

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COMPOSITE OPTIMIZATION WITH ERROR FEEDBACK: THE DUAL AVERAGING APPROACH

Anonymous authors

Paper under double-blind review

ABSTRACT

Communication efficiency is a central challenge in distributed machine learning training, and message compression is a widely used solution. However, standard Error Feedback (EF) methods (Seide et al., 2014), though effective for smooth unconstrained optimization with compression (Karimireddy et al., 2019), fail in the broader and practically important setting of composite optimization, which captures, e.g., objectives consisting of a smooth loss combined with a non-smooth regularizer or constraints. The theoretical foundation and behavior of EF in the context of the general composite setting remain largely unexplored. In this work, we consider composite optimization with EF. We point out that the basic EF mechanism and its analysis no longer stand when a composite part is involved. We argue that this is because of a fundamental limitation in the method and its analysis technique. We propose a novel method that combines *Dual Averaging* with EControl (Gao et al., 2024a), a state-of-the-art variant of the EF mechanism, and achieves for the first time a convergence analysis for convex composite optimization with error feedback that matches the best-known results in the uncomposite setting. Along with our new algorithm, we also provide a new and novel analysis template for inexact dual averaging method, which might be of independent interest. We also provide experimental results to complement our theoretical findings.

1 INTRODUCTION

Gradient methods, and in particular, distributed gradient methods, are the workhorse of modern Machine Learning. In this work, we consider a simple yet powerful extension of the basic optimization problem, namely, the composite optimization problem:

$$\min_{\mathbf{x} \in \text{dom} \psi} \{F(\mathbf{x}) := f(\mathbf{x}) + \psi(\mathbf{x})\},$$

where $f: \mathbb{R}^d \rightarrow \mathbb{R}$ is smooth and $\psi: \mathbb{R}^d \rightarrow \mathbb{R} \cup \{+\infty\}$ is a composite part. The composite optimization problem is ubiquitous in machine learning, and it covers a wide range of variants of the vanilla optimization problem, for example, regularized machine learning (Liu et al., 2015), signal processing (Combettes & Pesquet, 2010), and image processing (Luke, 2020). Since ψ can take on the value of infinity, it also naturally covers the constrained optimization problem.

The sizes of the datasets and models in modern Machine Learning have been growing drastically, leading to unique challenges in the training process and demands optimization algorithms that are tailored to these new settings. The distributed optimization paradigm has become a necessity due to the fact that one simply does not have the capacity to accumulate the entire dataset while training modern ML models. One of the most popular setup is to distribute the data across multiple clients/workers, and coordinate the model update in one server. Many of the recent breakthrough models are trained in such a setup (Shoeybi et al., 2019; Ramesh et al., 2021; 2022; Wang et al., 2020).

One of the main bottlenecks in scaling up distributed training is the *communication cost*. Transmitting the full large model updates between clients and the server can be prohibitively expensive when performed naively (Seide et al., 2014; Strom, 2015). One of the most popular practical remedy is *communication compression* with *contractive compression* (Definition 2.2) (Lin et al., 2018; Sun et al., 2019; Vogels et al., 2019). Contractive compressions are potentially biased, and naive aggregation of

these biased compressed updates can lead to divergence (Beznosikov et al., 2020). In the classical setting when $\psi \equiv 0$, one of the most basic and popular families of methods that are used to rectify this issue in practice is the **Error Feedback** (EF) mechanism (Seide et al., 2014; Paszke et al., 2019; Vogels et al., 2019; Ramesh et al., 2021). Due to its vast practical importance, EF mechanism has attracted significant interests in the theory community as well, where many works, though restricted to $\psi \equiv 0$, have attempted to theoretically explain the effectiveness of EF (Stich et al., 2018; Karimireddy et al., 2019) or derive variants of EF that enjoy better theoretical properties than the original form (Fatkhullin et al., 2023; Gao et al., 2024a).

However, in the composite setting, the situation becomes much more complex, and the theory is much less developed. Existing works in the composite setting either impose some further restrictions on the objective (Islamov et al., 2025), cannot handle stochastic gradients (Condat et al., 2022), or have suboptimal rates (Qian et al., 2020).

The goal of our work is to address the general composite setting for the EF mechanism. We develop novel algorithmic and analytical tools, and we are the first to obtain rates for EF in the convex composite setting that matches the uncomposite counterpart. We achieve the

$$\mathcal{O}\left(\frac{R_0^2\sigma^2}{n\varepsilon^2} + \frac{R_0^2\sqrt{\ell}\sigma}{\delta^2\varepsilon^{3/2}} + \frac{\ell R_0^2}{\delta\varepsilon}\right),$$

convergence rate, matching the rates of state-of-the-art EF variants when $\psi \equiv 0$.

1.1 THE CLASSIC EF AND VIRTUAL ITERATION

Assuming that $\psi \equiv 0$, let us recall the classic EF mechanism and the main tool that is used to analyze it, the virtual iteration framework (Mania et al., 2017), to understand its drawbacks. On a high level, we consider an update rule of the form $\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{\gamma}\hat{\mathbf{g}}_t$, where $\hat{\mathbf{g}}_t$ is some estimate of the true gradient $\mathbf{g}_t = \nabla f(\mathbf{x}_t)$. EF provides a way to construct such an $\hat{\mathbf{g}}_t$ when the gradient information can only be communicated after being compressed by the compressor \mathcal{C} . We can summarize the basic EF mechanism in the following (for simplicity, we consider the deterministic and single client setup in the introduction):

$$\delta_t := \mathbf{g}_t - \mathbf{e}_t, \quad \hat{\mathbf{g}}_t := \mathcal{C}(\delta_t), \quad \mathbf{e}_{t+1} := \mathbf{e}_t + \hat{\mathbf{g}}_t - \mathbf{g}_t, \quad (1)$$

The basic (and essentially the only) tool that people have been using to analyze it is the virtual iteration framework (Mania et al., 2017), which has been the foundation of most of the theoretical works on EF since some of the first theoretical papers on EF (Stich et al., 2018). We consider the virtual iterate $\tilde{\mathbf{x}}_t$, defined as:

$$\tilde{\mathbf{x}}_t := \mathbf{x}_t + \frac{1}{\gamma}\mathbf{e}_t.$$

The key insight here is that $\mathbf{e}_t := \sum_{k=0}^{t-1}(\hat{\mathbf{g}}_k - \mathbf{g}_k)$, i.e. the accumulation of all the gradient errors, and the virtual iterate takes the true gradients as the update, i.e. $\tilde{\mathbf{x}}_{t+1} = \tilde{\mathbf{x}}_t - \frac{1}{\gamma}\mathbf{g}_t$, where again, $\mathbf{g}_t = \nabla f(\mathbf{x}_t)$. This enables the analysis to use the virtual iterate as a proxy for the gradient descent trajectories.

However, the combination of EF with virtual iteration does not extend directly to the composite setting. If we still construct $\hat{\mathbf{g}}_t$ by Equation (1) but update via

$$\mathbf{x}_{t+1} = \arg \min_{\mathbf{x} \in \text{dom } \psi} \left\{ h_t[\langle \hat{\mathbf{g}}_t, \mathbf{x} - \mathbf{x}_t \rangle + \psi(\mathbf{x})] + \frac{1}{2}\|\mathbf{x} - \mathbf{x}_t\|^2 \right\}, \quad (2)$$

then the virtual iterate $\tilde{\mathbf{x}}_t := \mathbf{x}_t - h_t\mathbf{e}_t$ is difficult to interpret, as it may lie outside $\text{dom } \psi$ and thus cannot serve as a feasible proxy.

To contrast, when $\psi \equiv 0$ the iterates satisfy

$$\mathbf{x}_t = \mathbf{x}_0 - \frac{1}{\gamma} \sum_{k=0}^{t-1} \hat{\mathbf{g}}_k = \mathbf{x}_0 - \frac{1}{\gamma} \left(\left(\sum_{k=0}^{t-1} \mathbf{g}_k \right) - \mathbf{e}_t \right),$$

so \mathbf{x}_t is simply the cumulative sum of gradient estimates, and subtracting \mathbf{e}_t recovers the exact gradient-descent trajectory. This additive structure is what makes the virtual iterate analysis effective.

108 When $\psi \not\equiv 0$, however, the proximal step in (2) introduces distortions at each iteration. The iterates
 109 \mathbf{x}_t can no longer be expressed as a clean sum of past gradient estimates, while \mathbf{e}_t remains a sum of
 110 compression errors. This structural mismatch is precisely why the classical virtual-iterate argument
 111 breaks down in the composite case.
 112

113 **1.2 OUR STRATEGIES**
 114

115 Following our discussions above, it is clear that the classical EF mechanism and the virtual iteration
 116 framework need to be modified in order to handle the composite setting. In particular, we need to
 117 restore the simple sum of gradient estimates in the iterates, so that \mathbf{e}_t can still be used to correct the
 118 accumulated deviations from the true gradients. This reminds us of the *Dual Averaging* framework,
 119 where the algorithm sums up all the past gradients and take one step from the initial point at each
 120 step. In general, we consider the following update rule:
 121

$$\mathbf{x}_{t+1} := \arg \min_{\mathbf{x} \in \text{dom} \psi} \left\{ \sum_{k=0}^t a_k (\langle \hat{\mathbf{g}}_k, \mathbf{x} \rangle + \psi(\mathbf{x})) + \frac{\gamma_t}{2} \|\mathbf{x} - \mathbf{x}_0\|^2 \right\},$$

124 where $a_k, \gamma_t > 0$ are some properly chosen coefficients. In this way, the iterates \mathbf{x}_t are defined
 125 precisely by the (weighted) sum of all gradient estimates $\sum_{k=0}^{t-1} a_k \hat{\mathbf{g}}_k$. We can therefore consider the
 126 (weighted) cumulative gradient error $\mathbf{e}_t := \sum_{k=0}^{t-1} a_k (\hat{\mathbf{g}}_k - \mathbf{g}_k)$ and use it to correct the deviations of
 127 \mathbf{x}_t from the true gradient trajectory, this time inside the proximal operator:
 128

$$\begin{aligned} \tilde{\mathbf{x}}_{t+1} &:= \arg \min_{\mathbf{x} \in \text{dom} \psi} \left\{ \sum_{k=0}^t a_k (\langle \hat{\mathbf{g}}_k, \mathbf{x} \rangle + \psi(\mathbf{x})) - \langle \mathbf{e}_t, \mathbf{x} \rangle + \frac{\gamma_t}{2} \|\mathbf{x} - \mathbf{x}_0\|^2 \right\} \\ &= \arg \min_{\mathbf{x} \in \text{dom} \psi} \left\{ \sum_{k=0}^t a_k (\langle \mathbf{g}_k, \mathbf{x} \rangle + \psi(\mathbf{x})) + \frac{\gamma_t}{2} \|\mathbf{x} - \mathbf{x}_0\|^2 \right\}. \end{aligned}$$

135 It turns out that this intuitive modification of EF and the virtual iteration framework is precisely what
 136 we need to address the composite setting.
 137

138 **2 PROBLEM FORMULATION AND ASSUMPTIONS**
 139

140 We consider the following distributed stochastic optimization problem:
 141

$$F^* = \min_{\mathbf{x} \in \text{dom} \psi} [F(\mathbf{x}) = f(\mathbf{x}) + \psi(\mathbf{x})], \quad \text{where } f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}), \quad (3)$$

145 where $\mathbf{x} \in \mathbb{R}^d$ are the parameters of a model that we train. We assume this problem has a solution
 146 which we denote by \mathbf{x}^* . The objective function F is a composite objective with the smooth part
 147 $f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x})$ and the composite part $\psi : \mathbb{R}^d \rightarrow \mathbb{R} \cup \{+\infty\}$. ψ is a simple proper closed
 148 convex function. We write $\text{dom} \psi \subset \mathbb{R}^d$ to be the set where ψ is finite. Each function f_i is a local
 149 loss function associated with a local data set \mathcal{D}_i , which can only be accessed by client i . There are in
 150 total n clients indexed by $i \in \{1, \dots, n\}$. The composite part ψ can be accessed by the server.

151 Let us define the problem class that we consider in this paper. There are two type of agents in this
 152 problem: the server and the clients. The server has access to the proximal oracle for any $\mathbf{g}, \mathbf{x} \in \mathbb{R}^d$
 153 and $\gamma \in \mathbb{R}_+$, defined as $\arg \min_{\mathbf{x}' \in \text{dom} \psi} [\langle \mathbf{g}, \mathbf{x}' \rangle + \psi(\mathbf{x}') + \frac{\gamma}{2} \|\mathbf{x} - \mathbf{x}'\|^2]$. We assume that each
 154 client i can access only the function f_i and only via the stochastic gradient oracle as follows:

155 **Assumption 2.1.** For any $\mathbf{x} \in \text{dom} \psi$, $\mathbf{g}_i(\mathbf{x}, \xi^i)$ is a stochastic gradient oracle for f_i at \mathbf{x} , where ξ^i is
 156 the randomness used by the oracle. We assume that $\mathbf{g}_i(\mathbf{x}, \xi^i)$ is unbiased and has bounded variance:
 157

$$\mathbb{E} [\mathbf{g}_i(\mathbf{x}, \xi^i)] = \nabla f_i(\mathbf{x}), \quad \mathbb{E}_{\xi^i} [\|\mathbf{g}_i(\mathbf{x}, \xi^i) - \nabla f_i(\mathbf{x})\|^2] \leq \sigma^2. \quad (4)$$

160 We consider the distributed setting where the communication from the client to the server is expensive,
 161 and compressed communication is needed to reduce the communication cost. By (contractive)
 compression, we mean the following:

162 **Definition 2.2.** We say that a (possibly randomized) mapping $\mathcal{C}(\cdot, \zeta): \mathbb{R}^d \rightarrow \mathbb{R}^d$ is a contractive
 163 compression operator if for some constant $0 < \delta \leq 1$ it holds
 164

$$165 \mathbb{E}_\zeta [\|\mathcal{C}(\mathbf{s}, \zeta) - \mathbf{s}\|^2] \leq (1 - \delta)\|\mathbf{s}\|^2 \quad \forall \mathbf{s} \in \mathbb{R}^d. \quad (5)$$

166 Here ζ is some possible randomness used by the compressor. For simplicity, we will often omit ζ in
 167 the notation when there is no confusion.
 168

169 In addition, we assume that the cost of communication from the server to each client is negli-
 170 gible (Karimireddy et al., 2019; Richtárik et al., 2021; Gao et al., 2024a), while the client can
 171 communicate to the server with the following two types of channels:
 172

- 173 • **Compressed channel:** The client can send a compressed vector $\mathcal{C}(\mathbf{x}, \zeta) \in \mathbb{R}^d$ to the server, where
 174 \mathcal{C} is a contractive compression operator (see Definition 2.2). The cost of sending one compressed
 175 vector is 1.
- 176 • **Uncompressed channel:** The client can send a vector $\mathbf{g} \in \mathbb{R}^d$ to the server without any compres-
 177 sion. The cost of sending one uncompressed vector is $m \geq 1$.

178 When the compressor is the Top- K compressor (i.e. the client only sends the top K elements of the
 179 gradient), then the cost of sending one uncompressed vector in \mathbb{R}^d is at most d/K . In general, given
 180 any δ -compression in the sense of Definition 2.2, we can combine at most $\mathcal{O}(\frac{1}{\delta} \log \frac{1}{\delta'})$ compressed
 181 messages to recover an δ' -compression for any $\delta' > 0$ (He et al., 2023). In this sense, one can
 182 typically approximate an uncompressed channel with a compressed channel with an $\tilde{\mathcal{O}}(\frac{1}{\delta})$ additional
 183 multiplicative overhead. That is, we can typically think of m to be of the order $\frac{1}{\delta}$.

184 In this work, we are interested in minimizing the total (client to server, uplink) *communication*
 185 *cost* of the algorithm (for each client). Suppose that throughout the algorithm, each client makes
 186 a compressed communications and b uncompressed communications to the server, then the total
 187 communication cost is $a + mb$. This is roughly proportionate to $a + \frac{b}{\delta}$. We do not consider the
 188 communication cost from the server to the client (broadcast, downlink cost) since it is typically much
 189 lower than the uplink cost, which is conventional in prior works (Karimireddy et al., 2019; Richtárik
 190 et al., 2021; Gao et al., 2024a).

191 Let us now list the assumptions on the objective functions that we make in the paper. First, we make
 192 the standard assumption that f is convex.

193 **Assumption 2.3.** We assume that the function f and ψ are convex, closed and proper over the convex
 194 domain $\text{dom}\psi$.
 195

196 We note that we do not assume that each local function f_i is convex. We also assume that f is
 197 L -smooth, which is standard in the literature (Stich et al., 2018; Karimireddy et al., 2019; Richtárik
 198 et al., 2021; Gao et al., 2024a).

199 **Assumption 2.4.** We assume that the objective function f has L -Lipschitz gradients, i.e. for all
 200 $\mathbf{x}, \mathbf{y} \in \text{dom}\psi$, it holds

$$201 \quad \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \leq L\|\mathbf{x} - \mathbf{y}\|. \quad (6)$$

203 We also assume the following smoothness condition for the local functions f_i .
 204

205 **Assumption 2.5.** We assume that there exists some $\ell > 0$ such that for all $\mathbf{x}, \mathbf{y} \in \text{dom}(\psi)$, it holds

$$207 \quad \frac{1}{n} \sum_{i=1}^n \|\nabla f_i(\mathbf{x}) - \nabla f_i(\mathbf{y})\|^2 \leq \ell^2 \|\mathbf{x} - \mathbf{y}\|^2. \quad (7)$$

209 **Remark 2.6.** Note that this is a weaker condition than what many existing works assume, e.g.
 210 (Richtárik et al., 2021; Li & Richtárik, 2021), where they assume that all f_i 's are L_{\max} -smooth. In
 211 contrast, we only require that they are in some sense smooth on average, which is strictly weaker.
 212

213 We point out that by Jensen's inequality, we always have that $L \leq \ell$. In the analysis of our main
 214 method, Algorithm 2, we eventually only need Assumption 2.5. However, Assumption 2.4 is still
 215 important for the analysis of the inexact dual averaging framework that we propose, as it does not
 presume any finite-sum structure of f .

Algorithm 1 Inexact Dual Averaging

```

1: Input:  $\mathbf{x}_0$  and  $\{a_t, \gamma_t \in \mathbb{R}_+\}_{t=0, \dots, \infty}$ .  $\gamma_t$  is non-decreasing.
2: for  $t = 0, 1, \dots$  do
3:   | Obtain  $\hat{\mathbf{g}}_t \approx \mathbf{g}_t := \mathbf{g}(\mathbf{x}_t, \xi_t)$ ,  $\xi_t$  is an independent copy of  $\xi$ .
4:   |  $\mathbf{x}_{t+1} = \arg \min_{\mathbf{x}} \left[ \Phi_t(\mathbf{x}) := \sum_{k=0}^t a_k (f(\mathbf{x}_k) + \langle \hat{\mathbf{g}}_k, \mathbf{x} - \mathbf{x}_k \rangle + \psi(\mathbf{x})) + \frac{\gamma_t}{2} \|\mathbf{x} - \mathbf{x}_0\|^2 \right]$ 

```

3 THE INEXACT DUAL AVERAGING METHOD

In this section, we take a step back from the distributed optimization problem with communication compression that we consider in the rest of the paper, and consider solving a general stochastic composite optimization problem of the form $F^* = \min_{\mathbf{x} \in \text{dom} \psi} [F(\mathbf{x}) = f(\mathbf{x}) + \psi(\mathbf{x})]$. This perspective allows us to develop the core analytical tool that underpins our later analysis with compressed communication. Here, we do not assume that f has a finite-sum structure. We make Assumptions 2.3 and 2.4 for the objective in this section. We assume that we have access to a stochastic gradient oracle $\mathbf{g}(\mathbf{x}, \xi)$ satisfying Assumption 3.1 below:

Assumption 3.1. For any $\mathbf{x} \in \text{dom} \psi$, $\mathbf{g}(\mathbf{x}, \xi)$ is a stochastic gradient oracle for f at \mathbf{x} . We assume that $\mathbf{g}(\mathbf{x}, \xi)$ is unbiased and has bounded variance:

$$\mathbb{E}[\mathbf{g}(\mathbf{x}, \xi)] = \nabla f(\mathbf{x}), \quad \mathbb{E}_\xi [\|\mathbf{g}(\mathbf{x}, \xi) - \nabla f(\mathbf{x})\|^2] \leq \sigma_g^2. \quad (8)$$

We study the convergence of the general inexact dual averaging algorithm, as summarized in Algorithm 1, for solving this problem. The algorithm gets some inexact gradient $\hat{\mathbf{g}}_t$ that approximates the stochastic gradient $\mathbf{g}_t := \mathbf{g}(\mathbf{x}_t, \xi_t)$ at each iteration. It uses these gradient estimates to perform a dual averaging update, with stepsize parameters a_t and γ_t . We assume that γ_t is non-decreasing.

