
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMPOSITE OPTIMIZATION WITH ERROR FEEDBACK:
THE DUAL AVERAGING APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

Communication efficiency is a central challenge in distributed machine learning
training, and message compression is a widely used solution. However, standard
Error Feedback (EF) methods (Seide et al., 2014), though effective for smooth
unconstrained optimization with compression (Karimireddy et al., 2019), fail in
the broader and practically important setting of composite optimization, which
captures, e.g., objectives consisting of a smooth loss combined with a non-smooth
regularizer or constraints. The theoretical foundation and behavior of EF in the
context of the general composite setting remain largely unexplored. In this work,
we consider composite optimization with EF. We point out that the basic EF
mechanism and its analysis no longer stand when a composite part is involved.
We argue that this is because of a fundamental limitation in the method and its
analysis technique. We propose a novel method that combines Dual Averaging with
EControl (Gao et al., 2024a), a state-of-the-art variant of the EF mechanism, and
achieves for the first time a strong convergence analysis for composite optimization
with error feedback. Along with our new algorithm, we also provide a new and
novel analysis template for inexact dual averaging method, which might be of
independent interest. We also provide experimental results to complement our
theoretical findings.

1 INTRODUCTION

Gradient methods, and in particular, distributed gradient methods, are the workhorse of modern
Machine Learning. In this work, we consider a simple yet powerful extension of the basic optimization
problem, namely, the composite optimization problem:

min
x∈domψ

{F (x) := f(x) + ψ(x)}

where f : Rd → R is smooth and ψ : Rd → R ∪ {+∞} is a composite part. The composite
optimization problem is ubiquitous in machine learning, and it covers a wide range of variants of the
vanilla optimization problem, for example, regularized machine learning (Liu et al., 2015), signal
processing (Combettes & Pesquet, 2010), and image processing (Luke, 2020). Since ψ can take on
the value of infinity, it also naturally covers the constrained optimization problem.

The sizes of the datasets and models in modern Machine Learning have been growing drastically,
leading to unique challenges in the training process and demands optimization algorithms that
are tailored to these new settings. The distributed optimization paradigm has become a necessity
due to the fact that one simply does not have the capacity to accumulate the entire dataset while
training modern ML models. One of the most popular setup is to distribute the data across multiple
clients/workers, and coordinate the model update in one server. Many of the recent breakthrough
models are trained in such a setup (Shoeybi et al., 2019; Ramesh et al., 2021; 2022; Wang et al.,
2020).

One of the main bottlenecks in scaling up distributed training is the communication cost. Transmitting
the full large model updates between clients and the server can be prohibitively expensive when
performed naively (Seide et al., 2014; Strom, 2015). One of the most popular practical remedy is
communication compression with contractive compression (Definition 2.2) (Lin et al., 2018; Sun et al.,
2019; Vogels et al., 2019). Contractive compressions are potentially biased, and naive aggregation of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

these biased compressed updates can lead to divergence (Beznosikov et al., 2023). In the classical
setting when ψ ≡ 0, one of the most basic and popular families of methods that are used to rectify
this issue in practice is the Error Feedback (EF) mechanism (Seide et al., 2014; Paszke et al.,
2019; Vogels et al., 2019; Ramesh et al., 2021). Due to its vast practical importance, EF mechanism
has attracted significant interests in the theory community as well, where many works, though
restricted to ψ ≡ 0, have attempted to theoretically explain the effectiveness of EF (Stich et al., 2018;
Karimireddy et al., 2019) or derive variants of EF that enjoy better theoretical properties than the
original form (Fatkhullin et al., 2023; Gao et al., 2024a).

However, in the composite setting, the situation becomes much more complex, and the theory is much
less developed. The only work that goes beyond the classical unconstrained setting is (Islamov et al.,
2025),1 who proposed Safe-EF for constrained optimization. Specifically, they considered the case
where ψ is an indicator function of a convex set Q, given as Q = {x ∈ Rd : qs(x) ≤ 0,∀s ∈ [m]},
assuming access to first-order information of all qs. Their analysis requires bounded gradients (both
f and qs), which we do not assume here. The goal of our work is to address the general composite
setting for the EF mechanism. We develop novel algorithmic and analytical tools, and we are the first
to obtain matching rates (or any rates) for EF when ψ ̸≡ 0. We achieve the

O

(
R2

0σ
2

nε2
+
R2

0

√
ℓσ

δ2ε3/2
+

√
2ℓR2

0

δε

)
convergence rate, matching the rates of state-of-the-art EF variants when ψ ≡ 0.

1.1 THE CLASSIC EF AND VIRTUAL ITERATION

Assuming that ψ ≡ 0, let us recall the classic EF mechanism and the main tool that is used to analyze
it, the virtual iteration framework (Mania et al., 2017), to understand its drawbacks. On a high level,
we consider an update rule of the form xt+1 = xt − 1

γ ĝt, where ĝt is some estimate of the true
gradient gt = ∇f(xt). EF provides a way to construct such an ĝt when the gradient information can
only be communicated after being compressed by the compressor C. We can summarize the basic EF
mechanism in the following (for simplicity, we consider the deterministic and single client setup in
the introduction):

δt := gt − et, ĝt := C(δt), et+1 := et + ĝt − gt, (1)
The basic (and essentially the only) tool that people have been using to analyze it is the virtual
iteration framework (Mania et al., 2017), which has been the foundation of most of the theoretical
works on EF since some of the first theoretical papers on EF (Stich et al., 2018). We consider the
virtual iterate x̃t, defined as:

x̃t := xt +
1
γ et.

The key insight here is that et :=
∑t−1
k=0(ĝk − gk), i.e. the accumulation of all the gradient errors,

and the virtual iterate takes the true gradients as the update, i.e. x̃t+1 = x̃t − 1
γgt, where again,

gt = ∇f(xt). This enables the analysis to use the virtual iterate as a proxy for the gradient descent
trajectories.

However, the combination of EF with virtual iteration does not extend directly to the composite
setting. If we still construct ĝt by Equation (1) but update via

xt+1 = argmin
x∈domψ

{
ht[⟨ĝt,x− xt⟩+ ψ(x)] +

1

2
∥x− xt∥2

}
(2)

then the virtual iterate x̃t := xt − htet is difficult to interpret, as it may lie outside domψ and thus
cannot serve as a feasible proxy.

To contrast, when ψ ≡ 0 the iterates satisfy

xt = x0 − 1
γ

t−1∑
k=0

ĝk = x0 − 1
γ

(
(

t−1∑
k=0

gk)− et

)
,

1Fatkhullin et al. (2021) studied a proximal variant of EF21, which is more closely related to gradient-
difference compression methods. Their analysis applies to the non-convex, full-gradient regime and does not
cover the stochastic case. By contrast, our work focuses on the classical error feedback mechanism in the convex
composite setting with stochastic gradients.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

so xt is simply the cumulative sum of gradient estimates, and subtracting et recovers the exact
gradient-descent trajectory. This additive structure is what makes the virtual iterate analysis effective.

When ψ ̸≡ 0, however, the proximal step in (2) introduces distortions at each iteration. The iterates
xt can no longer be expressed as a clean sum of past gradient estimates, while et remains a sum of
compression errors. This structural mismatch is precisely why the classical virtual-iterate argument
breaks down in the composite case.

1.2 OUR STRATEGIES

Following our discussions above, it is clear that the classical EF mechanism and the virtual iteration
framework need to be modified in order to handle the composite setting. In particular, we need to
restore the simple sum of gradient estimates in the iterates, so that et can still be used to correct the
accumulated deviations from the true gradients. This reminds us of the Dual Averaging framework,
where the algorithm sums up all the past gradients and take one step from the initial point at each
step. In general, we consider the following update rule:

xt+1 := argmin
x∈domψ

{
t∑

k=0

ak(⟨ĝk,x⟩+ ψ(x)) +
γt
2
∥x− x0∥2

}
,

where ak, γt > 0 are some properly chosen coefficients. In this way, the iterates xt are defined
precisely by the (weighted) sum of all gradient estimates

∑t−1
k=0 akĝk. We can therefore consider the

(weighted) cumulative gradient error et :=
∑t−1
k=0 ak(ĝk − gk) and use it to correct the deviations of

xt from the true gradient trajectory, this time inside the proximal operator:

x̃t+1 := argmin
x∈domψ

{
t∑

k=0

ak(⟨ĝk,x⟩+ ψ(x))− ⟨et,x⟩+
γt
2
∥x− x0∥2

}

= argmin
x∈domψ

{
t∑

k=0

ak(⟨gk,x⟩+ ψ(x)) +
γt
2
∥x− x0∥2

}
.

It turns out that this intuitive modification of EF and the virtual iteration framework is precisely what
we need to address the composite setting.

2 PROBLEM FORMULATION AND ASSUMPTIONS

We consider the following distributed stochastic optimization problem:

F ∗ = min
x∈domψ

[
F (x) = f(x) + ψ(x)

]
, where f(x) :=

1

n

n∑
i=1

fi(x), (3)

where x ∈ Rd are the parameters of a model that we train. We assume this problem has a solution
which we denote by x∗. The objective function F is a composite objective with the smooth part
f(x) := 1

n

∑n
i=1 fi(x) and the composite part ψ : Rd → R ∪ {+∞}. ψ is a simple proper closed

convex function. We write domψ ⊂ Rd to be the set where ψ is finite. Each function fi is a local
loss function associated with a local data set Di, which can only be accessed by client i. There are in
total n clients indexed by i ∈ {1, . . . , n}. The composite part ψ can be accessed by the server.

Let us define the problem class that we consider in this paper. There are two type of agents in this
problem: the server and the clients. The server has access to the proximal oracle for any g,x ∈ Rd
and γ ∈ R+, defined as argminx′∈domψ

[
⟨g,x′⟩+ ψ(x′) + γ

2 ∥x− x′∥2
]
. We assume that each

client i can access only the function fi and only via the stochastic gradient oracle as follows:
Assumption 2.1. For any x ∈ domψ, gi(x, ξi) is a stochastic gradient oracle for fi at x, where ξi is
the randomness used by the oracle. We assume that gi(x, ξi) is unbiased and has bounded variance:

E
[
gi(x, ξ

i)
]
= ∇fi(x), Eξi

[
∥gi(x, ξi)−∇fi(x)∥2

]
≤ σ2. (4)

We consider the distributed setting where the communication from the client to the server is expensive,
and compressed communication is needed to reduce the communication cost. By (contractive)
compression, we mean the following:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Definition 2.2. We say that a (possibly randomized) mapping C(·, ζ) : Rd → Rd is a contractive
compression operator if for some constant 0 < δ ≤ 1 it holds

Eζ
[
∥C(s, ζ)− s∥2

]
≤ (1− δ)∥s∥2 ∀s ∈ Rd. (5)

Here ζ is some possible randomness used by the compressor. For simplicity, we will often omit ζ in
the notation when there is no confusion.

In addition, we assume that the cost of communication from the server to each client is negli-
gible (Karimireddy et al., 2019; Richtárik et al., 2021; Gao et al., 2024a), while the client can
communicate to the server with the following two types of channels:

• Compressed channel: The client can send a compressed vector C(x, ζ) ∈ Rd to the server, where
C is a contractive compression operator (see Definition 2.2). The cost of sending one compressed
vector is 1.

• Uncompressed channel: The client can send a vector g ∈ Rd to the server without any compres-
sion. The cost of sending one uncompressed vector is m ≥ 1.

When the compressor is the Top-K compressor (i.e. the client only sends the top K elements of the
gradient), then the cost of sending one uncompressed vector in Rd is at most d/K. In general, given
any δ-compression in the sense of Definition 2.2, we can combine at most O(1δ log

1
δ′) compressed

messages to recover an δ′-compression for any δ′ > 0 (He et al., 2023). In this sense, one can
typically approximate an uncompressed channel with a compressed channel with an Õ(1δ) additional
multiplicative overhead. That is, we can typically think of m to be of the order 1

δ .

In this work, we are interested in minimizing the total (client to server, uplink) communication
cost of the algorithm (for each client). Suppose that throughout the algorithm, each client makes
a compressed communications and b uncompressed communications to the server, then the total
communication cost is a + mb. This is roughly proportionate to a + b

δ . We do not consider the
communication cost from the server to the client (broadcast, downlink cost) since it is typically much
lower than the uplink cost, which is conventional in prior works (Karimireddy et al., 2019; Richtárik
et al., 2021; Gao et al., 2024a).

