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ABSTRACT

Communication efficiency is a central challenge in distributed machine learning
training, and message compression is a widely used solution. However, standard
Error Feedback (EF) methods (Seide et al., 2014), though effective for smooth
unconstrained optimization with compression (Karimireddy et al., 2019), fail in
the broader and practically important setting of composite optimization, which
captures, e.g., objectives consisting of a smooth loss combined with a non-smooth
regularizer or constraints. The theoretical foundation and behavior of EF in the
context of the general composite setting remain largely unexplored. In this work,
we consider composite optimization with EF. We point out that the basic EF
mechanism and its analysis no longer stand when a composite part is involved.
We argue that this is because of a fundamental limitation in the method and its
analysis technique. We propose a novel method that combines Dual Averaging with
EControl (Gao et al., 2024a), a state-of-the-art variant of the EF mechanism, and
achieves for the first time a convergence analysis for convex composite optimization
with error feedback that matches the best-known results in the uncomposite setting.
Along with our new algorithm, we also provide a new and novel analysis template
for inexact dual averaging method, which might be of independent interest. We
also provide experimental results to complement our theoretical findings.

1 INTRODUCTION

Gradient methods, and in particular, distributed gradient methods, are the workhorse of modern
Machine Learning. In this work, we consider a simple yet powerful extension of the basic optimization
problem, namely, the composite optimization problem:

min
x∈domψ

{F (x) := f(x) + ψ(x)},

where f : Rd → R is smooth and ψ : Rd → R ∪ {+∞} is a composite part. The composite
optimization problem is ubiquitous in machine learning, and it covers a wide range of variants of the
vanilla optimization problem, for example, regularized machine learning (Liu et al., 2015), signal
processing (Combettes & Pesquet, 2010), and image processing (Luke, 2020). Since ψ can take on
the value of infinity, it also naturally covers the constrained optimization problem.

The sizes of the datasets and models in modern Machine Learning have been growing drastically,
leading to unique challenges in the training process and demands optimization algorithms that
are tailored to these new settings. The distributed optimization paradigm has become a necessity
due to the fact that one simply does not have the capacity to accumulate the entire dataset while
training modern ML models. One of the most popular setup is to distribute the data across multiple
clients/workers, and coordinate the model update in one server. Many of the recent breakthrough
models are trained in such a setup (Shoeybi et al., 2019; Ramesh et al., 2021; 2022; Wang et al.,
2020).

One of the main bottlenecks in scaling up distributed training is the communication cost. Transmitting
the full large model updates between clients and the server can be prohibitively expensive when
performed naively (Seide et al., 2014; Strom, 2015). One of the most popular practical remedy is
communication compression with contractive compression (Definition 2.2) (Lin et al., 2018; Sun et al.,
2019; Vogels et al., 2019). Contractive compressions are potentially biased, and naive aggregation of
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these biased compressed updates can lead to divergence (Beznosikov et al., 2020). In the classical
setting when ψ ≡ 0, one of the most basic and popular families of methods that are used to rectify
this issue in practice is the Error Feedback (EF) mechanism (Seide et al., 2014; Paszke et al.,
2019; Vogels et al., 2019; Ramesh et al., 2021). Due to its vast practical importance, EF mechanism
has attracted significant interests in the theory community as well, where many works, though
restricted to ψ ≡ 0, have attempted to theoretically explain the effectiveness of EF (Stich et al., 2018;
Karimireddy et al., 2019) or derive variants of EF that enjoy better theoretical properties than the
original form (Fatkhullin et al., 2023; Gao et al., 2024a).

However, in the composite setting, the situation becomes much more complex, and the theory is
much less developed. Existing works in the composite setting either impose some further restrictions
on the objective (Islamov et al., 2025), cannot handle stochastic gradients (Condat et al., 2022), or
have suboptimal rates (Qian et al., 2020).

The goal of our work is to address the general composite setting for the EF mechanism. We develop
novel algorithmic and analytical tools, and we are the first to obtain rates for EF in the convex
composite setting that matches the uncomposite counterpart. We achieve the
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convergence rate, matching the rates of state-of-the-art EF variants when ψ ≡ 0.

1.1 THE CLASSIC EF AND VIRTUAL ITERATION

Assuming that ψ ≡ 0, let us recall the classic EF mechanism and the main tool that is used to analyze
it, the virtual iteration framework (Mania et al., 2017), to understand its drawbacks. On a high level,
we consider an update rule of the form xt+1 = xt − 1

γ ĝt, where ĝt is some estimate of the true
gradient gt = ∇f(xt). EF provides a way to construct such an ĝt when the gradient information can
only be communicated after being compressed by the compressor C. We can summarize the basic EF
mechanism in the following (for simplicity, we consider the deterministic and single client setup in
the introduction):

δt := gt − et, ĝt := C(δt), et+1 := et + ĝt − gt, (1)

The basic (and essentially the only) tool that people have been using to analyze it is the virtual
iteration framework (Mania et al., 2017), which has been the foundation of most of the theoretical
works on EF since some of the first theoretical papers on EF (Stich et al., 2018). We consider the
virtual iterate x̃t, defined as:

x̃t := xt +
1
γ et.

The key insight here is that et :=
∑t−1
k=0(ĝk − gk), i.e. the accumulation of all the gradient errors,

and the virtual iterate takes the true gradients as the update, i.e. x̃t+1 = x̃t − 1
γgt, where again,

gt = ∇f(xt). This enables the analysis to use the virtual iterate as a proxy for the gradient descent
trajectories.

However, the combination of EF with virtual iteration does not extend directly to the composite
setting. If we still construct ĝt by Equation (1) but update via

xt+1 = argmin
x∈domψ

{
ht[⟨ĝt,x− xt⟩+ ψ(x)] +

1

2
∥x− xt∥2

}
, (2)

then the virtual iterate x̃t := xt − htet is difficult to interpret, as it may lie outside domψ and thus
cannot serve as a feasible proxy.

To contrast, when ψ ≡ 0 the iterates satisfy

xt = x0 − 1
γ

t−1∑
k=0

ĝk = x0 − 1
γ

(
(

t−1∑
k=0

gk)− et

)
,

so xt is simply the cumulative sum of gradient estimates, and subtracting et recovers the exact
gradient-descent trajectory. This additive structure is what makes the virtual iterate analysis effective.
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When ψ ̸≡ 0, however, the proximal step in (2) introduces distortions at each iteration. The iterates
xt can no longer be expressed as a clean sum of past gradient estimates, while et remains a sum of
compression errors. This structural mismatch is precisely why the classical virtual-iterate argument
breaks down in the composite case.

1.2 OUR STRATEGIES

Following our discussions above, it is clear that the classical EF mechanism and the virtual iteration
framework need to be modified in order to handle the composite setting. In particular, we need to
restore the simple sum of gradient estimates in the iterates, so that et can still be used to correct the
accumulated deviations from the true gradients. This reminds us of the Dual Averaging framework,
where the algorithm sums up all the past gradients and take one step from the initial point at each
step. In general, we consider the following update rule:

xt+1 := argmin
x∈domψ

{
t∑

k=0

ak(⟨ĝk,x⟩+ ψ(x)) +
γt
2
∥x− x0∥2

}
,

where ak, γt > 0 are some properly chosen coefficients. In this way, the iterates xt are defined
precisely by the (weighted) sum of all gradient estimates

∑t−1
k=0 akĝk. We can therefore consider the

(weighted) cumulative gradient error et :=
∑t−1
k=0 ak(ĝk − gk) and use it to correct the deviations of

xt from the true gradient trajectory, this time inside the proximal operator:

x̃t+1 := argmin
x∈domψ

{
t∑

k=0

ak(⟨ĝk,x⟩+ ψ(x))− ⟨et,x⟩+
γt
2
∥x− x0∥2

}

= argmin
x∈domψ

{
t∑

k=0

ak(⟨gk,x⟩+ ψ(x)) +
γt
2
∥x− x0∥2

}
.

It turns out that this intuitive modification of EF and the virtual iteration framework is precisely what
we need to address the composite setting.

2 PROBLEM FORMULATION AND ASSUMPTIONS

We consider the following distributed stochastic optimization problem:

F ∗ = min
x∈domψ

[
F (x) = f(x) + ψ(x)

]
, where f(x) :=

1

n

n∑
i=1

fi(x), (3)

where x ∈ Rd are the parameters of a model that we train. We assume this problem has a solution
which we denote by x∗. The objective function F is a composite objective with the smooth part
f(x) := 1

n

∑n
i=1 fi(x) and the composite part ψ : Rd → R ∪ {+∞}. ψ is a simple proper closed

convex function. We write domψ ⊂ Rd to be the set where ψ is finite. Each function fi is a local
loss function associated with a local data set Di, which can only be accessed by client i. There are in
total n clients indexed by i ∈ {1, . . . , n}. The composite part ψ can be accessed by the server.

Let us define the problem class that we consider in this paper. There are two type of agents in this
problem: the server and the clients. The server has access to the proximal oracle for any g,x ∈ Rd
and γ ∈ R+, defined as argminx′∈domψ

[
⟨g,x′⟩+ ψ(x′) + γ

2 ∥x− x′∥2
]
. We assume that each

client i can access only the function fi and only via the stochastic gradient oracle as follows:

Assumption 2.1. For any x ∈ domψ, gi(x, ξi) is a stochastic gradient oracle for fi at x, where ξi is
the randomness used by the oracle. We assume that gi(x, ξi) is unbiased and has bounded variance:

E
[
gi(x, ξ

i)
]
= ∇fi(x), Eξi

[
∥gi(x, ξi)−∇fi(x)∥2

]
≤ σ2. (4)

We consider the distributed setting where the communication from the client to the server is expensive,
and compressed communication is needed to reduce the communication cost. By (contractive)
compression, we mean the following:

3
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Definition 2.2. We say that a (possibly randomized) mapping C(·, ζ) : Rd → Rd is a contractive
compression operator if for some constant 0 < δ ≤ 1 it holds

Eζ
[
∥C(s, ζ)− s∥2

]
≤ (1− δ)∥s∥2 ∀s ∈ Rd. (5)

Here ζ is some possible randomness used by the compressor. For simplicity, we will often omit ζ in
the notation when there is no confusion.

In addition, we assume that the cost of communication from the server to each client is negli-
gible (Karimireddy et al., 2019; Richtárik et al., 2021; Gao et al., 2024a), while the client can
communicate to the server with the following two types of channels:

• Compressed channel: The client can send a compressed vector C(x, ζ) ∈ Rd to the server, where
C is a contractive compression operator (see Definition 2.2). The cost of sending one compressed
vector is 1.

• Uncompressed channel: The client can send a vector g ∈ Rd to the server without any compres-
sion. The cost of sending one uncompressed vector is m ≥ 1.

When the compressor is the Top-K compressor (i.e. the client only sends the top K elements of the
gradient), then the cost of sending one uncompressed vector in Rd is at most d/K. In general, given
any δ-compression in the sense of Definition 2.2, we can combine at most O( 1δ log

1
δ′ ) compressed

messages to recover an δ′-compression for any δ′ > 0 (He et al., 2023). In this sense, one can
typically approximate an uncompressed channel with a compressed channel with an Õ( 1δ ) additional
multiplicative overhead. That is, we can typically think of m to be of the order 1

δ .

In this work, we are interested in minimizing the total (client to server, uplink) communication
cost of the algorithm (for each client). Suppose that throughout the algorithm, each client makes
a compressed communications and b uncompressed communications to the server, then the total
communication cost is a + mb. This is roughly proportionate to a + b

δ . We do not consider the
communication cost from the server to the client (broadcast, downlink cost) since it is typically much
lower than the uplink cost, which is conventional in prior works (Karimireddy et al., 2019; Richtárik
et al., 2021; Gao et al., 2024a).