We analyze the convergence of this method from the perspective of the virtual iterates, which are defined in Equation (9). We note that these virtual iterates are not explicitly computed or stored anywhere in the algorithm. However, since our convergence analysis will be given in terms of the suboptimality of a convex combination of or random sample of the virtual iterates, an immediate question would be how to output such a convex combination or random sample at the end of the algorithm without explicitly storing and computing the virtual iterates. We will address this in Section 3.1.

Let's write $\bar{\mathbf{g}}_t := \sum_{k=0}^t a_k \mathbf{g}_k$. We define the following virtual iteration, with $\tilde{\mathbf{x}}_0 = \mathbf{x}_0$:

$$\begin{aligned}
 \tilde{\mathbf{x}}_{t+1} &:= \arg \min_{\mathbf{x} \in \text{dom} \psi} \left\{ \tilde{\Phi}_t(\mathbf{x}) := \sum_{k=0}^t a_k (f(\mathbf{x}_k) + \langle \mathbf{g}_k, \mathbf{x} - \mathbf{x}_k \rangle + \psi(\mathbf{x})) + \frac{\gamma_t}{2} \|\mathbf{x} - \mathbf{x}_0\|^2 \right\} \\
 &= \arg \min_{\mathbf{x} \in \text{dom} \psi} \left\{ \langle \bar{\mathbf{g}}_t, \mathbf{x} \rangle + \psi(\mathbf{x}) \sum_{k=0}^t a_k + \frac{\gamma_t}{2} \|\mathbf{x} - \mathbf{x}_0\|^2 \right\}.
 \end{aligned} \quad (9)$$

Now, we define the accumulative error of the compressions:

$$\mathbf{e}_t := \sum_{k=0}^{t-1} a_k (\hat{\mathbf{g}}_k - \mathbf{g}_k). \quad (10)$$

We first show that the distance between the virtual iterate $\tilde{\mathbf{x}}_t$ and the actual iterate \mathbf{x}_t is controlled by the accumulated error \mathbf{e}_t :

Lemma 3.2. For any $t \geq 0$, we have:

$$\|\tilde{\mathbf{x}}_t - \mathbf{x}_t\|^2 \leq \frac{1}{\gamma_{t-1}^2} \|\mathbf{e}_t\|^2. \quad (11)$$

We simply write $\gamma_{-1} = \gamma_0$. Note that $\mathbf{e}_0 = \mathbf{0}$. With this, we can give the main convergence theorem for the *virtual iterates*:

270 **Theorem 3.3.** *Given Assumptions 3.1, 2.3 and 2.4 and $\gamma_{t-1} \geq 4a_t L$, then for any $\mathbf{x} \in \text{dom}\psi$ and
271 any $T \geq 1$, we have*

$$273 \sum_{t=0}^{T-1} \mathbb{E} [a_t (F(\tilde{\mathbf{x}}_{t+1}) - F(\mathbf{x}))] + \frac{\gamma_{T-1}}{2} \mathbb{E} [\|\mathbf{x} - \tilde{\mathbf{x}}_T\|^2] \leq \frac{\gamma_{T-1}}{2} \|\mathbf{x} - \mathbf{x}_0\|^2 + L \sum_{t=0}^{T-1} \frac{a_t}{\gamma_{t-1}^2} \mathbb{E} [\|\mathbf{e}_t\|^2] + \sum_{t=0}^{T-1} \frac{a_t^2 \sigma_{\mathbf{g}}^2}{\gamma_{t-1}}. \quad (12)$$

276 *In addition, we have the following upper bound on the distance between consecutive iterates:*

$$278 \sum_{t=0}^{T-1} \left(\frac{\gamma_t + \gamma_{t-1} - a_t L}{2a_t} r_t^2 + \langle \hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle \right) \leq F_0 + \frac{1}{2} \sum_{t=0}^{T-1} (\beta_t \rho_t^2 - \beta_{t+1} \rho_{t+1}^2), \quad (13)$$

280 where we write $\beta_t := \frac{\gamma_t - \gamma_{t-1}}{a_t}$, $\rho_t^2 := \|\mathbf{x}_t - \mathbf{x}_0\|^2$, $r_t^2 := \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2$ and $F_0 := F(\mathbf{x}_0) - F^*$.

282 Again, we note that Equation (12) deals with the virtual iterates. When $\psi \equiv 0$, typically we can
283 bound the distance between $f(\tilde{\mathbf{x}}_t)$ and $f(\mathbf{x}_t)$ simply by $\mathbb{E} [\|\mathbf{e}_t\|^2]$. This is however unclear when
284 $\psi \neq 0$. It is possible to directly analyze the behavior of \mathbf{x}_t without using the virtual iterates at all, but
285 the analysis obtained that way will be weaker due to the presence of ψ (see Appendix I for a more
286 detailed discussion, we further comment here that the techniques employed in Appendix I can also be
287 used to obtain an analysis of the proxmial method without dual averaging, albeit with similarly weak
288 guarantees). It remains an open question whether it is possible to directly analyze \mathbf{x}_t without using
289 the virtual iterates and still obtain a result as strong as Theorem 3.3.

290 In addition, we also obtain an upper bound on the distance between \mathbf{x}_{t+1} and \mathbf{x}_t , which will be useful
291 later. Similar upper bounds on the distance between consecutive iterates have been used in many
292 existing works that applied the gradient difference compression strategies (Richtárik et al., 2021;
293 Fatkhullin et al., 2023; Gao et al., 2024a), but these are typically upper bounding the individual
294 distances. Due to the dual averaging strategies, our analysis here is significantly different, and we are
295 only able to upper bound the sum of the distances.

296 We point out that controlling the error $\|\hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t)\|^2$ is method-dependent, that is, it depends on
297 how we constructed the approximate $\hat{\mathbf{g}}_t$. Therefore we do not further analyze this term here, and we
298 discuss this term in more details when we present the analysis of our main algorithm in this work.

300 3.1 A SAMPLING PROCEDURE FOR THE VIRTUAL ITERATES

302 Provided that the errors are sufficiently small, Theorem 3.3 allows us to establish the convergence
303 rate in terms of $\frac{1}{A_T} \sum_{t=0}^{T-1} a_t [F(\tilde{\mathbf{x}}_{t+1}) - F^*]$, where $\tilde{\mathbf{x}}_t$ are the virtual iterates rather than the real
304 iterates \mathbf{x}_t and we write $A_t = \sum_{s=0}^{t-1} a_s$.

306 Therefore, after T steps, we would like to return a randomly chosen point among $\{\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_T\}$ with
307 the probabilities proportional to a_t . This can be implemented as follows: at each iteration t , we keep
308 tracks of the accumulated true gradients $\bar{\mathbf{g}}_t = \sum_{s=0}^t a_s \mathbf{g}_s$ and update $\bar{\mathbf{g}}$ to $\bar{\mathbf{g}}_t$ when $\tau_t = 1$, and it
309 remains unchanged when $\tau_t = 0$, where τ_t is a bernoulli variable with probability $\Pr [\tau_t = 1] = \frac{a_t}{A_{t+1}}$.
310 This way, at step $T - 1$, $\bar{\mathbf{g}}$ is a random sample from the set $\{\bar{\mathbf{g}}_t\}_{t \in \{0, \dots, T-1\}}$ with probabilities
311 proportional to a_t . Using $\bar{\mathbf{g}}$, we can easily compute a random sample $\bar{\mathbf{x}}_T$ from the set $\{\tilde{\mathbf{x}}_t\}_{t=1, \dots, T}$
312 as follows:

$$313 \bar{\mathbf{x}}_T = \arg \min_{\mathbf{x} \in \text{dom}\psi} \left[\langle \bar{\mathbf{g}}, \mathbf{x} \rangle + \psi(\mathbf{x}) \sum_{t=0}^{T-1} a_t + \frac{\gamma_T}{2} \|\mathbf{x} - \mathbf{x}_0\|^2 \right].$$

315 We summarize this procedure in Algorithm 3 in Appendix E.

317 It is easy to show that $\bar{\mathbf{g}}$ is a random variable over the set $\{\bar{\mathbf{g}}_t\}_{t \in \{0, \dots, T-1\}}$ with probabilities
318 proportional to a_t , see Proposition E.1. As a consequence, we have the following:

319 **Lemma 3.4.** *The output $\bar{\mathbf{x}}_T$ from Algorithm 3 is a random variable over the set $\{\tilde{\mathbf{x}}_t\}_{t \in [T]}$, where
320 $\tilde{\mathbf{x}}_t$ is defined in Equation (9). In particular, we have for any $\mathbf{x} \in \text{dom}(\psi)$ (that are independent of
321 $\{\xi_t, \tau_t\}_{t \in [T-1]}$):*

$$322 \mathbb{E}_{\tau_0, \dots, \tau_{T-1}, \xi_0, \dots, \xi_{T-1}} [F(\bar{\mathbf{x}}_T) - F(\mathbf{x})] = \frac{1}{A_T} \sum_{t=0}^{T-1} a_t \mathbb{E}_{\xi_0, \dots, \xi_{T-1}} [F(\tilde{\mathbf{x}}_{t+1}) - F(\mathbf{x})]. \quad (14)$$

324

Algorithm 2 EControl with Dual Averaging

325
326 1: **Input:** $\mathbf{x}_0, \eta, \mathbf{e}_0^i = \mathbf{0}, \hat{\mathbf{g}}_{-1}^i = \nabla f_i(\mathbf{x}_0, \xi_0^i)$.
327 2: **for** $t = 0, 1, \dots$ **do**
328 3: **Server:**
329 4: Sample $\tau_t = 1$ with prob. $\frac{1}{t+1}$ and $\tau_t = 0$ otherwise. Send τ_t to all clients.
330 5: **clients:**
331 6: $\mathbf{g}_t^i = \nabla f_i(\mathbf{x}_t, \xi_t^i)$ where ξ_t^i is independent copy of ξ^i . $\bar{\mathbf{g}}_t^i = \bar{\mathbf{g}}_{t-1}^i + \mathbf{g}_t^i$
332 7: $\hat{\mathbf{g}}^i = \bar{\mathbf{g}}_t^i$ if $\tau_t = 1$ otherwise $\hat{\mathbf{g}}^i$ remains.
333 8: $\delta_t^i = \mathbf{g}_t^i - \hat{\mathbf{g}}_{t-1}^i - \eta \mathbf{e}_t^i, \Delta_t^i = \mathcal{C}(\delta_t^i, \zeta_t^i)$ where ζ_t^i is independent copy of ζ^i .
334 9: $\hat{\mathbf{g}}_t^i = \hat{\mathbf{g}}_{t-1}^i + \Delta_t^i, \mathbf{e}_{t+1}^i = \mathbf{e}_t^i + \hat{\mathbf{g}}_t^i - \mathbf{g}_t^i$
335 10: send Δ_t^i to the server
336 11: **server**
337 12: $\hat{\mathbf{g}}_t = \hat{\mathbf{g}}_{t-1} + \frac{1}{n} \sum_{i=1}^n \Delta_t^i$
338 13: $\mathbf{x}_{t+1} = \arg \min_{\mathbf{x}} \{\Phi_t(\mathbf{x}) := \sum_{s=0}^t (f(\mathbf{x}_s) + \langle \hat{\mathbf{g}}_s, \mathbf{x} - \mathbf{x}_s \rangle + \psi(\mathbf{x})) + \frac{\gamma_t}{2} \|\mathbf{x} - \mathbf{x}_0\|^2\}$
339 14: **client:** send $\bar{\mathbf{g}}^i$ to the server
340 15: **server:**
341 16: $\bar{\mathbf{g}} = \frac{1}{n} \sum_{i=1}^n \bar{\mathbf{g}}^i$
342 17: $\bar{\mathbf{x}}_T = \arg \min_{\mathbf{x}} \{\langle \bar{\mathbf{g}}, \mathbf{x} \rangle + (\tau + 1)\psi(\mathbf{x}) + \frac{\gamma_T}{2} \|\mathbf{x} - \mathbf{x}_0\|^2\}$ where τ is the last t s.t. $\tau_t = 1$.
343
344
345
346

4 EControl WITH DUAL AVERAGING

349

In this section, we apply the general framework discussed in Section 3 to the particular case of distributed optimization with communication compression. In such a setting, the stochastic gradient in Assumption 3.1 is the average of the stochastic gradient of each client i , which follows Assumption 2.1. Therefore, $\sigma_{\mathbf{g}}^2 = \frac{\sigma^2}{n}$ where n is the number of clients. Now the gradient estimate $\hat{\mathbf{g}}_t$ is the average of $\hat{\mathbf{g}}_t^i$ where each $\hat{\mathbf{g}}_t^i$ is each clients' estimate of its local gradient $\mathbf{g}_t^i := \mathbf{g}(\mathbf{x}_t, \xi_t^i)$, which can be communicated to the server using compressed communication channels.

350
351
352
353
354
355

The sampling procedure in Section 3.1 can be easily implemented in such a setting. The variables $\bar{\mathbf{g}}_t$ and $\bar{\mathbf{g}}$ do not need to be maintained and communicated by the server throughout the algorithm; instead, we can simply ask the workers to maintain their local $\bar{\mathbf{g}}_t^i$ and $\bar{\mathbf{g}}^i$, using the same random bit τ_t (which costs 1 bit of communication). At the end of the algorithm, we use one full communication round to collect the local $\bar{\mathbf{g}}^i$ and compute the output $\bar{\mathbf{x}}_T$. In total, the above procedure costs exactly 1 round of full communication plus one extra bit in each of the T communication rounds.

356
357
358
359
360
361

Now, as the main focus of this section, we present a specific mechanism of generating the $\hat{\mathbf{g}}_t \approx \mathbf{g}_t$, the EControl method (summarized in Algorithm 4 in Appendix G), using mainly compressed communication channels. We assume that $a_t = 1$ for all t . For simplicity, in this section we also assume that $\gamma_t = \gamma$ for all t for some constant $\gamma > 0$. In Appendix H, we present a more advanced analysis of Algorithm 4 that handles variable γ_t . The variable stepsize analysis for EControl mechanism is unknown prior to this work due to the complexity of η parameter in EControl and we have to employ a scaling/rescaling strategy in the analysis to handle it. We slightly modified the presentation from (Gao et al., 2024a) to suit our setup better. We can put Algorithms 1, 3 and 4 together to get our final algorithm, EControl with Dual Averaging, summarized in Algorithm 2 (see Appendix F for a more detailed walk-through of the algorithm). We highlight the EControl module with green color.

372
373
374
375
376
377

We note that EControl mechanism was first proposed in (Gao et al., 2024a) and analyzed under the condition $\psi \equiv 0$. In Appendix G we briefly discuss some intuitions behind the design of EControl. Here we present a more systematic and hopefully cleaner analysis. We simply bound the sum of errors by the average of stochastic gradient differences. We note that the following upper bounds are entirely the consequences of the EControl mechanism, independent of the specific properties of the objectives and oracles.

378 **Lemma 4.1.** Let $\eta = \frac{\delta}{3\sqrt{1-\delta}(1+\sqrt{1-\delta})}$, then:

$$\begin{aligned} 380 \quad \sum_{t=1}^T \|\mathbf{e}_t^i\|^2 &\leq \frac{81(1-\delta)^2(1+\sqrt{1-\delta})^4}{2\delta^4} \sum_{t=0}^{T-2} \|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2, \\ 383 \quad \sum_{t=0}^{T-1} \|\hat{\mathbf{g}}_t^i - \mathbf{g}_t^i\|^2 &\leq \frac{36(1-\delta)(1+\sqrt{1-\delta})^2}{\delta^2} \sum_{t=0}^{T-2} \|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2. \end{aligned} \quad (15)$$

386 **Remark 4.2.** We point out that in the analysis of the classical EF mechanism, upper bounding
387 $\frac{1}{n} \sum_{i=1}^n \|\mathbf{e}_t^i\|^2$ relies on upper bounding $\frac{1}{n} \sum_{i=1}^n \|\nabla f_i(\mathbf{x}_t)\|^2$, which leads to the data heterogeneity
388 assumption, but more importantly, requires upper bounds on $\|\nabla f(\mathbf{x}_t)\|^2$ in terms of the function
389 residuals. When $\psi \equiv 0$, this follows directly from the smoothness of f . However, in the composite
390 setting, this is no longer possible unless $\nabla f(\mathbf{x}^*) = \mathbf{0}$, which is not true in general. In contrast,
391 EControl uses the gradient difference compression technique to obtain a better handle on the errors
392 and we only need to upper bound $\frac{1}{n} \sum_{i=1}^n \|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2$, which again can be done via Assumption 2.5
393 and Equation (13).

394 Next, we invoke the specific properties regarding the smooth objective f and the stochastic oracles,
395 and apply Theorem 3.3 to get an upper bound on the sum of $\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2$, and consequently, an
396 upper bound on the sum of $\|\mathbf{e}_t^i\|^2$.

397 **Lemma 4.3.** Given Assumptions 2.1 and 2.3 to 2.5, and let $\eta = \frac{\delta}{3\sqrt{1-\delta}(1+\sqrt{1-\delta})}$, $\gamma \geq \frac{24\sqrt{2}\ell}{\delta}$, then
398 we have:

$$\sum_{t=0}^{T-1} \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2] \leq \frac{80\ell^2}{9\gamma} F_0 + 7T\sigma^2. \quad (16)$$

402 Therefore, by Lemma 4.1, we also have:

$$\sum_{t=0}^{T-1} \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\|\mathbf{e}_t^i\|^2] \leq \frac{5760\ell^2}{\delta^4\gamma} F_0 + \frac{4536T\sigma^2}{\delta^4}. \quad (17)$$

406 Finally, combining all of the pieces in Sections 3, 3.1 and 4, we can give the overall convergence
407 guarantee of our final Algorithm 2.