Let us now list the assumptions on the objective functions that we make in the paper. First, we make
the standard assumption that f is convex.
Assumption 2.3. We assume that the function f and ψ are convex, closed and proper over the convex
domain domψ.

We also assume that f is L-smooth, which is standard in the literature (Stich et al., 2018; Karimireddy
et al., 2019; Richtárik et al., 2021; Gao et al., 2024a).
Assumption 2.4. We assume that the objective function f has L-Lipschitz gradients, i.e. for all
x,y ∈ domψ, it holds

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥. (6)

We also assume the following smoothness condition for the local functions fi.
Assumption 2.5. We assume that there exists some ℓ > 0 such that for all x,y ∈ dom(ψ), it holds

1

n

n∑
i=1

∥∇fi(x)−∇fi(y)∥2 ≤ ℓ2∥x− y∥2. (7)

Remark 2.6. Note that this is a weaker condition than what many existing works assume, e.g.
(Richtárik et al., 2021; Li & Richtárik, 2021), where they assume that all fi’s are Lmax-smooth. In
contrast, we only require that they are in some sense smooth on average, which is strictly weaker.

We point out that by Jensen’s inequality, we always have that L ≤ ℓ. In the analysis of our main
method, Algorithm 2, we eventually only need Assumption 2.5. However, Assumption 2.4 is still
important for the analysis of the inexact dual averaging framework that we propose, as it does not
presume any finite-sum structure of f .

3 THE INEXACT DUAL AVERAGING METHOD

In this section, we take a step back from the distributed optimization problem with communication
compression that we consider in the rest of the paper, and consider solving a general stochastic

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Inexact Dual Averaging

1: Input: x0 and {at, γt ∈ R+}t=0,...,∞. γt is non-decreasing.
2: for t = 0, 1, . . . do
3: Obtain ĝt ≈ gt := g(xt, ξt), ξt is an independent copy of ξ.
4: xt+1 = argminx

[
Φt(x) :=:=

∑t
k=0 ak(f(xk) + ⟨ĝk,x− xk⟩+ ψ(x)) + γt

2 ∥x− x0∥2
]

composite optimization problem of the form F ⋆ = minx∈domψ[F (x) = f(x) + ψ(x)]. This
perspective allows us to develop the core analytical tool that underpins our later analysis with
compressed communication. Here, we do not assume that f has a finite-sum structure. We make
Assumptions 2.3 and 2.4 for the objective in this section. We assume that we have access to a
stochastic gradient oracle g(x, ξ) satisfying Assumption 3.1 below:
Assumption 3.1. For any x ∈ domψ, g(x, ξ) is a stochastic gradient oracle for f at x. We assume
that g(x, ξ) is unbiased and has bounded variance:

E [g(x, ξ)] = ∇f(x), Eξ
[
∥g(x, ξ)−∇f(x)∥2

]
≤ σ2

g. (8)

We study the convergence of the general inexact dual averaging algorithm, as summarized in Algo-
rithm 1, for solving this problem. The algorithm gets some inexact gradient ĝt that approximates the
stochastic gradient gt := g(xt, ξt) at each iteration. It uses these gradient estimates to perform a dual
averaging update, with stepsize parameters at and γt. We assume that γt is non-decreasing.

We analyze the convergence of this method from the perspective of the virtual iterates, which are
defined in Equation (9). We note that these virtual iterates are not explicitly computed or stored
anywhere in the algorithm. However, since our convergence analysis will be given in terms of the
suboptimality of a convex combination of or random sample of the virtual iterates, an immediate
question would be how to output such a convex combination or random sample at the end of the
algorithm without explicitly storing and computing the virtual iterates. We will addres this in
Section 3.1.

Let’s write ḡt :=
∑t
k=0 akgk. We define the following virtual iteration, with x̃0 = x0:

x̃t+1 := argmin
x∈domψ

{
Φ̃t(x) :=

t∑
k=0

ak(f(xk) + ⟨gk,x− xk⟩+ ψ(x)) +
γt
2
∥x− x0∥2

}

= argmin
x∈domψ

{
⟨ḡt,x⟩+ ψ(x)

t∑
k=0

ak +
γt
2
∥x− x0∥2

} (9)

Now, we define the accumulative error of the compressions:

et :=
t−1∑
k=0

ak(ĝk − gk). (10)

We first show that the distance between the virtual iterate x̃t and the actual iterate xt is controlled by
the accumulated error et:
Lemma 3.2. For any t ≥ 0, we have:

∥x̃t − xt∥2 ≤
1

γ2t−1

∥et∥2 (11)

We simply write γ−1 = γ0. Note that e0 = 0. With this, we can give the main convergence theorem
for the virtual iterates:
Theorem 3.3. Given Assumptions 2.3 and 2.4 and γt−1 ≥ 4atL, then for any x ∈ domψ and any
T ≥ 1, we have
T−1∑
t=0

E [at(F (x̃t+1)− F (x))]+
γT−1

2
E
[
∥x− x̃T ∥2

]
≤ γT−1

2
∥x−x0∥2+L

T−1∑
t=0

at
γ2t−1

E
[
∥et∥2

]
+

T−1∑
t=0

a2tσ
2
g

γt−1

(12)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

In addition, we have the following upper bound on the distance between consecutive iterates:

T−1∑
t=0

(
γt + γt−1 − atL

2at
r2t + ⟨ĝt −∇f(xt),xt+1 − xt⟩

)
≤ F0 +

1

2

T−1∑
t=0

(βtρ
2
t − βtρ2t+1), (13)

where we write βt :=
γt−γt−1

at
, ρ2t := ∥xt − x0∥2, r2t := ∥xt+1 − xt∥2 and F0 := F (x0)− F ⋆.

Again, we note that Equation (12) deals with the virtual iterates. When ψ ≡ 0, typically we can
bound the distance between f(x̃t) and f(xt) simply by E

[
∥et∥2

]
. This is however unclear when

ψ ̸≡ 0. It is possible to directly analyze the behavior of xt without using the virtual iterates at all, but
the analysis obtained that way will be weaker due to the presence of ψ (see Appendix I for a more
detailed discussion, we further comment here that the techniques employed in Appendix I can also be
used to obtain an analysis of the proxmial method without dual averaging, albeit with similarly weak
guarantees). It remains an open question whether it is possible to directly analyze xt without using
the virtual iterates and still obtain a result as strong as Theorem 3.3.

In addition, we also obtain an upper bound on the distance betwen xt+1 and xt, which will be useful
later. Similar upper bounds on the distance between consecutive iterates have been used in many
existing works that applied the gradient difference compression strategies (Richtárik et al., 2021;
Fatkhullin et al., 2023; Gao et al., 2024a), but these are typically upper bounding the individual
distances. Due to the dual averaging strategies, our analysis here is significantly different, and we are
only able to upper bound the sum of the distances.

We point out that controlling the error ∥ĝt −∇f(xt)∥2 is method-dependent, that is, it depends on
how we constructed the approximate ĝt. Therefore we do not further analyze this term here, and we
discuss this term in more details when we present the analysis of our main algorithm in this work.

3.1 A SAMPLING PROCEDURE FOR THE VIRTUAL ITERATES

Provided that the errors are sufficiently small, Theorem 3.3 allows us to establish the convergence
rate in terms of 1

AT

∑T−1
t=0 at[F (x̃t+1)− F ⋆], where x̃t are the virtual iterates rather than the real

iterates xt.

Therefore, after T steps, we would like to return a randomly chosen point among {x̃1, . . . , x̃T } with
the probabilities proportional to at. This can be implemented as follows: at each iteration t, we keep
tracks of the accumulated true gradients ḡt =

∑t
s=0 asgs and update ḡ to ḡt with probability at

At+1

and it remains unchanged with probability 1− at
At+1

. This way, at step T − 1, ḡ is a random sample
from the set {ḡt}t∈{0,··· ,T−1} with probabilities proportional to at. Using ḡ, we can easily compute
a random sample x̄T from the set {x̃t}t=1,...,T as follows:

x̄T = argmin
x∈domψ

[
⟨ḡ,x⟩+ ψ(x)

T−1∑
t=0

at +
γτ
2
∥x− x0∥2

]
We summarize this procedure in Algorithm 3 in Appendix E.

It is easy to show that ḡ is a random variable over the set {ḡt}t∈{0,··· ,T−1} with probabilities
proportional to at, see Proposition E.1. As a consequence, we have the following:
Lemma 3.4. The output x̄T from Algorithm 3 is a random variable over the set {x̃t}t∈[T], where
x̃t is defined in Equation (9). In particular, we have for any x ∈ dom(ψ) (that are independent of
{ξt, τt}t∈[T−1]):

Eτ0,...,τT−1,ξ0,...,ξT−1
[F (x̄T)− F (x)] =

1

AT

T−1∑
t=0

atEξ0,...,ξT−1
[F (x̃t+1)− F (x)] (14)

4 EControl WITH DUAL AVERAGING

In this section, we apply the general framework discussed in Section 3 to the particular case of
distributed optimization with communication compression. In such a setting, the stochastic gradient in

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 2 EControl with Dual Averaging

1: Input: x0, η, e
i
0 = 0, ĝi−1 = ∇fi(x0, ξ

i
0).

2: for t = 0, 1, . . . do
3: Server:
4: Sample τt = 1 with prob. 1

t+1 and τt = 0 otherwise. Send τt to all clients.
5: clients:
6: git = ∇fi(xt, ξit) where ξit is independent copy of ξi. ḡit = ḡit + git
7: ḡi = ḡit if τt = 1 otherwise ḡi remains.
8: δit = git − ĝit−1 − ηeit,∆i

t = C(δit, ζit) where ζit is independent copy of ζi.

9: ĝit = ĝit−1 +∆i
t, e

i
t+1 = eit + ĝit − git

10: send ∆i
t to the server

11: server
12: ĝt = ĝt−1 +

1
n

∑n
i=1 ∆

i
t

13: xt+1 = argminx{Φt(x) :=
∑t
s=0(f(xs) + ⟨ĝs,x− xs⟩+ ψ(x)) + γt

2 ∥x− x0∥2}
14: client: send ḡi to the server
15: server:
16: ḡ = 1

n

∑n
i=1 ḡ

i

17: x̄T = argminx
{
⟨ḡ,x⟩+ (τ + 1)ψ(x) + γτ

2 ∥x− x0∥2
}

where τ is the last t s.t. τt = 1.

Assumption 3.1 is the average of the stochastic gradient of each client i, which follows Assumption 2.1.
Therefore, σ2

g = σ2

n where n is the number of clients. Now the gradient estimate ĝt is the average
of ĝit where each ĝit is each clients’ estimate of its local gradient git := g(xt, ξ

i
t), which can be

communicated to the server using compressed communication channels.

The sampling procedure in Section 3.1 can be easily implemented in such a setting. The variables
ḡt and ḡ do not need to be maintained and communicated by the server throughout the algorithm;
instead, we can simply ask the workers to maintain their local ḡit and ḡi, using the same random bit
τt (which costs 1 bit of communication). At the end of the algorithm, we use one full communication
round to collect the local ḡi and compute the output x̄T . In total, the above procedure costs exactly 1
round of full communication plus one extra bit in each of the T communication rounds.

Now, as the main focus of this section, we present a specific mechanism of generating the ĝt ≈ gt,
the EControl method (summarized in Algorithm 4 in Appendix G), using mainly compressed
communication channels. We assume that at = 1 for all t. For simplicity, in this section we also
assume that γt = γ for all t for some constant γ > 0. In Appendix H, we present a more advanced
analysis of Algorithm 4 that handles variable γt. The variable stepsize analysis for EControl
mechanism is unknown prior to this work due to the complexity of η parameter in EControl and
we have to employ a scaling/rescaling strategy in the analysis to handle it. We slightly modified
the presentation from (Gao et al., 2024a) to suit our setup better. We can put Algorithms 1, 3 and 4
together to get our final algorithm, EControl with Dual Averaging, summarized in Algorithm 2 (see
Appendix F for a more detailed walk-through of the algorithm). We highlight the EControl module
with green color.

