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ABSTRACT

Retrieval-Augmented Generation (RAG) has demonstrated significant potential
in enhancing large language models (LLMs) by supplementing external knowl-
edge. However, existing approaches focus primarily on retrieving isolated factual
knowledge entities while neglecting the critical reasoning relationships. To address
this limitation, Graph Retrieval-Augmented Generation (GraphRAG) has emerged
as an effective solution, which explicitly integrates structured knowledge graphs
into LLMs to support complex reasoning tasks. Although diverse corpus retrieval
methods have been explored, they typically rely on static, query-agnostic graphs
constructed via fixed heuristics. We are thereby motivated to propose a query-
centric retrieval framework that adaptively constructs a graph tailored to each query.
However, it is challenging to accurately identify these latent relationships from
queries to the corpus. Moreover, unifying multiple local-perspective connections
into a globally coherent structured corpus introduces additional complexity. To
this end, we introduce HyperRAG, a novel framework in the Hyperbolic space that
captures both explicit entity-based links and implicit logical connections inferred
by the LLM. Our main contributions include: (¢) A dual-stage prompting strategy
that guides the LLM to identify relevant passages and their implicit relationships
based on the query. (i7) A hierarchical graph unification paradigm that models
each query-specific graph as a minimal subtree and integrates them into a cohesive
graph. (iii) A hyperbolic space embedding approach that effectively preserves
the hierarchical structure during graph learning. Extensive experiments have been
conducted on three benchmark datasets, where a remarkable improvement on three
datasets indicates our superior performance compared with others.

1 INTRODUCTION

Recent advances in retrieval-augmented generation (RAG) have demonstrated its importance by
integrating external knowledge to improve the downstream performance of large language models
(LLMs)|Gao et al.|(2024); ILewis et al.|(2020a). While effective for fact-based queries, conventional
RAG systems only retrieve fragmented passages without capturing the rich semantic relations Dong
et al.[(2023); |[Fatehkia et al.|(2024); |Liang et al.[(2024)). This limitation becomes particularly apparent
in domains requiring multi-hop reasoning or conceptual understanding, where the connections
between knowledge are as crucial as the ideas themselves.

The emergence of graph retrieval-augmented generation (GraphRAG) represents an effective solution,
augmenting retrieval with structured knowledge representations as a graph |Zhang et al.| (2025));
Xiao et al.[(2025)). Current approaches to graph construction in GraphRAG systems can be broadly
categorized into three paradigms. Passage graphs offer computational efficiency through entity-
based linking but sacrifice semantic depth |Li et al.| (2024). Hierarchical trees provide multi-scale
organization yet remain rigid in their predefined structures |Sarthi et al.| (2024). Knowledge graphs
excel at factual reasoning but are constrained by their schema-dependent nature Edge et al.| (2024)); |He
et al.|(2024); |Luo et al.[(2025). Yet, these methods are limited by their static and query-independent
graph construction, often relying on pre-defined heuristics such as entity co-occurrence or clustering.
These methods fail to adapt to the unique reasoning paths required by individual queries and overlook
the opportunity to extract task-relevant, latent relations embedded in natural language. As shown
in Figure[T] a typical graph built on a Disney-related corpus often groups entities based on general
categorical features (e.g., grouping animated films by the topic). These structures fail to answer
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query-specific questions such as “Which film was released right after the Disney Renaissance period
by Disney?” since they do not capture latent, query-aware relations.
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Figure 1: An illustration of the difference between addresses the research question:
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the former one, passages are connected due to shared edge be leveraged to enhance GraphRAG?
themes or categories. But the second one connects pas-

sages guided by the question itself. This example well To this end, we introduce HyperRAG, a novel
demonstrates our mo.tivati(.)n to achieve a coherent. fusion query-centric framework that adapts to the rea-
of two types of relationships from both perspectives. soning requirements of each question. For the