Let us now list the assumptions on the objective functions that we make in the paper. First, we make
the standard assumption that f is convex.

Assumption 2.3. We assume that the function f and ψ are convex, closed and proper over the convex
domain domψ.

We note that we do not assume that each local function fi is convex. We also assume that f is
L-smooth, which is standard in the literature (Stich et al., 2018; Karimireddy et al., 2019; Richtárik
et al., 2021; Gao et al., 2024a).

Assumption 2.4. We assume that the objective function f has L-Lipschitz gradients, i.e. for all
x,y ∈ domψ, it holds

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥. (6)

We also assume the following smoothness condition for the local functions fi.

Assumption 2.5. We assume that there exists some ℓ > 0 such that for all x,y ∈ dom(ψ), it holds

1

n

n∑
i=1

∥∇fi(x)−∇fi(y)∥2 ≤ ℓ2∥x− y∥2. (7)

Remark 2.6. Note that this is a weaker condition than what many existing works assume, e.g.
(Richtárik et al., 2021; Li & Richtárik, 2021), where they assume that all fi’s are Lmax-smooth. In
contrast, we only require that they are in some sense smooth on average, which is strictly weaker.

We point out that by Jensen’s inequality, we always have that L ≤ ℓ. In the analysis of our main
method, Algorithm 2, we eventually only need Assumption 2.5. However, Assumption 2.4 is still
important for the analysis of the inexact dual averaging framework that we propose, as it does not
presume any finite-sum structure of f .

4
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Algorithm 1 Inexact Dual Averaging

1: Input: x0 and {at, γt ∈ R+}t=0,...,∞. γt is non-decreasing.
2: for t = 0, 1, . . . do
3: Obtain ĝt ≈ gt := g(xt, ξt), ξt is an independent copy of ξ.
4: xt+1 = argminx

[
Φt(x) :=

∑t
k=0 ak(f(xk) + ⟨ĝk,x− xk⟩+ ψ(x)) + γt

2 ∥x− x0∥2
]

3 THE INEXACT DUAL AVERAGING METHOD

In this section, we take a step back from the distributed optimization problem with communication
compression that we consider in the rest of the paper, and consider solving a general stochastic
composite optimization problem of the form F ⋆ = minx∈domψ[F (x) = f(x) + ψ(x)]. This
perspective allows us to develop the core analytical tool that underpins our later analysis with
compressed communication. Here, we do not assume that f has a finite-sum structure. We make
Assumptions 2.3 and 2.4 for the objective in this section. We assume that we have access to a
stochastic gradient oracle g(x, ξ) satisfying Assumption 3.1 below:

Assumption 3.1. For any x ∈ domψ, g(x, ξ) is a stochastic gradient oracle for f at x. We assume
that g(x, ξ) is unbiased and has bounded variance:

E [g(x, ξ)] = ∇f(x), Eξ
[
∥g(x, ξ)−∇f(x)∥2

]
≤ σ2

g. (8)

We study the convergence of the general inexact dual averaging algorithm, as summarized in Algo-
rithm 1, for solving this problem. The algorithm gets some inexact gradient ĝt that approximates the
stochastic gradient gt := g(xt, ξt) at each iteration. It uses these gradient estimates to perform a dual
averaging update, with stepsize parameters at and γt. We assume that γt is non-decreasing.

We analyze the convergence of this method from the perspective of the virtual iterates, which are
defined in Equation (9). We note that these virtual iterates are not explicitly computed or stored
anywhere in the algorithm. However, since our convergence analysis will be given in terms of the
suboptimality of a convex combination of or random sample of the virtual iterates, an immediate
question would be how to output such a convex combination or random sample at the end of the
algorithm without explicitly storing and computing the virtual iterates. We will addres this in
Section 3.1.

Let’s write ḡt :=
∑t
k=0 akgk. We define the following virtual iteration, with x̃0 = x0:

x̃t+1 := argmin
x∈domψ

{
Φ̃t(x) :=

t∑
k=0

ak(f(xk) + ⟨gk,x− xk⟩+ ψ(x)) +
γt
2
∥x− x0∥2

}

= argmin
x∈domψ

{
⟨ḡt,x⟩+ ψ(x)

t∑
k=0

ak +
γt
2
∥x− x0∥2

}
.

(9)

Now, we define the accumulative error of the compressions:

et :=

t−1∑
k=0

ak(ĝk − gk). (10)

We first show that the distance between the virtual iterate x̃t and the actual iterate xt is controlled by
the accumulated error et:

Lemma 3.2. For any t ≥ 0, we have:

∥x̃t − xt∥2 ≤
1

γ2t−1

∥et∥2. (11)

We simply write γ−1 = γ0. Note that e0 = 0. With this, we can give the main convergence theorem
for the virtual iterates:

5
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Theorem 3.3. Given Assumptions 3.1, 2.3 and 2.4 and γt−1 ≥ 4atL, then for any x ∈ domψ and
any T ≥ 1, we have
T−1∑
t=0

E [at(F (x̃t+1)− F (x))]+
γT−1

2
E
[
∥x− x̃T ∥2

]
≤ γT−1

2
∥x−x0∥2+L

T−1∑
t=0

at
γ2t−1

E
[
∥et∥2

]
+

T−1∑
t=0

a2tσ
2
g

γt−1
.

(12)
In addition, we have the following upper bound on the distance between consecutive iterates:
T−1∑
t=0

(
γt + γt−1 − atL

2at
r2t + ⟨ĝt −∇f(xt),xt+1 − xt⟩

)
≤ F0 +

1

2

T−1∑
t=0

(βtρ
2
t − βtρ2t+1), (13)

where we write βt :=
γt−γt−1

at
, ρ2t := ∥xt − x0∥2, r2t := ∥xt+1 − xt∥2 and F0 := F (x0)− F ⋆.

Again, we note that Equation (12) deals with the virtual iterates. When ψ ≡ 0, typically we can
bound the distance between f(x̃t) and f(xt) simply by E

[
∥et∥2

]
. This is however unclear when

ψ ̸≡ 0. It is possible to directly analyze the behavior of xt without using the virtual iterates at all, but
the analysis obtained that way will be weaker due to the presence of ψ (see Appendix I for a more
detailed discussion, we further comment here that the techniques employed in Appendix I can also be
used to obtain an analysis of the proxmial method without dual averaging, albeit with similarly weak
guarantees). It remains an open question whether it is possible to directly analyze xt without using
the virtual iterates and still obtain a result as strong as Theorem 3.3.

In addition, we also obtain an upper bound on the distance betwen xt+1 and xt, which will be useful
later. Similar upper bounds on the distance between consecutive iterates have been used in many
existing works that applied the gradient difference compression strategies (Richtárik et al., 2021;
Fatkhullin et al., 2023; Gao et al., 2024a), but these are typically upper bounding the individual
distances. Due to the dual averaging strategies, our analysis here is significantly different, and we are
only able to upper bound the sum of the distances.

We point out that controlling the error ∥ĝt −∇f(xt)∥2 is method-dependent, that is, it depends on
how we constructed the approximate ĝt. Therefore we do not further analyze this term here, and we
discuss this term in more details when we present the analysis of our main algorithm in this work.

3.1 A SAMPLING PROCEDURE FOR THE VIRTUAL ITERATES

Provided that the errors are sufficiently small, Theorem 3.3 allows us to establish the convergence
rate in terms of 1

AT

∑T−1
t=0 at[F (x̃t+1)− F ⋆], where x̃t are the virtual iterates rather than the real

iterates xt and we write At =
∑t−1
s=0 as.

Therefore, after T steps, we would like to return a randomly chosen point among {x̃1, . . . , x̃T } with
the probabilities proportional to at. This can be implemented as follows: at each iteration t, we keep
tracks of the accumulated true gradients ḡt =

∑t
s=0 asgs and update ḡ to ḡt when τt = 1, and it

remains unchanged when τt = 0, where τt is a bernoulli variable with probability Pr [τ = 1] = at
At+1

.
This way, at step T − 1, ḡ is a random sample from the set {ḡt}t∈{0,··· ,T−1} with probabilities
proportional to at. Using ḡ, we can easily compute a random sample x̄T from the set {x̃t}t=1,...,T

as follows:

x̄T = argmin
x∈domψ

[
⟨ḡ,x⟩+ ψ(x)

T−1∑
t=0

at +
γτ
2
∥x− x0∥2

]
.

We summarize this procedure in Algorithm 3 in Appendix E.

It is easy to show that ḡ is a random variable over the set {ḡt}t∈{0,··· ,T−1} with probabilities
proportional to at, see Proposition E.1. As a consequence, we have the following:
Lemma 3.4. The output x̄T from Algorithm 3 is a random variable over the set {x̃t}t∈[T ], where
x̃t is defined in Equation (9). In particular, we have for any x ∈ dom(ψ) (that are independent of
{ξt, τt}t∈[T−1]):

Eτ0,...,τT−1,ξ0,...,ξT−1
[F (x̄T )− F (x)] =

1

AT

T−1∑
t=0

atEξ0,...,ξT−1
[F (x̃t+1)− F (x)] . (14)

6
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Algorithm 2 EControl with Dual Averaging

1: Input: x0, η, e
i
0 = 0, ĝi−1 = ∇fi(x0, ξ

i
0).

2: for t = 0, 1, . . . do
3: Server:
4: Sample τt = 1 with prob. 1

t+1 and τt = 0 otherwise. Send τt to all clients.
5: clients:
6: git = ∇fi(xt, ξit) where ξit is independent copy of ξi. ḡit = ḡit + git
7: ḡi = ḡit if τt = 1 otherwise ḡi remains.
8: δit = git − ĝit−1 − ηeit,∆i

t = C(δit, ζit) where ζit is independent copy of ζi.

9: ĝit = ĝit−1 +∆i
t, e

i
t+1 = eit + ĝit − git

10: send ∆i
t to the server

11: server
12: ĝt = ĝt−1 +

1
n

∑n
i=1 ∆

i
t

13: xt+1 = argminx{Φt(x) :=
∑t
s=0(f(xs) + ⟨ĝs,x− xs⟩+ ψ(x)) + γt

2 ∥x− x0∥2}
14: client: send ḡi to the server
15: server:
16: ḡ = 1

n

∑n
i=1 ḡ

i

17: x̄T = argminx
{
⟨ḡ,x⟩+ (τ + 1)ψ(x) + γτ

2 ∥x− x0∥2
}

where τ is the last t s.t. τt = 1.

4 EControl WITH DUAL AVERAGING

In this section, we apply the general framework discussed in Section 3 to the particular case of
distributed optimization with communication compression. In such a setting, the stochastic gradient in
Assumption 3.1 is the average of the stochastic gradient of each client i, which follows Assumption 2.1.
Therefore, σ2

g = σ2

n where n is the number of clients. Now the gradient estimate ĝt is the average
of ĝit where each ĝit is each clients’ estimate of its local gradient git := g(xt, ξ

i
t), which can be

communicated to the server using compressed communication channels.

The sampling procedure in Section 3.1 can be easily implemented in such a setting. The variables
ḡt and ḡ do not need to be maintained and communicated by the server throughout the algorithm;
instead, we can simply ask the workers to maintain their local ḡit and ḡi, using the same random bit
τt (which costs 1 bit of communication). At the end of the algorithm, we use one full communication
round to collect the local ḡi and compute the output x̄T . In total, the above procedure costs exactly 1
round of full communication plus one extra bit in each of the T communication rounds.