We note that the specific behaviours of the EControl mechanism has been analyzed in (Gao et al.,
2024a) under the condition that ψ ≡ 0. Here we present a more systematic and hopefully cleaner
analysis. We simply bound the sum of errors by the average of stochastic gradient differences. We
note that the following upper bounds are entirely the consequences of the EControl mechanism,
independent of the specific properties of the objectives and oracles.
Lemma 4.1. Let η = δ

3
√
1−δ(1+

√
1−δ) , then:

T∑
t=1

∥eit∥2 ≤
81(1− δ)2(1 +

√
1− δ)4

2δ4

T−2∑
t=0

∥git+1 − git∥2,

T−1∑
t=0

∥ĝit − git∥2 ≤
36(1− δ)(1 +

√
1− δ)2

δ2

T−2∑
t=0

∥git+1 − git∥2
(15)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Remark 4.2. We point out that in the analysis of the classical EF mechanism, upper bounding
1
n

∑n
i=1∥eit∥2 relies on upper bounding 1

n

∑n
i=1∥∇fi(xt)∥2, which leads to the data heterogeneity

assumption, but more importantly, requires upper bounds on ∥∇f(xt)∥2 in terms of the function
residuals. When ψ ≡ 0, this follows directly from the smoothness of f . However, in the composite
setting, this is no longer possible unlesss ∇f(x⋆) = 0, which is not true in general. In contrast,
EControl uses the gradient difference compression technique to obtain a better handle on the errors
and we only need to upper bound 1

n

∑n
i=1∥git+1−git∥2, which again can be done via Assumption 2.5

and Equation (13).

Next, we invoke the specific properties regarding the smooth objective f and the stochastic oracles,
and apply Theorem 3.3 to get an upper bound on the sum of ∥git+1 − git∥2, and consequently, an
upper bound on the sum of ∥eit∥2.

Lemma 4.3. Given Assumptions 2.1 and 2.3 to 2.5, and let η = δ
3
√
1−δ(1+

√
1−δ) , γ ≥

24
√
2ℓ

δ , then
we have:

T−1∑
t=0

1

n

n∑
i=1

E
[
∥git+1 − git∥2

]
≤ 80ℓ2

9γ
F0 + 7Tσ2 (16)

Therefore, by Lemma 4.1, we also have:

T−1∑
t=0

1

n

n∑
i=1

E
[
∥eit∥2

]
≤ 5760ℓ2

δ4γ
F0 +

4536Tσ2

δ4
(17)

Finally, combining all of the pieces in Sections 3, 3.1 and 4, we can give the overall convergence
guarantee of our final Algorithm 2.
Theorem 4.4. Given Assumptions 2.3 to 2.5, and setting at = 1, γT = γ, η = δ

3
√
1−δ(1+

√
1−δ) , and

taking one initial stochastic gradient step from x0 to x′
0 if ψ ̸≡ 0 and setting

γ = max

{
24
√
2ℓ

δ
,

√
Tσ2

nR2
0

,
17T 1/3ℓ1/3σ2/3

R
2/3
0 δ4/3

}
,

then it takes at most

T =
16R2

0σ
2

nε2
+

561R2
0

√
ℓσ

δ2ε3/2
+

96
√
2ℓR2

0

δε
,

iterations of Algorithm 2 to get E [F (x̄T)− F ⋆] ≤ ε.
In particular, this means that with three rounds of uncompressed communication (one for the initial
stochastic gradient step, one communicating ĝ−1 and one communicating ḡ), and T rounds of
compressed communications, Algorithm 2 reaches the desired accuracy. Assuming that the cost of
sending compressed vectors is 1 and sending uncompressed vectors is m, it costs at most

16R2
0σ

2

nε2
+

561R2
0

√
ℓσ

δ2ε3/2
+

96
√
2ℓR2

0

δε
+ 3m

in communications for Algorithm 2 to get:

E [F (x̄T)− F ⋆] ≤ ε.

Remark 4.5. In the statement of Theorem 4.4 we let the algorithm take one initial exact stochastic
gradient step in the composite setting. This comes from the fact that we need one gradient step in the
composite setting to upper bound F0 by LR2

0 (see Lemma C.3). This is satisfied automatically in
the classical unconstrained setting. Without the extra initial step, the algorithm would still converge
(with properly chosen step size) but the rate would additionally depend on F0 (though it would still
be a desirable O(1

δε) term). We refer to Appendix G for more details.

5 EXPERIMENTS

In this section, we present some experimental results on a synthetic softmax objective with ℓ1 regu-
larization to complement our theoretical analysis. Details of the experimental setup (including data

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

100 101 102

Iterations

1.5

2.0

2.5

3.0

Lo
ss

4 nodes
8 nodes
16 nodes
32 nodes

(a) Achieving linear speedup. Performance of
EControl with Dual Averaging ith increasing num-
ber of clients n. We fix γ to be 0.0001. The error
that the algorithm stabilizes around decreases as n
increases.

0 100 200 300 400 500
Iterations

1.0

1.5

2.0

2.5

3.0

Lo
ss

real
virtual

(b) Virtual Iterates vs Real Iterates. The perfor-
mance of the virtual and real iterates of EControl
with Dual Averaging. We see that the virtual iter-
ates and real iterates perform similarly.

Figure 1: Synthetic regularized softmax objective

generation) and an additional experiment on the FashionMNIST dataset can be found in Appendix B.
All our codes for the experiments can be found at this anonymized link.

The softmax objective with ℓ1 regularization is given as:
minx∈Rd

{
F (x) := µ log

(∑k
i=1 exp

[
⟨ai,x⟩−bi

µ

])
+ λ∥x∥1

}
, where µ controls the smooth-

ness, and we set it to µ = 0.1. We set the regularization parameter λ = 0.1. We set the dimension
d = 200 and the total number of samples k = 2048. We simulate the stochastic gradient by adding
Gaussian noise to the gradients. We use Top-K compressor with K/d = 0.1.

Linear speedup with n: one of the key characteristics of EF-style algorithms is that the leading
(stochastic) term in its rate improves linearly with the number of clients n and is δ-free. We prove
that EControl with Dual Averaging does satisfy this quality—with the catch that the theory only
applies to (the random sample of) virtual iterates. Here we verify this property experimentally for the
real iterates directly. We fix σ2 = 25 and a small enough γ to be 0.0001, and increase the number of
clients n. The results are summarized in Figure 1a. We see that the error that real iterates stabilize
around decreases linearly with n, verifying the linear speedup for real iterates as well.

Virtual iterates vs real iterates: while we can do the sampling procedure to obtain convergence in
terms of the virtual iterates, this is ultimately still somewhat clumsy in practice. The real iterates,
on the other hand, do not enjoy theories that are as good. Here, we compare the suboptimality of
the virtual and the real iterates. We use σ2 = 25. The results are summarized in Figure 1b. We see
that the virtual and real iterates perform almost identically in the suboptimality. This suggests that
the real iterates might also be amenable to a strong theory; future work might explore refining our
analytical template in Appendix I to achieve this, or construct lower bound examples to demonstrate
a gap between the virtual and real iterates.

6 CONCLUSION

In this work, we addressed the open challenge of combining error feedback with composite opti-
mization. We showed that the classical virtual-iterate approach breaks down in this setting, as the
composite update destroys the additive structure that underpins its analysis. To resolve this, we
introduced the first framework that integrates error feedback with dual averaging, which restores the
summation structure and enables control of accumulated compression errors. Our analysis extends
the theory of error feedback to the convex composite case and recovers the best-known results in the
unconstrained setting when ψ ≡ 0.

Looking ahead, our inexact dual averaging analysis provides a versatile template for problems where
iterative updates are distorted by approximation, noise, or constraints. This opens up promising
directions in domains such as safe reinforcement learning, constrained distributed optimization, and
large-scale learning under resource limitations. An exciting avenue for future work is to connect our
approach with recent efforts that aim to simplify error-feedback methods for practical use, potentially
leading to more robust and scalable communication-efficient algorithms.

9

https://anonymous.4open.science/r/iclr26-composite-compression/acc_compression/MLFlowInt/README.md

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
Renggli. The convergence of sparsified gradient methods. In Proceedings of Advances in Neural
Information Processing Systems, 2018. 12

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression
for distributed learning. Journal on Machine Learning Research, 2020. 13

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression
for distributed learning. Journal of Machine Learning Research, 24(276):1–50, 2023. 2

Patrick L. Combettes and Jean-Christophe Pesquet. Proximal splitting methods in signal processing,
2010. 1

Jean-Baptiste Cordonnier. Convex optimization using sparsified stochastic gradient descent with
memory. Technical report, 2018. 12

Ilyas Fatkhullin, Igor Sokolov, Eduard Gorbunov, Zhize Li, and Peter Richtárik. Ef21 with bells
& whistles: Practical algorithmic extensions of modern error feedback. arXiv preprint arXiv:
2110.03294, 2021. 2, 13

Ilyas Fatkhullin, Alexander Tyurin, and Peter Richtárik. Momentum provably improves error
feedback! arXiv preprint arXiv: 2305.15155, 2023. 2, 6, 13

Yuan Gao, Rustem Islamov, and Sebastian U Stich. EControl: Fast distributed optimization with com-
pression and error control. In The Twelfth International Conference on Learning Representations,
2024a. 1, 2, 4, 6, 7, 13

Yuan Gao, Anton Rodomanov, and Sebastian U Stich. Non-convex stochastic composite optimization
with polyak momentum. In Forty-first International Conference on Machine Learning, 2024b. 19

Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtárik. Linearly converging
error compensated sgd. In Proceedings of Advances in Neural Information Processing Systems,
2020. 13

Yutong He, Xinmeng Huang, Yiming Chen, Wotao Yin, and Kun Yuan. Lower bounds and accelerated
algorithms in distributed stochastic optimization with communication compression. arXiv preprint
arXiv: 2305.07612, 2023. 4

Rustem Islamov, Yarden As, and Ilyas Fatkhullin. Safe-ef: Error feedback for non-smooth constrained
optimization. In Forty-second International Conference on Machine Learning, 2025. 2, 13

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In Proceedings of the 36th International
Conference on Machine Learning (ICML 2019), 2019. 1, 2, 4, 12

Zhize Li and Peter Richtárik. Canita: Faster rates for distributed convex optimization with communi-
cation compression, 2021. 4

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training. In International Conference on Learning
Representations, 2018. 1

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse convolu-
tional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015. 1

D. Russell Luke. Proximal Methods for Image Processing, pp. 165–202. Springer International
Publishing, Cham, 2020. ISBN 978-3-030-34413-9. doi: 10.1007/978-3-030-34413-9_6. URL
https://doi.org/10.1007/978-3-030-34413-9_6. 1

Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran, and
Michael I Jordan. Perturbed iterate analysis for asynchronous stochastic optimization. SIAM
Journal on Optimization, 27(4):2202–2229, 2017. 2

10

https://doi.org/10.1007/978-3-030-34413-9_6

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019. 13

Mohammad Moshtaghifar, Anton Rodomanov, Daniil Vankov, and Sebastian U Stich. Dada: Dual
averaging with distance adaptation. In OPT 2024: Optimization for Machine Learning, 2024. 13

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Proceedings of Advances in Neural Information Processing Systems 32, 2019.
2

Xun Qian, Peter Richtárik, and Tong Zhang. Error compensated distributed sgd can be accelerated.
In Proceedings of Advances in Neural Information Processing Systems, 2021. 13

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine
Learning, pp. 8821–8831. PMLR, 2021. 1, 2

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. 2022. 1

Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better, and
practically faster error feedback. In Proceedings of Advances in Neural Information Processing
Systems, 2021. 4, 6, 13

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and
its application to data-parallel distributed training of speech dnns. In Proceedings of 15th annual
conference of the international speech communication association, 2014. 1, 2, 12

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick Le Gresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019. 1

Sebastian U. Stich. On communication compression for distributed optimization on heterogeneous
data. arXiv preprint arXiv: 2009.02388, 2020. 13

Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for sgd
with delayed gradients and compressed updates. Journal of Machine Learning Research, 2020. 12

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. In
Proceedings of Advances in Neural Information Processing Systems, 2018. 2, 4, 12

Nikko Strom. Scalable distributed DNN training using commodity GPU cloud computing. In
Proceedings of Interspeech 2015, 2015. 1

Haobo Sun, Yingxia Shao, Jiawei Jiang, Bin Cui, Kai Lei, Yu Xu, and Jiang Wang. Sparse gradient
compression for distributed sgd. In International Conference on Database Systems for Advanced
Applications, pp. 139–155. Springer, 2019. 1