408 **Theorem 4.4.** Given Assumptions 2.3 to 2.5, and setting $a_t = 1$, $\gamma_T = \gamma$, $\eta = \frac{\delta}{3\sqrt{1-\delta}(1+\sqrt{1-\delta})}$, and
409 taking one initial stochastic gradient step from \mathbf{x}_0 to \mathbf{x}'_0 if $\psi \not\equiv 0$ and setting

$$\gamma = \max \left\{ \frac{24\sqrt{2}\ell}{\delta}, \sqrt{\frac{T\sigma^2}{nR_0^2}}, \frac{17T^{1/3}\ell^{1/3}\sigma^{2/3}}{R_0^{2/3}\delta^{4/3}} \right\},$$

413 then it takes at most

$$T = \frac{16R_0^2\sigma^2}{n\varepsilon^2} + \frac{561R_0^2\sqrt{\ell}\sigma}{\delta^2\varepsilon^{3/2}} + \frac{96\sqrt{2}\ell R_0^2}{\delta\varepsilon},$$

416 iterations of Algorithm 2 to get $\mathbb{E} [F(\bar{\mathbf{x}}_T) - F^*] \leq \varepsilon$. Here, $R_0 := \|\mathbf{x}_0 - \mathbf{x}^*\|$.

417 In particular, this means that with three rounds of uncompressed communication (one for the initial
418 stochastic gradient step, one communicating $\hat{\mathbf{g}}_{-1}$ and one communicating $\bar{\mathbf{g}}$), and T rounds of
419 compressed communications, Algorithm 2 reaches the desired accuracy. Assuming that the cost of
420 sending compressed vectors is 1 and sending uncompressed vectors is m , it costs at most

$$\frac{16R_0^2\sigma^2}{n\varepsilon^2} + \frac{561R_0^2\sqrt{\ell}\sigma}{\delta^2\varepsilon^{3/2}} + \frac{96\sqrt{2}\ell R_0^2}{\delta\varepsilon} + 3m,$$

424 in communications for Algorithm 2 to get:

$$\mathbb{E} [F(\bar{\mathbf{x}}_T) - F^*] \leq \varepsilon.$$

426 **Remark 4.5.** In the statement of Theorem 4.4 we let the algorithm take one initial exact stochastic
427 gradient step in the composite setting. This comes from the fact that we need one gradient step in the
428 composite setting to upper bound F_0 by LR_0^2 (see Lemma C.3). This is satisfied automatically in the
429 classical unconstrained setting. Without the extra initial step, the algorithm would still converge (with
430 properly chosen step size) but the rate would additionally depend on F_0 (though it would still be a
431 desirable $\mathcal{O}(\frac{1}{\delta\varepsilon})$ term). We refer to Appendix G for more details. We note that the rate in Theorem 4.4
432 matches the rate of EControl (Gao et al., 2024a) in the basic uncomposite setting when $\psi \equiv 0$.

(a) **Achieving linear speedup.** Performance of EControl with Dual Averaging with increasing number of clients n . We fix γ to be 0.0001. The error that the algorithm stabilizes around decreases as n increases.

(b) **Virtual Iterates vs Real Iterates.** The performance of the virtual and real iterates of EControl with Dual Averaging. We see that the virtual iterates and real iterates perform similarly.

Figure 1: Synthetic regularized softmax objective

5 EXPERIMENTS

In this section, we present some experimental results on a synthetic softmax objective with ℓ_1 regularization to complement our theoretical analysis. Details of the experimental setup (including data generation) and an additional experiment on the FashionMNIST dataset can be found in Appendix B. All our codes for the experiments can be found at this link.

The softmax objective with ℓ_1 regularization is given as: $\min_{\mathbf{x} \in \mathbb{R}^d} \left\{ F(\mathbf{x}) := \mu \log \left(\sum_{i=1}^k \exp \left[\frac{\langle a_i, \mathbf{x} \rangle - b_i}{\mu} \right] \right) + \lambda \|\mathbf{x}\|_1 \right\}$, where μ controls the smoothness, and we set it to $\mu = 0.1$. We set the regularization parameter $\lambda = 0.1$. We set the dimension $d = 200$ and the total number of samples $k = 2048$. We simulate the stochastic gradient by adding Gaussian noise to the gradients. We use Top-K compressor with $K/d = 0.1$. **For both of the following experiments, we set $\sigma^2 = 25$.**

Linear speedup with n : one of the key characteristics of EF-style algorithms is that the leading (stochastic) term in its rate improves linearly with the number of clients n and is δ -free. We prove that EControl with Dual Averaging does satisfy this quality—with the catch that the theory only applies to (the random sample of) virtual iterates. Here we verify this property experimentally for the *real iterates* directly. We fix a small enough γ to be 0.0001, and increase the number of clients n . The results are summarized in Figure 1a. We see that the error that real iterates stabilize around decreases linearly with n , verifying the linear speedup for *real iterates* as well.

Virtual iterates vs real iterates: while we can do the sampling procedure to obtain convergence in terms of the virtual iterates, this is ultimately still somewhat clumsy in practice. The real iterates, on the other hand, do not enjoy theories that are as good. Here, we compare the suboptimality of the virtual and the real iterates. The results are summarized in Figure 1b. We see that the virtual and real iterates perform almost identically in the suboptimality. This suggests that the real iterates might also be amenable to a strong theory; future work might explore refining our analytical template in Appendix I to achieve this, or construct lower bound examples to demonstrate a gap between the virtual and real iterates.

6 CONCLUSION

In this work, we addressed the open challenge of combining error feedback with composite optimization. We showed that the classical virtual-iterate approach breaks down in this setting, as the composite update destroys the additive structure that underpins its analysis. To resolve this, we introduced the first framework that integrates error feedback with dual averaging, which restores the summation structure and enables control of accumulated compression errors. Our analysis extends the theory of error feedback to the convex composite case and recovers the best-known results in the unconstrained setting when $\psi \equiv 0$.

Looking ahead, our inexact dual averaging analysis provides a versatile template for problems where iterative updates are distorted by approximation, noise, or constraints. This opens up promising

486 directions in domains such as safe reinforcement learning, constrained distributed optimization, and
 487 large-scale learning under resource limitations. An exciting avenue for future work is to connect our
 488 approach with recent efforts that aim to simplify error-feedback methods for practical use, potentially
 489 leading to more robust and scalable communication-efficient algorithms.
 490

491 **REFERENCES**
 492

493 Dan Alistarh, Torsten Hoefer, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
 494 Renggli. The convergence of sparsified gradient methods. In *Proceedings of Advances in Neural*
 495 *Information Processing Systems*, 2018. 13

496 Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression
 497 for distributed learning. *Journal on Machine Learning Research*, 2020. 2, 13

498 Patrick L. Combettes and Jean-Christophe Pesquet. Proximal splitting methods in signal processing,
 499 2010. 1

500 Laurent Condat, Kai Yi, and Peter Richtárik. EF-BV: A unified theory of error feedback and variance
 501 reduction mechanisms for biased and unbiased compression in distributed optimization. *Advances*
 502 *in Neural Information Processing Systems*, 35:17501–17514, 2022. 2, 13

503 Jean-Baptiste Cordonnier. Convex optimization using sparsified stochastic gradient descent with
 504 memory. Technical report, 2018. 13

505 Ilyas Fatkhullin, Alexander Tyurin, and Peter Richtárik. Momentum provably improves error
 506 feedback! *arXiv preprint arXiv: 2305.15155*, 2023. 2, 6, 13

507 Ilyas Fatkhullin, Igor Sokolov, Eduard Gorbunov, Zhize Li, and Peter Richtárik. EF21 with bells &
 508 whistles: Practical algorithmic extensions of modern error feedback. *Journal of Machine Learning*
 509 *Research*, 2025. 13

510 Yuan Gao, Rustem Islamov, and Sebastian U Stich. EControl: Fast distributed optimization with com-
 511 pression and error control. In *The Twelfth International Conference on Learning Representations*,
 512 2024a. 1, 2, 4, 6, 7, 8, 13, 20

513 Yuan Gao, Anton Rodomanov, and Sebastian U Stich. Non-convex stochastic composite optimization
 514 with polyak momentum. In *Forty-first International Conference on Machine Learning*, 2024b. 19

515 Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtárik. Linearly converging
 516 error compensated sgd. In *Proceedings of Advances in Neural Information Processing Systems*,
 517 2020. 13

518 Yutong He, Xinnmeng Huang, Yiming Chen, Wotao Yin, and Kun Yuan. Lower bounds and accelerated
 519 algorithms in distributed stochastic optimization with communication compression. *arXiv preprint*
 520 *arXiv: 2305.07612*, 2023. 4

521 Rustem Islamov, Yarden As, and Ilyas Fatkhullin. Safe-EF: Error feedback for non-smooth con-
 522 strained optimization. In *Forty-second International Conference on Machine Learning*, 2025. 2,
 523 13

524 Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
 525 fixes signsgd and other gradient compression schemes. In *Proceedings of the 36th International*
 526 *Conference on Machine Learning (ICML 2019)*, 2019. 1, 2, 4, 13

527 Zhize Li and Peter Richtárik. CANITA: Faster rates for distributed convex optimization with
 528 communication compression, 2021. 4

529 Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing
 530 the communication bandwidth for distributed training. In *International Conference on Learning*
 531 *Representations*, 2018. 1

532 Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse convolu-
 533 tional neural networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern*
 534 *Recognition (CVPR)*, June 2015. 1

540 D. Russell Luke. *Proximal Methods for Image Processing*, pp. 165–202. Springer International
 541 Publishing, Cham, 2020. ISBN 978-3-030-34413-9. doi: 10.1007/978-3-030-34413-9_6. URL
 542 https://doi.org/10.1007/978-3-030-34413-9_6. 1

543 Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran, and
 544 Michael I Jordan. Perturbed iterate analysis for asynchronous stochastic optimization. *SIAM
 545 Journal on Optimization*, 27(4):2202–2229, 2017. 2

546 Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
 547 with compressed gradient differences. *arXiv preprint arXiv:1901.09269*, 2019. 13

548 Mohammad Moshtagifar, Anton Rodomanov, Daniil Vankov, and Sebastian U Stich. DADA: Dual
 549 averaging with distance adaptation. In *OPT 2024: Optimization for Machine Learning*, 2024. 14

550 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 551 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 552 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 553 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
 554 learning library. In *Proceedings of Advances in Neural Information Processing Systems 32*, 2019.
 555 2

556 Xun Qian, Hanze Dong, Peter Richtárik, and Tong Zhang. Error compensated proximal SGD and
 557 RDA. In *Proc. 12th Annu. Workshop Optim. Mach. Learn.*, pp. 1–33, 2020. 2, 13

558 Xun Qian, Hanze Dong, Peter Richtárik, and Tong Zhang. Error compensated loopless SVRG,
 559 Quartz, and SDCA for distributed optimization. *arXiv preprint arXiv:2109.10049*, 2021a. 13

560 Xun Qian, Peter Richtárik, and Tong Zhang. Error compensated distributed SGD can be accelerated.
 561 In *Proceedings of Advances in Neural Information Processing Systems*, 2021b. 13

562 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 563 and Ilya Sutskever. Zero-shot text-to-image generation. In *International Conference on Machine
 564 Learning*, pp. 8821–8831. PMLR, 2021. 1, 2

565 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 566 conditional image generation with clip latents. 2022. 1

567 Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better, and
 568 practically faster error feedback. In *Proceedings of Advances in Neural Information Processing
 569 Systems*, 2021. 4, 6, 13

570 Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and
 571 its application to data-parallel distributed training of speech dnns. In *Proceedings of 15th annual
 572 conference of the international speech communication association*, 2014. 1, 2, 13

573 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick Le Gresley, Jared Casper, and Bryan Catan-
 574 zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
 575 *arXiv preprint arXiv:1909.08053*, 2019. 1

576 Sebastian U. Stich. On communication compression for distributed optimization on heterogeneous
 577 data. *arXiv preprint arXiv: 2009.02388*, 2020. 13

578 Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for sgd
 579 with delayed gradients and compressed updates. *Journal of Machine Learning Research*, 2020. 13

580 Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. In
 581 *Proceedings of Advances in Neural Information Processing Systems*, 2018. 2, 4, 13

582 Nikko Strom. Scalable distributed DNN training using commodity GPU cloud computing. In
 583 *Proceedings of Interspeech 2015*, 2015. 1

584 Haobo Sun, Yingxia Shao, Jiawei Jiang, Bin Cui, Kai Lei, Yu Xu, and Jiang Wang. Sparse gradient
 585 compression for distributed sgd. In *International Conference on Database Systems for Advanced
 586 Applications*, pp. 139–155. Springer, 2019. 1

594 Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. PowerSGD: Practical low-rank gradient
 595 compression for distributed optimization. In *Advances in Neural Information Processing Systems*
 596 32, 2019. 1, 2
 597

598 Meng Wang, Weijie Fu, Xiangnan He, Shijie Hao, and Xindong Wu. A survey on large-scale machine
 599 learning. *IEEE Transactions on Knowledge and Data Engineering*, 2020. 1
 600

601 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
 602 machine learning algorithms. In *arXiv*, 2017. 14
 603
 604

605 CONTENTS

607	1
608	1 Introduction
609	1.1 The Classic EF and Virtual Iteration
610	1.2 Our Strategies
611	3
612	2 Problem Formulation and Assumptions
613	3
614	3 The Inexact Dual Averaging Method
615	5
616	3.1 A Sampling Procedure for the Virtual Iterates
617	6
618	4 EControl with Dual Averaging
619	7
620	5 Experiments
621	9
622	6 Conclusion
623	9
624	A Related Works on Error Feedback and Communication Compression
625	13
626	B Additional Experiments and Details
627	14
628	B.1 Synthetic Softmax Objective
629	14
630	B.2 Regularized FashionMNIST Classification
631	14
632	
633	C Auxiliary Facts and Results
634	14
635	D Analysis of Inexact Dual Averaging
636	16
637	
638	E Sampling Procedure for Virtual Iterates
639	19
640	F Description of Full Algorithm
641	19
642	
643	G Analysis of the EControl Mechanism
644	20
645	
646	H EControl with Variable Step size
647	24
648	I Analysis of the Real Iterates
649	28

648 **A RELATED WORKS ON ERROR FEEDBACK AND COMMUNICATION**
 649 **COMPRESSION**
 650

651
 652
 653
 654
 655 In this section we survey some most relevant works on EF. We note that while there's a rich body of
 656 literature on EF in the uncomposite setting, the extension to the composite setting is less developed.
 657 Stich et al. (2018); Alistarh et al. (2018); Karimireddy et al. (2019) were among the first to explore
 658 the theoretical properties of the practical EF mechanism proposed by Seide et al. (2014), but their
 659 analyses are restricted to the single-client setting. Under certain forms of bounded data heterogeneity
 660 assumption (e.g. bounded gradient, bounded gradient dissimilarity, or bounded local objective gap
 661 at optimum), Cordonnier (2018); Alistarh et al. (2018); Stich & Karimireddy (2020) extended the
 662 analysis to the more realistic multi-client settings. But these data heterogeneity assumptions are
 663 indeed very limiting factors. These theories were further refined in (Beznosikov et al., 2020; Stich,
 664 2020).

665 Another line of work parallel to the classic EF variants is the gradient difference compression mech-
 666 anism. Mishchenko et al. (2019) added an additional *unbiased* compressor for gradient difference
 667 into the EF framework to address the issue of data heterogeneity and obtained the DIANA algorithm.
 668 Another of follow-up works include Gorbunov et al. (2020); Stich (2020); Qian et al. (2021b), and
 669 culminated in the EF21 algorithm (Richtárik et al., 2021). The EF21 algorithm is the the first to
 670 fully support contractive compression in the full gradient regime. However, it is not compatible with
 671 stochastic gradients and leads to non-convergence up to the variance of the stochastic oracle. This
 672 was later addressed by adding momentum in Fatkhullin et al. (2023), or by a more careful blend of EF
 673 and gradient difference compression in Gao et al. (2024a). The latter work proposed the EControl
 674 mechanism, which is the basis of Algorithm 4 in this paper.

675 All of the above focuses on the uncomposite setting, and their extensions to the composite setting
 676 remain largely unexplored. Qian et al. (2020) considered a proximal variant of the EF mechanism,
 677 which they called EC-ProxSGD. However, their work considered the finite-sum stochastic setting,
 678 and their convergence rates has $\mathcal{O}(\frac{1}{\delta^2})$ dependence on the compression quality, which is suboptimal
 679 compared to the state-of-the-art EF variants in the uncomposite setting. Perhaps more relevant to our
 680 work is their EC-RDA algorithm, which is a dual averaging variant of the basic EF mechanism in the
 681 finite-sum setting. However, the analysis of EC-RDA relies on (in addition to smoothness) a number
 682 of bounded gradient assumptions on the objectives and the regularizers which we do not assume in our
 683 work, and their rates have a cubic dependence on $\frac{1}{\delta}$ which is even more undesirable. In (Qian et al.,
 684 2021a), the authors proposed and analyzed several variant-reduced EF algorithms in the composite
 685 setting, but these algorithms are designed for the finite-sum setting and are not applicable to our
 686 setting. In particular, their EC-LSVRG requires periodic access to full gradients. Their EC-Quartz
 687 and EC-SDCA considers a more specific form of composite objectives and requires access to the first
 688 order information of the conjugates of the regularizers. More recently, Islamov et al. (2025) analyzed
 689 a variant of EF, called Safe-EF, when ψ is an indicator function of some convex set Q . Their analysis
 690 requires that the constraint set Q be described as an intersection of sublevel sets of functions, with
 691 first-order information of these functions available. Under this structural assumption, their method
 692 blends updates in the direction of both the objective and the constraint functions, enabling the virtual
 693 iterate to account for constraints. Safe-EF also assumes that the stochastic gradients are bounded,
 694 which circumvents the issue of upper bounding $\|\nabla f(\mathbf{x}_t)\|^2$ in the smooth case.

695 Since Richtárik et al. (2021) first analyzed EF21 in the non-composite full gradient regime, there have
 696 been some attempts to extend EF21 to the composite setting. In particular, Fatkhullin et al. (2025)
 697 analyzed a proximal version of EF21, but only in the nonconvex and full gradient regime. Condat
 698 et al. (2022) proposed the EF-BV algorithm, which (in addition to unifying EF21 with DIANA)
 699 extends the analysis of EF21 to the composite setting. But EF-BV's analysis is also restricted to the
 700 full gradient regime, and assumes either the PL or KL condition with strictly positive constants. It is
 701 unclear whether their analysis can be extended to the general convex setting even with full gradients.
 Recently, Islamov et al. (2025) extended the analysis of EF21 to the general convex composite
 setting, but noted that their analysis requires a bounded domain assumption, which we do not assume
 in our work.

Figure 2: **Superior performance** Comparison of the performance of EControl with Dual Averaging, proximal EF, and proximal EF21 on the FashionMNIST classification problem with ℓ_1 regularization. We use Top- K compression with $\delta = 0.1$. We see that EControl with Dual Averaging significantly outperforms the other methods.

B ADDITIONAL EXPERIMENTS AND DETAILS

In this section, we provide some additional experimental details for our experiments in Section 5, and an additional experiment on the FashionMNIST dataset.

B.1 SYNTHETIC SOFTMAX OBJECTIVE

We generate the data $\{\mathbf{a}_i, b_i\}$ randomly, following Moshtagifar et al. (2024): we generate i.i.d. vectors $\hat{\mathbf{a}}_i$ whose entries are sampled from $[-1, 1]$ uniformly at random. Each b_i is generated the same way. This leads to a preliminary objective \hat{f} . We then set $\mathbf{a}_i := \hat{\mathbf{a}}_i - \nabla \hat{f}(\mathbf{0})$. The resulting $\{\mathbf{a}_i, b_i\}$ gives us the desired objective f with $\mathbf{0}$ being the minimizer.

For the experiment comparing the virtual and the real iterates, we perform a grid search for the stepsize parameters over $\frac{1}{\gamma} \in \{0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001\}$.