Now, as the main focus of this section, we present a specific mechanism of generating the ĝt ≈ gt,
the EControl method (summarized in Algorithm 4 in Appendix G), using mainly compressed
communication channels. We assume that at = 1 for all t. For simplicity, in this section we also
assume that γt = γ for all t for some constant γ > 0. In Appendix H, we present a more advanced
analysis of Algorithm 4 that handles variable γt. The variable stepsize analysis for EControl
mechanism is unknown prior to this work due to the complexity of η parameter in EControl and
we have to employ a scaling/rescaling strategy in the analysis to handle it. We slightly modified
the presentation from (Gao et al., 2024a) to suit our setup better. We can put Algorithms 1, 3 and 4
together to get our final algorithm, EControl with Dual Averaging, summarized in Algorithm 2 (see
Appendix F for a more detailed walk-through of the algorithm). We highlight the EControl module
with green color.

We note that EControl mechanism was first proposed in (Gao et al., 2024a) and analyzed under the
condition ψ ≡ 0. In Appendix G we briefly discuss some intuitions behind the design of EControl.
Here we present a more systematic and hopefully cleaner analysis. We simply bound the sum of
errors by the average of stochastic gradient differences. We note that the following upper bounds are
entirely the consequences of the EControl mechanism, independent of the specific properties of the
objectives and oracles.

7
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Lemma 4.1. Let η = δ
3
√
1−δ(1+

√
1−δ) , then:

T∑
t=1

∥eit∥2 ≤
81(1− δ)2(1 +

√
1− δ)4

2δ4

T−2∑
t=0

∥git+1 − git∥2,

T−1∑
t=0

∥ĝit − git∥2 ≤
36(1− δ)(1 +

√
1− δ)2

δ2

T−2∑
t=0

∥git+1 − git∥2.

(15)

Remark 4.2. We point out that in the analysis of the classical EF mechanism, upper bounding
1
n

∑n
i=1∥eit∥2 relies on upper bounding 1

n

∑n
i=1∥∇fi(xt)∥2, which leads to the data heterogeneity

assumption, but more importantly, requires upper bounds on ∥∇f(xt)∥2 in terms of the function
residuals. When ψ ≡ 0, this follows directly from the smoothness of f . However, in the composite
setting, this is no longer possible unless ∇f(x⋆) = 0, which is not true in general. In contrast,
EControl uses the gradient difference compression technique to obtain a better handle on the errors
and we only need to upper bound 1

n

∑n
i=1∥git+1−git∥2, which again can be done via Assumption 2.5

and Equation (13).

Next, we invoke the specific properties regarding the smooth objective f and the stochastic oracles,
and apply Theorem 3.3 to get an upper bound on the sum of ∥git+1 − git∥2, and consequently, an
upper bound on the sum of ∥eit∥2.

Lemma 4.3. Given Assumptions 2.1 and 2.3 to 2.5, and let η = δ
3
√
1−δ(1+

√
1−δ) , γ ≥

24
√
2ℓ

δ , then
we have:

T−1∑
t=0

1

n

n∑
i=1

E
[
∥git+1 − git∥2

]
≤ 80ℓ2

9γ
F0 + 7Tσ2. (16)

Therefore, by Lemma 4.1, we also have:
T−1∑
t=0

1

n

n∑
i=1

E
[
∥eit∥2

]
≤ 5760ℓ2

δ4γ
F0 +

4536Tσ2

δ4
. (17)

Finally, combining all of the pieces in Sections 3, 3.1 and 4, we can give the overall convergence
guarantee of our final Algorithm 2.
Theorem 4.4. Given Assumptions 2.3 to 2.5, and setting at = 1, γT = γ, η = δ

3
√
1−δ(1+

√
1−δ) , and

taking one initial stochastic gradient step from x0 to x′
0 if ψ ̸≡ 0 and setting

γ = max

{
24
√
2ℓ

δ
,

√
Tσ2

nR2
0

,
17T 1/3ℓ1/3σ2/3

R
2/3
0 δ4/3

}
,

then it takes at most

T =
16R2

0σ
2

nε2
+

561R2
0

√
ℓσ

δ2ε3/2
+

96
√
2ℓR2

0

δε
,

iterations of Algorithm 2 to get E [F (x̄T )− F ⋆] ≤ ε. Here, R0 := ∥x0 − x⋆∥.
In particular, this means that with three rounds of uncompressed communication (one for the initial
stochastic gradient step, one communicating ĝ−1 and one communicating ḡ), and T rounds of
compressed communications, Algorithm 2 reaches the desired accuracy. Assuming that the cost of
sending compressed vectors is 1 and sending uncompressed vectors is m, it costs at most

16R2
0σ

2

nε2
+

561R2
0

√
ℓσ

δ2ε3/2
+

96
√
2ℓR2

0

δε
+ 3m,

in communications for Algorithm 2 to get:
E [F (x̄T )− F ⋆] ≤ ε.

Remark 4.5. In the statement of Theorem 4.4 we let the algorithm take one initial exact stochastic
gradient step in the composite setting. This comes from the fact that we need one gradient step in the
composite setting to upper bound F0 by LR2

0 (see Lemma C.3). This is satisfied automatically in the
classical unconstrained setting. Without the extra initial step, the algorithm would still converge (with
properly chosen step size) but the rate would additionally depend on F0 (though it would still be a
desirableO( 1

δε ) term). We refer to Appendix G for more details. We note that the rate in Theorem 4.4
matches the rate of EControl (Gao et al., 2024a) in the basic uncomposite setting when ψ ≡ 0.

8
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(a) Achieving linear speedup. Performance of
EControl with Dual Averaging ith increasing num-
ber of clients n. We fix γ to be 0.0001. The error
that the algorithm stabilizes around decreases as n
increases.
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(b) Virtual Iterates vs Real Iterates. The perfor-
mance of the virtual and real iterates of EControl
with Dual Averaging. We see that the virtual iter-
ates and real iterates perform similarly.

Figure 1: Synthetic regularized softmax objective

5 EXPERIMENTS

In this section, we present some experimental results on a synthetic softmax objective with ℓ1 regu-
larization to complement our theoretical analysis. Details of the experimental setup (including data
generation) and an additional experiment on the FashionMNIST dataset can be found in Appendix B.
All our codes for the experiments can be found at this link.

The softmax objective with ℓ1 regularization is given as:
minx∈Rd

{
F (x) := µ log

(∑k
i=1 exp

[
⟨ai,x⟩−bi

µ

])
+ λ∥x∥1

}
, where µ controls the smooth-

ness, and we set it to µ = 0.1. We set the regularization parameter λ = 0.1. We set the dimension
d = 200 and the total number of samples k = 2048. We simulate the stochastic gradient by adding
Gaussian noise to the gradients. We use Top-K compressor with K/d = 0.1. For both of the following
experiments, we set σ2 = 25.

Linear speedup with n: one of the key characteristics of EF-style algorithms is that the leading
(stochastic) term in its rate improves linearly with the number of clients n and is δ-free. We prove
that EControl with Dual Averaging does satisfy this quality—with the catch that the theory only
applies to (the random sample of) virtual iterates. Here we verify this property experimentally for
the real iterates directly. We fix a small enough γ to be 0.0001, and increase the number of clients
n. The results are summarized in Figure 1a. We see that the error that real iterates stabilize around
decreases linearly with n, verifying the linear speedup for real iterates as well.

Virtual iterates vs real iterates: while we can do the sampling procedure to obtain convergence in
terms of the virtual iterates, this is ultimately still somewhat clumsy in practice. The real iterates, on
the other hand, do not enjoy theories that are as good. Here, we compare the suboptimality of the
virtual and the real iterates. The results are summarized in Figure 1b. We see that the virtual and
real iterates perform almost identically in the suboptimality. This suggests that the real iterates might
also be amenable to a strong theory; future work might explore refining our analytical template in
Appendix I to achieve this, or construct lower bound examples to demonstrate a gap between the
virtual and real iterates.

6 CONCLUSION

In this work, we addressed the open challenge of combining error feedback with composite opti-
mization. We showed that the classical virtual-iterate approach breaks down in this setting, as the
composite update destroys the additive structure that underpins its analysis. To resolve this, we
introduced the first framework that integrates error feedback with dual averaging, which restores the
summation structure and enables control of accumulated compression errors. Our analysis extends
the theory of error feedback to the convex composite case and recovers the best-known results in the
unconstrained setting when ψ ≡ 0.

Looking ahead, our inexact dual averaging analysis provides a versatile template for problems where
iterative updates are distorted by approximation, noise, or constraints. This opens up promising

9

https://anonymous.4open.science/r/iclr26-composite-compression/acc_compression/MLFlowInt/README.md


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

directions in domains such as safe reinforcement learning, constrained distributed optimization, and
large-scale learning under resource limitations. An exciting avenue for future work is to connect our
approach with recent efforts that aim to simplify error-feedback methods for practical use, potentially
leading to more robust and scalable communication-efficient algorithms.
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A RELATED WORKS ON ERROR FEEDBACK AND COMMUNICATION
COMPRESSION

In this section we survey some most relevant works on EF. We note that while there’s a rich body of
literature on EF in the uncomposite setting, the extension to the composite setting is less developed.
Stich et al. (2018); Alistarh et al. (2018); Karimireddy et al. (2019) were among the first to explore
the theoretical properties of the practical EF mechanism proposed by Seide et al. (2014), but their
analyses are restricted to the single-client setting. Under certain forms of bounded data heterogeneity
assumption (e.g. bounded gradient, bounded gradient dissimilarity, or bounded local objective gap
at optimum), Cordonnier (2018); Alistarh et al. (2018); Stich & Karimireddy (2020) extended the
analysis to the more realistic multi-client settings. But these data heterogeneity assumptions are
indeed very limiting factors. These theories were further refined in (Beznosikov et al., 2020; Stich,
2020).

Another line of work parallel to the classic EF variants is the gradient difference compression mech-
anism. Mishchenko et al. (2019) added an additional unbiased compressor for gradient difference
into the EF framework to address the issue of data heterogeneity and obtained the DIANA algorithm.
Another of follow-up works include Gorbunov et al. (2020); Stich (2020); Qian et al. (2021b), and
culminated in the EF21 algorithm (Richtárik et al., 2021). The EF21 algorithm is the the first to
fully support contractive compression in the full gradient regime. However, it is not compatible with
stochastic gradients and leads to non-convergence up to the variance of the stochastic oracle. This
was later addressed by adding momentum in Fatkhullin et al. (2023), or by a more careful blend of EF
and gradient difference compression in Gao et al. (2024a). The latter work proposed the EControl
mechanism, which is the basis of Algorithm 4 in this paper.

All of the above focuses on the uncomposite setting, and their extensions to the composite setting
remain largely unexplored. Qian et al. (2020) considered a proximal variant of the EF mechanism,
which they called EC-ProxSGD. However, their work considered the finite-sum stochastic setting,
and their convergence rates has O( 1

δ2 ) dependence on the compression quality, which is suboptimal
compared to the state-of-the-art EF variants in the uncomposite setting. Perhaps more relevant to our
work is their EC-RDA algorithm, which is a dual averaging variant of the basic EF mechanism in the
finite-sum setting. However, the analysis of EC-RDA relies on (in addition to smoothness) a number
of bounded gradient assumptions on the objectives and the regularizers which we do not assume in our
work, and their rates have a cubic dependence on 1

δ which is even more undesirable. In (Qian et al.,
2021a), the authors proposed and analyzed several variant-reduced EF algorithms in the composite
setting, but these algorithms are designed for the finite-sum setting and are not applicable to our
setting. In particular, their EC-LSVRG requires periodic access to full gradients. Their EC-Quartz
and EC-SDCA considers a more specific form of composite objectives and requires access to the first
order information of the conjugates of the regularizers. More recently, Islamov et al. (2025) analyzed
a variant of EF, called Safe-EF, when ψ is an indicator function of some convex setQ. Their analysis
requires that the constraint set Q be described as an intersection of sublevel sets of functions, with
first-order information of these functions available. Under this structural assumption, their method
blends updates in the direction of both the objective and the constraint functions, enabling the virtual
iterate to account for constraints. Safe-EF also assumes that the stochastic gradients are bounded,
which circumvents the issue of upper bounding ∥∇f(xt)∥2 in the smooth case.