query above, the graph is built starting with rel-
evant background, and then selectively incorporates passages through meaningful linking. (i) We
propose a dual-stage prompting strategy that first identifies explicit entity-level connections and then
extracts query-specific implicit relations using LLM-based reasoning. This enables our method to
integrate both general background knowledge and fine-grained logical cues. (i¢) Each query-specific
graph is naturally modeled as a minimalistic subtree. A hierarchical graph unification paradigm is
proposed where all the subtrees are cohesively integrated into a unified one. (ii¢) To maximally
preserve the hierarchical properties, the graph learning is conducted in the hyperbolic space, given its
superior performance in modeling tree structures.

Contributions are summarized as follows:

* We propose a novel query-centric graph construction paradigm, which contains both static knowl-
edge relationships and underlying logical connections guided by the query itself. This allows the
constructed graph to adapt flexibly to different reasoning needs.

* We employ a dual-prompting approach to select useful passages and incorporate local connections
into a unified graph. Combined with our hyperbolic graph learning framework, it better captures
hierarchical and semantic structures than current methods.

» Extensive experiments have been conducted on three benchmark datasets, where a remarkable
improvement indicates our superior effectiveness and further confirm the suitability of adopting
hyperbolic distance for representing hierarchical and logically structured relationships.

2 PRELIMINARY

Notations. Let Q = ¢1,¢o, ..., gn denote the set of input questions, and let C = py1,pa,...,Dnm
represent the corpus containing M textual passages. For each question ¢; € Q, we construct a query-
specific graph G; = (V;, E;, S;), where V; C C is the set of relevant passages (nodes), F; C V; x V;
is the set of undirected edges connecting semantically related passages, and S; : V; — T maps
each node to its corresponding textual content. A text encoder f : T — R? (e.g., Sentence-Bert)
maps both passages and questions into a d-dimensional embedding space. These embeddings are
further projected into a Poincaré ball hyperbolic space H?, where retrieval is performed based on the
hyperbolic distance between the query embedding and the nodes in V;.

Retrieval-Augmented Generation (RAG) has become a popular paradigm for enhancing language
models with external knowledge, especially in open-domain question answering and long-form
generation tasks. Current RAG methods often treat knowledge bases as flat collections, retrieving
top-K passages based on embedding similarity. While often effective, this approach struggles
with complex, domain-specific, or multi-hop queries. Recently, GraphRAG has gained increasing
popularity. Instead of storing knowledge as isolated passages, it organizes them into a graph
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structure, where nodes represent passages and edges encode various forms of semantic or contextual
relationships. This shift allows the retrieval process to go beyond simple similarity links in the graph.
A key insight behind this approach is that the organization of knowledge significantly influences
what can be retrieved. In GraphRAG, the graph serves not only as memory but also as a guide for
relationships. As a result, the construction of the graph is crucial.

3 HYPERRAG: QUERY-CENTRIC RETRIEVAL-AUGMENTED GENERATION

Our primary goal is to construct a query-guided graph over a textual corpus to enhance retrieval-
augmented generation performance. Instead of relying on a predefined knowledge graph, our method
dynamically builds a graph that is tailored to each input question. This allows the structure of the
graph to reflect the dependency relationships most relevant to the query. Existing approaches based on
knowledge graphs often suffer from limited coverage and irrelevant connections, where relationships
are predefined and typically represented in the form of triples. They often result in information loss by
compressing rich textual content into sparse symbolic facts. In contrast, our approach preserves the
full semantics of the original corpus passages and leverages LLMs to reason about which passages are
useful for a given question, which ones should be linked, and what additional information might be
needed. This query-specific graph, constructed in hyperbolic space, serves as a flexible and expressive
structure for guiding hierarchical and semantically-aware retrieval, ultimately improving the quality
of generated answers in downstream tasks.