B.2 REGULARIZED FASHIONMNIST CLASSIFICATION

We now consider a logistic regression problem with ℓ_1 regularization on the FashionMNIST dataset (Xiao et al., 2017). We set the regularization parameter $\lambda = 0.001$. We compare the performance of EControl with Dual Averaging against the proximal EF and the proximal EF21 methods. Following our synthetic experiments, we choose to evaluate the performance of EControl with Dual Averaging directly with the real iterates. We split the FashionMNIST dataset into $n = 10$ clients, and distribute half of the dataset randomly to each client, and assign the rest of the dataset according to their labels, i.e. data with label i is distributed to client i . We use Top-K compressor with $K/d = 0.1$. We use batch size 64. We perform a grid search for the stepsize parameters over $\frac{1}{\gamma} \in \{0.1, 0.01, 0.001, 0.0001\}$. The results are summarized in Figure 2. We see that EControl with Dual Averaging significantly outperforms the other methods. In addition, we note that EControl with Dual Averaging admits a much larger stepsize than the other methods, which might explain its superior performance.

C AUXILIARY FACTS AND RESULTS

In this section we collect some auxiliary facts and results that are useful for the analysis of our algorithms. The first one is a simple fact regarding the square of the norm of a sum of vectors.

Fact C.1. For any $\gamma_1, \dots, \gamma_T$, we have:

$$\left\| \sum_{t=1}^T \gamma_t \right\|^2 \leq T \sum_{t=1}^T \|\gamma_t\|^2. \quad (18)$$

The next lemma upper bounds an exponentially weighted sum of positive sequences:

Lemma C.2. Given a sequence of non-negative values $\{\alpha_t\}_{t \in [T-1]}$, and some other sequences $\{u_t\}_{t \in [T-1]}$. If there exists $\gamma \in (0, 1)$ such that the following holds:

$$\alpha_{t+1} \leq (1 - \beta)\alpha_t + u_t, \quad \alpha_0 = 0, \quad (19)$$

756 then we have:

$$757 \quad \alpha_{t+1}^2 \leq \frac{1}{\beta} \sum_{k=0}^t (1-\beta)^{t-k} u_k^2, \quad \sum_{t=0}^T \alpha_{t+1}^2 \leq \frac{1}{\beta^2} \sum_{t=0}^T u_t^2. \quad (20)$$

760 *Proof.* Since $\alpha_0 = 0$, we have:

$$762 \quad \alpha_{t+1} \leq \sum_{k=0}^t (1-\beta)^{t-k} u_k.$$

764 Squaring both sides, and applying Jensen's inequality, we have:

$$766 \quad \alpha_{t+1}^2 \leq \frac{1}{S_t} \sum_{k=0}^t (1-\beta)^{t-k} u_k^2,$$

769 where $S_t := \sum_{k=0}^t (1-\beta)^{t-k}$. It's easy to check that $S_t \leq \frac{1}{\beta}$, and therefore we get the first part of
770 Equation (20). Now summing this from $t = 0$ to T , we get:
771

$$772 \quad \sum_{t=0}^T \alpha_{t+1}^2 \leq \sum_{k=0}^T \left(\sum_{t=k}^T (1-\beta)^{t-k} \right) u_k^2,$$

775 Note that $\sum_{t=k}^T (1-\beta)^{t-k} \leq \frac{1}{\beta}$, and therefore we get the second part of Equation (20). \square
776

777 Now we show that one gradient step will lead to an upper bound on the objective value.

778 **Lemma C.3.** *Let f be convex and L -smooth, and $\mathbf{x}_0 \in \text{dom}(\psi)$ and \mathbf{g}_0 satisfying Assumption 3.1,
779 consider \mathbf{x}'_0 defined as the following:*

$$781 \quad \mathbf{x}'_0 := \arg \min \left[f(\mathbf{x}_0) + \langle \mathbf{g}_0, \mathbf{x} - \mathbf{x}_0 \rangle + \psi(\mathbf{x}) + \frac{\gamma_0}{2} \|\mathbf{x} - \mathbf{x}_0\|^2 \right].$$

783 then for any $\mathbf{y} \in \text{dom} \psi$ and $\|\mathbf{y} - \mathbf{x}_0\|^2 \leq R^2$, if we choose $\gamma_0 := \max\{2L, \frac{\sqrt{2}\sigma}{R}\}$, we have:
784

$$785 \quad \mathbb{E}[F(\mathbf{x}'_0) - F(\mathbf{y})] \leq LR^2 + \frac{R\sigma}{\sqrt{2}}, \quad \mathbb{E}[\|\mathbf{y} - \mathbf{x}'_0\|^2] \leq 2R^2. \quad (21)$$

787 *Proof.*

$$\begin{aligned} 789 \quad & f(\mathbf{x}_0) + \langle \mathbf{g}_0, \mathbf{x}'_0 - \mathbf{x}_0 \rangle + \psi(\mathbf{x}'_0) + \frac{\gamma_0}{2} \|\mathbf{x}'_0 - \mathbf{x}_0\|^2 + \frac{\gamma_0}{2} \|\mathbf{y} - \mathbf{x}'_0\|^2 \\ 790 \quad & \leq f(\mathbf{x}_0) + \langle \mathbf{g}_0, \mathbf{y} - \mathbf{x}_0 \rangle + \psi(\mathbf{y}) + \frac{\gamma_0}{2} \|\mathbf{y} - \mathbf{x}_0\|^2 \\ 791 \quad & = f(\mathbf{x}_0) + \langle \nabla f(\mathbf{x}_0), \mathbf{y} - \mathbf{x}_0 \rangle + \psi(\mathbf{y}) + \frac{\gamma_0}{2} \|\mathbf{y} - \mathbf{x}_0\|^2 + \langle \mathbf{g}_0 - \nabla f(\mathbf{x}_0), \mathbf{y} - \mathbf{x}_0 \rangle \\ 792 \quad & \leq F(\mathbf{y}) + \frac{1}{2} \|\mathbf{y} - \mathbf{x}_0\|^2 + \langle \mathbf{g}_0 - \nabla f(\mathbf{x}_0), \mathbf{y} - \mathbf{x}_0 \rangle. \end{aligned}$$

797 On the other hand, we have:

$$\begin{aligned} 798 \quad & f(\mathbf{x}_0) + \langle \mathbf{g}_0, \mathbf{x}'_0 - \mathbf{x}_0 \rangle + \psi(\mathbf{x}'_0) + \frac{\gamma_0}{2} \|\mathbf{x}'_0 - \mathbf{x}_0\|^2 + \frac{\gamma_0}{2} \|\mathbf{y} - \mathbf{x}'_0\|^2 \\ 799 \quad & = f(\mathbf{x}_0) + \langle \nabla f(\mathbf{x}_0), \mathbf{x}'_0 - \mathbf{x}_0 \rangle + \psi(\mathbf{x}'_0) + \langle \mathbf{g}_0 - \nabla f(\mathbf{x}_0), \mathbf{x}'_0 - \mathbf{x}_0 \rangle + \frac{\gamma_0}{2} \|\mathbf{x}'_0 - \mathbf{x}_0\|^2 + \frac{\gamma_0}{2} \|\mathbf{y} - \mathbf{x}'_0\|^2 \\ 800 \quad & \geq F(\mathbf{x}'_0) + \langle \mathbf{g}_0 - \nabla f(\mathbf{x}_0), \mathbf{x}'_0 - \mathbf{x}_0 \rangle + \frac{\gamma_0 - L}{2} \|\mathbf{x}'_0 - \mathbf{x}_0\|^2 + \frac{\gamma_0}{2} \|\mathbf{y} - \mathbf{x}'_0\|^2 \\ 801 \quad & \geq F(\mathbf{x}'_0) - \frac{1}{\gamma_0} \|\mathbf{g}_0 - \nabla f(\mathbf{x}_0)\|^2 + \frac{\gamma_0 - 2L}{4} \|\mathbf{x}'_0 - \mathbf{x}_0\|^2 + \frac{\gamma_0}{2} \|\mathbf{y} - \mathbf{x}'_0\|^2. \end{aligned}$$

807 Putting these together, we have:

$$809 \quad F(\mathbf{x}'_0) - F(\mathbf{y}) + \frac{\gamma_0}{2} \|\mathbf{y} - \mathbf{x}'_0\|^2 + \frac{\gamma_0 - 2L}{4} \|\mathbf{x}'_0 - \mathbf{x}_0\|^2 \leq \frac{\gamma_0}{2} \|\mathbf{y} - \mathbf{x}_0\|^2 + \frac{1}{\gamma_0} \|\mathbf{g}_0 - \nabla f(\mathbf{x}_0)\|^2 + \langle \mathbf{g}_0 - \nabla f(\mathbf{x}_0), \mathbf{y} - \mathbf{x}_0 \rangle.$$

810 Now by Assumption 3.1, we take the expectation and get:
 811

$$812 \mathbb{E} \left[\frac{1}{\gamma_0} \|\mathbf{g}_0 - \nabla f(\mathbf{x}_0)\|^2 + \langle \mathbf{g}_0 - \nabla f(\mathbf{x}_0), \mathbf{y} - \mathbf{x}_0 \rangle \right] \leq \frac{\sigma^2}{\gamma_0}. \\ 813$$

814 Therefore, assuming that $\gamma_0 \geq 2L$, we have:
 815

$$816 \mathbb{E} [F(\mathbf{x}'_0) - F(\mathbf{y})] + \frac{\gamma_0}{2} \mathbb{E} [\|\mathbf{y} - \mathbf{x}'_0\|^2] \leq \frac{\gamma_0}{2} R^2 + \frac{\sigma^2}{\gamma_0}. \\ 817$$

818 Now we pick $\gamma_0 = \max\{2L, \frac{\sqrt{2}\sigma}{R}\}$, then we have:
 819

$$820 \mathbb{E} [F(\mathbf{x}'_0) - F(\mathbf{y})] \leq LR^2 + \frac{R\sigma}{\sqrt{2}}. \\ 821$$

822 In addition, we have:
 823

$$\mathbb{E} [\|\mathbf{y} - \mathbf{x}'_0\|^2] \leq R^2 + 2\gamma_0^2\sigma^2 \leq 2R^2.$$

824 \square
 825

826 D ANALYSIS OF INEXACT DUAL AVERAGING

827 In this section we give the missing proofs for the analysis of Algorithm 1. We first introduce the
 828 following notation:
 829

$$830 \tilde{\Phi}_t^* := \tilde{\Phi}_t(\tilde{\mathbf{x}}_{t+1}), \quad \Phi_t^* := \Phi_t(\mathbf{x}_{t+1}),$$

831 the optimum of the virtual and real subproblems at t .
 832

833 We now present the proof of Lemma 3.2:
 834

835 **Lemma 3.2.** *For any $t \geq 0$, we have:*

$$836 \|\tilde{\mathbf{x}}_t - \mathbf{x}_t\|^2 \leq \frac{1}{\gamma_{t-1}^2} \|\mathbf{e}_t\|^2. \quad (11) \\ 837$$

838 *Proof.* By the definition of $\tilde{\Phi}_t$, Φ_t and \mathbf{x}_t , we have:
 839

$$840 \mathbf{x}_{t+1} = \arg \min_{\mathbf{x} \in \text{dom}(\psi)} \left\{ \tilde{\Phi}_t(\mathbf{x}) + \langle \mathbf{e}_{t+1}, \mathbf{x} \rangle \right\}.$$

841 Therefore, we have for any $\mathbf{x} \in \text{dom}(\psi)$:
 842

$$843 \begin{aligned} \tilde{\Phi}_t(\mathbf{x}) + \langle \mathbf{e}_{t+1}, \mathbf{x} \rangle &\geq \tilde{\Phi}_t(\mathbf{x}_{t+1}) + \langle \mathbf{e}_{t+1}, \mathbf{x} \rangle + \frac{\gamma_t}{2} \|\mathbf{x} - \mathbf{x}_{t+1}\|^2 \\ &\geq \tilde{\Phi}_t^* + \langle \mathbf{e}_{t+1}, \mathbf{x}_t \rangle + \frac{\gamma_t}{2} \|\mathbf{x} - \mathbf{x}_{t+1}\|^2 + \frac{\gamma_t}{2} \|\tilde{\mathbf{x}}_{t+1} - \mathbf{x}_{t+1}\|^2. \end{aligned}$$

844 Now plug in the choice $\mathbf{x} := \tilde{\mathbf{x}}_{t+1}$, we have:
 845

$$846 \langle \mathbf{e}_{t+1}, \tilde{\mathbf{x}}_{t+1} - \mathbf{x}_{t+1} \rangle \geq \gamma_t \|\tilde{\mathbf{x}}_{t+1} - \mathbf{x}_{t+1}\|^2.$$

847 Note that we have $\langle \mathbf{e}_{t+1}, \tilde{\mathbf{x}}_{t+1} - \mathbf{x}_{t+1} \rangle \leq \|\mathbf{e}_{t+1}\| \|\tilde{\mathbf{x}}_{t+1} - \mathbf{x}_{t+1}\|$, we get the desired result. \square
 848

849 We now present the proof for Theorem 3.3:
 850

851 **Theorem 3.3.** *Given Assumptions 3.1, 2.3 and 2.4 and $\gamma_{t-1} \geq 4a_t L$, then for any $\mathbf{x} \in \text{dom} \psi$ and
 852 any $T \geq 1$, we have*

$$853 \sum_{t=0}^{T-1} \mathbb{E} [a_t (F(\tilde{\mathbf{x}}_{t+1}) - F(\mathbf{x}))] + \frac{\gamma_{T-1}}{2} \mathbb{E} [\|\mathbf{x} - \tilde{\mathbf{x}}_T\|^2] \leq \frac{\gamma_{T-1}}{2} \|\mathbf{x} - \mathbf{x}_0\|^2 + L \sum_{t=0}^{T-1} \frac{a_t}{\gamma_{t-1}^2} \mathbb{E} [\|\mathbf{e}_t\|^2] + \sum_{t=0}^{T-1} \frac{a_t^2 \sigma_g^2}{\gamma_{t-1}}. \quad (12)$$

854 In addition, we have the following upper bound on the distance between consecutive iterates:
 855

$$856 \sum_{t=0}^{T-1} \left(\frac{\gamma_t + \gamma_{t-1} - a_t L}{2a_t} r_t^2 + \langle \hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle \right) \leq F_0 + \frac{1}{2} \sum_{t=0}^{T-1} (\beta_t \rho_t^2 - \beta_t \rho_{t+1}^2), \quad (13)$$

857 where we write $\beta_t := \frac{\gamma_t - \gamma_{t-1}}{a_t}$, $\rho_t^2 := \|\mathbf{x}_t - \mathbf{x}_0\|^2$, $r_t^2 := \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2$ and $F_0 := F(\mathbf{x}_0) - F^*$.
 858

864 *Proof.* By the definition of $\tilde{\mathbf{x}}_t$, we have for any $\mathbf{x} \in \text{dom}\psi$:

$$866 \quad 867 \quad \tilde{\Phi}_t(\mathbf{x}) \geq \tilde{\Phi}_t^* + \frac{\gamma_t}{2} \|\mathbf{x} - \tilde{\mathbf{x}}_{t+1}\|^2.$$

868 We also have:

$$871 \quad 872 \quad \tilde{\Phi}_t(\mathbf{x}) = \sum_{k=0}^t a_k (f(\mathbf{x}_k) + \langle \nabla f(\mathbf{x}_k), \mathbf{x} - \mathbf{x}_k \rangle + \psi(\mathbf{x})) + \sum_{k=0}^t a_k \langle \mathbf{g}_k - \nabla f(\mathbf{x}_k), \mathbf{x} - \mathbf{x}_k \rangle + \frac{\gamma_t}{2} \|\mathbf{x} - \mathbf{x}_0\|^2$$

$$873 \quad 874 \quad \stackrel{(i)}{\leq} \sum_{k=0}^t a_k F(\mathbf{x}) + \gamma \sum_{k=0}^t a_k \langle \mathbf{g}_k - \nabla f(\mathbf{x}_k), \mathbf{x} - \mathbf{x}_k \rangle + \frac{\gamma_t}{2} \|\mathbf{x} - \mathbf{x}_0\|^2,$$

877 where in (i) we used the convexity of f . Note that the gradient noise $\mathbf{g}_k - \nabla f(\mathbf{x}_k)$ is independent of
878 $\mathbf{x} - \mathbf{x}_k$ for fixed \mathbf{x} independent of the algorithm (in particular, for \mathbf{x}^*). Therefore, taking expectation
879 on both sides:

$$881 \quad 882 \quad \mathbb{E}_{\xi_0, \dots, \xi_t} [\tilde{\Phi}_t(\mathbf{x})] \leq \sum_{k=0}^t a_k F(\mathbf{x}) + \frac{\gamma_t}{2} \|\mathbf{x} - \mathbf{x}_0\|^2.$$

884 Now by the definition of $\tilde{\mathbf{x}}_t$, we have:

$$886 \quad 887 \quad \tilde{\Phi}_t^* = \tilde{\Phi}_{t-1}(\tilde{\mathbf{x}}_{t+1}) + a_t (f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \tilde{\mathbf{x}}_{t+1} - \mathbf{x}_t \rangle + \psi(\tilde{\mathbf{x}}_{t+1}))$$

$$888 \quad + a_t \langle \mathbf{g}_t - \nabla f(\mathbf{x}_t), \tilde{\mathbf{x}}_{t+1} - \mathbf{x}_t \rangle + \frac{\gamma_t - \gamma_{t-1}}{2} \|\tilde{\mathbf{x}}_{t+1} - \mathbf{x}_0\|$$

$$889 \quad \stackrel{(ii)}{\geq} \tilde{\Phi}_{t-1}^* + \frac{\gamma_{t-1}}{2} \|\tilde{\mathbf{x}}_{t+1} - \tilde{\mathbf{x}}_t\|^2 + a_t (f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \tilde{\mathbf{x}}_{t+1} - \mathbf{x}_t \rangle + \psi(\tilde{\mathbf{x}}_{t+1}))$$

$$890 \quad + a_t \langle \mathbf{g}_t - \nabla f(\mathbf{x}_t), \tilde{\mathbf{x}}_{t+1} - \mathbf{x}_t \rangle + \frac{\gamma_t - \gamma_{t-1}}{2} \|\tilde{\mathbf{x}}_{t+1} - \mathbf{x}_0\|$$

$$891 \quad \stackrel{(iii)}{\geq} \tilde{\Phi}_{t-1}^* + \frac{\gamma_{t-1}}{2} \|\tilde{\mathbf{x}}_{t+1} - \tilde{\mathbf{x}}_t\|^2 + a_t (f(\tilde{\mathbf{x}}_{t+1}) + \psi(\tilde{\mathbf{x}}_{t+1}) - \frac{L}{2} \|\tilde{\mathbf{x}}_{t+1} - \mathbf{x}_t\|^2)$$

$$892 \quad + a_t \langle \mathbf{g}_t - \nabla f(\mathbf{x}_t), \tilde{\mathbf{x}}_{t+1} - \mathbf{x}_t \rangle + \frac{\gamma_t - \gamma_{t-1}}{2} \|\tilde{\mathbf{x}}_{t+1} - \mathbf{x}_0\|$$

$$893 \quad \stackrel{(iv)}{\geq} \tilde{\Phi}_{t-1}^* + \frac{\gamma_{t-1}}{2} \|\tilde{\mathbf{x}}_{t+1} - \tilde{\mathbf{x}}_t\|^2 + a_t (F(\tilde{\mathbf{x}}_{t+1}) - L \|\tilde{\mathbf{x}}_{t+1} - \tilde{\mathbf{x}}_t\|^2 - L \|\tilde{\mathbf{x}}_t - \mathbf{x}_t\|^2)$$

$$894 \quad + a_t \langle \mathbf{g}_t - \nabla f(\mathbf{x}_t), \tilde{\mathbf{x}}_{t+1} - \mathbf{x}_t \rangle + \frac{\gamma_t - \gamma_{t-1}}{2} \|\tilde{\mathbf{x}}_{t+1} - \mathbf{x}_0\|$$

$$895 \quad \stackrel{(v)}{\geq} \tilde{\Phi}_{t-1}^* + \frac{\gamma_{t-1} - 2a_t L}{2} \|\tilde{\mathbf{x}}_{t+1} - \tilde{\mathbf{x}}_t\|^2 + a_t F(\tilde{\mathbf{x}}_{t+1}) - a_t L \|\tilde{\mathbf{x}}_t - \mathbf{x}_t\|^2$$

$$896 \quad + a_t \langle \mathbf{g}_t - \nabla f(\mathbf{x}_t), \tilde{\mathbf{x}}_{t+1} - \mathbf{x}_t \rangle,$$