Since Richtárik et al. (2021) first analyzed EF21 in the non-composite full gradient regime, there have
been some attempts to extend EF21 to the composite setting. In particular, Fatkhullin et al. (2025)
analyzed a proximal version of EF21, but only in the nonconvex and full gradient regime. Condat
et al. (2022) proposed the EF-BV algorithm, which (in addition to unifying EF21 with DIANA)
extends the analysis of EF21 to the composite setting. But EF-BV’s analysis is also restricted to the
full gradient regime, and assumes either the PL or KL condition with strictly positive constants. It is
unclear whether their analysis can be extended to the general convex setting even with full gradients.
Recently, Islamov et al. (2025) extended the analysis of EF21 to the general convex composite
setting, but noted that their analysis requires a bounded domain assumption, which we do not assume
in our work.
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Figure 2: Superior performance Comparison of the performance of EControl with Dual Averaging, proximal
EF, and proximal EF21 on the FashionMNIST classification problem with ℓ1 regularization. We use Top-K
compression with δ = 0.1. We see that EControl with Dual Averaging significantly outperforms the other
methods.

B ADDITIONAL EXPERIMENTS AND DETAILS

In this section, we provide some additional experimental details for our experiments in Section 5, and
an additional experiment on the FashionMNIST dataset.

B.1 SYNTHETIC SOFTMAX OBJECTIVE

We generate the data {ai, bi} randomly, following Moshtaghifar et al. (2024): we generate i.i.d.
vectors âi whose entries are sampled from [−1, 1] uniformly at random. Each bi is generated the
same way. This leads to a preliminary objective f̂ . We then set ai := âi − ∇f̂(0). The resulting
{ai, bi} gives us the desired objective f with 0 being the minimizer.

For the experiment comparing the virtual and the real iterates, we perform a grid search for the
stepsize parameters over 1

γ ∈ {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}.

B.2 REGULARIZED FASHIONMNIST CLASSIFICATION

We now consider a logistic regression problem with ℓ1 regularization on the FashionMNIST
dataset (Xiao et al., 2017). We set the regularization parameter λ = 0.001. We compare the
performance of EControl with Dual Averaging against the proximal EF and the proximal EF21
methods. Following our synthetic experiments, we choose to evaluate the performance of EControl
with Dual Averaging directly with the real iterates. We split the FashionMNIST dataset into n = 10
clients, and distribute half of the dataset randomly to each client, and assign the rest of the dataset
according to their labels, i.e. data with label i is distributed to client i. We use Top-K compressor
with K/d = 0.1. We use batch size 64. We perform a grid search for the stepsize parameters over
1
γ ∈ {0.1, 0.01, 0.001, 0.0001}. The results are summarized in Figure 2. We see that EControl with
Dual Averaging significantly outperforms the other methods. In additional, we note that EControl
with Dual Averaging admits a much larger stepsize than the other methods, which might explain its
superior performance.

C AUXILIARY FACTS AND RESULTS

In this section we collect some auxiliary facts and results that are useful for the analysis of our
algorithms. The first one is a simple fact regarding the square of the norm of a sum of vectors.
Fact C.1. For any γ1, . . . , γT , we have:

∥
T∑
t=1

γt∥2 ≤ T
T∑
t=1

∥γt∥2. (18)

The next lemma upper bounds an exponentially weighted sum of positive sequences:
Lemma C.2. Given a sequence of non-negative values {αt}t∈[T−1], and some other sequences
{ut}t∈[T−1]. If there exists γ ∈ (0, 1) such that the following holds:

αt+1 ≤ (1− β)αt + ut, α0 = 0, (19)
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then we have:

α2
t+1 ≤

1

β

t∑
k=0

(1− β)t−ku2k,
T∑
t=0

α2
t+1 ≤

1

β2

T∑
t=0

u2t . (20)

Proof. Since α0 = 0, we have:

αt+1 ≤
t∑

k=0

(1− β)t−kuk.

Squaring both sides, and applying Jensen’s inequality, we have:

α2
t+1 ≤

1

St

t∑
k=0

(1− β)t−ku2k,

where St :=
∑t
k=0(1− β)t−k. It’s easy to check that St ≤ 1

β , and therefore we get the first part of
Equation (20). Now summing this from t = 0 to T , we get:

T∑
t=0

α2
t+1 ≤

T∑
k=0

(

T∑
t=k

(1− β)t−k)u2k,

Note that
∑T
t=k(1− β)t−k ≤

1
β , and therefore we get the second part of Equation (20).

Now we show that one gradient step will lead to an upper bound on the objective value.
Lemma C.3. Let f be convex and L-smooth, and x0 ∈ dom(ψ) and g0 satisfying Assumption 3.1,
consider x′

0 defined as the following:

x′
0 := argmin

[
f(x0) + ⟨g0,x− x0⟩+ ψ(x) +

γ0
2
∥x− x0∥2

]
.

then for any y ∈ domψ and ∥y − x0∥2 ≤ R2, if we choose γ0 := max{2L,
√
2σ
R }, we have:

E [F (x′
0)− F (y)] ≤ LR2 +

Rσ√
2
, E

[
∥y − x′

0∥2
]
≤ 2R2. (21)

Proof.

f(x0) + ⟨g0,x
′
0 − x0⟩+ ψ(x′

0) +
γ0
2
∥x′

0 − x0∥2 +
γ0
2
∥y − x′

0∥2

≤f(x0) + ⟨g0,y − x0⟩+ ψ(y) +
γ0
2
∥y − x0∥2

=f(x0) + ⟨∇f(x0),y − x0⟩+ ψ(y) +
γ0
2
∥y − x0∥2 + ⟨g0 −∇f(x0),y − x0⟩

≤F (y) + 1

2
∥y − x0∥2 + ⟨g0 −∇f(x0),y − x0⟩.

On the other hand, we have:

f(x0) + ⟨g0,x
′
0 − x0⟩+ ψ(x′

0) +
γ0
2
∥x′

0 − x0∥2 +
γ0
2
∥y − x′

0∥2

=f(x0) + ⟨∇f(x0),x
′
0 − x0⟩+ ψ(x′

0) + ⟨g0 −∇f(x0),x
′
0 − x0⟩+

γ0
2
∥x′

0 − x0∥2 +
γ0
2
∥y − x′

0∥2

≥F (x′
0) + ⟨g0 −∇f(x0),x

′
0 − x0⟩+

γ0 − L
2
∥x′

0 − x0∥2 +
γ0
2
∥y − x′

0∥2

≥F (x′
0)−

1

γ0
∥g0 −∇f(x0)∥2 +

γ0 − 2L

4
∥x′

0 − x0∥2 +
γ0
2
∥y − x′

0∥2.

Putting these together, we have:

F (x′
0)−F (y)+

γ0
2
∥y−x′

0∥2+
γ0 − 2L

4
∥x′

0−x0∥2 ≤
γ0
2
∥y−x0∥2+

1

γ0
∥g0−∇f(x0)∥2+⟨g0−∇f(x0),y−x0⟩.
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Now by Assumption 3.1, we take the expectation and get:

E
[
1

γ0
∥g0 −∇f(x0)∥2 + ⟨g0 −∇f(x0),y − x0⟩

]
≤ σ2

γ0
.

Therefore, assuming that γ0 ≥ 2L, we have:

E [F (x′
0)− F (y)] +

γ0
2
E
[
∥y − x′

0∥2
]
≤ γ0

2
R2 +

σ2

γ0
.

Now we pick γ0 = max{2L,
√
2σ
R }, then we have:

E [F (x′
0)− F (y)] ≤ LR2 +

Rσ√
2
.

In addition, we have:
E
[
∥y − x′

0∥2
]
≤ R2 + 2γ20σ

2 ≤ 2R2.

D ANALYSIS OF INEXACT DUAL AVERAGING

In this section we give the missing proofs for the analysis of Algorithm 1. We first introduce the
following notation:

Φ̃⋆t := Φ̃t(x̃t+1), Φ⋆t := Φt(xt+1),

the optimum of the virtual and real subproblems at t.

We now present the proof of Lemma 3.2:
Lemma 3.2. For any t ≥ 0, we have:

∥x̃t − xt∥2 ≤
1

γ2t−1

∥et∥2. (11)

Proof. By the definition of Φ̃t,Φt and xt, we have:

xt+1 = argmin
x∈dom(ψ)

{
Φ̃t(x) + ⟨et+1,x⟩

}
.

Therefore, we have for any x ∈ dom(ψ):

Φ̃t(x) + ⟨et+1,x⟩ ≥ Φ̃t(xt+1) + ⟨et+1,x⟩+
γt
2
∥x− xt+1∥2

≥ Φ̃⋆t + ⟨et+1,xt⟩+
γt
2
∥x− xt+1∥2 +

γt
2
∥x̃t+1 − xt+1∥2.

Now plug in the choice x := x̃t+1, we have:

⟨et+1, x̃t+1 − xt+1⟩ ≥ γt∥x̃t+1 − xt+1∥2.
Note that we have ⟨et+1, x̃t+1 − xt+1⟩ ≤ ∥et+1∥∥x̃t+1 − xt+1∥, we get the desired result.

We now present the proof for Theorem 3.3:
Theorem 3.3. Given Assumptions 3.1, 2.3 and 2.4 and γt−1 ≥ 4atL, then for any x ∈ domψ and
any T ≥ 1, we have
T−1∑
t=0

E [at(F (x̃t+1)− F (x))]+
γT−1

2
E
[
∥x− x̃T ∥2

]
≤ γT−1

2
∥x−x0∥2+L

T−1∑
t=0

at
γ2t−1

E
[
∥et∥2

]
+

T−1∑
t=0

a2tσ
2
g

γt−1
.

(12)
In addition, we have the following upper bound on the distance between consecutive iterates:
T−1∑
t=0

(
γt + γt−1 − atL

2at
r2t + ⟨ĝt −∇f(xt),xt+1 − xt⟩

)
≤ F0 +

1

2

T−1∑
t=0

(βtρ
2
t − βtρ2t+1), (13)

where we write βt :=
γt−γt−1

at
, ρ2t := ∥xt − x0∥2, r2t := ∥xt+1 − xt∥2 and F0 := F (x0)− F ⋆.
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Proof. By the definition of x̃t, we have for any x ∈ domψ:

Φ̃t(x) ≥ Φ̃⋆t +
γt
2
∥x− x̃t+1∥2.

We also have:

Φ̃t(x) =

t∑
k=0

ak(f(xk) + ⟨∇f(xk),x− xk⟩+ ψ(x)) +

t∑
k=0

ak⟨gk −∇f(xk),x− xk⟩+
γt
2
∥x− x0∥2

(i)

≤
t∑

k=0

akF (x) + γ

t∑
k=0

ak⟨gk −∇f(xk),x− xk⟩+
γt
2
∥x− x0∥2,

where in (i) we used the convexity of f . Note that the gradient noise gk −∇f(xk) is independent of
x− xk for fixed x independent of the algorithm (in particular, for x⋆). Therefore, taking expectation
on both sides:

Eξ0,...,ξ
[
Φ̃t(x)

]
≤

t∑
k=0

akF (x) +
γt
2
∥x− x0∥2.

