '70 =0 t
_ 28802 - Z | 576 = o2
= 959 259 2
Y50 =0 ’Yo(S —o i
Recall the following from the proof of Theorem@] (with a; = 1):
+ L . — M-
% 17+ F(xep1) + (& — Vf(xe), Xeg1 — %) + %thﬂ — xo?
<F(x) + 5 e = o
Upper bounding (g; — V f(x;),X;+1 — X¢), and dividing both sides by +; and summing from ¢ = 0
to 1l — 1, we have:
T-1 -
— 2L F(x F(x Vf(x
PRI SEICIELLEIRE z gz i z (Bips = ipesn).
t=0 v t=0 — Ve
where 3] == i 2;’5 L. Note that since ~; is non-decreasing, we also have:
§ ) = Fr) _ Fowo) = FOx') | Foa) = FOx) | Fou) = FO)  Foa) = FGS) |
% % V3 ol
+ F(XTfl) — F(X*) _ F(XT) — F(X*)
7’13“—1 7%—1
F(xo) = F(x*) F(x1) = F(x*)  F(x1) - F(x*) F(x2) - F(x*)
< 3 - 3 + 3 - 3 +-
Yo 71 71 Y2
F(xp_q1)— F(x*) F(xpr)— F(x*)
+ 3 - 3
Yr—1 T
< F(xo) _:aF(X*)'
Y0

Taking expectation on both sides, and applying Assumption [2.1] we have:

T-1

Z(@Pt — Bipis1)-
t=0

T_l’Yt*2L]E 2 < 4 = ”gt gt|” T_1802

—o Nt

Now we use the assumption that Bt is non-increasing and eliminate the last term. Further, we plug in

the upper bound for the sum of ||g; — g;|?, we get:
T-1 T72 2
Y —2L_ o _ Fy 115202 [rt 2312
E < — E E
= Y Iri] < gl " 160 =

Suppose that v; > 4L, then we have:

L2 8F,  9216¢2 TZ_Q E[r?] , 18496 — o2
L g2 < B o
pr e AR T e S M — 77

16F, 36992 <
E [r?] <
Iri] < %o 80 ; o0
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Finally, we have:

Ti 1-E| IIgtH gil’] _ 320F +73988€2T§Oj
=0 " im1 % %80° =t

Therefore, by Lemma

XT: 1 E[|et|| | _2BCFR 22 — o2
- = 3 252 20
e R 7o V0% =5 i

O

Theorem H.3. Given Assumptions|2.3|to and we set a; = 1, n = and we take

)
3v1-3(1+v/1-9)’
one initial stochastic gradient step from xq to x(, if ) # 0 and set

_ 16 fate? 646¢/20%/2t"/
R Y R

then it takes at most

288R202  6692L/*R%0  552(R?
ne? 52e%> de

iterations of Algorithm[2)to get E [F(Xr) — F*] < &

T =

In particular, this means that with three rounds of uncompressed communication (one for the initial
stochastic gradient step, one communicating g§_1 and one communicating g), and T rounds of
compressed communications, Algorithm|2| reaches the desired accuracy. Assuming that the cost of
sending compressed vectors is 1 and sending uncompressed vectors is m, it costs at most

288 R30> 6692Ll/2R%o 5520 R3

T = 3
ne? + 522 + de +om,

in communications for Algorithm2)to get:

E[F(xr) — F*] <e

Proof. By Lemma and Theorem and setting n = m, and assuming that

Yo = %6@ and that (; is non-increasing in ¢ (this can be easily verified once we give the precise
definitions of ~;), we have:

T-1

1 YT-1 7T1

~ SN EIF, R, RE+Z2N =
TZ: Finl+ 57 2T 0+Tznz

=0 = i=1 % 1 =0
2151 p2 —1 9267 .2 T-1
= ’YT 1R 4.3 F0+ 4 20 Z
2T OtygT — 04T nyp— 1T

We consider the following stepsize:

_ 1860 RLVCPR] | fate? 512007
T SRy nhg RIsvs

First we note that y; is non-decreasing. Further, it can be verified that with such a choice of ;, we
have 3] = ;’* L is non-increasing in ¢.