907 where in (ii) we used the strong convexity of $\tilde{\Phi}_t$ and in (iii) we used Assumption 2.4. In (iv) we
908 used Young's inequality and in (v) we used that assumption that γ_t is non-decreasing. Note that the
909 gradient noise $\mathbf{g}_t - \nabla f(\mathbf{x}_t)$ is independent of \mathbf{x}_t and $\tilde{\mathbf{x}}_t$, we have:

$$910 \quad 911 \quad \mathbb{E}_{\xi_t} [\tilde{\Phi}_t^* | \xi_0, \dots, \xi_{t-1}] \geq \mathbb{E}_{\xi_t} \left[\tilde{\Phi}_{t-1}^* + \frac{\gamma_{t-1} - 2a_t L}{2} \|\tilde{\mathbf{x}}_{t+1} - \tilde{\mathbf{x}}_t\|^2 + a_t F(\tilde{\mathbf{x}}_{t+1}) - a_t L \|\tilde{\mathbf{x}}_t - \mathbf{x}_t\|^2 | \xi_0, \dots, \xi_{t-1} \right]$$

$$912 \quad + a_t \mathbb{E}_{\xi_t} [\langle \mathbf{g}_t - \nabla f(\mathbf{x}_t), \tilde{\mathbf{x}}_{t+1} - \tilde{\mathbf{x}}_t \rangle | \xi_0, \dots, \xi_{t-1}]$$

$$913 \quad \geq \mathbb{E}_{\xi_t} \left[\tilde{\Phi}_{t-1}^* + \frac{\gamma_{t-1} - 4a_t L}{4} \|\tilde{\mathbf{x}}_{t+1} - \tilde{\mathbf{x}}_t\|^2 + a_t F(\tilde{\mathbf{x}}_{t+1}) - a_t L \|\tilde{\mathbf{x}}_t - \mathbf{x}_t\|^2 | \xi_0, \dots, \xi_{t-1} \right]$$

$$914 \quad - \frac{a_t^2 \sigma_{\mathbf{g}}^2}{\gamma_{t-1}}.$$

918 Now rearranging and summing from $t = 0$ to $T - 1$, and using the law of total expectation, we get:
919

$$\begin{aligned}
920 \quad & \sum_{t=0}^{T-1} a_t \mathbb{E}_{\xi_0, \dots, \xi_{T-1}} \left[F(\tilde{\mathbf{x}}_{t+1}) + \frac{\gamma_{t-1} - 4a_t L}{4} \|\tilde{\mathbf{x}}_{t+1} - \tilde{\mathbf{x}}_t\|^2 \right] \\
921 \quad & \leq \mathbb{E}_{\xi_0, \dots, \xi_{T-1}} \left[\tilde{\Phi}_{T-1}^* \right] + L \sum_{t=0}^{T-1} a_t \mathbb{E}_{\xi_0, \dots, \xi_{T-1}} [\|\tilde{\mathbf{x}}_t - \mathbf{x}_t\|^2] + \sum_{t=0}^{T-1} \frac{a_t^2 \sigma_{\mathbf{g}}^2}{\gamma_{t-1}} \\
922 \quad & \leq \mathbb{E}_{\xi_0, \dots, \xi_{T-1}} \left[\tilde{\Phi}_{T-1}^*(\mathbf{x}) \right] - \frac{\gamma_{T-1}}{2} \mathbb{E}_{\xi_0, \dots, \xi_{T-1}} [\|\mathbf{x} - \tilde{\mathbf{x}}_T\|^2] \\
923 \quad & + L \sum_{t=0}^{T-1} a_t \mathbb{E}_{\xi_0, \dots, \xi_{T-1}} [\|\tilde{\mathbf{x}}_t - \mathbf{x}_t\|^2] + \sum_{t=0}^{T-1} \frac{a_t^2 \sigma_{\mathbf{g}}^2}{\gamma_{t-1}} \\
924 \quad & \leq \sum_{s=0}^{T-1} a_t F(\mathbf{x}) + \frac{\gamma_{T-1}}{2} \|\mathbf{x} - \mathbf{x}_0\|^2 - \frac{\gamma_{T-1}}{2} \mathbb{E}_{\xi_0, \dots, \xi_{T-1}} [\|\mathbf{x} - \tilde{\mathbf{x}}_T\|^2] \\
925 \quad & + L \sum_{t=0}^{T-1} a_t \mathbb{E}_{\xi_0, \dots, \xi_{T-1}} [\|\tilde{\mathbf{x}}_t - \mathbf{x}_t\|^2] + \sum_{t=0}^{T-1} \frac{a_t^2 \sigma_{\mathbf{g}}^2}{\gamma_{t-1}}.
\end{aligned}$$

936 Rearranging, we get the desired result.
937

$$\begin{aligned}
938 \quad & \sum_{t=0}^{T-1} \mathbb{E}_{\xi_0, \dots, \xi_{T-1}} \left[a_t (F(\tilde{\mathbf{x}}_{t+1}) - F(\mathbf{x})) + \frac{\gamma_{t-1} - 4a_t L}{4} \|\tilde{\mathbf{x}}_{t+1} - \tilde{\mathbf{x}}_t\|^2 \right] + \frac{\gamma_{T-1}}{2} \mathbb{E}_{\xi_0, \dots, \xi_{T-1}} [\|\mathbf{x} - \tilde{\mathbf{x}}_T\|^2] \\
939 \quad & \leq \frac{\gamma_{T-1}}{2} \|\mathbf{x} - \mathbf{x}_0\|^2 + L \sum_{t=0}^{T-1} a_t \mathbb{E}_{\xi_0, \dots, \xi_{T-1}} [\|\tilde{\mathbf{x}}_t - \mathbf{x}_t\|^2] + \sum_{t=0}^{T-1} \frac{a_t^2 \sigma_{\mathbf{g}}^2}{\gamma_{t-1}}.
\end{aligned}$$

946 For Equation (13), by definition of \mathbf{x}_{t+1} , we have:
947

$$\begin{aligned}
948 \quad & \Phi_t^* = \Phi_{t-1}^*(\mathbf{x}_{t+1}) + a_t (f(\mathbf{x}_t) + \langle \hat{\mathbf{g}}_t, \mathbf{x}_{t+1} - \mathbf{x}_t \rangle + \psi(\mathbf{x}_{t+1})) + \frac{\gamma_t - \gamma_{t-1}}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_0\|^2 \\
949 \quad & \stackrel{(vi)}{\geq} \Phi_{t-1}^* + \frac{\gamma_{t-1}}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 + a_t (f(\mathbf{x}_t) + \langle \hat{\mathbf{g}}_t, \mathbf{x}_{t+1} - \mathbf{x}_t \rangle + \psi(\mathbf{x}_{t+1})) + \frac{\gamma_t - \gamma_{t-1}}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_0\|^2 \\
950 \quad & = \Phi_{t-1}^* + \frac{\gamma_{t-1}}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 + a_t (f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle + \langle \hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle + \psi(\mathbf{x}_{t+1})) \\
951 \quad & \quad + \frac{\gamma_t - \gamma_{t-1}}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_0\|^2 \\
952 \quad & \stackrel{(vii)}{\geq} \Phi_{t-1}^* + \frac{\gamma_{t-1} - a_t L}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 + a_t (F(\mathbf{x}_{t+1}) + \langle \hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle) + \frac{\gamma_t - \gamma_{t-1}}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_0\|^2,
\end{aligned}$$

953 where in (vi) we used the strong convexity of Φ_t and in (ii) we used Assumption 2.4.
954

955 Again by the definition of \mathbf{x}_{t+1} , we have:
956

$$\begin{aligned}
957 \quad & \Phi_t^* + \frac{\gamma_t}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 \stackrel{(viii)}{\leq} \Phi_t(\mathbf{x}_t) \\
958 \quad & = \Phi_{t-1}^* + a_t F(\mathbf{x}_t) + \frac{\gamma_t - \gamma_{t-1}}{2} \|\mathbf{x}_t - \mathbf{x}_0\|^2,
\end{aligned}$$

959 where in (viii) we used the strong convexity of Φ_{t+1} .
960

961 Putting these together, we have:
962

$$\begin{aligned}
963 \quad & \frac{\gamma_t + \gamma_{t-1} - a_t L}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 + a_t (F(\mathbf{x}_{t+1}) + \langle \hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle) + \frac{\gamma_t - \gamma_{t-1}}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_0\|^2 \\
964 \quad & \leq a_t F(\mathbf{x}_t) + \frac{\gamma_t - \gamma_{t-1}}{2} \|\mathbf{x}_t - \mathbf{x}_0\|^2.
\end{aligned}$$

972 Now divide both sides by a_t and sum from $t = 0$ to $T - 1$, we have:
 973

$$974 \sum_{t=0}^{T-1} \left(\frac{\gamma_t + \gamma_{t-1} - a_t L}{2a_t} \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 + \langle \hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle \right) \leq F(\mathbf{x}_0) - F(\mathbf{x}_T) + \frac{1}{2} \sum_{t=0}^{T-1} (\beta_t \rho_t^2 - \beta_{t+1} \rho_{t+1}^2).$$

977

978

979

980 E SAMPLING PROCEDURE FOR VIRTUAL ITERATES
 981982 **Algorithm 3** Sampling Procedure for Virtual Iterates
 983

984 1: $\bar{\mathbf{g}}, \bar{\mathbf{g}}_0 = \mathbf{0}$
 985 2: **for** $t = 0, 1, \dots$ **do**
 986 3: $A_t = \sum_{s=0}^{t-1} a_s$
 987 4: Sample $\tau_t = 1$ with prob. $\frac{a_t}{A_{t+1}}$ and $\tau_t = 0$ otherwise.
 988 5: Obtain $\hat{\mathbf{g}}_t \approx \mathbf{g}_t := \mathbf{g}(\mathbf{x}_t, \xi_t)$
 989 6: $\bar{\mathbf{g}}_t = \bar{\mathbf{g}}_{t-1} + a_t \mathbf{g}_t$
 990 7: $\bar{\mathbf{g}} = \bar{\mathbf{g}}_t$ if $\tau = 1$ otherwise $\bar{\mathbf{g}}$ remains.
 991 8: Update \mathbf{x}_{t+1}
 992 9: $\bar{\mathbf{x}}_T = \arg \min_{\mathbf{x}} [\langle \bar{\mathbf{g}}, \mathbf{x} \rangle + \psi(\mathbf{x}) A_{\tau+1} + \frac{\gamma_T}{2} \|\mathbf{x} - \mathbf{x}_0\|^2]$ where τ is the last t such that $\tau_t = 1$.
 993 10: $A_{\tau+1} := \sum_{t=0}^{\tau} a_t$

994

995 In this section we prove the missing results for the sampling procedure for the virtual iterates in
 996 Section 3.1. We first summarize the procedure for clarity as Algorithm 3.

997

998 Now a simple proposition regarding the sampling procedure. This is folklore knowledge and the
 999 proof is taken directly from (Gao et al., 2024b).

1000 **Proposition E.1.** *Given a stream of points $\{\mathbf{x}_k\}_{k=1}^{\infty}$ in \mathbb{R}^d and positive scalars $\{h_k\}_{k=1}^{\infty}$, we can
 1001 maintain, at each step $k \geq 1$, the random variable $\mathbf{x}_{t(k)}$, where $t(k)$ is a random index from
 1002 $\{1, \dots, k\}$ chosen with probabilities $\Pr(t(k) = i) = \frac{h_i}{H_k}$, $i = 1, \dots, k$, where $H_k := \sum_{i=1}^k h_i$. This
 1003 requires only $\mathcal{O}(d)$ memory and computation.*

1004

1005 *Proof.* We maintain the variables $\bar{\mathbf{x}}_k \in \mathbb{R}^d$ and $H_k \in \mathbb{R}$ which are both initialized to 0 at step $k = 0$.
 1006 Then, at each step $k \geq 1$, we update $H_k \leftarrow H_{k-1} + h_k$ and also, with probability $\frac{h_k}{H_k}$, we update
 1007 $\bar{\mathbf{x}}_k \leftarrow \mathbf{x}_k$ (or, with probability $1 - \frac{h_k}{H_k}$, keep the old $\bar{\mathbf{x}}_k = \bar{\mathbf{x}}_{k-1}$). The memory and computation
 1008 costs are $\mathcal{O}(d)$. Note that, for any $1 \leq i \leq k$, the event $\bar{\mathbf{x}}_k = \mathbf{x}_i$ happens iff $\bar{\mathbf{x}}$ was updated at step i
 1009 and then not updated at each step $j = i+1, \dots, k$. Hence, for any $1 \leq i \leq k$, we have

$$1011 \Pr(\bar{\mathbf{x}}_k = \mathbf{x}_i) = \frac{h_i}{H_i} \cdot \prod_{j=i+1}^k \left(1 - \frac{h_j}{H_j}\right) = \frac{h_i}{H_i} \cdot \prod_{j=i+1}^k \frac{H_{j-1}}{H_j} = \frac{h_i}{H_k}. \quad \square$$

1012

1013 F DESCRIPTION OF FULL ALGORITHM

1014

1015 In this section, we describe Algorithm 2 in more details for clarity. The algorithm combines
 1016 Algorithms 1 and 3 and Algorithm 4 together.

1017

1018 At each iteration, the server samples a bernoulli random variable τ_t to decide whether to update the $\bar{\mathbf{g}}^i$
 1019 vector, the cumulative gradient sample for all clients. The clients then proceed to compute their local
 1020 stochastic gradient \mathbf{g}_t^i , and add it to their local cumulative gradient $\bar{\mathbf{g}}_t^i$. If $\tau_t = 1$, the client updates
 1021 its cumulative gradient sample $\bar{\mathbf{g}}^i$ to $\bar{\mathbf{g}}_t^i$, otherwise it remains unchanged. Then the client make the
 1022 EControl update, where it updates the local error \mathbf{e}_{t+1}^i and the local gradient estimate $\hat{\mathbf{g}}_t^i$. The client
 1023 then sends the compressed local gradient difference Δ_t^i to the server. Now the server collects the
 1024 gradient differences Δ_t^i from all clients and updates the global gradient estimate $\hat{\mathbf{g}}_t$ and makes a dual
 1025 averaging update to the primal variable \mathbf{x}_{t+1} .

1026 Finally, the server collects the cumulative gradient samples $\bar{\mathbf{g}}^i$ from all clients via a full communication
 1027 and computes $\bar{\mathbf{g}}$. The final output is then computed using $\bar{\mathbf{g}}$ so that it becomes a random sample of
 1028 the virtual iterates (which are not explicitly computed and stored).

1030 G ANALYSIS OF THE EControl MECHANISM

1033 Algorithm 4 EControl

```

1034 1: Input:  $\mathbf{x}_0, \eta, \mathbf{e}_0^i = \mathbf{0}, \hat{\mathbf{g}}_{-1}^i = \nabla f_i(\mathbf{x}_0, \xi_0^i)$ .
1035 2: for  $t = 0, 1, \dots$  do
1036 3:   clients:
1037 4:      $\mathbf{g}_t^i = \mathbf{g}_i(\mathbf{x}_t, \xi_t^i)$ ,  $\xi_t^i$  is independent copy of  $\xi^i$ 
1038 5:      $\delta_t^i = \mathbf{g}_t^i - \hat{\mathbf{g}}_{t-1}^i - \eta \mathbf{e}_t^i, \Delta_t^i = \mathcal{C}(\delta_t^i)$ 
1039 6:      $\hat{\mathbf{g}}_t^i = \hat{\mathbf{g}}_{t-1}^i + \Delta_t^i$ 
1040 7:      $\mathbf{e}_{t+1}^i = \mathbf{e}_t^i + \hat{\mathbf{g}}_t^i - \mathbf{g}_t^i$ 
1041 8:     send  $\Delta_t^i$  to the server
1042 9:   server
1043 10:     $\Delta_t = \frac{1}{n} \sum_{i=1}^n \Delta_t^i$ 
1044 11:     $\hat{\mathbf{g}}_t = \hat{\mathbf{g}}_{t-1} + \Delta_t$ 

```

1045
 1046 In this section we present the missing proofs for the analysis of Algorithm 2. For ease of understanding,
 1047 we also summarize the EControl mechanism in Algorithm 4.
 1048

1049 The EControl mechanism is a blend of two different techniques. The first is the classical EF
 1050 mechanism, which keeps track of the (local) compression errors \mathbf{e}_t^i and feedbacks them to the
 1051 compressor. The second is the gradient difference compression technique, which compresses the
 1052 difference between the current gradient and the previous estimates. As was discussed in Gao et al.
 1053 (2024a), directly mixing the two methods might lead to suboptimal dependence on the compression
 1054 quality δ in the convergence rate. The key innovation of EControl is to introduce a scaling factor η
 1055 on the error feedback term. Note that the historical estimates $\hat{\mathbf{g}}_t^i$ also carries some information on the
 1056 error, and the error feedback term should be scaled down to balance the two sources of information.
 1057 The specific choice of η , as we explain below, is carefully chosen to optimize the dependence on δ in
 1058 the final convergence rate.

1059 Again, we remind the readers that for now we restrict ourselves to the setting where $a_t = 1$ and $\gamma_t = \gamma$.
 1060 Please refer to Appendix H for more details on the case where γ_t is changing (and non-decreasing).

1061 We first present an upper bound on each sum of $\|\mathbf{e}_t^i\|^2$ and $\|\hat{\mathbf{g}}_t^i - \mathbf{g}_t^i\|^2$, both in terms of the sum of
 1062 $\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2$.