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. PowerSGD: Practical low-rank gradient
compression for distributed optimization. In Advances in Neural Information Processing Systems
32, 2019. 1, 2

Meng Wang, Weijie Fu, Xiangnan He, Shijie Hao, and Xindong Wu. A survey on large-scale machine
learning. IEEE Transactions on Knowledge and Data Engineering, 2020. 1

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. In arXiv, 2017. 14

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

1.1 The Classic EF and Virtual Iteration . 2

1.2 Our Strategies . 3

2 Problem Formulation and Assumptions 3

3 The Inexact Dual Averaging Method 4

3.1 A Sampling Procedure for the Virtual Iterates . 6

4 EControl with Dual Averaging 6

5 Experiments 8

6 Conclusion 9

A Related Works on Error Feedback and Communication Compression 12

B Additional Experiments and Details 13

B.1 Synthetic Softmax Objective . 13

B.2 Regularized FashionMNIST Classification . 14

C Auxiliary Facts and Results 14

D Analysis of Inexact Dual Averaging 15

E Sampling Procedure for Virtual Iterates 18

F Description of Full Algorithm 19

G Analysis of the EControl Mechanism 19

H EControl with Variable Stepsize 23

I Analysis of the Real Iterates 27

A RELATED WORKS ON ERROR FEEDBACK AND COMMUNICATION
COMPRESSION

In this section we survey some most relevant works on EF. We note that while there’s a rich body of
literature on EF in the uncomposite setting, the extension to the composite setting is less developed.
Stich et al. (2018); Alistarh et al. (2018); Karimireddy et al. (2019) were among the first to explore
the theoretical properties of the practical EF mechanism proposed by Seide et al. (2014), but their
analyses are restricted to the single-client setting. Under certain forms of bounded data heterogeneity
assumption (e.g. bounded gradient, bounded gradient dissimilarity, or bounded local objective gap
at optimum), Cordonnier (2018); Alistarh et al. (2018); Stich & Karimireddy (2020) extended the
analysis to the more realistic multi-client settings. But these data heterogeneity assumptions are

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Iterations

0.6

0.7

0.8

0.9

1.0

1.1

Lo
ss

EControl with Dual Averaging
Proximal EControl
Proximal EF21
Proximal EF

0 10 20 30 40 50
Iterations

70.0

72.5

75.0

77.5

80.0

82.5

Ac
cu

ra
cy

EControl with Dual Averaging
Proximal EControl
Proximal EF21
Proximal EF

Figure 2: Superior performance Comparison of the performance of EControl with Dual Averaging, proximal
EF, and proximal EF21 on the FashionMNIST classification problem with ℓ1 regularization. We use Top-K
compression with δ = 0.1. We see that EControl with Dual Averaging significantly outperforms the other
methods.

indeed very limiting factors. These theories were further refined in (Beznosikov et al., 2020; Stich,
2020).

Another line of work parallel to the classic EF variants is the gradient difference compression mech-
anism. Mishchenko et al. (2019) added an additional unbiased compressor for gradient difference
into the EF framework to address the issue of data heterogeneity and obtained the DIANA algorithm.
Another of follow-up works include Gorbunov et al. (2020); Stich (2020); Qian et al. (2021), and
culminated in the EF21 algorithm (Richtárik et al., 2021). The EF21 algorithm, though comes
with EF in its name, is purely a gradient difference compression mechanism, and is the the first to
fully support contractive compression in the full gradient regime. However, it is not compatible with
stochastic gradients and leads to non-convergence up to the variance of the stochastic oracle. This
was later addressed by adding momentum in Fatkhullin et al. (2023), or by a more careful blend of EF
and gradient difference compression in Gao et al. (2024a). The latter work proposed the EControl
mechanism, which is the basis of Algorithm 4 in this paper.

All of the above focuses on the uncomposite setting, and their extensions to the composite setting
remain largely unexplored. Notably, Fatkhullin et al. (2021) analyzed a proximal version of EF21,
but only in the nonconvex and full gradient regime. In the convex regime, it is believed that the
convergence of proximal EF21 critically relies on the bounded domain assumption, which we do not
assume in our work (Islamov et al., 2025). More closely related to our work, Islamov et al. (2025)
analyzed a variant of EF, called Safe-EF, when ψ is an indicator function of some convex set Q.
Their analysis requires that the constraint set Q be described as an intersection of sublevel sets of
functions, with first-order information of these functions available. Under this structural assumption,
their method blends updates in the direction of both the objective and the constraint functions,
enabling the virtual iterate to account for constraints. While this represents an important innovation
in adapting EF beyond the smooth case, it does not directly extend to the more general composite
objectives. Safe-EF also assumes that the stochastic gradients are bounded, which circumvents the
issue of upper bounding ∥∇f(xt)∥2 in the smooth case.

B ADDITIONAL EXPERIMENTS AND DETAILS

In this section, we provide some additional experimental details for our experiments in Section 5, and
an additional experiment on the FashionMNIST dataset.

B.1 SYNTHETIC SOFTMAX OBJECTIVE

We generate the data {ai, bi} randomly, following Moshtaghifar et al. (2024): we generate i.i.d.
vectors âi whose entries are sampled from [−1, 1] uniformly at random. Each bi is generated the
same way. This leads to a preliminary objective f̂ . We then set ai := âi − ∇f̂(0). The resulting
{ai, bi} gives us the desired objective f with 0 being the minimizer.

For the experiment comparing the virtual and the real iterates, we perform a grid search for the
stepsize parameters over 1

γ ∈ {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.2 REGULARIZED FASHIONMNIST CLASSIFICATION

We now consider a logistic regression problem with ℓ1 regularization on the FashionMNIST
dataset (Xiao et al., 2017). We set the regularization parameter λ = 0.001. We compare the
performance of EControl with Dual Averaging against the proximal EF and the proximal EF21
methods. Following our synthetic experiments, we choose to evaluate the performance of EControl
with Dual Averaging directly with the real iterates. We split the FashionMNIST dataset into n = 10
clients, and distribute half of the dataset randomly to each client, and assign the rest of the dataset
according to their labels, i.e. data with label i is distributed to client i. We use Top-K compressor
with K/d = 0.1. We use batch size 64. We perform a grid search for the stepsize parameters over
1
γ ∈ {0.1, 0.01, 0.001, 0.0001}. The results are summarized in Figure 2. We see that EControl with
Dual Averaging significantly outperforms the other methods. In additional, we note that EControl
with Dual Averaging admits a much larger stepsize than the other methods, which might explain its
superior performance.

C AUXILIARY FACTS AND RESULTS

In this section we collect some auxiliary facts and results that are useful for the analysis of our
algorithms. The first one is a simple fact regarding the square of the norm of a sum of vectors.
Fact C.1. For any γ1, . . . , γT , we have:

∥
T∑
t=1

γt∥2 ≤ T
T∑
t=1

∥γt∥2. (18)

The next lemma upper bounds an exponentially weighted sum of positive sequences:
Lemma C.2. Given a sequence of non-negative values {αt}t∈[T−1], and some other sequences
{ut}t∈[T−1]. If there exists γ ∈ (0, 1) such that the following holds:

αt+1 ≤ (1− β)αt + ut, α0 = 0, (19)

then we have:

α2
t+1 ≤

1

β

t∑
k=0

(1− β)t−ku2k,
T∑
t=0

α2
t+1 ≤

1

β2

T∑
t=0

u2t (20)

Proof. Since α0 = 0, we have:

αt+1 ≤
t∑

k=0

(1− β)t−kuk.

Squaring both sides, and applying Jensen’s inequality, we have:

α2
t+1 ≤

1

St

t∑
k=0

(1− β)t−ku2k,

where St :=
∑t
k=0(1− β)t−k. It’s easy to check that St ≤ 1

β , and therefore we get the first part of
Equation (20). Now summing this from t = 0 to T , we get:

T∑
t=0

α2
t+1 ≤

T∑
k=0

(

T∑
t=k

(1− β)t−k)u2k,

Note that
∑T
t=k(1− β)t−k ≤

1
β , and therefore we get the second part of Equation (20).

Now we show that one gradient step will lead to an upper bound on the objective value.
Lemma C.3. Let f be convex and L-smooth, and x0 ∈ dom(ψ) and g0 satisfying Assumption 3.1,
consider x′

0 defined as the following:

x′
0 := argmin

[
f(x0) + ⟨g0,x− x0⟩+ ψ(x) +

γ0
2
∥x− x0∥2

]
14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

then for any y ∈ domψ and ∥y − x0∥2 ≤ R2, if we choose γ0 := max{2L,
√
2σ
R }, we have:

E [F (x′
0)− F (y)] ≤ LR2 +

Rσ√
2
, ,E

[
∥y − x′

0∥2
]
≤ 2R2 (21)

Proof.

f(x0) + ⟨g0,x
′
0 − x0⟩+ ψ(x′

0) +
γ0
2
∥x′

0 − x0∥2 +
γ0
2
∥y − x′

0∥2

≤f(x0) + ⟨g0,y − x0⟩+ ψ(y) +
γ0
2
∥y − x0∥2

=f(x0) + ⟨∇f(x0),y − x0⟩+ ψ(y) +
γ0
2
∥y − x0∥2 + ⟨g0 −∇f(x0),y − x0⟩

≤F (y) + 1

2
∥y − x0∥2 + ⟨g0 −∇f(x0),y − x0⟩

On the other hand, we have:

f(x0) + ⟨g0,x
′
0 − x0⟩+ ψ(x′

0) +
γ0
2
∥x′

0 − x0∥2 +
γ0
2
∥y − x′

0∥2

=f(x0) + ⟨∇f(x0),x
′
0 − x0⟩+ ψ(x′

0) + ⟨g0 −∇f(x0),x
′
0 − x0⟩+

γ0
2
∥x′

0 − x0∥2 +
γ0
2
∥y − x′

0∥2

≥F (x′
0) + ⟨g0 −∇f(x0),x

′
0 − x0⟩+

γ0 − L
2
∥x′

0 − x0∥2 +
γ0
2
∥y − x′

0∥2

≥F (x′
0)−

1

γ0
∥g0 −∇f(x0)∥2 +

γ0 − 2L

4
∥x′

0 − x0∥2 +
γ0
2
∥y − x′

0∥2

Putting these together, we have:

F (x′
0)−F (y)+

γ0
2
∥y−x′

0∥2+
γ0 − 2L

4
∥x′

0−x0∥2 ≤
γ0
2
∥y−x0∥2+

1

γ0
∥g0−∇f(x0)∥2+⟨g0−∇f(x0),y−x0⟩

Now by Assumption 3.1, we take the expectation and get:

E
[
1

γ0
∥g0 −∇f(x0)∥2 + ⟨g0 −∇f(x0),y − x0⟩

]
≤ σ2

γ0

Therefore, assuming that γ0 ≥ 2L, we have:

E [F (x′
0)− F (y)] +

γ0
2
E
[
∥y − x′

0∥2
]
≤ γ0

2
R2 +

σ2

γ0

Now we pick γ0 = max{2L,
√
2σ
R }, then we have:

E [F (x′
0)− F (y)] ≤ LR2 +

Rσ√
2

In addition, we have:
E
[
∥y − x′

0∥2
]
≤ R2 + 2γ20σ

2 ≤ 2R2

D ANALYSIS OF INEXACT DUAL AVERAGING

In this section we give the missing proofs for the analysis of Algorithm 1. We first introduce the
following notation:

Φ̃⋆t := Φ̃t(x̃t+1), Φ⋆t := Φt(xt+1),

the optimum of the virtual and real subproblems at t.

We now present the proof of Lemma 3.2:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Lemma 3.2. For any t ≥ 0, we have:

∥x̃t − xt∥2 ≤
1

γ2t−1

∥et∥2 (11)

Proof. By the definition of Φ̃t,Φt and xt, we have:

xt+1 = argmin
x∈dom(ψ)

{
Φ̃t(x) + ⟨et+1,x⟩

}
Therefore, we have for any x ∈ dom(ψ):

Φ̃t(x) + ⟨et+1,x⟩ ≥ Φ̃t(xt+1) + ⟨et+1,x⟩+
γt
2
∥x− xt+1∥2

≥ Φ̃⋆t + ⟨et+1,xt⟩+
γt
2
∥x− xt+1∥2 +

γt
2
∥x̃t+1 − xt+1∥2.