3.1 QUERY-CENTRIC GRAPH CONSTRUCTION FROM RAW TEXT
3.1.1 BUILDING EXPLICIT KNOWLEDGE CONNECTION

To complement query-specific reasoning, we incorporate an explicit knowledge connection module
that emulates the relational structure found in traditional knowledge graphs. In knowledge graphs,
entities such as “Arthur Conan Doyle”, “Sherlock Holmes”, and “Dr. Watson” are linked through
well-defined relations like writes, assistant of, and so on. While symbolic triples (head, relation, tail)
enable structured reasoning, they often rely on external rules, as illustrated in the format below:

(P¢77”7Pj) €T, whereT ={(h,r,t)|hteV,reR}

Inspired by this, we define explicit connections by identifying shared or semantically similar entities
across different passages. Using lightweight keyword extraction techniques, we detect key phrases
such as named entities, concepts, or domain-specific terms and connect passages that reference the
same or closely related terms. This results in a set of basic, query-independent links that reflect
common knowledge relationships within the corpus. As shown below, K(p) denotes the keyword set
of passage p, and 0 is a threshold set empirically to 0.15. To prevent the graph from being dominated
by dense explicit edges, we restrict each passage to be connected to at most 3 neighbors through
co-occurrence links. This constraint ensures the explicit structure remains at a reasonable scale.

|K; N K|
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These explicit edges form a foundational layer of the graph, providing entity-level connectivity
similar to that of traditional knowledge graphs. Unlike hard-coded triples, however, our connections
retain the full textual context and allow for flexibility in expression. Later in the framework, these
explicit links are integrated with the query-guided implicit connections to form a richer, hybrid graph
structure that captures both general background knowledge and question-specific reasoning paths.

3.1.2 BUILDING QUERY-GUIDED IMPLICIT CONNECTION

While explicit connections provide basic entity-level linkage across the corpus, they remain inde-
pendent of any specific information need. To introduce query relevance into the graph structure, we
propose a query-guided implicit connection mechanism. The key idea is to leverage the reasoning
capabilities of LLMs to infer logical relationships between passages in the context of a specific
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Figure 2: The overall framework of our proposed HyperRAG. We begin by preprocessing the corpus
using keyword extraction techniques to identify and connect similar passages, often grouped by
shared topics or entities. Then, for each question, we find out the underlying logical connections
among passages. These connections are embedded into a hyperbolic space to naturally reflect the
hierarchical tree-structured nature. Finally, we retrieve the top-K items to support question answering.

question. Given a query ¢, we first retrieve a candidate set of passages P = {p1,p2,...,px } from a
large corpus C using a dense retrieval Sentence-Bert-Based model. Each passage and the query are
embedded into a semantic space, and we select the top- K passages.

We then prompt the LLM to evaluate which of these passages are potentially helpful for answering
the query, and return a subset of passages deemed relevant. Based on this filtered set, the LLM is
further asked to reason about their interrelations, i.e., whether two passages support, complement, or
expand upon each other in answering ¢;. The identified relationships are used to construct implicit
edges between passages, forming a query-specific subgraph that reflects not only content similarity,
but also task-driven semantic alignment. To enrich this reasoning process, we also ask the LLM to
suggest missing concepts or complementary knowledge that may aid in answering the question. These
suggestions are converted into additional queries to retrieve further passages from the corpus, which
are then incorporated into the evolving graph. As a result, the implicit connection module dynamically
builds a graph structure that is tailored to the query and driven by LLM-based understanding rather
than predefined rules or rigid entity matching.