1063 **Lemma 4.1.** Let $\eta = \frac{\delta}{3\sqrt{1-\delta}(1+\sqrt{1-\delta})}$, then:

$$\begin{aligned}
 1064 \sum_{t=1}^T \|\mathbf{e}_t^i\|^2 &\leq \frac{81(1-\delta)^2(1+\sqrt{1-\delta})^4}{2\delta^4} \sum_{t=0}^{T-2} \|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2, \\
 1065 \sum_{t=0}^{T-1} \|\hat{\mathbf{g}}_t^i - \mathbf{g}_t^i\|^2 &\leq \frac{36(1-\delta)(1+\sqrt{1-\delta})^2}{\delta^2} \sum_{t=0}^{T-2} \|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2.
 \end{aligned} \tag{15}$$

1071 *Proof.* By the definition of \mathbf{e}_{t+1}^i , we have:

$$1073 \mathbf{e}_{t+1}^i := \hat{\mathbf{g}}_t^i - \mathbf{g}_t^i + \mathbf{e}_t^i = \hat{\mathbf{g}}_{t-1}^i + \Delta_t^i - \mathbf{g}_t^i + \mathbf{e}_t^i = \Delta_t^i - \delta_t^i + (1-\eta)\mathbf{e}_t^i,$$

1074 Therefore, by triangular inequality, we have:

$$1075 \|\mathbf{e}_{t+1}^i\| \leq (1-\eta)\|\mathbf{e}_t^i\| + \|\Delta_t^i - \delta_t^i\| \leq (1-\eta)\|\mathbf{e}_t^i\| + \sqrt{1-\delta}\|\delta_t^i\|,$$

1077 where in the last inequality we used the definition of the compressor. Now by Lemma C.2, we get:

$$1078 \sum_{t=1}^T \|\mathbf{e}_t^i\|^2 \leq \frac{1-\delta}{\eta^2} \sum_{t=0}^{T-1} \|\delta_t^i\|^2.$$

1080 Next we note the following:
 1081

$$\begin{aligned}
 \delta_{t+1}^i &= \mathbf{g}_{t+1}^i - \hat{\mathbf{g}}_t^i - \eta \mathbf{e}_{t+1}^i \\
 &= \mathbf{g}_t^i - \hat{\mathbf{g}}_t^i - \eta(\hat{\mathbf{g}}_t^i - \mathbf{g}_t^i + \mathbf{e}_t^i) + \mathbf{g}_{t+1}^i - \mathbf{g}_t^i \\
 &= (1 + \eta)(\mathbf{g}_t^i - \hat{\mathbf{g}}_t^i) - \eta \mathbf{e}_t^i + \mathbf{g}_{t+1}^i - \mathbf{g}_t^i \\
 &= (1 + \eta)(\delta_t^i - \Delta_t^i + \eta \mathbf{e}_t^i) - \eta \mathbf{e}_t^i + \mathbf{g}_{t+1}^i - \mathbf{g}_t^i \\
 &= (1 + \eta)(\delta_t^i - \Delta_t^i) + \eta^2 \mathbf{e}_t^i + \mathbf{g}_{t+1}^i - \mathbf{g}_t^i.
 \end{aligned}$$

1088 Similar as before, we now apply triangular inequality and definition of the compressor and get:
 1089

$$\|\delta_{t+1}^i\| \leq (1 + \eta)\sqrt{1 - \delta}\|\delta_t^i\| + \eta^2\|\mathbf{e}_t^i\| + \|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|.$$

1091 Let's write $\beta \equiv 1 - (1 + \eta)\sqrt{1 - \delta}$. Now we apply Lemma C.2 again and Young's inequality, and
 1092 note that $\delta_0^i = \mathbf{0}$, we get:
 1093

$$\sum_{t=0}^{T-1} \|\delta_t^i\|^2 \leq \frac{2}{\beta^2} \sum_{t=0}^{T-2} (\eta^4 \|\mathbf{e}_t^i\|^2 + \|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2).$$

1096 Now we plug in the upper bound on the sum of $\|\mathbf{e}_t^i\|$ (and note that $\mathbf{e}_0^i = \mathbf{0}$):
 1097

$$\sum_{t=0}^{T-1} \|\delta_t^i\|^2 \leq \frac{2(1 - \delta)\eta^2}{\beta^2} \sum_{t=0}^{T-3} \|\delta_t^i\|^2 + \frac{2}{\beta^2} \sum_{t=0}^{T-2} \|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2.$$

1101 Rearranging, we have:
 1102

$$\sum_{t=0}^{T-1} \|\delta_t^i\|^2 \leq \frac{2}{\beta^2 - 2(1 - \delta)\eta^2} \sum_{t=0}^{T-2} \|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2.$$

1105 Therefore, we have:
 1106

$$\sum_{t=1}^T \|\mathbf{e}_t^i\|^2 \leq \frac{2(1 - \delta)}{\beta^2 \eta^2 - 2(1 - \delta)\eta^4} \sum_{t=0}^{T-2} \|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2$$

1109 Next, we note the following:
 1110

$$\begin{aligned}
 \hat{\mathbf{g}}_t^i - \mathbf{g}_t^i &= \Delta_t^i - (\mathbf{g}_t^i - \hat{\mathbf{g}}_{t-1}^i - \eta \mathbf{e}_t^i) + \eta \mathbf{e}_t^i \\
 &= \Delta_t^i - \delta_t^i + \eta \mathbf{e}_t^i.
 \end{aligned}$$

1113 Therefore, by Young's inequality, we have:
 1114

$$\begin{aligned}
 \sum_{t=0}^{T-1} \|\hat{\mathbf{g}}_t^i - \mathbf{g}_t^i\|^2 &\leq 2(1 - \delta) \sum_{t=0}^{T-1} \|\delta_t^i\|^2 + 2\eta^2 \sum_{t=1}^{T-1} \|\mathbf{e}_t^i\|^2 \\
 &\leq \frac{8(1 - \delta)}{\beta^2 - 2(1 - \delta)\eta^2} \sum_{t=0}^{T-2} \|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2.
 \end{aligned}$$

1120 For the choice of η and β , we choose $\beta = 2\sqrt{1 - \delta}\eta$. Since $\beta \equiv 1 - \sqrt{1 - \delta}(1 + \eta)$, we have:
 1121

$$\eta = \frac{\delta}{3\sqrt{1 - \delta}(1 + \sqrt{1 - \delta})}, \quad \beta = \frac{2\delta}{3(1 + \sqrt{1 - \delta})}.$$

1124 Putting this back, we get the desired results. \square
 1125

1126 **Lemma 4.3.** *Given Assumptions 2.1 and 2.3 to 2.5, and let $\eta = \frac{\delta}{3\sqrt{1 - \delta}(1 + \sqrt{1 - \delta})}$, $\gamma \geq \frac{24\sqrt{2}\ell}{\delta}$, then
 1127 we have:*

$$\sum_{t=0}^{T-1} \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2] \leq \frac{80\ell^2}{9\gamma} F_0 + 7T\sigma^2. \quad (16)$$

1131 Therefore, by Lemma 4.1, we also have:

$$\sum_{t=0}^{T-1} \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\|\mathbf{e}_t^i\|^2] \leq \frac{5760\ell^2}{\delta^4\gamma} F_0 + \frac{4536T\sigma^2}{\delta^4}. \quad (17)$$

1134 *Proof.* For simplicity, let's write $r_t^2 = \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2$. By Assumptions 2.1 and 2.5, we have:
 1135

$$1136 \quad \sum_{t=0}^{T-1} \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2] \leq 2\ell^2 \sum_{t=0}^{T-1} \mathbb{E} [r_t^2] + 4T\sigma^2.$$

$$1137$$

$$1138$$

1139 Therefore,

$$1140 \quad \sum_{t=0}^{T-1} \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\|\hat{\mathbf{g}}_t^i - \mathbf{g}_t^i\|^2] \leq \frac{36(1-\delta)(1+\sqrt{1-\delta})^2}{\delta^2} \sum_{t=0}^{T-2} \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2]$$

$$1141$$

$$1142$$

$$1143$$

$$1144 \leq \frac{72\ell^2(1-\delta)(1+\sqrt{1-\delta})^2}{\delta^2} \sum_{t=0}^{T-2} \mathbb{E} [r_t^2] + \frac{144T(1-\delta)(1+\sqrt{1-\delta})^2\sigma^2}{\delta^2}$$

$$1145$$

$$1146$$

$$1147 \leq \frac{288\ell^2}{\delta^2} \sum_{t=0}^{T-2} \mathbb{E} [r_t^2] + \frac{576T\sigma^2}{\delta^2}.$$

$$1148$$

$$1149$$

$$1150$$

By Theorem 3.3, we have:

$$1151 \quad \sum_{t=0}^{T-2} \frac{2\gamma - L}{2} r_t^2 + \sum_{t=0}^{T-2} \langle \hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle \leq F(\mathbf{x}_0) - F(\mathbf{x}_T).$$

$$1152$$

$$1153$$

Therefore, we have:

$$1154 \quad \sum_{t=0}^{T-1} \frac{\gamma - L}{2} \mathbb{E} [r_t^2] \leq \mathbb{E} [F(\mathbf{x}_0) - F(\mathbf{x}_T)] + \frac{1}{2\gamma} \sum_{t=0}^{T-1} \mathbb{E} [\|\hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t)\|^2]$$

$$1155$$

$$1156$$

$$1157$$

$$1158$$

$$1159 \leq \mathbb{E} [F(\mathbf{x}_0) - F(\mathbf{x}_T)] + \frac{1}{\gamma} \sum_{t=0}^{T-1} \mathbb{E} [\|\hat{\mathbf{g}}_t - \mathbf{g}_t\|^2] + \frac{2T\sigma^2}{\gamma n}$$

$$1160$$

$$1161$$

$$1162 \leq \mathbb{E} [F(\mathbf{x}_0) - F(\mathbf{x}_T)] + \frac{288\ell^2}{\delta^2\gamma} \sum_{t=0}^{T-2} \mathbb{E} [r_t^2] + \frac{576T\sigma^2}{\delta^2\gamma}.$$

$$1163$$

$$1164$$

Now assuming that $\gamma \geq \frac{24\sqrt{2}\ell}{\delta}$, and rearranging, we have:

$$1165 \quad \sum_{t=0}^{T-1} \mathbb{E} [r_t^2] \leq \frac{40}{9\gamma} \mathbb{E} [F(\mathbf{x}_0) - F(\mathbf{x}_T)] + \frac{1285T\sigma^2}{\delta^2\gamma^2}.$$

$$1166$$

$$1167$$

$$1168$$

$$1169$$

Therefore,

$$1170 \quad \sum_{t=0}^{T-1} \frac{1}{n} \sum_{i=1}^n \mathbb{E} [\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2] \leq \frac{80\ell^2}{9\gamma} \mathbb{E} [F(\mathbf{x}_0) - F(\mathbf{x}_T)] + \frac{2570\ell^2T\sigma^2}{\delta^2\gamma^2} + 4T\sigma^2.$$

$$1171$$

$$1172$$

$$1173$$

$$1174$$

$$1175$$

□

Theorem 4.4. Given Assumptions 2.3 to 2.5, and setting $a_t = 1$, $\gamma_T = \gamma$, $\eta = \frac{\delta}{3\sqrt{1-\delta}(1+\sqrt{1-\delta})}$, and taking one initial stochastic gradient step from \mathbf{x}_0 to \mathbf{x}'_0 if $\psi \not\equiv 0$ and setting

$$1176 \quad \gamma = \max \left\{ \frac{24\sqrt{2}\ell}{\delta}, \sqrt{\frac{T\sigma^2}{nR_0^2}}, \frac{17T^{1/3}\ell^{1/3}\sigma^{2/3}}{R_0^{2/3}\delta^{4/3}} \right\},$$

$$1177$$

$$1178$$

then it takes at most

$$1179 \quad T = \frac{16R_0^2\sigma^2}{n\varepsilon^2} + \frac{561R_0^2\sqrt{\ell}\sigma}{\delta^2\varepsilon^{3/2}} + \frac{96\sqrt{2}\ell R_0^2}{\delta\varepsilon},$$

$$1180$$

$$1181$$

iterations of Algorithm 2 to get $\mathbb{E} [F(\bar{\mathbf{x}}_T) - F^*] \leq \varepsilon$. Here, $R_0 := \|\mathbf{x}_0 - \mathbf{x}^*\|$.

In particular, this means that with three rounds of uncompressed communication (one for the initial stochastic gradient step, one communicating $\hat{\mathbf{g}}_{-1}$ and one communicating $\bar{\mathbf{g}}$), and T rounds of

1188 compressed communications, Algorithm 2 reaches the desired accuracy. Assuming that the cost of
 1189 sending compressed vectors is 1 and sending uncompressed vectors is m , it costs at most
 1190

$$1191 \frac{16R_0^2\sigma^2}{n\varepsilon^2} + \frac{561R_0^2\sqrt{\ell}\sigma}{\delta^2\varepsilon^{3/2}} + \frac{96\sqrt{2}\ell R_0^2}{\delta\varepsilon} + 3m,$$

1193 in communications for Algorithm 2 to get:

$$1194 \mathbb{E}[F(\bar{\mathbf{x}}_T) - F^*] \leq \varepsilon.$$

1196 *Proof.* For simplicity of notation, let's write $F_t := F(\tilde{\mathbf{x}}_t) - F(\mathbf{x}^*)$.

1198 By Lemma 4.3 and Theorem 3.3, we have, when $\gamma \geq \frac{24\sqrt{2}\ell}{\delta}$.

$$1201 \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[F_{t+1}] \leq \frac{\gamma R_0^2}{2T} + \frac{L}{\gamma^2 T} \sum_{t=0}^{T-1} \frac{1}{n} \sum_{i=1}^n \mathbb{E}[\|\mathbf{e}_t^i\|^2] + \frac{\sigma^2}{\gamma n} \\ 1202 \leq \frac{\gamma R_0^2}{2T} + \frac{5760\ell^2 L}{\gamma^3 \delta^4 T} F_0 + \frac{4536L\sigma^2}{\gamma^2 \delta^4} + \frac{\sigma^2}{\gamma n}.$$

1204 1205 1206
 1207 Now we choose $\gamma = \max \left\{ \frac{24\sqrt{2}\ell}{\delta}, \frac{11L^{1/4}\ell^{1/2}F_0^{1/4}}{\delta R_0^{1/2}}, \sqrt{\frac{2T\sigma^2}{nR_0^2}}, \frac{21T^{1/3}\ell^{1/3}\sigma^{2/3}}{R_0^{2/3}\delta^{4/3}} \right\}$, we have:
 1208

$$1209 \frac{1}{T} \sum_{t=1}^T \mathbb{E}[F_t] \leq \frac{17\ell R_0^2}{\delta T} + \frac{11L^{1/4}\ell^{1/2}F_0^{1/4}R_0^{3/2}}{2\delta T} + \sqrt{\frac{R_0^2\sigma^2}{2nT}} + \frac{21R_0^{4/3}L^{1/3}\sigma^{2/3}}{2T^{2/3}\delta^{4/3}}.$$

1212 Therefore, after:

$$1214 \frac{8R_0^2\sigma^2}{2n\varepsilon^2} + \frac{99R_0^2\sqrt{L}\sigma}{\delta^2\varepsilon^{3/2}} + \frac{34\ell R_0^2}{\delta\varepsilon} + \frac{11L^{1/4}\ell^{1/2}F_0^{1/4}R_0^{3/2}}{\delta\varepsilon},$$

1217 iterations of Algorithm 2, we have:

$$1218 \frac{1}{T} \sum_{t=1}^T \mathbb{E}[F_t] \leq \varepsilon.$$

1221 1222 1223 1224 1225
 Note that this already gives us the desirable convergence rate. We can further simplify the above
 rates and remove the dependence on F_0 by taking one additional stochastic gradient step initially to
 get \mathbf{x}'_0 . By Lemma C.3, we have $\mathbb{E}[F(\mathbf{x}'_0) - F^*] \leq LR_0^2 + \frac{R_0\sigma}{\sqrt{2}}$ and $R'_0 := \mathbb{E}[\|\mathbf{x}'_0 - \mathbf{x}^*\|^2] \leq 2R_0^2$.
 Therefore if we start our algorithm at \mathbf{x}'_0 , then we have:

$$1226 \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[F_{t+1}] \leq \frac{\gamma R_0^2}{T} + \frac{5760\ell^4 R_0^2}{\gamma^3 \delta^4 T} + \frac{4073\ell^3 R_0 \sigma}{\gamma^3 \delta^4 T} + \frac{4536\ell \sigma^2}{\gamma^2 \delta^4} + \frac{\sigma^2}{\gamma n}.$$

1229 1230 1231
 Note that for the third term, we have the following due Young's inequality and the assumption that
 $\gamma \geq \frac{24\sqrt{2}\ell}{\delta}$:

$$1232 \frac{4073\ell^3 R_0 \sigma}{\gamma^3 \delta^4 T} \leq \frac{4073\ell^4 R_0^2}{2\gamma^3 \delta^4 T} + \frac{4073\ell^2 \sigma^2}{2\gamma^3 \delta^4 T} \leq \frac{4073\ell^4 R_0^2}{2\gamma^3 \delta^4 T} + \frac{61\ell \sigma^2}{\gamma^2 \delta^3}.$$

1234 Therefore, we have:

$$1235 \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[F_{t+1}] \leq \frac{\gamma R_0^2}{T} + \frac{7797\ell^4 R_0^2}{\gamma^3 \delta^4 T} + \frac{4597\ell \sigma^2}{\gamma^2 \delta^4} + \frac{\sigma^2}{\gamma n}.$$

1239 Now we pick:

$$1240 \gamma = \max \left\{ \frac{24\sqrt{2}\ell}{\delta}, \sqrt{\frac{T\sigma^2}{nR_0^2}}, \frac{17T^{1/3}\ell^{1/3}\sigma^{2/3}}{R_0^{2/3}\delta^{4/3}} \right\},$$

1242 and we have:

$$1243 \quad \frac{1}{T} \sum_{t=1}^T \mathbb{E}[F_t] \leq \frac{24\sqrt{2}\ell R_0^2}{\delta T} + \sqrt{\frac{R_0^2 \sigma^2}{nT}} + \frac{17R_0^{4/3} \ell^{1/3} \sigma^{2/3}}{T^{2/3} \delta^{4/3}}.$$

1246 Therefore, we need only:

$$1247 \quad T = \frac{16R_0^2 \sigma^2}{n \varepsilon^2} + \frac{561R_0^2 \sqrt{\ell} \sigma}{\delta^2 \varepsilon^{3/2}} + \frac{96\sqrt{2}\ell R_0^2}{\delta \varepsilon}.$$

1250 iterations. \square

H EControl WITH VARIABLE STEPSIZE

1255 Consider Theorem 3.3, when the stepsize γ_t is changing, we have to upper bound the sum of $\frac{\|\mathbf{e}_t\|}{\gamma_{t-1}^2}$.
 1256 This extra weight has to be handled directly in the analysis.