Now plug in the choice x := x̃t+1, we have:

⟨et+1, x̃t+1 − xt+1⟩ ≥ γt∥x̃t+1 − xt+1∥2

Note that we have ⟨et+1, x̃t+1 − xt+1⟩ ≤ ∥et+1∥∥x̃t+1 − xt+1∥, we get the desired result.

We now present the proof for Theorem 3.3:

Theorem 3.3. Given Assumptions 2.3 and 2.4 and γt−1 ≥ 4atL, then for any x ∈ domψ and any
T ≥ 1, we have

T−1∑
t=0

E [at(F (x̃t+1)− F (x))]+
γT−1

2
E
[
∥x− x̃T ∥2

]
≤ γT−1

2
∥x−x0∥2+L

T−1∑
t=0

at
γ2t−1

E
[
∥et∥2

]
+

T−1∑
t=0

a2tσ
2
g

γt−1

(12)
In addition, we have the following upper bound on the distance between consecutive iterates:

T−1∑
t=0

(
γt + γt−1 − atL

2at
r2t + ⟨ĝt −∇f(xt),xt+1 − xt⟩

)
≤ F0 +

1

2

T−1∑
t=0

(βtρ
2
t − βtρ2t+1), (13)

where we write βt :=
γt−γt−1

at
, ρ2t := ∥xt − x0∥2, r2t := ∥xt+1 − xt∥2 and F0 := F (x0)− F ⋆.

Proof. By the definition of x̃t, we have for any x ∈ domψ:

Φ̃t(x) ≥ Φ̃⋆t +
γt
2
∥x− x̃t+1∥2

We also have:

Φ̃t(x) =

t∑
k=0

ak(f(xk) + ⟨∇f(xk),x− xk⟩+ ψ(x)) +

t∑
k=0

ak⟨gk −∇f(xk),x− xk⟩+
γt
2
∥x− x0∥2

(i)

≤
t∑

k=0

akF (x) + γ

t∑
k=0

ak⟨gk −∇f(xk),x− xk⟩+
γt
2
∥x− x0∥2,

where in (i) we used the convexity of f . Note that the gradient noise gk −∇f(xk) is independent of
x− xk for fixed x independent of the algorithm (in particular, for x⋆). Therefore, taking expectation
on both sides:

Eξ0,...,ξ
[
Φ̃t(x)

]
≤

t∑
k=0

akF (x) +
γt
2
∥x− x0∥2

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Now by the definition of x̃t, we have:

Φ̃⋆t = Φ̃t−1(x̃t+1) + at(f(xt) + ⟨∇f(xt), x̃t+1 − xt⟩+ ψ(x̃t+1))

+ at⟨gt −∇f(xt), x̃t+1 − xt⟩+
γt − γt−1

2
∥x̃t+1 − x0∥

(ii)

≥ Φ̃⋆t−1 +
γt−1

2
∥x̃t+1 − x̃t∥2 + at(f(xt) + ⟨∇f(xt), x̃t+1 − xt⟩+ ψ(x̃t+1))

+ +at⟨gt −∇f(xt), x̃t+1 − xt⟩+
γt − γt−1

2
∥x̃t+1 − x0∥

(iii)

≥ Φ̃⋆t−1 +
γt−1

2
∥x̃t+1 − x̃t∥2 + at(f(x̃t+1) + ψ(x̃t+1)−

L

2
∥x̃t+1 − xt∥2)

+ at⟨gt −∇f(xt), x̃t+1 − xt⟩+
γt − γt−1

2
∥x̃t+1 − x0∥

(iv)

≥ Φ̃⋆t−1 +
γt−1

2
∥x̃t+1 − x̃t∥2 + at(F (x̃t+1)− L∥x̃t+1 − x̃t∥2 − L∥x̃t − xt∥2)

+ at⟨gt −∇f(xt), x̃t+1 − xt⟩+
γt − γt−1

2
∥x̃t+1 − x0∥

(v)

≥ Φ̃⋆t−1 +
γt−1 − 2atL

2
∥x̃t+1 − x̃t∥2 + atF (x̃t+1)− atL∥x̃t − xt∥2

+ at⟨gt −∇f(xt), x̃t+1 − xt⟩

where in (ii) we used the strong convexity of Φ̃t and in (iii) we used Assumption 2.4 . In (iv) we
used Young’s inequality and in (v) we used that assumption that γt is non-decreasing.Note that the
gradient noise gt −∇f(xt) is independent of xt and x̃t, we have:

Eξt
[
Φ̃⋆t |ξ0, . . . , ξt−1

]
≥ Eξt

[
Φ̃⋆t−1 +

γt−1 − 2atL

2
∥x̃t+1 − x̃t∥2 + atF (x̃t+1)− atL∥x̃t − xt∥2|ξ0, . . . , ξt−1

]
+ atEξt [⟨gt −∇f(xt), x̃t+1 − x̃t⟩|ξ0, . . . , ξt−1]

≥ Eξt
[
Φ̃⋆t−1 +

γt−1 − 4atL

4
∥x̃t+1 − x̃t∥2 + atF (x̃t+1)− atL∥x̃t − xt∥2|ξ0, . . . , ξt−1

]
−
a2tσ

2
g

γt−1

Now rearranging and summing from t = 0 to T − 1, and using the law of total expectation, we get:

T−1∑
t=0

atEξ0,...,ξT−1

[
F (x̃t+1) +

γt−1 − 4atL

4
∥x̃t+1 − x̃t∥2

]

≤Eξ0,...,ξT−1

[
Φ̃⋆T−1

]
+ L

T−1∑
t=0

atEξ0,...,ξT−1

[
∥x̃t − xt∥2

]
+

T−1∑
t=0

a2tσ
2
g

γt−1

≤Eξ0,...,ξT−1

[
Φ̃T−1(x)

]
− γT−1

2
Eξ0,...,ξT−1

[
∥x− x̃T ∥2

]
+ L

T−1∑
t=0

atEξ0,...,ξT−1

[
∥x̃t − xt∥2

]
+

T−1∑
t=0

a2tσ
2
g

γt−1

≤
T−1∑
s=0

atF (x) +
γT−1

2
∥x− x0∥2 −

γT−1

2
Eξ0,...,ξT−1

[
∥x− x̃T ∥2

]
+ L

T−1∑
t=0

atEξ0,...,ξT−1

[
∥x̃t − xt∥2

]
+

T−1∑
t=0

a2tσ
2
g

γt−1

Rearranging, we get the desired result.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

T−1∑
t=0

Eξ0,...,ξT−1

[
at(F (x̃t+1)− F (x)) +

γt−1 − 4atL

4
∥x̃t+1 − x̃t∥2

]
+
γT−1

2
Eξ0,...,ξT−1

[
∥x− x̃T ∥2

]
≤γT−1

2
∥x− x0∥2 + L

T−1∑
t=0

atEξ0,...,ξT−1

[
∥x̃t − xt∥2

]
+

T−1∑
t=0

a2tσ
2
g

γt−1

For Equation (13), by definition of xt+1, we have:

Φ⋆t = Φt−1(xt+1) + at(f(xt) + ⟨ĝt,xt+1 − xt⟩+ ψ(xt+1)) +
γt − γt−1

2
∥xt+1 − x0∥2

(vi)

≥ Φ⋆t−1 +
γt−1

2
∥xt+1 − xt∥2 + at(f(xt) + ⟨ĝt,xt+1 − xt⟩+ ψ(xt+1)) +

γt − γt−1

2
∥xt+1 − x0∥2

= Φ⋆t−1 +
γt−1

2
∥xt+1 − xt∥2 + at(f(xt) + ⟨∇f(xt),xt+1 − xt⟩+ ⟨ĝt −∇f(xt),xt+1 − xt⟩+ ψ(xt+1))

+
γt − γt−1

2
∥xt+1 − x0∥2

(vii)

≥ Φ⋆t−1 +
γt−1 − atL

2
∥xt+1 − xt∥2 + at(F (xt+1) + ⟨ĝt −∇f(xt),xt+1 − xt⟩) +

γt − γt−1

2
∥xt+1 − x0∥2,

where in (vi) we used the strong convexity of Φt and in (ii) we used Assumption 2.4.

Again by the definition of xt+1, we have:

Φ⋆t +
γt
2
∥xt+1 − xt∥2

(viii)

≤ Φt(xt)

= Φ⋆t−1 + atF (xt) +
γt − γt−1

2
∥xt − x0∥2,

where in (viii) we used the strong convexity of Φt+1.

Putting these together, we have:
γt + γt−1 − atL

2
∥xt+1 − xt∥2 + at(F (xt+1) + ⟨ĝt −∇f(xt),xt+1 − xt⟩) +

γt − γt−1

2
∥xt+1 − x0∥2

≤atF (xt) +
γt − γt−1

2
∥xt − x0∥2

Now divide both sides by at and sum from t = 0 to T − 1, we have:
T−1∑
t=0

(
γt + γt−1 − atL

2at
∥xt+1 − xt∥2 + ⟨ĝt −∇f(xt),xt+1 − xt⟩

)
≤ F (x0)−F (xT)+

1

2

T−1∑
t=0

(βtρ
2
t−βtρ2t+1)

E SAMPLING PROCEDURE FOR VIRTUAL ITERATES

Algorithm 3 Sampling Procedure for Virtual Iterates
1: ḡ, ḡ0 = 0
2: for t = 0, 1, . . . do
3: At =

∑t−1
s=0 as

4: Sample τt = 1 with prob. at
At+1

and τt = 0 otherwise.
5: Obtain ĝt ≈ gt := g(xt, ξt)
6: ḡt = ḡt−1 + atgt
7: ḡ = ḡt if τ = 1 otherwise ḡ remains.
8: Update xt+1

9: x̄T = argminx
[
⟨ḡ,x⟩+ ψ(x)Aτ+1 +

γτ
2 ∥x− x0∥2

]
where τ is the last t such that τt = 1.

10: Aτ+1 :=
∑τ
t=0 at

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

In this section we prove the missing results for the sampling procedure for the virtual iterates in
Section 3.1. We first summarize the procedure for clarity as Algorithm 3.

Now a simple proposition regarding the sampling procedure. This is folklore knowledge and the
proof is taken directly from (Gao et al., 2024b).

Proposition E.1. Given a stream of points {xk}∞k=1 in Rd and positive scalars {hk}∞k=1, we can
maintain, at each step k ≥ 1, the random variable xt(k), where t(k) is a random index from
{1, . . . , k} chosen with probabilities Pr(t(k) = i) = hi

Hk
, i = 1, . . . , k, where Hk :=

∑k
i=1 hi. This

requires only O(d) memory and computation.

Proof. We maintain the variables x̄k ∈ Rd and Hk ∈ R which are both initialized to 0 at step k = 0.
Then, at each step k ≥ 1, we update Hk ← Hk−1 + hk and also, with probability hk

Hk
, we update

x̄k ← xk (or, with probability 1 − hk

Hk
, keep the old x̄k = x̄k−1). The memory and computation

costs are O(d). Note that, for any 1 ≤ i ≤ k, the event x̄k = xi happens iff x̄ was updated at step i
and then not updated at each step j = i+ 1, . . . , k. Hence, for any 1 ≤ i ≤ k, we have

Pr(x̄k = xi) =
hi
Hi
·

k∏
j=i+1

(
1− hj

Hj

)
=

hi
Hi
·

k∏
j=i+1

Hj−1

Hj
=

hi
Hk

.

F DESCRIPTION OF FULL ALGORITHM

In this section, we describe Algorithm 2 in more details for clarity. The algorithm combines
Algorithms 1 and 3 and Algorithm 4 together.

At each iteration, the server samples a bernoulli random variable τt to decide whether to update the ḡi
vector, the cumulative gradient sample for all clients. The clients then proceed to compute their local
stochastic gradient git, and add it to their local cumulative gradient ḡit. If τt = 1, the client updates
its cumulative gradient sample ḡi to ḡit, otherwise it remains unchanged. Then the client make the
EControl update, where it updates the local error eit+1 and the local gradient estimate ĝit. The client
then sends the compressed local gradient difference ∆i

t to the server. Now the server collects the
gradient differences ∆i

t from all clients and updates the global gradient estimate ĝt and makes a dual
averaging update to the primal variable xt+1.

Finally, the server collects the cumulative gradient samples ḡi from all clients via a full communication
and computes ḡ. The final output is then computed using ḡ so that it becomes a random sample of
the virtual iterates (which are not explicitly computed and stored).