Noting that Et o = < %(T — 1), then we have:

1 Tz‘lE b1 < BURY 16LY402Fy*  384L*R[*0”*  3\2Ryo
t+1] > .

T 1 + 4/3r2/: +
T = oT 5R0/2T 63T vnT
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Therefore, after at most:

288 R%0? 60199L1/2R30+276€R2 64102 F)/*

T =
ne? §2e%/2 de SRy*e

iterations, we have E [F(xr)] < e.

This is already a desirable convergence rate, but we can also eliminate the term dependent on Fj,

using one initial stochastic gradient step. By Lemma we have E [F(x}) — F*] < LR3 + 1323

and R{, := E [||x{, — x*||?] < 2RZ. Therefore if we start our algorithm at x/,, then we have:

T-1 9

szlE . ’YT 1R 215€4R2 215€3R00 Z 226€ 2 Z o
vt 4] ot g g FRT T =y T

N

For the third term, due to Young’s inequality, we have:

219(3Ryo _ 2(RS 2154262 _ 2U(3Ryo 24140
T T ST ST T T oteT

Therefore, we have:

T-1 T-1 T-1
1 WT ) 21604 R2 227(g2
N E[F R% + :
T [Fia] < ot SiEr ; §4y2T Z e 1T

Now we pick:
136¢ N 2to? N 6460353t/
Tt = .
S nRj R*6%»

and after at most:
288R%20?  6692L/*R%0  552(R}

T =
ne2 52e%/? oe

iterations, we get
E[F(xr)— F*]<e

I ANALYSIS OF THE REAL ITERATES

In this section, we present an analysis of the real iterates generated by Algorithm [I] which can
be immediately combined with our analysis in Section 4| and give the convergence guarantee for
Algorithm [2] purely in terms of the real iterates x;. We note that this analysis does not rely on the
virtual iterates X; at all, and is therefore also applicable to the basic proximal algorithm without dual
averaging. We believe that this analysis might be of independent interest.

We first note that the guarantees for the real iterates is weaker than that of Theorem [3.3]
Theorem L.1. Given Assumptions 2.3|and then for any x € domz), we have:

Ye—1 — 2a: L 2 ’YT 1 ||et|| — a; é
S E fa(Fiin) - F) + 22 oy Bl o v
=1

t=0 t=0 Jt—1
(25)

g

Proof. By the definition of ®;, we have for any x € dom(¢):

1
@(x) > @ + 3 x x|
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We also have:

Zak (% = %) + () + 3 [x = ol
- Zak (VI =x1) +90)) + 3 o = T xe) x ) + = xalP

(4)
< Z anF(x) + kZ_Oak@k = Vo), x = x0) + Gl = xol,
where in (i) we used the convexity of f. Taking expectations on both sides, we get:

t

<" anF () + 3 Jx—xol|”.

k=0

Now by the definition of x;41:

;= oo (k1) + ae( ) + (1 X1 = Xe) + V(1)) + T s — x|
(ii) * Yt—1 N
>+ — 5 %41 — xe|” + ae(f(xe) + (8 Xeg1 — %) + U (X041))
=& +—— % ! lxe41 — xe||? + ae(f(xe) + (VF(Xe), Xe1 — Xe) + Y (Xe1)) + ae(8 — VF(Xe), Xe41 — X¢)
(44%) .
> &7, + I HXt+1 —x¢||? + acF(x11) + ar (& — VF(Xe), X1 — Xe),

2

where in (i) we used the 1-strong convexity of ®; and in (iii) we used Assumption 2.4

Now rearranging and summing from¢ = 0to T — 1, we get:

_1—a;L
3 o)+ 22 ]

T—-1
<E [®7_,] - Z E [ai (& — Vf(x¢), Xe41 — X))
t=0
T—1
<E[@5_y] - TR [x - xz )] = Y @B (& — V(xe) Xey1 — x0)]
t=0
<3 PG + Y aE (g - Ve)x - x)] + E [ o]
t=0 t=0

T-1
— LB (Il —xrl?) = Y- B [(& — VF(xe) xee1 = x2)].
t=0

Rearranging, we get:

> B fa(Flxen) ~ 00 + 22—

t=0

1 T—1

<=l — B [~ x F]) + 3 0B (& — V. x)x ).
t=0
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Note that by the definition of e;, we have:

T-1 T-1 T-1
ar(&r — VI(xe),x = Xep1) = Y (€141 — €6, X —Xep1) + > ar(ge — VF(xe), X = Xp41)
t=0 t=0 t=0

= Z<et+1ax = X¢1) — (€, X — X¢) + (€4, Xp1 — X¢)

t=0
T—1
+ ai(ge — Vf(x¢), X — X¢41)
t=0
T-1 T-1
= (er,x —x7) + > (e, Xep1 —X¢) + Y ar(g — Vf(Xe), X — X 11)
t=0 t=0
lerl?  yroallx— %7l | = 2lled® | velxe — xialf?
< + + + )
2vr—1 2 = M 8

T-1
+ Y ailgr = VI(xe),x = Xi41)-
t=0

Taking expectation on both sides, and noting that the noise g; — V f(x;) is independent on both x
and x;, we have:

Tz_:l aE[(& — V f(xt), X — X¢41)]
t=0
S!j;”j n ’YT—1||X2— x7|? N ; 2Letﬂ2 ; Vi 1HXf4—Xt+1H 49 g ‘i"%'
Now we put these together and get:
3B o)~ Fo0) + 22 ] < ey +2Z Bl |, 5 vk
t=0 t=0 "

Remark 1.2. Comparing to Theorem [3.3] we note that the key difference here is that the error in

Equation li is2>°" E[”et” ) , while in Equation itis LY, E[nllet” ]

tive difference here is cmmal and allows the stepsize ; to control the errors much more effectively.
Therefore, Theorem [[.T| would lead to a weaker convergence guarantee.

The multlphca-

With this, we can now directly combine Theorem [[.T] with Lemma [£.3] to obtain the following
convergence guarantee for Algorithm [2]in terms of the real iterates x;. For simplicity, we use the
fixed stepsizes v = 7.

Theorem L.3. Given Assumptions to and we set ay = 1,1 = m, and we set:

] v 3203 F)° 1350y T
= Imax
Y 5 ’ 54/3R;/3 ’ 62R0 )

then it takes at most:

T2000R30” | ASVRURE 64(LR2)72F,?

T =
sz T 5e 5

(26)

iterations ofAlgorithm@t() get + S (F(xp41) — F*) < e
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Proof. We plug Equation l| into Equation , and assume that v > MT‘@, and get:

T-1

1 yR3  11520¢> 907402
= F —F*) < :
T tzo( (xt+1) )= 57 12T 0T Ty
Now we set )
24y/20 320°F)* 1350\/T
Y= max{ ) 275 ) }a
K} 64/3R0/3 2R,
and we have:
T—1 1/3
1 24\/2¢0R?  32(¢R%)*°F, 135Rg0
— F —_F < 0 0 0 )
7 2 (Flent) = ) < =4 =T 52T

Therefore, it takes at most:

T =

72000R202  48v/2(R2 . 64(¢R2)Y*F,/"
J4e? de §e ’

iterations of Algorithm 2]to get:

}ﬂ
L

(F(xi41) — F") <e.

Nl =
o
I
o

O
1

53¢
ministic term, which is worse than the 0(6—16) rate achieved in Theorem 4.4{in terms of J. Perhaps
more importantly, in the stochastic case (02 > 0), we only achieve a O( 54z ) rate, which does not
improve linearly as n increases and is not delta-free, unlike the rate in Theorem .4 and Theorem [H.3]
It is unclear whether this limitation is a fundamental property of the algorithm or an artifact of the
analysis. We leave it for future work to resolve this question.

Remark 1.5. We also briefly note that the rate in Theorem [[.3|can be slightly improved using the
restart strategy and a more careful analysis of the number of steps and parameter settings in each
i

stage. This way we can remove the O(ﬁ) term, and instead get a O(m) term overall. We will

however have to assume that domz) is bounded, and do O(log %) number of restarts which requires
one full communication at each stage. For simplicity, we omit the details here.

Remark 1.4. We emphasize that here we only achieved an O( ) convergence rate in the deter-
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