1257 **Lemma H.1.** *Let $\eta = \frac{\delta}{3\sqrt{1-\delta}(1+\sqrt{1-\delta})}$, we have:*

$$1258 \quad \sum_{t=1}^T \frac{\|\mathbf{e}_t^i\|^2}{\gamma_{t-1}^2} \leq \frac{81(1-\delta)^2(1+\sqrt{1-\delta})^4}{2\delta^4} \sum_{t=0}^{T-2} \frac{\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2}{\gamma_t^2}, \quad (22)$$

$$1259 \quad \sum_{t=0}^{T-1} \frac{\|\hat{\mathbf{g}}_t^i - \mathbf{g}_t^i\|^2}{\gamma_t^4} \leq \frac{36(1-\delta)(1+\sqrt{1-\delta})^2}{\gamma_0^2 \delta^2} \sum_{t=0}^{T-2} \frac{\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2}{\gamma_t^2}.$$

1266 *Proof.* By the definition of \mathbf{e}_{t+1}^i , we have:

$$1268 \quad \mathbf{e}_{t+1}^i := \hat{\mathbf{g}}_t^i - \mathbf{g}_t^i + \mathbf{e}_t^i = \hat{\mathbf{g}}_{t-1}^i + \Delta_t^i - \mathbf{g}_t^i + \mathbf{e}_t^i = \Delta_t^i - \delta_t^i + (1-\eta)\mathbf{e}_t^i,$$

1269 Therefore, by triangular inequality, we have:

$$1271 \quad \|\mathbf{e}_{t+1}^i\| \leq (1-\eta)\|\mathbf{e}_t^i\| + \|\Delta_t^i - \delta_t^i\| \leq (1-\eta)\|\mathbf{e}_t^i\| + \sqrt{1-\delta}\|\delta_t^i\|,$$

1272 where in the last inequality we used the definition of the compressor. Now divide both sides by γ_t^2 ,
 1273 and noting that $\gamma_t \geq \gamma_{t-1}$, we have:

$$1274 \quad \frac{\|\mathbf{e}_{t+1}^i\|}{\gamma_t^2} \leq (1-\eta) \frac{\|\mathbf{e}_t^i\|}{\gamma_{t-1}^2} + \frac{\sqrt{1-\delta}\|\delta_t^i\|}{\gamma_{t-1}^2}.$$

1277 Now by Lemma C.2, we get:

$$1279 \quad \sum_{t=1}^T \frac{\|\mathbf{e}_t^i\|^2}{\gamma_{t-1}^2} \leq \frac{1-\delta}{\eta^2} \sum_{t=0}^{T-1} \frac{\|\delta_t^i\|^2}{\gamma_{t-1}^2}.$$

1282 Next we note the following:

$$1283 \quad \begin{aligned} \delta_{t+1}^i &= \mathbf{g}_{t+1}^i - \hat{\mathbf{g}}_t^i - \eta\mathbf{e}_{t+1}^i \\ 1284 &= \mathbf{g}_t^i - \hat{\mathbf{g}}_t^i - \eta(\hat{\mathbf{g}}_t^i - \mathbf{g}_t^i + \mathbf{e}_t^i) + \mathbf{g}_{t+1}^i - \mathbf{g}_t^i \\ 1285 &= (1+\eta)(\mathbf{g}_t^i - \hat{\mathbf{g}}_t^i) - \eta\mathbf{e}_t^i + \mathbf{g}_{t+1}^i - \mathbf{g}_t^i \\ 1286 &= (1+\eta)(\delta_t^i - \Delta_t^i + \eta\mathbf{e}_t^i) - \eta\mathbf{e}_t^i + \mathbf{g}_{t+1}^i - \mathbf{g}_t^i \\ 1287 &= (1+\eta)(\delta_t^i - \Delta_t^i) + \eta^2\mathbf{e}_t^i + \mathbf{g}_{t+1}^i - \mathbf{g}_t^i \\ 1288 &= (1+\eta)(\delta_t^i - \Delta_t^i) + \eta^2\mathbf{e}_t^i + \mathbf{g}_{t+1}^i - \mathbf{g}_t^i. \end{aligned}$$

1290 Similar as before, we now apply triangular inequality and definition of the compressor and get:

$$1292 \quad \|\delta_{t+1}^i\| \leq (1+\eta)\sqrt{1-\delta}\|\delta_t^i\| + \eta^2\|\mathbf{e}_t^i\| + \|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|.$$

1293 Again, we divide both sides by γ_t^2 and note that $\gamma_t \geq \gamma_{t-1}$:

$$1295 \quad \frac{\|\delta_{t+1}^i\|}{\gamma_t^2} \leq (1+\eta)\sqrt{1-\delta} \frac{\|\delta_t^i\|}{\gamma_{t-1}^2} + \frac{\eta^2\|\mathbf{e}_t^i\|}{\gamma_{t-1}^2} + \frac{\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|}{\gamma_t^2}.$$

Let's write $\beta \equiv 1 - (1 + \eta)\sqrt{1 - \delta}$. Now we apply Lemma C.2 again and Young's inequality, and note that $\delta_0^i = \mathbf{0}$, we get:

$$\sum_{t=0}^{T-1} \frac{\|\delta_t^i\|^2}{\gamma_{t-1}^2} \leq \frac{2}{\beta^2} \sum_{t=0}^{T-2} \left(\frac{\eta^4 \|\mathbf{e}_t^i\|^2}{\gamma_{t-1}^2} + \frac{\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2}{\gamma_t^2} \right).$$

Now we plug in the upper bound on the sum of $\|\mathbf{e}_t^i\|$ (and note that $\mathbf{e}_0^i = \mathbf{0}$):

$$\sum_{t=0}^{T-1} \frac{\|\delta_t^i\|^2}{\gamma_{t-1}^2} \leq \frac{2(1 - \delta)\eta^2}{\beta^2} \sum_{t=0}^{T-3} \frac{\|\delta_t^i\|^2}{\gamma_{t-1}^2} + \frac{2}{\beta^2} \sum_{t=0}^{T-2} \frac{\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2}{\gamma_t^2}.$$

Rearranging, we have:

$$\sum_{t=0}^{T-1} \frac{\|\delta_t^i\|^2}{\gamma_{t-1}^2} \leq \frac{2}{\beta^2 - 2(1 - \delta)\eta^2} \sum_{t=0}^{T-2} \frac{\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2}{\gamma_t^2}.$$

Therefore, we have:

$$\sum_{t=1}^T \frac{\|\mathbf{e}_t^i\|^2}{\gamma_{t-1}^2} \leq \frac{2(1 - \delta)}{\beta^2 \eta^2 - 2(1 - \delta)\eta^4} \sum_{t=0}^{T-2} \frac{\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2}{\gamma_t^2}.$$

Next, we note the following:

$$\begin{aligned} \hat{\mathbf{g}}_t^i - \mathbf{g}_t^i &= \Delta_t^i - (\mathbf{g}_t^i - \hat{\mathbf{g}}_{t-1}^i - \eta \mathbf{e}_t^i) + \eta \mathbf{e}_t^i \\ &= \Delta_t^i - \delta_t^i + \eta \mathbf{e}_t^i. \end{aligned}$$

Therefore, by Young's inequality, we have:

$$\begin{aligned} \sum_{t=0}^{T-1} \frac{\|\hat{\mathbf{g}}_t^i - \mathbf{g}_t^i\|^2}{\gamma_t^2} &\leq 2(1 - \delta) \sum_{t=0}^{T-1} \frac{\|\delta_t^i\|^2}{\gamma_{t-1}^2} + 2\eta^2 \sum_{t=1}^{T-1} \frac{\|\mathbf{e}_t^i\|^2}{\gamma_{t-1}^2} \\ &\leq \frac{8(1 - \delta)}{\beta^2 - 2(1 - \delta)\eta^2} \sum_{t=0}^{T-2} \frac{\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2}{\gamma_t^2}. \end{aligned}$$

For the choice of η and β , we choose $\beta = 2\sqrt{1 - \delta}\eta$. Since $\beta \equiv 1 - \sqrt{1 - \delta}(1 + \eta)$, we have:

$$\eta = \frac{\delta}{3\sqrt{1 - \delta}(1 + \sqrt{1 - \delta})}, \quad \beta = \frac{2\delta}{3(1 + \sqrt{1 - \delta})}.$$

Putting this back, we get the desired results. \square

Lemma H.2. Given Assumptions 2.1 and 2.3 to 2.5, and $\eta = \frac{\delta}{3\sqrt{1 - \delta}(1 + \sqrt{1 - \delta})}$, $\gamma \geq \frac{136\ell}{\delta}$ we have:

$$\sum_{t=0}^{T-1} \frac{1}{n} \sum_{i=1}^n \frac{\mathbb{E} [\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2]}{\gamma_t^2} \leq \frac{32\ell^2 F_0}{\gamma_0^3} + \frac{73988\ell^2}{\gamma_0^2 \delta^2} \sum_{t=0}^{T-1} \frac{\sigma^2}{\gamma_t^2}. \quad (23)$$

Therefore, by Lemma 4.1, we also have:

$$\sum_{t=1}^T \frac{1}{n} \sum_{i=1}^n \frac{\mathbb{E} [\|\mathbf{e}_t^i\|^2]}{\gamma_{t-1}^2} \leq \frac{2^{15}\ell^2 F_0}{\gamma_0^3} + \frac{2^{26}\ell^2}{\gamma_0^2 \delta^2} \sum_{t=0}^{T-1} \frac{\sigma^2}{\gamma_t^2}. \quad (24)$$

Proof. For simplicity, let's write $r_t^2 = \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2$. By Assumptions 2.1 and 2.5, we have:

$$\sum_{t=0}^{T-1} \frac{1}{n} \sum_{i=1}^n \frac{\mathbb{E} [\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2]}{\gamma_t^2} \leq 2\ell^2 \sum_{t=0}^{T-1} \frac{\mathbb{E} [r_t^2]}{\gamma_t^2} + \sum_{t=0}^{T-1} \frac{4\sigma^2}{\gamma_t^2}.$$

1350 Therefore,

$$\begin{aligned}
 1352 \sum_{t=0}^{T-1} \frac{1}{n} \sum_{i=1}^n \frac{\mathbb{E} [\|\hat{\mathbf{g}}_t^i - \mathbf{g}_t^i\|^2]}{\gamma_t^4} &\leq \frac{36(1-\delta)(1+\sqrt{1-\delta})^2}{\gamma_0^2 \delta^2} \sum_{t=0}^{T-2} \frac{1}{n} \sum_{i=1}^n \frac{\mathbb{E} [\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2]}{\gamma_t^2} \\
 1355 &\leq \frac{72\ell^2(1-\delta)(1+\sqrt{1-\delta})^2}{\gamma_0^2 \delta^2} \sum_{t=0}^{T-2} \frac{\mathbb{E} [r_t^2]}{\gamma_t^2} + \frac{144(1-\delta)(1+\sqrt{1-\delta})^2}{\gamma_0^2 \delta^2} \sum_{t=0}^{T-1} \frac{\sigma^2}{\gamma_t^2} \\
 1358 &\leq \frac{288\ell^2}{\gamma_0^2 \delta^2} \sum_{t=0}^{T-2} \frac{\mathbb{E} [r_t^2]}{\gamma_t^2} + \frac{576}{\gamma_0^2 \delta^2} \sum_{t=0}^{T-1} \frac{\sigma^2}{\gamma_t^2}.
 \end{aligned}$$

1360 Recall the following from the proof of Theorem 3.3 (with $a_t = 1$):

$$\begin{aligned}
 1362 \frac{\gamma_t + \gamma_{t-1} - L}{2} r_t^2 + F(\mathbf{x}_{t+1}) + \langle \hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle + \frac{\gamma_t - \gamma_{t-1}}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_0\|^2 \\
 1363 \leq F(\mathbf{x}_t) + \frac{\gamma_t - \gamma_{t-1}}{2} \|\mathbf{x}_t - \mathbf{x}_0\|^2.
 \end{aligned}$$

1366 Upper bounding $\langle \hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle$, and dividing both sides by γ_t^3 and summing from $t = 0$ to $T - 1$, we have:

$$\sum_{t=0}^{T-1} \frac{\gamma_t - 2L}{4\gamma_t^3} r_t^2 \leq \sum_{t=0}^{T-1} \frac{F(\mathbf{x}_t) - F(\mathbf{x}_{t+1})}{\gamma_t^3} + 2 \sum_{t=0}^{T-1} \frac{\|\hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t)\|^2}{\gamma_t^4} + \sum_{t=0}^{T-1} (\beta'_t \rho_t - \beta'_t \rho_{t+1}),$$

1372 where $\beta'_t := \frac{\gamma_t - \gamma_{t-1}}{2\gamma_t^3}$. Note that since γ_t is non-decreasing, we also have:

$$\begin{aligned}
 1374 \sum_{t=0}^{T-1} \frac{F(\mathbf{x}_t) - F(\mathbf{x}_{t+1})}{\gamma_t^3} &= \frac{F(\mathbf{x}_0) - F(\mathbf{x}^*)}{\gamma_0^3} - \frac{F(\mathbf{x}_1) - F(\mathbf{x}^*)}{\gamma_0^3} + \frac{F(\mathbf{x}_1) - F(\mathbf{x}^*)}{\gamma_1^3} - \frac{F(\mathbf{x}_2) - F(\mathbf{x}^*)}{\gamma_1^3} + \dots \\
 1375 &\quad + \frac{F(\mathbf{x}_{T-1}) - F(\mathbf{x}^*)}{\gamma_{T-1}^3} - \frac{F(\mathbf{x}_T) - F(\mathbf{x}^*)}{\gamma_{T-1}^3} \\
 1376 &\leq \frac{F(\mathbf{x}_0) - F(\mathbf{x}^*)}{\gamma_0^3} - \frac{F(\mathbf{x}_1) - F(\mathbf{x}^*)}{\gamma_1^3} + \frac{F(\mathbf{x}_1) - F(\mathbf{x}^*)}{\gamma_1^3} - \frac{F(\mathbf{x}_2) - F(\mathbf{x}^*)}{\gamma_2^3} + \dots \\
 1377 &\quad + \frac{F(\mathbf{x}_{T-1}) - F(\mathbf{x}^*)}{\gamma_{T-1}^3} - \frac{F(\mathbf{x}_T) - F(\mathbf{x}^*)}{\gamma_{T-1}^3} \\
 1378 &\leq \frac{F(\mathbf{x}_0) - F(\mathbf{x}^*)}{\gamma_0^3}.
 \end{aligned}$$

1386 Taking expectation on both sides, and applying Assumption 2.1, we have:

$$\sum_{t=0}^{T-1} \frac{\gamma_t - 2L}{4\gamma_t^3} \mathbb{E} [r_t^2] \leq \frac{F_0}{\gamma_0^3} + 4 \sum_{t=0}^{T-1} \frac{1}{n} \sum_{i=1}^n \frac{\mathbb{E} [\|\hat{\mathbf{g}}_t^i - \mathbf{g}_t^i\|^2]}{\gamma_t^4} + \sum_{t=0}^{T-1} \frac{8\sigma^2}{\gamma_t^4 n} + \sum_{t=0}^{T-1} (\beta'_t \rho_t - \beta'_t \rho_{t+1}).$$

1390 Now we use the assumption that β'_t is non-increasing and eliminate the last term. Further, we plug in the upper bound for the sum of $\|\hat{\mathbf{g}}_t - \mathbf{g}_t\|^2$, we get:

$$\sum_{t=0}^{T-1} \frac{\gamma_t - 2L}{4\gamma_t^3} \mathbb{E} [r_t^2] \leq \frac{F_0}{\gamma_0^3} + \frac{1152\ell^2}{\gamma_0^2 \delta^2} \sum_{t=0}^{T-2} \frac{\mathbb{E} [r_t^2]}{\gamma_t^2} + \frac{2312}{\gamma_0^2 \delta^2} \sum_{t=0}^{T-1} \frac{\sigma^2}{\gamma_t^2}.$$

1396 Suppose that $\gamma_t \geq 4L$, then we have:

$$\sum_{t=0}^{T-1} \frac{1}{\gamma_t^2} \mathbb{E} [r_t^2] \leq \frac{8F_0}{\gamma_0^3} + \frac{9216\ell^2}{\gamma_0^2 \delta^2} \sum_{t=0}^{T-2} \frac{\mathbb{E} [r_t^2]}{\gamma_t^2} + \frac{18496}{\gamma_0^2 \delta^2} \sum_{t=0}^{T-1} \frac{\sigma^2}{\gamma_t^2}.$$

1401 If $\gamma_0 \geq \frac{136\ell}{\delta}$, then we have:

$$\sum_{t=0}^{T-1} \frac{1}{\gamma_t^2} \mathbb{E} [r_t^2] \leq \frac{16F_0}{\gamma_0^3} + \frac{36992}{\gamma_0^2 \delta^2} \sum_{t=0}^{T-1} \frac{\sigma^2}{\gamma_t^2}.$$

Finally, we have:

$$\sum_{t=0}^{T-1} \frac{1}{n} \sum_{i=1}^n \frac{\mathbb{E} [\|\mathbf{g}_{t+1}^i - \mathbf{g}_t^i\|^2]}{\gamma_t^2} \leq \frac{32\ell^2 F_0}{\gamma_0^3} + \frac{73988\ell^2}{\gamma_0^2 \delta^2} \sum_{t=0}^{T-1} \frac{\sigma^2}{\gamma_t^2}.$$

Therefore, by Lemma H.1:

$$\sum_{t=1}^T \frac{1}{n} \sum_{i=1}^n \frac{\mathbb{E} [\|\mathbf{e}_t^i\|^2]}{\gamma_{t-1}^2} \leq \frac{2^{15}\ell^2 F_0}{\gamma_0^3} + \frac{2^{26}\ell^2}{\gamma_0^2 \delta^2} \sum_{t=0}^{T-1} \frac{\sigma^2}{\gamma_t^2}.$$

□

Theorem H.3. Given Assumptions 2.3 to 2.5, and we set $a_t = 1$, $\eta := \frac{\delta}{3\sqrt{1-\delta}(1+\sqrt{1-\delta})}$, and we take one initial stochastic gradient step from \mathbf{x}_0 to \mathbf{x}'_0 if $\psi \not\equiv 0$ and set

$$\gamma_t = \frac{136\ell}{\delta} + \sqrt{\frac{2t\sigma^2}{nR_0^2}} + \frac{646\ell^{1/3}\sigma^{2/3}t^{1/3}}{R_0^{2/3}\delta^{4/3}},$$

then it takes at most

$$T = \frac{288R_0^2\sigma^2}{n\varepsilon^2} + \frac{6692L^{1/2}R_0^2\sigma}{\delta^2\varepsilon^{3/2}} + \frac{552\ell R_0^2}{\delta\varepsilon},$$

iterations of Algorithm 2 to get $\mathbb{E} [F(\bar{\mathbf{x}}_T) - F^*] \leq \varepsilon$.

In particular, this means that with three rounds of uncompressed communication (one for the initial stochastic gradient step, one communicating $\hat{\mathbf{g}}_{-1}$ and one communicating $\bar{\mathbf{g}}$), and T rounds of compressed communications, Algorithm 2 reaches the desired accuracy. Assuming that the cost of sending compressed vectors is 1 and sending uncompressed vectors is m , it costs at most

$$T = \frac{288R_0^2\sigma^2}{n\varepsilon^2} + \frac{6692L^{1/2}R_0^2\sigma}{\delta^2\varepsilon^{3/2}} + \frac{552\ell R_0^2}{\delta\varepsilon} + 3m,$$

in communications for Algorithm 2 to get:

$$\mathbb{E} [F(\bar{\mathbf{x}}_T) - F^*] \leq \varepsilon.$$

Proof. By Lemma H.2 and Theorem 3.3, and setting $\eta = \frac{\delta}{3\sqrt{1-\delta}(1+\sqrt{1-\delta})}$, and assuming that $\gamma_0 \geq \frac{136\ell}{\delta}$ and that β'_t is non-increasing in t (this can be easily verified once we give the precise definitions of γ_t), we have:

$$\begin{aligned} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} [F_{t+1}] + \frac{\gamma_{T-1}}{2T} R_T^2 &\leq \frac{\gamma_{T-1}}{2T} R_0^2 + \frac{L}{T} \sum_{t=0}^{T-1} \frac{1}{n} \sum_{i=1}^n \frac{\mathbb{E} [\|\mathbf{e}_t^i\|^2]}{\gamma_{t-1}^2} + \sum_{t=0}^{T-1} \frac{\sigma^2}{nT\gamma_{t-1}} \\ &\leq \frac{\gamma_{T-1}}{2T} R_0^2 + \frac{2^{15}L\ell^2}{\delta^4\gamma_0^3 T} F_0 + \sum_{t=0}^{T-1} \frac{2^{26}L\sigma^2}{\delta^4\gamma_t^2 T} + \sum_{t=0}^{T-1} \frac{\sigma^2}{n\gamma_{t-1} T}. \end{aligned}$$

We consider the following stepsize:

$$\gamma_t = \frac{136\ell}{\delta} + \frac{32L^{1/4}\ell^{1/2}F_0^{1/4}}{\delta R_0^{1/2}} + \sqrt{\frac{2t\sigma^2}{nR_0^2}} + \frac{512L^{1/3}\sigma^{2/3}t^{1/3}}{R_0^{2/3}\delta^{4/3}}.$$

First we note that γ_t is non-decreasing. Further, it can be verified that with such a choice of γ_t , we have $\beta'_t = \frac{\gamma_t - \gamma_{t-1}}{2\gamma_t^3}$ is non-increasing in t .