G ANALYSIS OF THE EControl MECHANISM

Algorithm 4 EControl

1: Input: x0, η, e
i
0 = 0, ĝi−1 = ∇fi(x0, ξ

i
0).

2: for t = 0, 1, . . . do
3: clients:
4: git = gi(xt, ξ

i
t), ξ

i
t is independent copy of ξi

5: δit = git − ĝit−1 − ηeit,∆i
t = C(δit)

6: ĝit = ĝit−1 +∆i
t

7: eit+1 = eit + ĝit − git
8: send ∆i

t to the server
9: server

10: ∆t =
1
n

∑n
i=1 ∆

i
t

11: ĝt = ĝt−1 +∆t

In this section we present the missing proofs for the analysis of Algorithm 2. For ease of understanding,
we also summarize thet EControl mechanism in Algorithm 4.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Again, we remind the readers that for now we restrict ourselves to the setting where at = 1 and γt = γ.
Please refer to Appendix H for more details on the case where γt is changing (and non-decreasing).

We first present an upper bound on each sums of ∥eit∥2 and ∥ĝit − git∥2, both in terms of the sum of
∥git+1 − git∥2.

Lemma 4.1. Let η = δ
3
√
1−δ(1+

√
1−δ) , then:

T∑
t=1

∥eit∥2 ≤
81(1− δ)2(1 +

√
1− δ)4

2δ4

T−2∑
t=0

∥git+1 − git∥2,

T−1∑
t=0

∥ĝit − git∥2 ≤
36(1− δ)(1 +

√
1− δ)2

δ2

T−2∑
t=0

∥git+1 − git∥2
(15)

Proof. By the definition of eit+1, we have:

eit+1 := ĝit − git + eit = ĝit−1 +∆i
t − git + eit = ∆i

t − δit + (1− η)eit,

Therefore, by triangular inequality, we have:

∥eit+1∥ ≤ (1− η)∥eit∥+ ∥∆i
t − δit∥ ≤ (1− η)∥eit∥+

√
1− δ∥δit∥,

where in the last inequality we used the definition of the compressor. Now by Lemma C.2, we get:

T∑
t=1

∥eit∥2 ≤
1− δ
η2

T−1∑
t=0

∥δit∥2.

Next we note the following:

δit+1 = git+1 − ĝit − ηeit+1

= git − ĝit − η(ĝit − git + eit) + git+1 − git

= (1 + η)(git − ĝit)− ηeit + git+1 − git

= (1 + η)(δit −∆i
t + ηeit)− ηeit + git+1 − git

= (1 + η)(δit −∆i
t) + η2eit + git+1 − git.

Similar as before, we now apply triangular inequality and definition of the compressor and get:

∥δit+1∥ ≤ (1 + η)
√
1− δ∥δit∥+ η2∥eit∥+ ∥git+1 − git∥.

Let’s write β ≡ 1− (1 + η)
√
1− δ . Now we apply Lemma C.2 again and Young’s inequality, and

note that δi0 = 0, we get:

T−1∑
t=0

∥δit∥2 ≤
2

β2

T−2∑
t=0

(η4∥eit∥2 + ∥git+1 − git∥2).

Now we plug in the upper bound on the sum of ∥eit∥ (and note that ei0 = 0):

T−1∑
t=0

∥δit∥2 ≤
2(1− δ)η2

β2

T−3∑
t=0

∥δit∥2 +
2

β2

T−2∑
t=0

∥git+1 − git∥2

Rearranging, we have:

T−1∑
t=0

∥δit∥2 ≤
2

β2 − 2(1− δ)η2
T−2∑
t=0

∥git+1 − git∥2

Therefore, we have:
T∑
t=1

∥eit∥2 ≤
2(1− δ)

β2η2 − 2(1− δ)η4
T−2∑
t=0

∥git+1 − git∥2

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Next, we note the following:

ĝit − git = ∆i
t − (git − ĝit−1 − ηeit) + ηeit

= ∆i
t − δit + ηeit

Therefore, by Young’s inequality, we have:
T−1∑
t=0

∥ĝit − git∥2 ≤ 2(1− δ)
T−1∑
t=0

∥δit∥2 + 2η2
T−1∑
t=1

∥eit∥2

≤ 8(1− δ)
β2 − 2(1− δ)η2

T−2∑
t=0

∥git+1 − git∥2

For the choice of η and β, we choose β = 2
√
1− δη. Since β ≡ 1−

√
1− δ(1 + η), we have:

η =
δ

3
√
1− δ(1 +

√
1− δ)

, β =
2δ

3(1 +
√
1− δ)

Putting this back, we get the desired results.

Lemma 4.3. Given Assumptions 2.1 and 2.3 to 2.5, and let η = δ
3
√
1−δ(1+

√
1−δ) , γ ≥

24
√
2ℓ

δ , then
we have:

T−1∑
t=0

1

n

n∑
i=1

E
[
∥git+1 − git∥2

]
≤ 80ℓ2

9γ
F0 + 7Tσ2 (16)

Therefore, by Lemma 4.1, we also have:
T−1∑
t=0

1

n

n∑
i=1

E
[
∥eit∥2

]
≤ 5760ℓ2

δ4γ
F0 +

4536Tσ2

δ4
(17)

Proof. For simplicity, let’s write r2t = ∥xt+1 − xt∥2. By Assumptions 2.1 and 2.5, we have:
T−1∑
t=0

1

n

n∑
i=1

E
[
∥git+1 − git∥2

]
≤ 2ℓ2

T−1∑
t=0

E
[
r2t
]
+ 4Tσ2

Therefore,
T−1∑
t=0

1

n

n∑
i=1

E
[
∥ĝit − git∥2

]
≤ 36(1− δ)(1 +

√
1− δ)2

δ2

T−2∑
t=0

1

n

n∑
i=1

E
[
∥git+1 − git∥2

]
≤ 72ℓ2(1− δ)(1 +

√
1− δ)2

δ2

T−2∑
t=0

E
[
r2t
]
+

144T (1− δ)(1 +
√
1− δ)2σ2

δ2

≤ 288ℓ2

δ2

T−2∑
t=0

E
[
r2t
]
+

576Tσ2

δ2

By Theorem 3.3, we have:
T−2∑
t=0

2γ − L
2

r2t +

T−2∑
t=0

⟨ĝt −∇f(xt),xt+1 − xt⟩ ≤ F (x0)− F (xT)

Therefore, we have:
T−1∑
t=0

γ − L
2

E
[
r2t
]
≤ E [F (x0)− F (xT)] +

1

2γ

T−1∑
t=0

E
[
∥ĝt −∇f(xt)∥2

]
≤ E [F (x0)− F (xT)] +

1

γ

T−1∑
t=0

E
[
∥ĝt − gt∥2

]
+

2Tσ2

γn

≤ E [F (x0)− F (xT)] +
288ℓ2

δ2γ

T−2∑
t=0

E
[
r2t
]
+

578Tσ2

δ2γ

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Now assuming that γ ≥ 24
√
2ℓ

δ , and rearranging, we have:

T−1∑
t=0

E
[
r2t
]
≤ 40

9γ
E [F (x0)− F (xT)] +

1285Tσ2

δ2γ2

Therefore,
T−1∑
t=0

1

n

n∑
i=1

E
[
∥git+1 − git∥2

]
≤ 80ℓ2

9γ
E [F (x0)− F (xT)] +

2570ℓ2Tσ2

δ2γ2
+ 4Tσ2

Theorem 4.4. Given Assumptions 2.3 to 2.5, and setting at = 1, γT = γ, η = δ
3
√
1−δ(1+

√
1−δ) , and

taking one initial stochastic gradient step from x0 to x′
0 if ψ ̸≡ 0 and setting

γ = max

{
24
√
2ℓ

δ
,

√
Tσ2

nR2
0

,
17T 1/3ℓ1/3σ2/3

R
2/3
0 δ4/3

}
,

then it takes at most

T =
16R2

0σ
2

nε2
+

561R2
0

√
ℓσ

δ2ε3/2
+

96
√
2ℓR2

0

δε
,

iterations of Algorithm 2 to get E [F (x̄T)− F ⋆] ≤ ε.
In particular, this means that with three rounds of uncompressed communication (one for the initial
stochastic gradient step, one communicating ĝ−1 and one communicating ḡ), and T rounds of
compressed communications, Algorithm 2 reaches the desired accuracy. Assuming that the cost of
sending compressed vectors is 1 and sending uncompressed vectors is m, it costs at most

16R2
0σ

2

nε2
+

561R2
0

√
ℓσ

δ2ε3/2
+

96
√
2ℓR2

0

δε
+ 3m

in communications for Algorithm 2 to get:

E [F (x̄T)− F ⋆] ≤ ε.

Proof. For simplicity of notation, let’s write Ft := F (x̃t)− F (x⋆).

By Lemma 4.3 and Theorem 3.3, we have, when γ ≥ 24
√
2ℓ

δ :

1

T

T−1∑
t=0

E [Ft+1] ≤
γR2

0

2T
+

L

γ2T

T−1∑
t=0

1

n

n∑
i=1

E
[
∥eit∥2

]
+
σ2

γn

≤ γR2
0

2T
+

5760ℓ2L

γ3δ4T
F0 +

4536Lσ2

γ2δ4
+
σ2

γn
.

Now we choose γ = max

{
24

√
2ℓ

δ ,
11L

1/4ℓ
1/2F

1/4
0

δR
1/2
0

,
√

2Tσ2

nR2
0
, 21T

1/3L
1/3σ

2/3

R
2/3
0 δ4/3

}
, we have:

1

T

T∑
t=1

E [Ft] ≤
17ℓR2

0

δT
+

11L1/4ℓ1/2F
1/4
0 R

3/2
0

2δT
+

√
R2

0σ
2

2nT
+

21R
4/3
0 L1/3σ2/3

2T 2/3δ4/3

Therefore, after:

T =
8R2

0σ
2

2nε2
+

99R2
0

√
Lσ

δ2ε3/2
+

34ℓR2
0

δε
+

11L1/4ℓ1/2F
1/4
0 R

3/2
0

δε
,

iterations of Algorithm 2, we have:
1

T

T∑
t=1

E [Ft] ≤ ε.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Note that this already gives us the desirable convergence rate. We can further simplify the above
rates and remove the dependence on F0 by taking one additional stochastic gradient step initially to
get x′

0. By Lemma C.3, we have E [F (x′
0)− F ⋆] ≤ LR2

0 +
R0σ√

2
and R′

0 := E
[
∥x′

0 − x⋆∥2
]
≤ 2R2

0.
Therefore if we start our algorithm at x′

0, then we have:

1

T

T−1∑
t=0

E [Ft+1] ≤
γR2

0

T
+

5760ℓ4R2
0

γ3δ4T
+

4073ℓ3R0σ

γ3δ4T
+

4536ℓσ2

γ2δ4
+
σ2

γn
.

Note that for the third term, we have the following due Young’s inequality and the assumption that
γ ≥ 24

√
2ℓ

δ :
4073ℓ3R0σ

γ3δ4T
≤ 4073ℓ4R2

0

2γ3δ4T
+

4073ℓ2σ2

2γ3δ4T
≤ 4073ℓ4R2

0

2γ3δ4T
+

61ℓσ2

γ2δ3

Therefore, we have:

1

T

T−1∑
t=0

E [Ft+1] ≤
γR2

0

T
+

7797ℓ4R2
0

γ3δ4T
+

4597ℓσ2

γ2δ4
+
σ2

γn
.

Now we pick:

γ = max

{
24
√
2ℓ

δ
,

√
Tσ2

nR2
0

,
17T 1/3ℓ1/3σ2/3

R
2/3
0 δ4/3

}
,

and we have:
1

T

T∑
t=1

E [Ft] ≤
24
√
2ℓR2

0

δT
+

√
R2

0σ
2

nT
+

17R
4/3
0 ℓ1/3σ2/3

T 2/3δ4/3

Therefore, we need only:

T =
16R2

0σ
2

nε2
+

561R2
0

√
ℓσ

δ2ε3/2
+

96
√
2ℓR2

0

δε

iterations.