Now by the definition of x̃t, we have:

Φ̃⋆t = Φ̃t−1(x̃t+1) + at(f(xt) + ⟨∇f(xt), x̃t+1 − xt⟩+ ψ(x̃t+1))

+ at⟨gt −∇f(xt), x̃t+1 − xt⟩+
γt − γt−1

2
∥x̃t+1 − x0∥

(ii)

≥ Φ̃⋆t−1 +
γt−1

2
∥x̃t+1 − x̃t∥2 + at(f(xt) + ⟨∇f(xt), x̃t+1 − xt⟩+ ψ(x̃t+1))

+ +at⟨gt −∇f(xt), x̃t+1 − xt⟩+
γt − γt−1

2
∥x̃t+1 − x0∥

(iii)

≥ Φ̃⋆t−1 +
γt−1

2
∥x̃t+1 − x̃t∥2 + at(f(x̃t+1) + ψ(x̃t+1)−

L

2
∥x̃t+1 − xt∥2)

+ at⟨gt −∇f(xt), x̃t+1 − xt⟩+
γt − γt−1

2
∥x̃t+1 − x0∥

(iv)

≥ Φ̃⋆t−1 +
γt−1

2
∥x̃t+1 − x̃t∥2 + at(F (x̃t+1)− L∥x̃t+1 − x̃t∥2 − L∥x̃t − xt∥2)

+ at⟨gt −∇f(xt), x̃t+1 − xt⟩+
γt − γt−1

2
∥x̃t+1 − x0∥

(v)

≥ Φ̃⋆t−1 +
γt−1 − 2atL

2
∥x̃t+1 − x̃t∥2 + atF (x̃t+1)− atL∥x̃t − xt∥2

+ at⟨gt −∇f(xt), x̃t+1 − xt⟩,

where in (ii) we used the strong convexity of Φ̃t and in (iii) we used Assumption 2.4 . In (iv) we
used Young’s inequality and in (v) we used that assumption that γt is non-decreasing.Note that the
gradient noise gt −∇f(xt) is independent of xt and x̃t, we have:

Eξt
[
Φ̃⋆t |ξ0, . . . , ξt−1

]
≥ Eξt

[
Φ̃⋆t−1 +

γt−1 − 2atL

2
∥x̃t+1 − x̃t∥2 + atF (x̃t+1)− atL∥x̃t − xt∥2|ξ0, . . . , ξt−1

]
+ atEξt [⟨gt −∇f(xt), x̃t+1 − x̃t⟩|ξ0, . . . , ξt−1]

≥ Eξt
[
Φ̃⋆t−1 +

γt−1 − 4atL

4
∥x̃t+1 − x̃t∥2 + atF (x̃t+1)− atL∥x̃t − xt∥2|ξ0, . . . , ξt−1

]
−
a2tσ

2
g

γt−1
.
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Now rearranging and summing from t = 0 to T − 1, and using the law of total expectation, we get:

T−1∑
t=0

atEξ0,...,ξT−1

[
F (x̃t+1) +

γt−1 − 4atL

4
∥x̃t+1 − x̃t∥2

]

≤Eξ0,...,ξT−1

[
Φ̃⋆T−1

]
+ L

T−1∑
t=0

atEξ0,...,ξT−1

[
∥x̃t − xt∥2

]
+

T−1∑
t=0

a2tσ
2
g

γt−1

≤Eξ0,...,ξT−1

[
Φ̃T−1(x)

]
− γT−1

2
Eξ0,...,ξT−1

[
∥x− x̃T ∥2

]
+ L

T−1∑
t=0

atEξ0,...,ξT−1

[
∥x̃t − xt∥2

]
+

T−1∑
t=0

a2tσ
2
g

γt−1

≤
T−1∑
s=0

atF (x) +
γT−1

2
∥x− x0∥2 −

γT−1

2
Eξ0,...,ξT−1

[
∥x− x̃T ∥2

]
+ L

T−1∑
t=0

atEξ0,...,ξT−1

[
∥x̃t − xt∥2

]
+

T−1∑
t=0

a2tσ
2
g

γt−1
.

Rearranging, we get the desired result.

T−1∑
t=0

Eξ0,...,ξT−1

[
at(F (x̃t+1)− F (x)) +

γt−1 − 4atL

4
∥x̃t+1 − x̃t∥2

]
+
γT−1

2
Eξ0,...,ξT−1

[
∥x− x̃T ∥2

]
≤γT−1

2
∥x− x0∥2 + L

T−1∑
t=0

atEξ0,...,ξT−1

[
∥x̃t − xt∥2

]
+

T−1∑
t=0

a2tσ
2
g

γt−1
.

For Equation (13), by definition of xt+1, we have:

Φ⋆t = Φt−1(xt+1) + at(f(xt) + ⟨ĝt,xt+1 − xt⟩+ ψ(xt+1)) +
γt − γt−1

2
∥xt+1 − x0∥2

(vi)

≥ Φ⋆t−1 +
γt−1

2
∥xt+1 − xt∥2 + at(f(xt) + ⟨ĝt,xt+1 − xt⟩+ ψ(xt+1)) +

γt − γt−1

2
∥xt+1 − x0∥2

= Φ⋆t−1 +
γt−1

2
∥xt+1 − xt∥2 + at(f(xt) + ⟨∇f(xt),xt+1 − xt⟩+ ⟨ĝt −∇f(xt),xt+1 − xt⟩+ ψ(xt+1))

+
γt − γt−1

2
∥xt+1 − x0∥2

(vii)

≥ Φ⋆t−1 +
γt−1 − atL

2
∥xt+1 − xt∥2 + at(F (xt+1) + ⟨ĝt −∇f(xt),xt+1 − xt⟩) +

γt − γt−1

2
∥xt+1 − x0∥2,

where in (vi) we used the strong convexity of Φt and in (ii) we used Assumption 2.4.

Again by the definition of xt+1, we have:

Φ⋆t +
γt
2
∥xt+1 − xt∥2

(viii)

≤ Φt(xt)

= Φ⋆t−1 + atF (xt) +
γt − γt−1

2
∥xt − x0∥2,

where in (viii) we used the strong convexity of Φt+1.

Putting these together, we have:

γt + γt−1 − atL
2

∥xt+1 − xt∥2 + at(F (xt+1) + ⟨ĝt −∇f(xt),xt+1 − xt⟩) +
γt − γt−1

2
∥xt+1 − x0∥2

≤atF (xt) +
γt − γt−1

2
∥xt − x0∥2.
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Now divide both sides by at and sum from t = 0 to T − 1, we have:

T−1∑
t=0

(
γt + γt−1 − atL

2at
∥xt+1 − xt∥2 + ⟨ĝt −∇f(xt),xt+1 − xt⟩

)
≤ F (x0)−F (xT )+

1

2

T−1∑
t=0

(βtρ
2
t−βtρ2t+1).

E SAMPLING PROCEDURE FOR VIRTUAL ITERATES

Algorithm 3 Sampling Procedure for Virtual Iterates
1: ḡ, ḡ0 = 0
2: for t = 0, 1, . . . do
3: At =

∑t−1
s=0 as

4: Sample τt = 1 with prob. at
At+1

and τt = 0 otherwise.
5: Obtain ĝt ≈ gt := g(xt, ξt)
6: ḡt = ḡt−1 + atgt
7: ḡ = ḡt if τ = 1 otherwise ḡ remains.
8: Update xt+1

9: x̄T = argminx
[
⟨ḡ,x⟩+ ψ(x)Aτ+1 +

γτ
2 ∥x− x0∥2

]
where τ is the last t such that τt = 1.

10: Aτ+1 :=
∑τ
t=0 at

In this section we prove the missing results for the sampling procedure for the virtual iterates in
Section 3.1. We first summarize the procedure for clarity as Algorithm 3.

Now a simple proposition regarding the sampling procedure. This is folklore knowledge and the
proof is taken directly from (Gao et al., 2024b).
Proposition E.1. Given a stream of points {xk}∞k=1 in Rd and positive scalars {hk}∞k=1, we can
maintain, at each step k ≥ 1, the random variable xt(k), where t(k) is a random index from
{1, . . . , k} chosen with probabilities Pr(t(k) = i) = hi

Hk
, i = 1, . . . , k, where Hk :=

∑k
i=1 hi. This

requires only O(d) memory and computation.

Proof. We maintain the variables x̄k ∈ Rd and Hk ∈ R which are both initialized to 0 at step k = 0.
Then, at each step k ≥ 1, we update Hk ← Hk−1 + hk and also, with probability hk

Hk
, we update

x̄k ← xk (or, with probability 1 − hk

Hk
, keep the old x̄k = x̄k−1). The memory and computation

costs are O(d). Note that, for any 1 ≤ i ≤ k, the event x̄k = xi happens iff x̄ was updated at step i
and then not updated at each step j = i+ 1, . . . , k. Hence, for any 1 ≤ i ≤ k, we have

Pr(x̄k = xi) =
hi
Hi
·

k∏
j=i+1

(
1− hj

Hj

)
=

hi
Hi
·

k∏
j=i+1

Hj−1

Hj
=

hi
Hk

.

F DESCRIPTION OF FULL ALGORITHM

In this section, we describe Algorithm 2 in more details for clarity. The algorithm combines
Algorithms 1 and 3 and Algorithm 4 together.

At each iteration, the server samples a bernoulli random variable τt to decide whether to update the ḡi
vector, the cumulative gradient sample for all clients. The clients then proceed to compute their local
stochastic gradient git, and add it to their local cumulative gradient ḡit. If τt = 1, the client updates
its cumulative gradient sample ḡi to ḡit, otherwise it remains unchanged. Then the client make the
EControl update, where it updates the local error eit+1 and the local gradient estimate ĝit. The client
then sends the compressed local gradient difference ∆i

t to the server. Now the server collects the
gradient differences ∆i

t from all clients and updates the global gradient estimate ĝt and makes a dual
averaging update to the primal variable xt+1.
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Finally, the server collects the cumulative gradient samples ḡi from all clients via a full communication
and computes ḡ. The final output is then computed using ḡ so that it becomes a random sample of
the virtual iterates (which are not explicitly computed and stored).

G ANALYSIS OF THE EControl MECHANISM

Algorithm 4 EControl

1: Input: x0, η, e
i
0 = 0, ĝi−1 = ∇fi(x0, ξ

i
0).

2: for t = 0, 1, . . . do
3: clients:
4: git = gi(xt, ξ

i
t), ξ

i
t is independent copy of ξi

5: δit = git − ĝit−1 − ηeit,∆i
t = C(δit)

6: ĝit = ĝit−1 +∆i
t

7: eit+1 = eit + ĝit − git
8: send ∆i

t to the server
9: server

10: ∆t =
1
n

∑n
i=1 ∆

i
t

11: ĝt = ĝt−1 +∆t

In this section we present the missing proofs for the analysis of Algorithm 2. For ease of understanding,
we also summarize thet EControl mechanism in Algorithm 4.

The EControl mechanism is a blend of two different techniques. The first is the classical EF
mechanism, which keeps track of the (local) compression errors eit and feedbacks them to the
compressor. The second is the gradient difference compression technique, which compresses the
difference between the current gradient and the previous estimates. As was discussed in Gao et al.
(2024a), directly mixing the two methods might lead to suboptimal dependence on the compression
quality δ in the convergence rate. The key innovation of EControl is to introduce a scaling factor η
on the error feedback term. Note that the historical estimates ĝit also carries some information on the
error, and the error feedback term should be scaled down to balance the two sources of information.
The specific choice of η, as we explain below, is carefully chosen to optimize the dependence on δ in
the final convergence rate.

Again, we remind the readers that for now we restrict ourselves to the setting where at = 1 and γt = γ.
Please refer to Appendix H for more details on the case where γt is changing (and non-decreasing).

We first present an upper bound on each sums of ∥eit∥2 and ∥ĝit − git∥2, both in terms of the sum of
∥git+1 − git∥2.

Lemma 4.1. Let η = δ
3
√
1−δ(1+

√
1−δ) , then:

T∑
t=1

∥eit∥2 ≤
81(1− δ)2(1 +

√
1− δ)4

2δ4

T−2∑
t=0

∥git+1 − git∥2,

T−1∑
t=0

∥ĝit − git∥2 ≤
36(1− δ)(1 +

√
1− δ)2

δ2

T−2∑
t=0

∥git+1 − git∥2.