3.1.3 FUSION OF BOTH EXPLICIT AND IMPLICIT EDGES

To construct a unified hierarchical structure that combines both factual and query-specific relation-
ships, we propose a tree fusion mechanism that merges the explicit and implicit knowledge trees into
a single tree structure. The explicit tree is derived from surface-level cues, such as co-occurring enti-
ties or shared keywords among corpus chunks, capturing predefined and globally relevant knowledge
relations. In contrast, the implicit tree is constructed dynamically for each query ¢ by leveraging a
language model to identify semantically useful passages and connect them based on their contextual
relevance to ¢q. Given two sub-trees that exhibit explicit and implicit dependency relationships
between textual segments, we perform fusion by first identifying shared nodes across both trees, i.e.,
nodes that reference the same passage or contain the same key entity. These shared nodes are unified
into a single node in the resulting graph G, and their respective subtrees are recursively merged while
preserving the original parent-child directionality. To ensure that the resulting structure remains a
valid tree, we prevent the formation of any cycles by discarding redundant edges that introduce loops.
The final tree thus integrates both global knowledge priors and query-dependent reasoning chains,
offering a rich and hierarchically coherent structure suitable for downstream retrieval tasks.

3.2 RETRIEVAL WITH LEARNED HYPERBOLIC EMBEDDING FROM CONSTRUCTED GRAPH

To faithfully encode the hierarchical and query-sensitive structure of our fused graph G = (V, £),
a key design choice is how to define the distance between nodes that capture both semantic and
structural information. To this end, we introduce a hyperbolic embedding strategy specifically tailored
for Retrieval-Augmented Generation over structured corpora. We embed all nodes (i.e., passages)
into the Poincaré ball BY = {z € R¢ : ||z| < 1}, where distances increase exponentially with radius,
allowing for separation of semantically close versus distant nodes |Nickel & Kiela (2017).
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Algorithm 1: Streaming Query-Centric Graph Construction and Retrieval

Input: Query g, corpus C, retrieval size K, s end
max rounds 7, graph G = (V, &) o if GetQueryCount() > update_frequency

Output: Updated graph G', answer a then
1 fort < 1to T do 10 Vaew < GetRecentNodes(G);
2 if NeedMoreContext(R;_1,q) then 1 G’ + UpdateEmbeddings(G, View);
3 P; + Retrieve(Ri—1,G, K); 12 G’ <+ PruneOldNodes(G');
4 R: + SelectRelevant(P;, q); 13 | ResetQueryCount();
5 V—VURy; 14 end
6 & < £ UBuildEdges(R¢, Ri—1); 15 a + GenerateAnswer(q, G);
7 end 16 return G, a

Motivation for Hyperbolic Distance. Common metrics include L” norms, each with different
characteristics |Coghetto| (2016); Debeye & Van Riel| (1990). While desirable in many metric spaces,
these metrics universally satisfy the triangle inequality. As the number of hops increases, passages
with similar semantic embeddings have endpoints py and py, that remain close in the metric space.
As k increases, the global semantic distance between distant nodes in the chain is underestimated.
This becomes a problem in reasoning tasks where longer chains should reflect logical difference or
inferential effort. For instance, passages separated by multiple reasoning steps shouldn’t be treated as
nearly the same as directly connected ones. Please refer to Appendix [A.T]for detailed discussion and
mathematical illustrations. Therefore, we choose hyperbolic geometry for two reasons:

» Exponential Expansion: Euclidean space’s linear growth cannot accommodate all nodes in deep
trees. As a result, many logically irrelevant passages become spatially indistinguishable, because the
space becomes “crowded”. On the contrary, hyperbolic space is particularly suitable for modeling
hierarchical tree structures due to its exponentially expanding space. This inherent capacity ensures
that hierarchical relationships are encoded without losing spatial coherence. Let R™ and H™ denote
n-dimensional Euclidean and hyperbolic spaces, respectively. The volume of a ball of radius r
differs significantly between the two geometries, and it is mathematically shown as follows:

k—1 o )
_ . . — 7[-7 n _ . n—1 ~ ) (n—l)r
D = ;6(pwpz+1)» Volgn (1) = T(n/2 + 1)7“ , Volgn (r) = /0 sinh" ™ (t)dt ~ C - e .