H EControl WITH VARIABLE STEPSIZE

Consider Theorem 3.3, when the stepsize γt is changing, we have to upper bound the sum of ∥et∥
γ2
t−1

.
This extra weight has to be handled directly in the analysis.
Lemma H.1. Let η = δ

3
√
1−δ(1+

√
1−δ) , we have:

T∑
t=1

∥eit∥2

γ2t−1

≤ 81(1− δ)2(1 +
√
1− δ)4

2δ4

T−2∑
t=0

∥git+1 − git∥2

γ2t
,

T−1∑
t=0

∥ĝit − git∥2

γ4t
≤ 36(1− δ)(1 +

√
1− δ)2

γ20δ
2

T−2∑
t=0

∥git+1 − git∥2

γ2t

(22)

Proof. By the definition of eit+1, we have:

eit+1 := ĝit − git + eit = ĝit−1 +∆i
t − git + eit = ∆i

t − δit + (1− η)eit,
Therefore, by triangular inequality, we have:

∥eit+1∥ ≤ (1− η)∥eit∥+ ∥∆i
t − δit∥ ≤ (1− η)∥eit∥+

√
1− δ∥δit∥,

where in the last inequality we used the definition of the compressor. Now divide both sides by γ2t ,
and noting that γt ≥ γt−1, we have:

∥eit+1∥
γ2t

≤ (1− η)∥e
i
t∥

γ2t−1

+

√
1− δ∥δit∥
γ2t−1

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Now by Lemma C.2, we get:
T∑
t=1

∥eit∥2

γ2t−1

≤ 1− δ
η2

T−1∑
t=0

∥δit∥2

γ2t−1

.

Next we note the following:

δit+1 = git+1 − ĝit − ηeit+1

= git − ĝit − η(ĝit − git + eit) + git+1 − git

= (1 + η)(git − ĝit)− ηeit + git+1 − git

= (1 + η)(δit −∆i
t + ηeit)− ηeit + git+1 − git

= (1 + η)(δit −∆i
t) + η2eit + git+1 − git.

Similar as before, we now apply triangular inequality and definition of the compressor and get:

∥δit+1∥ ≤ (1 + η)
√
1− δ∥δit∥+ η2∥eit∥+ ∥git+1 − git∥.

Again, we divide both sides by γ2t and note that γt ≥ γt−1:

∥δit+1∥
γ2t

≤ (1 + η)
√
1− δ ∥δ

i
t∥

γ2t−1

+
η2∥eit∥
γ2t−1

+
∥git+1 − git∥

γ2t
.

Let’s write β ≡ 1− (1 + η)
√
1− δ . Now we apply Lemma C.2 again and Young’s inequality, and

note that δi0 = 0, we get:
T−1∑
t=0

∥δit∥2

γ2t−1

≤ 2

β2

T−2∑
t=0

(
η4∥eit∥2

γ2t−1

+
∥git+1 − git∥2

γ2t
).

Now we plug in the upper bound on the sum of ∥eit∥ (and note that ei0 = 0):
T−1∑
t=0

∥δit∥2

γ2t−1

≤ 2(1− δ)η2

β2

T−3∑
t=0

∥δit∥2

γ2t−1

+
2

β2

T−2∑
t=0

∥git+1 − git∥2

γ2t

Rearranging, we have:
T−1∑
t=0

∥δit∥2

γ2t−1

≤ 2

β2 − 2(1− δ)η2
T−2∑
t=0

∥git+1 − git∥2

γ2t

Therefore, we have:
T∑
t=1

∥eit∥2

γ2t−1

≤ 2(1− δ)
β2η2 − 2(1− δ)η4

T−2∑
t=0

∥git+1 − git∥2

γ2t

Next, we note the following:

ĝit − git = ∆i
t − (git − ĝit−1 − ηeit) + ηeit

= ∆i
t − δit + ηeit

Therefore, by Young’s inequality, we have:
T−1∑
t=0

∥ĝit − git∥2

γ2t
≤ 2(1− δ)

T−1∑
t=0

∥δit∥2

γ2t−1

+ 2η2
T−1∑
t=1

∥eit∥2

γ2t−1

≤ 8(1− δ)
β2 − 2(1− δ)η2

T−2∑
t=0

∥git+1 − git∥2

γ2t

For the choice of η and β, we choose β = 2
√
1− δη. Since β ≡ 1−

√
1− δ(1 + η), we have:

η =
δ

3
√
1− δ(1 +

√
1− δ)

, β =
2δ

3(1 +
√
1− δ)

Putting this back, we get the desired results.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Lemma H.2. Given Assumptions 2.1 and 2.3 to 2.5, and η = δ
3
√
1−δ(1+

√
1−δ) , γ ≥

136ℓ
δ we have:

T−1∑
t=0

1

n

n∑
i=1

E
[
∥git+1 − git∥2

]
γ2t

≤ 32ℓ2F0

γ30
+

73988ℓ2

γ20δ
2

T−1∑
t=0

σ2

γ2t
(23)

Therefore, by Lemma 4.1, we also have:

T∑
t=1

1

n

n∑
i=1

E
[
∥eit∥2

]
γ2t−1

≤ 215ℓ2F0

γ30
+

226ℓ2

γ20δ
2

T−1∑
t=0

σ2

γ2t
(24)

Proof. For simplicity, let’s write r2t = ∥xt+1 − xt∥2. By Assumptions 2.1 and 2.5, we have:

T−1∑
t=0

1

n

n∑
i=1

E
[
∥git+1 − git∥2

]
γ2t

≤ 2ℓ2
T−1∑
t=0

E
[
r2t
]

γ2t
+

T−1∑
t=0

4σ2

γ2t

Therefore,
T−1∑
t=0

1

n

n∑
i=1

E
[
∥ĝit − git∥2

]
γ4t

≤ 36(1− δ)(1 +
√
1− δ)2

γ20δ
2

T−2∑
t=0

1

n

n∑
i=1

E
[
∥git+1 − git∥2

]
γ2t

≤ 72ℓ2(1− δ)(1 +
√
1− δ)2

γ20δ
2

T−2∑
t=0

E
[
r2t
]

γ2t
+

144(1− δ)(1 +
√
1− δ)2

γ20δ
2

T−1∑
t=0

σ2

γ2t

≤ 288ℓ2

γ20δ
2

T−2∑
t=0

E
[
r2t
]

γ2t
+

576

γ20δ
2

T−1∑
t=0

σ2

γ2t

Recall the following from the proof of Theorem 3.3 (with at = 1):

γt + γt−1 − L
2

r2t + F (xt+1) + ⟨ĝt −∇f(xt),xt+1 − xt⟩+
γt − γt−1

2
∥xt+1 − x0∥2

≤F (xt) +
γt − γt−1

2
∥xt − x0∥2

Upper bounding ⟨ĝt −∇f(xt),xt+1 − xt⟩, and dividing both sides by γ3t and summing from t = 0
to T − 1, we have:

T−1∑
t=0

γt − 2L

4γ3t
r2t ≤

T−1∑
t=0

F (xt)− F (xt+1)

γ3t
+ 2

T−1∑
t=0

∥ĝt −∇f(xt)∥2

γ4t
+

T−1∑
t=0

(β′
tρt − β′

tρt+1),

where β′
t :=

γt−γt−1

2γ3
t

. Note that since γt is non-decreasing, we also have:

T−1∑
t=0

F (xt)− F (xt+1)

γ3t
=
F (x0)− F (x⋆)

γ30
− F (x1)− F (x⋆)

γ30
+
F (x1)− F (x⋆)

γ31
− F (x2)− F (x⋆)

γ31
+ · · ·

+
F (xT−1)− F (x⋆)

γ3T−1

− F (xT)− F (x⋆)
γ3T−1

≤ F (x0)− F (x⋆)
γ30

− F (x1)− F (x⋆)
γ31

+
F (x1)− F (x⋆)

γ31
− F (x2)− F (x⋆)

γ32
+ · · ·

+
F (xT−1)− F (x⋆)

γ3T−1

− F (xT)− F (x⋆)
γ3T

≤ F (x0)− F (x⋆)
γ30

Taking expectation on both sides, and applying Assumption 2.1, we have:

T−1∑
t=0

γt − 2L

4γ3t
E
[
r2t
]
≤ F0

γ30
+ 4

T−1∑
t=0

1

n

n∑
i=1

E
[
∥ĝit − git∥2

]
γ4t

+

T−1∑
t=0

8σ2

γ4t n
+

T−1∑
t=0

(β′
tρt − β′

tρt+1)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Now we use the assumption that β′
t is non-increasing and eliminate the last term. Further, we plug in

the upper bound for the sum of ∥ĝt − gt∥2, we get:
T−1∑
t=0

γt − 2L

4γ3t
E
[
r2t
]
≤ F0

γ30
+

1152ℓ2

γ20δ
2

T−2∑
t=0

E
[
r2t
]

γ2t
+

2312

γ20δ
2

T−1∑
t=0

σ2

γ2t

Suppose that γt ≥ 4L, then we have:
T−1∑
t=0

1

γ2t
E
[
r2t
]
≤ 8F0

γ30
+

9216ℓ2

γ20δ
2

T−2∑
t=0

E
[
r2t
]

γ2t
+

18496

γ20δ
2

T−1∑
t=0

σ2

γ2t

If γ0 ≥ 136ℓ
δ , then we have:

T−1∑
t=0

1

γ2t
E
[
r2t
]
≤ 16F0

γ30
+

36992

γ20δ
2

T−1∑
t=0

σ2

γ2t

Finally, we have:
T−1∑
t=0

1

n

n∑
i=1

E
[
∥git+1 − git∥2

]
γ2t

≤ 32ℓ2F0

γ30
+

73988ℓ2

γ20δ
2

T−1∑
t=0

σ2

γ2t

Therefore, by Lemma H.1:
T∑
t=1

1

n

n∑
i=1

E
[
∥eit∥2

]
γ2t−1

≤ 215ℓ2F0

γ30
+

226ℓ2

γ20δ
2

T−1∑
t=0

σ2

γ2t

Theorem H.3. Given Assumptions 2.3 to 2.5, and we set at = 1, η := δ
3
√
1−δ(1+

√
1−δ) , and we take

one initial stochastic gradient step from x0 to x′
0 if ψ ̸≡ 0 and set

γt =
136ℓ

δ
+

√
2tσ2

nR2
0

+
646ℓ1/3σ2/3t1/3

R
2/3
0 δ4/3

,

then it takes at most

T =
288R2

0σ
2

nε2
+

6692L1/2R2
0σ

δ2ε3/2
+

552ℓR2
0

δε
,

iterations of Algorithm 2 to get E [F (x̄T)− F ⋆] ≤ ε.
In particular, this means that with three rounds of uncompressed communication (one for the initial
stochastic gradient step, one communicating ĝ−1 and one communicating ḡ), and T rounds of
compressed communications, Algorithm 2 reaches the desired accuracy. Assuming that the cost of
sending compressed vectors is 1 and sending uncompressed vectors is m, it costs at most

T =
288R2

0σ
2

nε2
+

6692L1/2R2
0σ

δ2ε3/2
+

552ℓR2
0

δε
+ 3m

in communications for Algorithm 2 to get:

E [F (x̄T)− F ⋆] ≤ ε.

Proof. By Lemma H.2 and Theorem 3.3, and setting η = δ
3
√
1−δ(1+

√
1−δ) , and assuming that

γ0 ≥ 136ℓ
δ and that β′

t is non-increasing in t (this can be easily verified once we give the precise
definitions of γt), we have:

1

T

T−1∑
t=0

E [Ft+1] +
γT−1

2T
R2
T ≤

γT−1

2T
R2

0 +
L

T

T−1∑
t=0

1

n

n∑
i=1

E
[
∥eit∥2

]
γ2t−1

+

T−1∑
t=0

σ2

nTγt−1

≤ γT−1

2T
R2

0 +
215Lℓ2

δ4γ30T
F0 +

T−1∑
t=0

226Lσ2

δ4γ2t T
+

T−1∑
t=0

σ2

nγt−1T

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

We consider the following stepsize:

γt =
136ℓ

δ
+

32L1/4ℓ1/2F
1/4
0

δR
1/2
0

+

√
2tσ2

nR2
0

+
512L1/3σ2/3t1/3

R
2/3
0 δ4/3

First we note that γt is non-decreasing. Further, it can be verified that with such a choice of γt, we
have β′

t =
γt−γt−1

2γ3
t

is non-increasing in t.