(15)

Proof. By the definition of eit+1, we have:

eit+1 := ĝit − git + eit = ĝit−1 +∆i
t − git + eit = ∆i

t − δit + (1− η)eit,
Therefore, by triangular inequality, we have:

∥eit+1∥ ≤ (1− η)∥eit∥+ ∥∆i
t − δit∥ ≤ (1− η)∥eit∥+

√
1− δ∥δit∥,

where in the last inequality we used the definition of the compressor. Now by Lemma C.2, we get:
T∑
t=1

∥eit∥2 ≤
1− δ
η2

T−1∑
t=0

∥δit∥2.
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Next we note the following:

δit+1 = git+1 − ĝit − ηeit+1

= git − ĝit − η(ĝit − git + eit) + git+1 − git

= (1 + η)(git − ĝit)− ηeit + git+1 − git

= (1 + η)(δit −∆i
t + ηeit)− ηeit + git+1 − git

= (1 + η)(δit −∆i
t) + η2eit + git+1 − git.

Similar as before, we now apply triangular inequality and definition of the compressor and get:

∥δit+1∥ ≤ (1 + η)
√
1− δ∥δit∥+ η2∥eit∥+ ∥git+1 − git∥.

Let’s write β ≡ 1− (1 + η)
√
1− δ . Now we apply Lemma C.2 again and Young’s inequality, and

note that δi0 = 0, we get:
T−1∑
t=0

∥δit∥2 ≤
2

β2

T−2∑
t=0

(η4∥eit∥2 + ∥git+1 − git∥2).

Now we plug in the upper bound on the sum of ∥eit∥ (and note that ei0 = 0):
T−1∑
t=0

∥δit∥2 ≤
2(1− δ)η2

β2

T−3∑
t=0

∥δit∥2 +
2

β2

T−2∑
t=0

∥git+1 − git∥2.

Rearranging, we have:
T−1∑
t=0

∥δit∥2 ≤
2

β2 − 2(1− δ)η2
T−2∑
t=0

∥git+1 − git∥2.

Therefore, we have:
T∑
t=1

∥eit∥2 ≤
2(1− δ)

β2η2 − 2(1− δ)η4
T−2∑
t=0

∥git+1 − git∥2

Next, we note the following:

ĝit − git = ∆i
t − (git − ĝit−1 − ηeit) + ηeit

= ∆i
t − δit + ηeit.

Therefore, by Young’s inequality, we have:
T−1∑
t=0

∥ĝit − git∥2 ≤ 2(1− δ)
T−1∑
t=0

∥δit∥2 + 2η2
T−1∑
t=1

∥eit∥2

≤ 8(1− δ)
β2 − 2(1− δ)η2

T−2∑
t=0

∥git+1 − git∥2.

For the choice of η and β, we choose β = 2
√
1− δη. Since β ≡ 1−

√
1− δ(1 + η), we have:

η =
δ

3
√
1− δ(1 +

√
1− δ)

, β =
2δ

3(1 +
√
1− δ)

.

Putting this back, we get the desired results.

Lemma 4.3. Given Assumptions 2.1 and 2.3 to 2.5, and let η = δ
3
√
1−δ(1+

√
1−δ) , γ ≥

24
√
2ℓ

δ , then
we have:

T−1∑
t=0

1

n

n∑
i=1

E
[
∥git+1 − git∥2

]
≤ 80ℓ2

9γ
F0 + 7Tσ2. (16)

Therefore, by Lemma 4.1, we also have:
T−1∑
t=0

1

n

n∑
i=1

E
[
∥eit∥2

]
≤ 5760ℓ2

δ4γ
F0 +

4536Tσ2

δ4
. (17)
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Proof. For simplicity, let’s write r2t = ∥xt+1 − xt∥2. By Assumptions 2.1 and 2.5, we have:

T−1∑
t=0

1

n

n∑
i=1

E
[
∥git+1 − git∥2

]
≤ 2ℓ2

T−1∑
t=0

E
[
r2t
]
+ 4Tσ2.

Therefore,

T−1∑
t=0

1

n

n∑
i=1

E
[
∥ĝit − git∥2

]
≤ 36(1− δ)(1 +

√
1− δ)2

δ2

T−2∑
t=0

1

n

n∑
i=1

E
[
∥git+1 − git∥2

]
≤ 72ℓ2(1− δ)(1 +

√
1− δ)2

δ2

T−2∑
t=0

E
[
r2t
]
+

144T (1− δ)(1 +
√
1− δ)2σ2

δ2

≤ 288ℓ2

δ2

T−2∑
t=0

E
[
r2t
]
+

576Tσ2

δ2
.

By Theorem 3.3, we have:

T−2∑
t=0

2γ − L
2

r2t +

T−2∑
t=0

⟨ĝt −∇f(xt),xt+1 − xt⟩ ≤ F (x0)− F (xT ).

Therefore, we have:

T−1∑
t=0

γ − L
2

E
[
r2t
]
≤ E [F (x0)− F (xT )] +

1

2γ

T−1∑
t=0

E
[
∥ĝt −∇f(xt)∥2

]
≤ E [F (x0)− F (xT )] +

1

γ

T−1∑
t=0

E
[
∥ĝt − gt∥2

]
+

2Tσ2

γn

≤ E [F (x0)− F (xT )] +
288ℓ2

δ2γ

T−2∑
t=0

E
[
r2t
]
+

578Tσ2

δ2γ
.

Now assuming that γ ≥ 24
√
2ℓ

δ , and rearranging, we have:

T−1∑
t=0

E
[
r2t
]
≤ 40

9γ
E [F (x0)− F (xT )] +

1285Tσ2

δ2γ2
.

Therefore,

T−1∑
t=0

1

n

n∑
i=1

E
[
∥git+1 − git∥2

]
≤ 80ℓ2

9γ
E [F (x0)− F (xT )] +

2570ℓ2Tσ2

δ2γ2
+ 4Tσ2.

Theorem 4.4. Given Assumptions 2.3 to 2.5, and setting at = 1, γT = γ, η = δ
3
√
1−δ(1+

√
1−δ) , and

taking one initial stochastic gradient step from x0 to x′
0 if ψ ̸≡ 0 and setting

γ = max

{
24
√
2ℓ

δ
,

√
Tσ2

nR2
0

,
17T 1/3ℓ1/3σ2/3

R
2/3
0 δ4/3

}
,

then it takes at most

T =
16R2

0σ
2

nε2
+

561R2
0

√
ℓσ

δ2ε3/2
+

96
√
2ℓR2

0

δε
,

iterations of Algorithm 2 to get E [F (x̄T )− F ⋆] ≤ ε. Here, R0 := ∥x0 − x⋆∥.
In particular, this means that with three rounds of uncompressed communication (one for the initial
stochastic gradient step, one communicating ĝ−1 and one communicating ḡ), and T rounds of
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compressed communications, Algorithm 2 reaches the desired accuracy. Assuming that the cost of
sending compressed vectors is 1 and sending uncompressed vectors is m, it costs at most

16R2
0σ

2

nε2
+

561R2
0

√
ℓσ

δ2ε3/2
+

96
√
2ℓR2

0

δε
+ 3m,

in communications for Algorithm 2 to get:

E [F (x̄T )− F ⋆] ≤ ε.

Proof. For simplicity of notation, let’s write Ft := F (x̃t)− F (x⋆).

By Lemma 4.3 and Theorem 3.3, we have, when γ ≥ 24
√
2ℓ

δ :

1

T

T−1∑
t=0

E [Ft+1] ≤
γR2

0

2T
+

L

γ2T

T−1∑
t=0

1

n

n∑
i=1

E
[
∥eit∥2

]
+
σ2

γn

≤ γR2
0

2T
+

5760ℓ2L

γ3δ4T
F0 +

4536Lσ2

γ2δ4
+
σ2

γn
.

Now we choose γ = max

{
24

√
2ℓ

δ ,
11L

1/4ℓ
1/2F

1/4
0

δR
1/2
0

,
√

2Tσ2

nR2
0
, 21T

1/3L
1/3σ

2/3

R
2/3
0 δ4/3

}
, we have:

1

T

T∑
t=1

E [Ft] ≤
17ℓR2

0

δT
+

11L1/4ℓ1/2F
1/4
0 R

3/2
0

2δT
+

√
R2

0σ
2

2nT
+

21R
4/3
0 L1/3σ2/3

2T 2/3δ4/3
.

Therefore, after:

T =
8R2

0σ
2

2nε2
+

99R2
0

√
Lσ

δ2ε3/2
+

34ℓR2
0

δε
+

11L1/4ℓ1/2F
1/4
0 R

3/2
0

δε
,

iterations of Algorithm 2, we have:
1

T

T∑
t=1

E [Ft] ≤ ε.

Note that this already gives us the desirable convergence rate. We can further simplify the above
rates and remove the dependence on F0 by taking one additional stochastic gradient step initially to
get x′

0. By Lemma C.3, we have E [F (x′
0)− F ⋆] ≤ LR2

0 +
R0σ√

2
and R′

0 := E
[
∥x′

0 − x⋆∥2
]
≤ 2R2

0.
Therefore if we start our algorithm at x′

0, then we have:

1

T

T−1∑
t=0

E [Ft+1] ≤
γR2

0

T
+

5760ℓ4R2
0

γ3δ4T
+

4073ℓ3R0σ

γ3δ4T
+

4536ℓσ2

γ2δ4
+
σ2

γn
.

Note that for the third term, we have the following due Young’s inequality and the assumption that
γ ≥ 24

√
2ℓ

δ :
4073ℓ3R0σ

γ3δ4T
≤ 4073ℓ4R2

0

2γ3δ4T
+

4073ℓ2σ2

2γ3δ4T
≤ 4073ℓ4R2

0

2γ3δ4T
+

61ℓσ2

γ2δ3
.

Therefore, we have:

1

T

T−1∑
t=0

E [Ft+1] ≤
γR2

0

T
+

7797ℓ4R2
0

γ3δ4T
+

4597ℓσ2

γ2δ4
+
σ2

γn
.

Now we pick:

γ = max

{
24
√
2ℓ

δ
,

√
Tσ2

nR2
0

,
17T 1/3ℓ1/3σ2/3

R
2/3
0 δ4/3

}
,
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and we have:
1

T

T∑
t=1

E [Ft] ≤
24
√
2ℓR2

0

δT
+

√
R2

0σ
2

nT
+

17R
4/3
0 ℓ1/3σ2/3

T 2/3δ4/3
.

Therefore, we need only:

T =
16R2

0σ
2

nε2
+

561R2
0

√
ℓσ

δ2ε3/2
+

96
√
2ℓR2

0

δε
.

iterations.

H EControl WITH VARIABLE STEPSIZE

Consider Theorem 3.3, when the stepsize γt is changing, we have to upper bound the sum of ∥et∥
γ2
t−1

.
This extra weight has to be handled directly in the analysis.
Lemma H.1. Let η = δ

3
√
1−δ(1+

√
1−δ) , we have:

T∑
t=1

∥eit∥2

γ2t−1

≤ 81(1− δ)2(1 +
√
1− δ)4

2δ4

T−2∑
t=0

∥git+1 − git∥2

γ2t
,

T−1∑
t=0

∥ĝit − git∥2

γ4t
≤ 36(1− δ)(1 +

√
1− δ)2

γ20δ
2

T−2∑
t=0

∥git+1 − git∥2

γ2t
.