* Logically Aligned Proximity: In multi-hop QA, we often reason over chains of passages
{po,p1,...,pr}. Nodes in a parent-child logical relation (e.g., p; — p;+1) can remain at small
distances, while nodes far apart in reasoning hierarchy (e.g., pg — px) can be naturally separated.

du(po,p1) = du(p1,p2) = - = du(pr—1, Pr) < du(po, pr)-

Thus, logical edges are modeled with short hyperbolic distances, preserving the immediate inferen-
tial relationship between supporting facts. In contrast, nodes that are farther apart in the reasoning
hierarchy, which may only share indirect or topic-level connections, are naturally pushed apart
due to the exponential expansion of hyperbolic space. This creates a geometric alignment between
reasoning depth and embedding distance, which is essential when organizing logic-driven passages.

Joint Learning of Semantic and Structural Representations. We initialize the Bert-based embed-
dings and optimize them such that connected nodes in the graph are mapped closer in hyperbolic
space. The loss function minimizes the sum of pairwise Poincaré distances between adjacent nodes:
L= Z(u,’u)ef dp(zy, ), where 2., x, € B? are the hyperbolic embeddings of nodes u and v, and

dg(-, ) denotes the Poincaré distance. Intuitively, this distance measures how far apart two points
are in a curved hyperbolic space. It can be viewed as a projection of a negatively curved space onto
the interior of a Euclidean ball. As points move closer to the boundary, they become exponentially
farther away, which is defined as:

T = arcos 2”3:7?/”2
dg(z,y) = h<1+ 1221 - IIyIIQ))'

This loss encourages embeddings of connected passages to move closer together while naturally
preserving the global hierarchical structure due to the curvature of the space. Unlike Euclidean
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distance, the hyperbolic metric enforces stronger discrimination at the boundary, allowing the model
to preserve fine-grained semantic relationships even with limited dimensions. This property is
particularly beneficial when passages are connected via both implicit and explicit edges, enabling
more meaningful retrieval of leaf passages.

Streaming Hyperbolic Representation Learning & Retrieval. To adapt to the evolving information
needs and continuously improve retrieval performance, we implement a streaming update mecha-
nism for our hyperbolic embeddings. As new queries are processed over time, they are efficiently
incorporated into the existing hyperbolic space without requiring a full retraining from scratch. This
incremental learning approach leverages the inherent capacity of hyperbolic geometry to accommo-
date new hierarchical structures and semantic relationships. By periodically updating the embeddings
based on recent query patterns, our system dynamically refines its representation of the knowledge
corpus, ensuring that the retrieval remains both accurate and relevant to the latest interactions. This
streaming paradigm enables our model to maintain its performance edge in real-world, evolving
environments. Based on this, we leverage the learned geometry to retrieve relevant information for
question answering. Specifically, given a query ¢, we first encode it into a hyperbolic embedding
z, € B? using the same sentence encoder followed by projection into the Poincaré ball. The goal is
to identify leaf nodes in the graph, i.e., raw passages from the corpus that are closest to the query in
hyperbolic distance. At inference time, we compute the hyperbolic distance between z, and all leaf
node embeddings {z;}, where each z; € B represents a passage. According to the experimental
trials, we typically select three candidate passages for retrieval and then feed these along with the
question into the language model in the form of a prompt to generate the answer. By retrieving in
hyperbolic space, we benefit from the hierarchical structure of the graph, which allows for efficient
identification of semantically and structurally relevant content, even across multi-hop relationships.

4 EXPERIMENTS

We conduct experiments on three public open datasets: HotpotQA |Yang et al.| (2018)), 2WikiMul-
tiHopQA [Ho et al.| (2020), and the Musique [Trivedi et al.| (2022b)) dataset. Utilizing the content
retrieved by hyperRAG, we employ the GPT-40-mini language model to answer a variety of questions.
This enables us to assess the effectiveness of our framework in leveraging retrieved information to
enhance the quality and relevance of responses generated by the language model. Our study aims
to address the following questions: (1) In what ways does HyperRAG compare to existing state-of-
the-art answer generation pipelines in terms of performance? (2) How does our method demonstrate
its time and token-level efficiency compared to others? (3) How do different settings influence the
performance of our framework? (4) How can we intuitively distinguish between hyperbolic and
Euclidean distances, and how are these patterns reflected in our empirical data?