Noting that
∑T−1
t=0

1
t1−p ≤ 1

p (T − 1)p, then we have:

1

T

T−1∑
t=0

E [Ft+1] ≤
69ℓR2

0

δT
+

16L1/4ℓ1/2F
1/4
0

δR
1/2
0 T

+
384L1/3R

4/3
0 σ2/3

δ4/3T 2/3
+

3
√
2R0σ√
nT

Therefore, after at most:

T =
288R2

0σ
2

nε2
+

60199L1/2R2
0σ

δ2ε3/2
+

276ℓR2
0

δε
+

64L1/4ℓ1/2F
1/4
0

δR
1/2
0 ε

iterations, we have E [F (x̄T)] ≤ ε.
This is already a desirable convergence rate, but we can also eliminate the term dependent on F0,
using one initial stochastic gradient step. By Lemma C.3, we have E [F (x′

0)− F ⋆] ≤ LR2
0 +

R0σ√
2

and R′
0 := E

[
∥x′

0 − x⋆∥2
]
≤ 2R2

0. Therefore if we start our algorithm at x′
0, then we have:

1

T

T−1∑
t=0

E [Ft+1] ≤
γT−1

2T
R2

0 +
215ℓ4R2

0

δ4γ30T
+

215ℓ3R0σ

δ4γ30T
+

T−1∑
t=0

226ℓσ2

δ4γ2t T
+

T−1∑
t=0

σ2

nγt−1T

For the third term, due to Young’s inequality, we have:

215ℓ3R0σ

δ4γ30T
≤ 215ℓ4R2

0

δ4γ30T
+

215ℓ2σ2

δ4γ30T
≤ 215ℓ3R0σ

δ4γ30T
+

241ℓσ2

δ4γ20T

Therefore, we have:

1

T

T−1∑
t=0

E [Ft+1] ≤
γT−1

2T
R2

0 +
216ℓ4R2

0

δ4γ30T
+

T−1∑
t=0

227ℓσ2

δ4γ2t T
+

T−1∑
t=0

σ2

nγt−1T

Now we pick:

γt =
136ℓ

δ
+

√
2tσ2

nR2
0

+
646ℓ1/3σ2/3t1/3

R
2/3
0 δ4/3

and after at most:

T =
288R2

0σ
2

nε2
+

6692L1/2R2
0σ

δ2ε3/2
+

552ℓR2
0

δε
iterations, we get

E [F (x̄T)− F ⋆] ≤ ε
.

I ANALYSIS OF THE REAL ITERATES

In this section, we present an analysis of the real iterates generated by Algorithm 1, which can
be immediately combined with our analysis in Section 4 and give the convergence guarantee for
Algorithm 2 purely in terms of the real iterates xt. We note that this analysis does not rely on the
virtual iterates x̃t at all, and is therefore also applicable to the basic proximal algorithm without dual
averaging. We believe that this analysis might be of independent interest.

We first note that the guarantees for the real iterates is weaker than that of Theorem 3.3.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Theorem I.1. Given Assumptions 3.1, 2.3 and 2.4, then for any x ∈ domψ, we have:

T−1∑
t=0

E
[
at(F (xt+1)− F (x)) +

γt−1 − 2atL

4
∥xt+1 − xt∥2

]
≤ γT−1

2
∥x−x0∥2+2

T∑
t=1

E
[
∥et∥2

]
γt−1

+2

T−1∑
t=0

a2tσ
2
g

γt−1
.

(25)

Proof. By the definition of Φt, we have for any x ∈ dom(ψ):

Φt(x) ≥ Φ⋆t +
1

2
∥x− xt+1∥2

We also have:

Φt(x) =

t∑
k=0

ak(f(xk) + ⟨ĝk,x− xs⟩+ ψ(x)) +
γt
2
∥x− x0∥2

=

t∑
k=0

ak(f(xk) + ⟨∇f(xk),x− xk⟩+ ψ(x)) +

t∑
k=0

ak⟨ĝk −∇f(xk),x− xk⟩+
γt
2
∥x− x0∥2

(i)

≤
t∑

k=0

akF (x) +

t∑
k=0

ak⟨ĝk −∇f(xk),x− xk⟩+
γt
2
∥x− x0∥2,

where in (i) we used the convexity of f . Taking expectations on both sides, we get:

E [Φt(x)] ≤
t∑

k=0

akF (x) +
γt
2
∥x− x0∥2

Now by the definition of xt+1:

Φ⋆t = Φt−1(xt+1) + at(f(xt) + ⟨ĝt,xt+1 − xt⟩+ ψ(xt+1)) +
γt − γt−1

2
∥xt+1 − x0∥2

(ii)

≥ Φ⋆t−1 +
γt−1

2
∥xt+1 − xt∥2 + at(f(xt) + ⟨ĝt,xt+1 − xt⟩+ ψ(xt+1))

= Φ⋆t−1 +
γt−1

2
∥xt+1 − xt∥2 + at(f(xt) + ⟨∇f(xt),xt+1 − xt⟩+ ψ(xt+1)) + at⟨ĝt −∇f(xt),xt+1 − xt⟩

(iii)

≥ Φ⋆t−1 +
γt−1 − atL

2
∥xt+1 − xt∥2 + atF (xt+1) + at⟨ĝt −∇f(xt),xt+1 − xt⟩,

where in (ii) we used the 1-strong convexity of Φt and in (iii) we used Assumption 2.4.

Now rearranging and summing from t = 0 to T − 1, we get:

T−1∑
t=0

E
[
atF (xt+1) +

γt−1 − atL
2

∥xt+1 − xt∥2
]

≤E
[
Φ⋆T−1

]
−
T−1∑
t=0

E [at⟨ĝt −∇f(xt),xt+1 − xt⟩]

≤E
[
Φ⋆T−1

]
− γT−1

2
E
[
∥x− xT ∥2

]
−
T−1∑
t=0

atE [⟨ĝt −∇f(xt),xt+1 − xt⟩]

≤
T−1∑
t=0

atF (x) +

T−1∑
t=0

atE [⟨ĝt −∇f(xt),x− xt⟩] +
γT−1

2
E
[
∥x− x0∥2

]
− γT−1

2
E
[
∥x− xT ∥2

]
−
T−1∑
t=0

atE [⟨ĝt −∇f(xt),xt+1 − xt⟩]

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Rearranging, we get:

T−1∑
t=0

E
[
at(F (xt+1)− F (x)) +

γt−1 − atL
2

∥xt+1 − xt∥2
]

≤1

2
(∥x− x0∥2 − E

[
∥x− xT ∥2

]
) +

T−1∑
t=0

atE [⟨ĝt −∇f(xt),x− xt+1⟩]

Note that by the definition of et, we have:

T−1∑
t=0

at⟨ĝt −∇f(xt),x− xt+1⟩ =
T−1∑
t=0

⟨et+1 − et,x− xt+1⟩+
T−1∑
t=0

at⟨gt −∇f(xt),x− xt+1⟩

=

T−1∑
t=0

⟨et+1,x− xt+1⟩ − ⟨et,x− xt⟩+ ⟨et,xt+1 − xt⟩

+

T−1∑
t=0

at⟨gt −∇f(xt),x− xt+1⟩

= ⟨eT ,x− xT ⟩+
T−1∑
t=0

⟨et,xt+1 − xt⟩+
T−1∑
t=0

at⟨gt −∇f(xt),x− xt+1⟩

≤ ∥eT ∥
2

2γT−1
+
γT−1∥x− xT ∥2

2
+

T−1∑
t=1

(
2∥et∥2

γt−1
+
γt−1∥xt − xt+1∥2

8
)

+

T−1∑
t=0

at⟨gt −∇f(xt),x− xt+1⟩

Taking expectation on both sides, and noting that the noise gt −∇f(xt) is independent on both x
and xt, we have:

T−1∑
t=0

atE [⟨ĝt −∇f(xt),x− xt+1⟩]

≤∥eT ∥
2

2γT−1
+
γT−1∥x− xT ∥2

2
+

T−1∑
t=1

2∥et∥2

γt−1
+

T−1∑
t=1

γt−1∥xt − xt+1∥2

4
+ 2

T−1∑
t=0

a2tσ
2
g

γt−1

Now we put these together and get:

T−1∑
t=0

E
[
at(F (xt+1)− F (x)) +

γt−1 − 2atL

4
∥xt+1 − xt∥2

]
≤ γT−1

2
∥x−x0∥2+2

T∑
t=1

E
[
∥et∥2

]
γt−1

+2
T−1∑
t=0

a2tσ
2
g

γt−1

Remark I.2. Comparing to Theorem 3.3, we note that the key difference here is that the error in

Equation (25) is 2
∑T
t=1

E[∥et∥2]
γt−1

, while in Equation (12) it is L
∑T
t=1

E[∥et∥2]
γ2
t−1

. The L
γt−1

multiplica-
tive difference here is crucial and allows the stepsize γt to control the errors much more effectively.
Therefore, Theorem I.1 would lead to a weaker convergence guarantee.

With this, we can now directly combine Theorem I.1 with Lemma 4.3 to obtain the following
convergence guarantee for Algorithm 2 in terms of the real iterates xt. For simplicity, we use the
fixed stepsizes γt = γ.
Theorem I.3. Given Assumptions 2.3 to 2.5, and we set at = 1, η := δ

3
√
1−δ(1+

√
1−δ) , and we set:

γ = max

{
24
√
2ℓ

δ
,
32ℓ2/3F

1/3
0

δ4/3R
2/3
0

,
135σ

√
T

δ2R0

}

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

then it takes at most:

T =
72900R2

0σ
2

δ4ε2
+

48
√
2ℓR2

0

δε
+

64(ℓR2
0)

2/3F
1/3
0

δ4/3ε
(26)

iterations of Algorithm 2 to get 1
T

∑T−1
t=0 (F (xt+1)− F ⋆) ≤ ε.

Proof. We plug Equation (17) into Equation (25), and assume that γ ≥ 24
√
2ℓ

δ , and get:

1

T

T−1∑
t=0

(F (xt+1)− F ⋆) ≤
γR2

0

2T
+

11520ℓ2

δ4γ2T
F0 +

9074σ2

δ4γ

Now we set

γ = max{24
√
2ℓ

δ
,
32ℓ2/3F

1/3
0

δ4/3R
2/3
0

,
135σ

√
T

δ2R0
}

and we have:

1

T

T−1∑
t=0

(F (xt+1)− F ⋆) ≤
24
√
2ℓR2

0

δT
+

32(ℓR2
0)

2/3F
1/3
0

δ4/3T
+

135R0σ

δ2
√
T

Therefore, it takes at most:

T =
72900R2

0σ
2

δ4ε2
+

48
√
2ℓR2

0

δε
+

64(ℓR2
0)

2/3F
1/3
0

δ4/3ε

iterations of Algorithm 2 to get:

1

T

T−1∑
t=0

(F (xt+1)− F ⋆) ≤ ε

Remark I.4. We emphasize that here we only achieved an O(1
δ4/3ε

) convergence rate in the deter-
ministic term, which is worse than the O(1

δε) rate achieved in Theorem 4.4 in terms of δ. Perhaps
more importantly, in the stochastic case (σ2 > 0), we only achieve a O(1

δ4ε2) rate, which does not
improve linearly as n increases and is not delta-free, unlike the rate in Theorem 4.4 and Theorem H.3.
It is unclear whether this limitation is a fundamental property of the algorithm or an artifact of the
analysis. We leave it for future work to resolve this question.
Remark I.5. We also briefly note that the rate in Theorem I.3 can be slightly improved using the
restart strategy and a more careful analysis of the number of steps and parameter settings in each
stage. This way we can remove theO(1

δ4/3ε
) term, and instead get aO(1

δ4/3ε2/3
) term overall. We will

however have to assume that domψ is bounded, and do O(log 1
ε) number of restarts which requires

one full communication at each stage. For simplicity, we omit the details here.

30

	Introduction
	The Classic EF and Virtual Iteration
	Our Strategies

	Problem Formulation and Assumptions
	The Inexact Dual Averaging Method
	A Sampling Procedure for the Virtual Iterates

	EControl with Dual Averaging
	Experiments
	Conclusion
	Related Works on Error Feedback and Communication Compression
	Additional Experiments and Details
	Synthetic Softmax Objective
	Regularized FashionMNIST Classification

	Auxiliary Facts and Results
	Analysis of Inexact Dual Averaging
	Sampling Procedure for Virtual Iterates
	Description of Full Algorithm
	Analysis of the EControl Mechanism
	EControl with Variable Stepsize
	Analysis of the Real Iterates