(22)

Proof. By the definition of eit+1, we have:

eit+1 := ĝit − git + eit = ĝit−1 +∆i
t − git + eit = ∆i

t − δit + (1− η)eit,
Therefore, by triangular inequality, we have:

∥eit+1∥ ≤ (1− η)∥eit∥+ ∥∆i
t − δit∥ ≤ (1− η)∥eit∥+

√
1− δ∥δit∥,

where in the last inequality we used the definition of the compressor. Now divide both sides by γ2t ,
and noting that γt ≥ γt−1, we have:

∥eit+1∥
γ2t

≤ (1− η)∥e
i
t∥

γ2t−1

+

√
1− δ∥δit∥
γ2t−1

.

Now by Lemma C.2, we get:
T∑
t=1

∥eit∥2

γ2t−1

≤ 1− δ
η2

T−1∑
t=0

∥δit∥2

γ2t−1

.

Next we note the following:

δit+1 = git+1 − ĝit − ηeit+1

= git − ĝit − η(ĝit − git + eit) + git+1 − git

= (1 + η)(git − ĝit)− ηeit + git+1 − git

= (1 + η)(δit −∆i
t + ηeit)− ηeit + git+1 − git

= (1 + η)(δit −∆i
t) + η2eit + git+1 − git.

Similar as before, we now apply triangular inequality and definition of the compressor and get:

∥δit+1∥ ≤ (1 + η)
√
1− δ∥δit∥+ η2∥eit∥+ ∥git+1 − git∥.

Again, we divide both sides by γ2t and note that γt ≥ γt−1:

∥δit+1∥
γ2t

≤ (1 + η)
√
1− δ ∥δ

i
t∥

γ2t−1

+
η2∥eit∥
γ2t−1

+
∥git+1 − git∥

γ2t
.
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Let’s write β ≡ 1− (1 + η)
√
1− δ . Now we apply Lemma C.2 again and Young’s inequality, and

note that δi0 = 0, we get:

T−1∑
t=0

∥δit∥2

γ2t−1

≤ 2

β2

T−2∑
t=0

(
η4∥eit∥2

γ2t−1

+
∥git+1 − git∥2

γ2t
).

Now we plug in the upper bound on the sum of ∥eit∥ (and note that ei0 = 0):

T−1∑
t=0

∥δit∥2

γ2t−1

≤ 2(1− δ)η2

β2

T−3∑
t=0

∥δit∥2

γ2t−1

+
2

β2

T−2∑
t=0

∥git+1 − git∥2

γ2t
.

Rearranging, we have:

T−1∑
t=0

∥δit∥2

γ2t−1

≤ 2

β2 − 2(1− δ)η2
T−2∑
t=0

∥git+1 − git∥2

γ2t
.

Therefore, we have:

T∑
t=1

∥eit∥2

γ2t−1

≤ 2(1− δ)
β2η2 − 2(1− δ)η4

T−2∑
t=0

∥git+1 − git∥2

γ2t
.

Next, we note the following:

ĝit − git = ∆i
t − (git − ĝit−1 − ηeit) + ηeit

= ∆i
t − δit + ηeit.

Therefore, by Young’s inequality, we have:

T−1∑
t=0

∥ĝit − git∥2

γ2t
≤ 2(1− δ)

T−1∑
t=0

∥δit∥2

γ2t−1

+ 2η2
T−1∑
t=1

∥eit∥2

γ2t−1

≤ 8(1− δ)
β2 − 2(1− δ)η2

T−2∑
t=0

∥git+1 − git∥2

γ2t
.

For the choice of η and β, we choose β = 2
√
1− δη. Since β ≡ 1−

√
1− δ(1 + η), we have:

η =
δ

3
√
1− δ(1 +

√
1− δ)

, β =
2δ

3(1 +
√
1− δ)

.

Putting this back, we get the desired results.

Lemma H.2. Given Assumptions 2.1 and 2.3 to 2.5, and η = δ
3
√
1−δ(1+

√
1−δ) , γ ≥

136ℓ
δ we have:

T−1∑
t=0

1

n

n∑
i=1

E
[
∥git+1 − git∥2

]
γ2t

≤ 32ℓ2F0

γ30
+

73988ℓ2

γ20δ
2

T−1∑
t=0

σ2

γ2t
. (23)

Therefore, by Lemma 4.1, we also have:

T∑
t=1

1

n

n∑
i=1

E
[
∥eit∥2

]
γ2t−1

≤ 215ℓ2F0

γ30
+

226ℓ2

γ20δ
2

T−1∑
t=0

σ2

γ2t
. (24)

Proof. For simplicity, let’s write r2t = ∥xt+1 − xt∥2. By Assumptions 2.1 and 2.5, we have:

T−1∑
t=0

1

n

n∑
i=1

E
[
∥git+1 − git∥2

]
γ2t

≤ 2ℓ2
T−1∑
t=0

E
[
r2t
]

γ2t
+

T−1∑
t=0

4σ2

γ2t
.
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Therefore,
T−1∑
t=0

1

n

n∑
i=1

E
[
∥ĝit − git∥2

]
γ4t

≤ 36(1− δ)(1 +
√
1− δ)2

γ20δ
2

T−2∑
t=0

1

n

n∑
i=1

E
[
∥git+1 − git∥2

]
γ2t

≤ 72ℓ2(1− δ)(1 +
√
1− δ)2

γ20δ
2

T−2∑
t=0

E
[
r2t
]

γ2t
+

144(1− δ)(1 +
√
1− δ)2

γ20δ
2

T−1∑
t=0

σ2

γ2t

≤ 288ℓ2

γ20δ
2

T−2∑
t=0

E
[
r2t
]

γ2t
+

576

γ20δ
2

T−1∑
t=0

σ2

γ2t
.

Recall the following from the proof of Theorem 3.3 (with at = 1):

γt + γt−1 − L
2

r2t + F (xt+1) + ⟨ĝt −∇f(xt),xt+1 − xt⟩+
γt − γt−1

2
∥xt+1 − x0∥2

≤F (xt) +
γt − γt−1

2
∥xt − x0∥2.

Upper bounding ⟨ĝt −∇f(xt),xt+1 − xt⟩, and dividing both sides by γ3t and summing from t = 0
to T − 1, we have:

T−1∑
t=0

γt − 2L

4γ3t
r2t ≤

T−1∑
t=0

F (xt)− F (xt+1)

γ3t
+ 2

T−1∑
t=0

∥ĝt −∇f(xt)∥2

γ4t
+

T−1∑
t=0

(β′
tρt − β′

tρt+1),

where β′
t :=

γt−γt−1

2γ3
t

. Note that since γt is non-decreasing, we also have:

T−1∑
t=0

F (xt)− F (xt+1)

γ3t
=
F (x0)− F (x⋆)

γ30
− F (x1)− F (x⋆)

γ30
+
F (x1)− F (x⋆)

γ31
− F (x2)− F (x⋆)

γ31
+ · · ·

+
F (xT−1)− F (x⋆)

γ3T−1

− F (xT )− F (x⋆)
γ3T−1

≤ F (x0)− F (x⋆)
γ30

− F (x1)− F (x⋆)
γ31

+
F (x1)− F (x⋆)

γ31
− F (x2)− F (x⋆)

γ32
+ · · ·

+
F (xT−1)− F (x⋆)

γ3T−1

− F (xT )− F (x⋆)
γ3T

≤ F (x0)− F (x⋆)
γ30

.

Taking expectation on both sides, and applying Assumption 2.1, we have:
T−1∑
t=0

γt − 2L

4γ3t
E
[
r2t
]
≤ F0

γ30
+ 4

T−1∑
t=0

1

n

n∑
i=1

E
[
∥ĝit − git∥2

]
γ4t

+

T−1∑
t=0

8σ2

γ4t n
+

T−1∑
t=0

(β′
tρt − β′

tρt+1).

Now we use the assumption that β′
t is non-increasing and eliminate the last term. Further, we plug in

the upper bound for the sum of ∥ĝt − gt∥2, we get:

T−1∑
t=0

γt − 2L

4γ3t
E
[
r2t
]
≤ F0

γ30
+

1152ℓ2

γ20δ
2

T−2∑
t=0

E
[
r2t
]

γ2t
+

2312

γ20δ
2

T−1∑
t=0

σ2

γ2t
.

Suppose that γt ≥ 4L, then we have:
T−1∑
t=0

1

γ2t
E
[
r2t
]
≤ 8F0

γ30
+

9216ℓ2

γ20δ
2

T−2∑
t=0

E
[
r2t
]

γ2t
+

18496

γ20δ
2

T−1∑
t=0

σ2

γ2t
.

If γ0 ≥ 136ℓ
δ , then we have:

T−1∑
t=0

1

γ2t
E
[
r2t
]
≤ 16F0

γ30
+

36992

γ20δ
2

T−1∑
t=0

σ2

γ2t
.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Finally, we have:

T−1∑
t=0

1

n

n∑
i=1

E
[
∥git+1 − git∥2

]
γ2t

≤ 32ℓ2F0

γ30
+

73988ℓ2

γ20δ
2

T−1∑
t=0

σ2

γ2t
.

Therefore, by Lemma H.1:

T∑
t=1

1

n

n∑
i=1

E
[
∥eit∥2

]
γ2t−1

≤ 215ℓ2F0

γ30
+

226ℓ2

γ20δ
2

T−1∑
t=0

σ2

γ2t
.

Theorem H.3. Given Assumptions 2.3 to 2.5, and we set at = 1, η := δ
3
√
1−δ(1+

√
1−δ) , and we take

one initial stochastic gradient step from x0 to x′
0 if ψ ̸≡ 0 and set

γt =
136ℓ

δ
+

√
2tσ2

nR2
0

+
646ℓ1/3σ2/3t1/3

R
2/3
0 δ4/3

,

then it takes at most

T =
288R2

0σ
2

nε2
+

6692L1/2R2
0σ

δ2ε3/2
+

552ℓR2
0

δε
,

iterations of Algorithm 2 to get E [F (x̄T )− F ⋆] ≤ ε.
In particular, this means that with three rounds of uncompressed communication (one for the initial
stochastic gradient step, one communicating ĝ−1 and one communicating ḡ), and T rounds of
compressed communications, Algorithm 2 reaches the desired accuracy. Assuming that the cost of
sending compressed vectors is 1 and sending uncompressed vectors is m, it costs at most

T =
288R2

0σ
2

nε2
+

6692L1/2R2
0σ

δ2ε3/2
+

552ℓR2
0

δε
+ 3m,

in communications for Algorithm 2 to get:

E [F (x̄T )− F ⋆] ≤ ε.

Proof. By Lemma H.2 and Theorem 3.3, and setting η = δ
3
√
1−δ(1+

√
1−δ) , and assuming that

γ0 ≥ 136ℓ
δ and that β′

t is non-increasing in t (this can be easily verified once we give the precise
definitions of γt), we have:

1

T

T−1∑
t=0

E [Ft+1] +
γT−1

2T
R2
T ≤

γT−1

2T
R2

0 +
L

T

T−1∑
t=0

1

n

n∑
i=1

E
[
∥eit∥2

]
γ2t−1

+

T−1∑
t=0

σ2

nTγt−1

≤ γT−1

2T
R2

0 +
215Lℓ2

δ4γ30T
F0 +

T−1∑
t=0

226Lσ2

δ4γ2t T
+

T−1∑
t=0

σ2

nγt−1T
.

We consider the following stepsize:

γt =
136ℓ

δ
+

32L1/4ℓ1/2F
1/4
0

δR
1/2
0

+

√
2tσ2

nR2
0

+
512L1/3σ2/3t1/3

R
2/3
0 δ4/3

.

First we note that γt is non-decreasing. Further, it can be verified that with such a choice of γt, we
have β′

t =
γt−γt−1

2γ3
t

is non-increasing in t.