Noting that $\sum_{t=0}^{T-1} \frac{1}{t^{1-p}} \leq \frac{1}{p}(T-1)^p$, then we have:

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} [F_{t+1}] \leq \frac{69\ell R_0^2}{\delta T} + \frac{16L^{1/4}\ell^{1/2}F_0^{1/4}}{\delta R_0^{1/2} T} + \frac{384L^{1/3}R_0^{4/3}\sigma^{2/3}}{\delta^{4/3}T^{2/3}} + \frac{3\sqrt{2}R_0\sigma}{\sqrt{nT}}.$$

1458 Therefore, after at most:

$$1460 \quad T = \frac{288R_0^2\sigma^2}{n\varepsilon^2} + \frac{60199L^{1/2}R_0^2\sigma}{\delta^2\varepsilon^{3/2}} + \frac{276\ell R_0^2}{\delta\varepsilon} + \frac{64L^{1/4}\ell^{1/2}F_0^{1/4}}{\delta R_0^{1/2}\varepsilon}.$$

1463 iterations, we have $\mathbb{E}[F(\bar{\mathbf{x}}_T)] \leq \varepsilon$.

1464 This is already a desirable convergence rate, but we can also eliminate the term dependent on F_0 ,
1465 using one initial stochastic gradient step. By Lemma C.3, we have $\mathbb{E}[F(\mathbf{x}'_0) - F^*] \leq LR_0^2 + \frac{R_0\sigma}{\sqrt{2}}$
1466 and $R'_0 := \mathbb{E}[\|\mathbf{x}'_0 - \mathbf{x}^*\|^2] \leq 2R_0^2$. Therefore if we start our algorithm at \mathbf{x}'_0 , then we have:

$$1468 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[F_{t+1}] \leq \frac{\gamma_{T-1}}{2T} R_0^2 + \frac{2^{15}\ell^4 R_0^2}{\delta^4\gamma_0^3 T} + \frac{2^{15}\ell^3 R_0\sigma}{\delta^4\gamma_0^3 T} + \sum_{t=0}^{T-1} \frac{2^{26}\ell\sigma^2}{\delta^4\gamma_t^2 T} + \sum_{t=0}^{T-1} \frac{\sigma^2}{n\gamma_{t-1} T}.$$

1471

1472 For the third term, due to Young's inequality, we have:

$$1473 \quad \frac{2^{15}\ell^3 R_0\sigma}{\delta^4\gamma_0^3 T} \leq \frac{2^{15}\ell^4 R_0^2}{\delta^4\gamma_0^3 T} + \frac{2^{15}\ell^2\sigma^2}{\delta^4\gamma_0^3 T} \leq \frac{2^{15}\ell^3 R_0\sigma}{\delta^4\gamma_0^3 T} + \frac{241\ell\sigma^2}{\delta^4\gamma_0^2 T}.$$

1476

1477 Therefore, we have:

$$1478 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[F_{t+1}] \leq \frac{\gamma_{T-1}}{2T} R_0^2 + \frac{2^{16}\ell^4 R_0^2}{\delta^4\gamma_0^3 T} + \sum_{t=0}^{T-1} \frac{2^{27}\ell\sigma^2}{\delta^4\gamma_t^2 T} + \sum_{t=0}^{T-1} \frac{\sigma^2}{n\gamma_{t-1} T}.$$

1481

1482 Now we pick:

$$1483 \quad \gamma_t = \frac{136\ell}{\delta} + \sqrt{\frac{2t\sigma^2}{nR_0^2}} + \frac{646\ell^{1/3}\sigma^{2/3}t^{1/3}}{R_0^{2/3}\delta^{4/3}}.$$

1485 and after at most:

$$1487 \quad T = \frac{288R_0^2\sigma^2}{n\varepsilon^2} + \frac{6692L^{1/2}R_0^2\sigma}{\delta^2\varepsilon^{3/2}} + \frac{552\ell R_0^2}{\delta\varepsilon}.$$

1489 iterations, we get

$$1490 \quad \mathbb{E}[F(\bar{\mathbf{x}}_T) - F^*] \leq \varepsilon$$

1491

1492

1493

1494

I ANALYSIS OF THE REAL ITERATES

1497 In this section, we present an analysis of the real iterates generated by Algorithm 1, which can
1498 be immediately combined with our analysis in Section 4 and give the convergence guarantee for
1499 Algorithm 2 purely in terms of the real iterates \mathbf{x}_t . We note that this analysis does not rely on the
1500 virtual iterates $\tilde{\mathbf{x}}_t$ at all, and is therefore also applicable to the basic proximal algorithm without dual
1501 averaging. We believe that this analysis might be of independent interest.

1502 We first note that the guarantees for the real iterates is weaker than that of Theorem 3.3.

1503 **Theorem I.1.** *Given Assumptions 3.1, 2.3 and 2.4, then for any $\mathbf{x} \in \text{dom}\psi$, we have:*

$$1505 \quad \sum_{t=0}^{T-1} \mathbb{E} \left[a_t(F(\mathbf{x}_{t+1}) - F(\mathbf{x})) + \frac{\gamma_{t-1} - 2a_t L}{4} \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 \right] \leq \frac{\gamma_{T-1}}{2} \|\mathbf{x} - \mathbf{x}_0\|^2 + 2 \sum_{t=1}^T \frac{\mathbb{E}[\|\mathbf{e}_t\|^2]}{\gamma_{t-1}} + 2 \sum_{t=0}^{T-1} \frac{a_t^2 \sigma^2}{\gamma_{t-1}}. \quad (25)$$

1508

1509 *Proof.* By the definition of Φ_t , we have for any $\mathbf{x} \in \text{dom}(\psi)$:

$$1511 \quad \Phi_t(\mathbf{x}) \geq \Phi_t^* + \frac{1}{2} \|\mathbf{x} - \mathbf{x}_{t+1}\|^2.$$

1512

We also have:

1513

1514

$$\begin{aligned}
\Phi_t(\mathbf{x}) &= \sum_{k=0}^t a_k (f(\mathbf{x}_k) + \langle \hat{\mathbf{g}}_k, \mathbf{x} - \mathbf{x}_s \rangle + \psi(\mathbf{x})) + \frac{\gamma_t}{2} \|\mathbf{x} - \mathbf{x}_0\|^2 \\
&= \sum_{k=0}^t a_k (f(\mathbf{x}_k) + \langle \nabla f(\mathbf{x}_k), \mathbf{x} - \mathbf{x}_k \rangle + \psi(\mathbf{x})) + \sum_{k=0}^t a_k \langle \hat{\mathbf{g}}_k - \nabla f(\mathbf{x}_k), \mathbf{x} - \mathbf{x}_k \rangle + \frac{\gamma_t}{2} \|\mathbf{x} - \mathbf{x}_0\|^2 \\
&\stackrel{(i)}{\leq} \sum_{k=0}^t a_k F(\mathbf{x}) + \sum_{k=0}^t a_k \langle \hat{\mathbf{g}}_k - \nabla f(\mathbf{x}_k), \mathbf{x} - \mathbf{x}_k \rangle + \frac{\gamma_t}{2} \|\mathbf{x} - \mathbf{x}_0\|^2,
\end{aligned}$$

1520

1521

1522

1523

where in (i) we used the convexity of f . Taking expectations on both sides, we get:

1524

1525

1526

1527

1528

1529

Now by the definition of \mathbf{x}_{t+1} :

1530

1531

1532

$$\Phi_t^* = \Phi_{t-1}(\mathbf{x}_{t+1}) + a_t (f(\mathbf{x}_t) + \langle \hat{\mathbf{g}}_t, \mathbf{x}_{t+1} - \mathbf{x}_t \rangle + \psi(\mathbf{x}_{t+1})) + \frac{\gamma_t - \gamma_{t-1}}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_0\|^2$$

1533

1534

1535

1536

1537

1538

1539

$$\begin{aligned}
&\stackrel{(ii)}{\geq} \Phi_{t-1}^* + \frac{\gamma_{t-1}}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 + a_t (f(\mathbf{x}_t) + \langle \hat{\mathbf{g}}_t, \mathbf{x}_{t+1} - \mathbf{x}_t \rangle + \psi(\mathbf{x}_{t+1})) \\
&= \Phi_{t-1}^* + \frac{\gamma_{t-1}}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 + a_t (f(\mathbf{x}_t) + \langle \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle + \psi(\mathbf{x}_{t+1})) + a_t \langle \hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle \\
&\stackrel{(iii)}{\geq} \Phi_{t-1}^* + \frac{\gamma_{t-1} - a_t L}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 + a_t F(\mathbf{x}_{t+1}) + a_t \langle \hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle,
\end{aligned}$$

1540

where in (ii) we used the 1-strong convexity of Φ_t and in (iii) we used Assumption 2.4.

1541

1542

Now rearranging and summing from $t = 0$ to $T - 1$, we get:

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

$$\begin{aligned}
&\sum_{t=0}^{T-1} \mathbb{E} \left[a_t F(\mathbf{x}_{t+1}) + \frac{\gamma_{t-1} - a_t L}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 \right] \\
&\leq \mathbb{E} [\Phi_{T-1}^*] - \sum_{t=0}^{T-1} \mathbb{E} [a_t \langle \hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle] \\
&\leq \mathbb{E} [\Phi_{T-1}^*] - \frac{\gamma_{T-1}}{2} \mathbb{E} [\|\mathbf{x} - \mathbf{x}_T\|^2] - \sum_{t=0}^{T-1} a_t \mathbb{E} [\langle \hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle] \\
&\leq \sum_{t=0}^{T-1} a_t F(\mathbf{x}) + \sum_{t=0}^{T-1} a_t \mathbb{E} [\langle \hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \rangle] + \frac{\gamma_{T-1}}{2} \mathbb{E} [\|\mathbf{x} - \mathbf{x}_0\|^2] \\
&\quad - \frac{\gamma_{T-1}}{2} \mathbb{E} [\|\mathbf{x} - \mathbf{x}_T\|^2] - \sum_{t=0}^{T-1} a_t \mathbb{E} [\langle \hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{x}_t \rangle].
\end{aligned}$$

1559

Rearranging, we get:

1560

1561

1562

1563

1564

1565

$$\begin{aligned}
&\sum_{t=0}^{T-1} \mathbb{E} \left[a_t (F(\mathbf{x}_{t+1}) - F(\mathbf{x})) + \frac{\gamma_{t-1} - a_t L}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 \right] \\
&\leq \frac{1}{2} (\|\mathbf{x} - \mathbf{x}_0\|^2 - \mathbb{E} [\|\mathbf{x} - \mathbf{x}_T\|^2]) + \sum_{t=0}^{T-1} a_t \mathbb{E} [\langle \hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_{t+1} \rangle].
\end{aligned}$$

1566 Note that by the definition of \mathbf{e}_t , we have:
1567

$$\begin{aligned}
1568 \sum_{t=0}^{T-1} a_t \langle \hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_{t+1} \rangle &= \sum_{t=0}^{T-1} \langle \mathbf{e}_{t+1} - \mathbf{e}_t, \mathbf{x} - \mathbf{x}_{t+1} \rangle + \sum_{t=0}^{T-1} a_t \langle \mathbf{g}_t - \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_{t+1} \rangle \\
1571 &= \sum_{t=0}^{T-1} \langle \mathbf{e}_{t+1}, \mathbf{x} - \mathbf{x}_{t+1} \rangle - \langle \mathbf{e}_t, \mathbf{x} - \mathbf{x}_t \rangle + \langle \mathbf{e}_t, \mathbf{x}_{t+1} - \mathbf{x}_t \rangle \\
1574 &\quad + \sum_{t=0}^{T-1} a_t \langle \mathbf{g}_t - \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_{t+1} \rangle \\
1577 &= \langle \mathbf{e}_T, \mathbf{x} - \mathbf{x}_T \rangle + \sum_{t=0}^{T-1} \langle \mathbf{e}_t, \mathbf{x}_{t+1} - \mathbf{x}_t \rangle + \sum_{t=0}^{T-1} a_t \langle \mathbf{g}_t - \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_{t+1} \rangle \\
1580 &\leq \frac{\|\mathbf{e}_T\|^2}{2\gamma_{T-1}} + \frac{\gamma_{T-1}\|\mathbf{x} - \mathbf{x}_T\|^2}{2} + \sum_{t=1}^{T-1} \left(\frac{2\|\mathbf{e}_t\|^2}{\gamma_{t-1}} + \frac{\gamma_{t-1}\|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2}{8} \right) \\
1583 &\quad + \sum_{t=0}^{T-1} a_t \langle \mathbf{g}_t - \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_{t+1} \rangle.
\end{aligned}$$

1586 Taking expectation on both sides, and noting that the noise $\mathbf{g}_t - \nabla f(\mathbf{x}_t)$ is independent on both \mathbf{x}
1587 and \mathbf{x}_t , we have:

$$\begin{aligned}
1588 \sum_{t=0}^{T-1} a_t \mathbb{E} [\langle \hat{\mathbf{g}}_t - \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_{t+1} \rangle] \\
1590 &\leq \frac{\|\mathbf{e}_T\|^2}{2\gamma_{T-1}} + \frac{\gamma_{T-1}\|\mathbf{x} - \mathbf{x}_T\|^2}{2} + \sum_{t=1}^{T-1} \frac{2\|\mathbf{e}_t\|^2}{\gamma_{t-1}} + \sum_{t=1}^{T-1} \frac{\gamma_{t-1}\|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2}{4} + 2 \sum_{t=0}^{T-1} \frac{a_t^2 \sigma_{\mathbf{g}}^2}{\gamma_{t-1}}.
\end{aligned}$$

1595 Now we put these together and get:
1596

$$\sum_{t=0}^{T-1} \mathbb{E} \left[a_t (F(\mathbf{x}_{t+1}) - F(\mathbf{x})) + \frac{\gamma_{t-1} - 2a_t L}{4} \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 \right] \leq \frac{\gamma_{T-1}}{2} \|\mathbf{x} - \mathbf{x}_0\|^2 + 2 \sum_{t=1}^T \frac{\mathbb{E} [\|\mathbf{e}_t\|^2]}{\gamma_{t-1}} + 2 \sum_{t=0}^{T-1} \frac{a_t^2 \sigma_{\mathbf{g}}^2}{\gamma_{t-1}}.$$

1600 \square

1602 *Remark I.2.* Comparing to Theorem 3.3, we note that the key difference here is that the error in
1603 Equation (25) is $2 \sum_{t=1}^T \frac{\mathbb{E} [\|\mathbf{e}_t\|^2]}{\gamma_{t-1}}$, while in Equation (12) it is $L \sum_{t=1}^T \frac{\mathbb{E} [\|\mathbf{e}_t\|^2]}{\gamma_{t-1}^2}$. The $\frac{L}{\gamma_{t-1}}$ multiplicative
1604 difference here is crucial and allows the stepsize γ_t to control the errors much more effectively.
1605 Therefore, Theorem I.1 would lead to a weaker convergence guarantee.
1606

1607 With this, we can now directly combine Theorem I.1 with Lemma 4.3 to obtain the following
1608 convergence guarantee for Algorithm 2 in terms of the real iterates \mathbf{x}_t . For simplicity, we use the
1609 fixed stepsizes $\gamma_t = \gamma$.

1610 **Theorem I.3.** *Given Assumptions 2.3 to 2.5, and we set $a_t = 1$, $\eta := \frac{\delta}{3\sqrt{1-\delta}(1+\sqrt{1-\delta})}$, and we set:*

$$\gamma = \max \left\{ \frac{24\sqrt{2}\ell}{\delta}, \frac{32\ell^{2/3}F_0^{1/3}}{\delta^{4/3}R_0^{2/3}}, \frac{135\sigma\sqrt{T}}{\delta^2 R_0} \right\},$$

1615 then it takes at most:

$$T = \frac{72900R_0^2\sigma^2}{\delta^4\varepsilon^2} + \frac{48\sqrt{2}\ell R_0^2}{\delta\varepsilon} + \frac{64(\ell R_0^2)^{2/3}F_0^{1/3}}{\delta^{4/3}\varepsilon}, \quad (26)$$

1619 iterations of Algorithm 2 to get $\frac{1}{T} \sum_{t=0}^{T-1} (F(\mathbf{x}_{t+1}) - F^*) \leq \varepsilon$.

1620 *Proof.* We plug Equation (17) into Equation (25), and assume that $\gamma \geq \frac{24\sqrt{2}\ell}{\delta}$, and get:
 1621

$$1622 \quad \frac{1}{T} \sum_{t=0}^{T-1} (F(\mathbf{x}_{t+1}) - F^*) \leq \frac{\gamma R_0^2}{2T} + \frac{11520\ell^2}{\delta^4 \gamma^2 T} F_0 + \frac{9074\sigma^2}{\delta^4 \gamma}.$$

$$1623$$

$$1624$$

1625 Now we set

$$1626 \quad \gamma = \max\left\{\frac{24\sqrt{2}\ell}{\delta}, \frac{32\ell^{2/3}F_0^{1/3}}{\delta^{4/3}R_0^{2/3}}, \frac{135\sigma\sqrt{T}}{\delta^2 R_0}\right\},$$

$$1627$$

$$1628$$

1629 and we have:

$$1630 \quad \frac{1}{T} \sum_{t=0}^{T-1} (F(\mathbf{x}_{t+1}) - F^*) \leq \frac{24\sqrt{2}\ell R_0^2}{\delta T} + \frac{32(\ell R_0^2)^{2/3} F_0^{1/3}}{\delta^{4/3} T} + \frac{135 R_0 \sigma}{\delta^2 \sqrt{T}}.$$

$$1631$$

$$1632$$

1633 Therefore, it takes at most:

$$1634 \quad T = \frac{72900 R_0^2 \sigma^2}{\delta^4 \varepsilon^2} + \frac{48\sqrt{2}\ell R_0^2}{\delta \varepsilon} + \frac{64(\ell R_0^2)^{2/3} F_0^{1/3}}{\delta^{4/3} \varepsilon},$$

$$1635$$

$$1636$$

1637 iterations of Algorithm 2 to get:

$$1638 \quad \frac{1}{T} \sum_{t=0}^{T-1} (F(\mathbf{x}_{t+1}) - F^*) \leq \varepsilon.$$

$$1639$$

$$1640$$

$$1641$$

1642 \square

1643 *Remark I.4.* We emphasize that here we only achieved an $\mathcal{O}(\frac{1}{\delta^{4/3} \varepsilon})$ convergence rate in the deter-
 1644 ministic term, which is worse than the $\mathcal{O}(\frac{1}{\delta \varepsilon})$ rate achieved in Theorem 4.4 in terms of δ . Perhaps
 1645 more importantly, in the stochastic case ($\sigma^2 > 0$), we only achieve a $\mathcal{O}(\frac{1}{\delta^4 \varepsilon^2})$ rate, which does not
 1646 improve linearly as n increases and is not delta-free, unlike the rate in Theorem 4.4 and Theorem H.3.
 1647 It is unclear whether this limitation is a fundamental property of the algorithm or an artifact of the
 1648 analysis. We leave it for future work to resolve this question.

1649 *Remark I.5.* We also briefly note that the rate in Theorem I.3 can be slightly improved using the
 1650 restart strategy and a more careful analysis of the number of steps and parameter settings in each
 1651 stage. This way we can remove the $\mathcal{O}(\frac{1}{\delta^{4/3} \varepsilon})$ term, and instead get a $\mathcal{O}(\frac{1}{\delta^{4/3} \varepsilon^{2/3}})$ term overall. We will
 1652 however have to assume that $\text{dom} \psi$ is bounded, and do $\mathcal{O}(\log \frac{1}{\varepsilon})$ number of restarts which requires
 1653 one full communication at each stage. For simplicity, we omit the details here.

1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673