Noting that
∑T−1
t=0

1
t1−p ≤ 1

p (T − 1)p, then we have:

1

T

T−1∑
t=0

E [Ft+1] ≤
69ℓR2

0

δT
+

16L1/4ℓ1/2F
1/4
0

δR
1/2
0 T

+
384L1/3R

4/3
0 σ2/3

δ4/3T 2/3
+

3
√
2R0σ√
nT

.
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Therefore, after at most:

T =
288R2

0σ
2

nε2
+

60199L1/2R2
0σ

δ2ε3/2
+

276ℓR2
0

δε
+

64L1/4ℓ1/2F
1/4
0

δR
1/2
0 ε

.

iterations, we have E [F (x̄T )] ≤ ε.
This is already a desirable convergence rate, but we can also eliminate the term dependent on F0,
using one initial stochastic gradient step. By Lemma C.3, we have E [F (x′

0)− F ⋆] ≤ LR2
0 +

R0σ√
2

and R′
0 := E

[
∥x′

0 − x⋆∥2
]
≤ 2R2

0. Therefore if we start our algorithm at x′
0, then we have:

1

T

T−1∑
t=0

E [Ft+1] ≤
γT−1

2T
R2

0 +
215ℓ4R2

0

δ4γ30T
+

215ℓ3R0σ

δ4γ30T
+

T−1∑
t=0

226ℓσ2

δ4γ2t T
+

T−1∑
t=0

σ2

nγt−1T
.

For the third term, due to Young’s inequality, we have:

215ℓ3R0σ

δ4γ30T
≤ 215ℓ4R2

0

δ4γ30T
+

215ℓ2σ2

δ4γ30T
≤ 215ℓ3R0σ

δ4γ30T
+

241ℓσ2

δ4γ20T
.

Therefore, we have:

1

T

T−1∑
t=0

E [Ft+1] ≤
γT−1

2T
R2

0 +
216ℓ4R2

0

δ4γ30T
+

T−1∑
t=0

227ℓσ2

δ4γ2t T
+

T−1∑
t=0

σ2

nγt−1T
.

Now we pick:

γt =
136ℓ

δ
+

√
2tσ2

nR2
0

+
646ℓ1/3σ2/3t1/3

R
2/3
0 δ4/3

.

and after at most:

T =
288R2

0σ
2

nε2
+

6692L1/2R2
0σ

δ2ε3/2
+

552ℓR2
0

δε
.

iterations, we get
E [F (x̄T )− F ⋆] ≤ ε

.

I ANALYSIS OF THE REAL ITERATES

In this section, we present an analysis of the real iterates generated by Algorithm 1, which can
be immediately combined with our analysis in Section 4 and give the convergence guarantee for
Algorithm 2 purely in terms of the real iterates xt. We note that this analysis does not rely on the
virtual iterates x̃t at all, and is therefore also applicable to the basic proximal algorithm without dual
averaging. We believe that this analysis might be of independent interest.

We first note that the guarantees for the real iterates is weaker than that of Theorem 3.3.

Theorem I.1. Given Assumptions 3.1, 2.3 and 2.4, then for any x ∈ domψ, we have:

T−1∑
t=0

E
[
at(F (xt+1)− F (x)) +

γt−1 − 2atL

4
∥xt+1 − xt∥2

]
≤ γT−1

2
∥x−x0∥2+2

T∑
t=1

E
[
∥et∥2

]
γt−1

+2

T−1∑
t=0

a2tσ
2
g

γt−1
.

(25)

Proof. By the definition of Φt, we have for any x ∈ dom(ψ):

Φt(x) ≥ Φ⋆t +
1

2
∥x− xt+1∥2.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

We also have:

Φt(x) =

t∑
k=0

ak(f(xk) + ⟨ĝk,x− xs⟩+ ψ(x)) +
γt
2
∥x− x0∥2

=

t∑
k=0

ak(f(xk) + ⟨∇f(xk),x− xk⟩+ ψ(x)) +

t∑
k=0

ak⟨ĝk −∇f(xk),x− xk⟩+
γt
2
∥x− x0∥2

(i)

≤
t∑

k=0

akF (x) +

t∑
k=0

ak⟨ĝk −∇f(xk),x− xk⟩+
γt
2
∥x− x0∥2,

where in (i) we used the convexity of f . Taking expectations on both sides, we get:

E [Φt(x)] ≤
t∑

k=0

akF (x) +
γt
2
∥x− x0∥2.

Now by the definition of xt+1:

Φ⋆t = Φt−1(xt+1) + at(f(xt) + ⟨ĝt,xt+1 − xt⟩+ ψ(xt+1)) +
γt − γt−1

2
∥xt+1 − x0∥2

(ii)

≥ Φ⋆t−1 +
γt−1

2
∥xt+1 − xt∥2 + at(f(xt) + ⟨ĝt,xt+1 − xt⟩+ ψ(xt+1))

= Φ⋆t−1 +
γt−1

2
∥xt+1 − xt∥2 + at(f(xt) + ⟨∇f(xt),xt+1 − xt⟩+ ψ(xt+1)) + at⟨ĝt −∇f(xt),xt+1 − xt⟩

(iii)

≥ Φ⋆t−1 +
γt−1 − atL

2
∥xt+1 − xt∥2 + atF (xt+1) + at⟨ĝt −∇f(xt),xt+1 − xt⟩,

where in (ii) we used the 1-strong convexity of Φt and in (iii) we used Assumption 2.4.

Now rearranging and summing from t = 0 to T − 1, we get:

T−1∑
t=0

E
[
atF (xt+1) +

γt−1 − atL
2

∥xt+1 − xt∥2
]

≤E
[
Φ⋆T−1

]
−
T−1∑
t=0

E [at⟨ĝt −∇f(xt),xt+1 − xt⟩]

≤E
[
Φ⋆T−1

]
− γT−1

2
E
[
∥x− xT ∥2

]
−
T−1∑
t=0

atE [⟨ĝt −∇f(xt),xt+1 − xt⟩]

≤
T−1∑
t=0

atF (x) +

T−1∑
t=0

atE [⟨ĝt −∇f(xt),x− xt⟩] +
γT−1

2
E
[
∥x− x0∥2

]
− γT−1

2
E
[
∥x− xT ∥2

]
−
T−1∑
t=0

atE [⟨ĝt −∇f(xt),xt+1 − xt⟩] .

Rearranging, we get:

T−1∑
t=0

E
[
at(F (xt+1)− F (x)) +

γt−1 − atL
2

∥xt+1 − xt∥2
]

≤1

2
(∥x− x0∥2 − E

[
∥x− xT ∥2

]
) +

T−1∑
t=0

atE [⟨ĝt −∇f(xt),x− xt+1⟩] .
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Note that by the definition of et, we have:

T−1∑
t=0

at⟨ĝt −∇f(xt),x− xt+1⟩ =
T−1∑
t=0

⟨et+1 − et,x− xt+1⟩+
T−1∑
t=0

at⟨gt −∇f(xt),x− xt+1⟩

=

T−1∑
t=0

⟨et+1,x− xt+1⟩ − ⟨et,x− xt⟩+ ⟨et,xt+1 − xt⟩

+

T−1∑
t=0

at⟨gt −∇f(xt),x− xt+1⟩

= ⟨eT ,x− xT ⟩+
T−1∑
t=0

⟨et,xt+1 − xt⟩+
T−1∑
t=0

at⟨gt −∇f(xt),x− xt+1⟩

≤ ∥eT ∥
2

2γT−1
+
γT−1∥x− xT ∥2

2
+

T−1∑
t=1

(
2∥et∥2

γt−1
+
γt−1∥xt − xt+1∥2

8
)

+

T−1∑
t=0

at⟨gt −∇f(xt),x− xt+1⟩.

Taking expectation on both sides, and noting that the noise gt −∇f(xt) is independent on both x
and xt, we have:

T−1∑
t=0

atE [⟨ĝt −∇f(xt),x− xt+1⟩]

≤∥eT ∥
2

2γT−1
+
γT−1∥x− xT ∥2

2
+

T−1∑
t=1

2∥et∥2

γt−1
+

T−1∑
t=1

γt−1∥xt − xt+1∥2

4
+ 2

T−1∑
t=0

a2tσ
2
g

γt−1
.

Now we put these together and get:

T−1∑
t=0

E
[
at(F (xt+1)− F (x)) +

γt−1 − 2atL

4
∥xt+1 − xt∥2

]
≤ γT−1

2
∥x−x0∥2+2

T∑
t=1

E
[
∥et∥2

]
γt−1

+2

T−1∑
t=0

a2tσ
2
g

γt−1
.

Remark I.2. Comparing to Theorem 3.3, we note that the key difference here is that the error in

Equation (25) is 2
∑T
t=1

E[∥et∥2]
γt−1

, while in Equation (12) it is L
∑T
t=1

E[∥et∥2]
γ2
t−1

. The L
γt−1

multiplica-
tive difference here is crucial and allows the stepsize γt to control the errors much more effectively.
Therefore, Theorem I.1 would lead to a weaker convergence guarantee.

With this, we can now directly combine Theorem I.1 with Lemma 4.3 to obtain the following
convergence guarantee for Algorithm 2 in terms of the real iterates xt. For simplicity, we use the
fixed stepsizes γt = γ.

Theorem I.3. Given Assumptions 2.3 to 2.5, and we set at = 1, η := δ
3
√
1−δ(1+

√
1−δ) , and we set:

γ = max

{
24
√
2ℓ

δ
,
32ℓ2/3F

1/3
0

δ4/3R
2/3
0

,
135σ

√
T

δ2R0

}
,

then it takes at most:

T =
72900R2

0σ
2

δ4ε2
+

48
√
2ℓR2

0

δε
+

64(ℓR2
0)

2/3F
1/3
0

δ4/3ε
, (26)

iterations of Algorithm 2 to get 1
T

∑T−1
t=0 (F (xt+1)− F ⋆) ≤ ε.
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Proof. We plug Equation (17) into Equation (25), and assume that γ ≥ 24
√
2ℓ

δ , and get:

1

T

T−1∑
t=0

(F (xt+1)− F ⋆) ≤
γR2

0

2T
+

11520ℓ2

δ4γ2T
F0 +

9074σ2

δ4γ
.

Now we set

γ = max{24
√
2ℓ

δ
,
32ℓ2/3F

1/3
0

δ4/3R
2/3
0

,
135σ

√
T

δ2R0
},

and we have:

1

T

T−1∑
t=0

(F (xt+1)− F ⋆) ≤
24
√
2ℓR2

0

δT
+

32(ℓR2
0)

2/3F
1/3
0

δ4/3T
+

135R0σ

δ2
√
T
.

Therefore, it takes at most:

T =
72900R2

0σ
2

δ4ε2
+

48
√
2ℓR2

0

δε
+

64(ℓR2
0)

2/3F
1/3
0

δ4/3ε
,

iterations of Algorithm 2 to get:

1

T

T−1∑
t=0

(F (xt+1)− F ⋆) ≤ ε.

Remark I.4. We emphasize that here we only achieved an O( 1
δ4/3ε

) convergence rate in the deter-
ministic term, which is worse than the O( 1

δε ) rate achieved in Theorem 4.4 in terms of δ. Perhaps
more importantly, in the stochastic case (σ2 > 0), we only achieve a O( 1

δ4ε2 ) rate, which does not
improve linearly as n increases and is not delta-free, unlike the rate in Theorem 4.4 and Theorem H.3.
It is unclear whether this limitation is a fundamental property of the algorithm or an artifact of the
analysis. We leave it for future work to resolve this question.
Remark I.5. We also briefly note that the rate in Theorem I.3 can be slightly improved using the
restart strategy and a more careful analysis of the number of steps and parameter settings in each
stage. This way we can remove theO( 1

δ4/3ε
) term, and instead get aO( 1

δ4/3ε2/3
) term overall. We will

however have to assume that domψ is bounded, and do O(log 1
ε ) number of restarts which requires

one full communication at each stage. For simplicity, we omit the details here.
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