4.1 EXPERIMENTAL SETTINGS

Datasets. We utilize three datasets for our experiments, each comprising 1,000 questions sourced from
their respective domains. Each dataset’s corpus contains approximately ten thousand independent
chunks of information, allowing for a diverse range of queries and contexts. These datasets collectively
represent progressively complex reasoning scenarios, spanning diverse domains from basic scientific
terminology to humanities subjects, providing a comprehensive evaluation of our method’s capability
to handle various complexity levels in knowledge-intensive tasks. To ensure the consistency and
fairness of the experiments, we strictly maintain the same questions and corpus as utilized in previous
studies |Gutiérrez et al.| (2024).

Implementation Details. Our experiments were conducted on a server equipped with four RTX-4090
GPUs. We employ both single-step and multi-round retrieval strategies based on the constructed graph,
which facilitates fast and accurate retrieval performance. During model training within the hyperbolic
space, we utilize the Adam optimizer with an initial learning rate of 0.01. The hyperparameters, such
as the number of epochs and retrieval items, are tuned through a grid search, with the best values
chosen for each dataset. We also record the time and token consumption.

Baselines. To comprehensively evaluate the effectiveness of our proposed framework, we compare it
with a diverse set of baselines spanning several paradigms. These methods are categorized into three
groups: the first includes direct language model approaches that use pre-trained models like GPT or
Llama to answer questions through zero-shot prompting without additional retrieval mechanisms;



Under review as a conference paper at ICLR 2026

Table 1: Performance comparison among state-of-the-art baselines and HyperRAG on three bench-
mark datasets in terms of both String-Match and GPT-evaluation Accuracy.

Model HotpotQA 2Wiki Musique
Match-Acc. GPT-Acc. Match-Acc.  GPT-Acc.  Match-Acc.  GPT-Acc.
Direct Zero-shot LM Inference
Llama3 (8b) Touvron et al.|(2023) 10.8 11.6 124 9.2 3.9 4.8
Llama3 (13b) 9.6 7.7 13.1 10.6 4.7 44
GPT-3.5 28.3 39.8 27.3 31.6 13.2 17.9
GPT-40-mini|Achiam et al.|(2023) 304 32.1 31.0 339 12.5 18.3
Retrieval-augmented Variants
IRCoT [Trivedi et al.|(2022a) 45.5 48.9 354 38.7 19.1 224
Retrieval (Top-T) 38.4 42.6 34.8 37.3 13.2 18.5
Retrieval (Top-3) 43.2 45.1 41.2 435 16.6 19.2
Retrieval (Top-5) 44.1 459 40.7 42.4 16.9 19.8
Graph-enhanced Generation Methods
KGP|Wang et al.|(2024) 46.4 57.1 41.5 43.7 23.3 27.3
G-retriever |He et al.|(2024) 41.3 40.9 26.7 25.7 14.1 15.6
LightRAG |Guo et al.|(2024) 47.8 52.7 46.3 433 28.3 27.7
HippoRAG (single-step) 46.8 50.9 44.6 45.6 21.2 24.3
HippoRAG (multi-step) |Gutiérrez et al.|(2024) 53.7 55.6 49.7 49.2 32.0 31.8
GFM-RAG |Luo et al.|(2025) 55.1 56.2 48.6 50.8 29.3 32.6
RAPTOR |Sarthi et al.|(2024) 48.1 55.3 47.7 439 28.2 29.7
HyperRAG (single-step) 54.3 57.5 47.8 51.8 28.7 314
HyperRAG (multi-step) 57.4 60.9 50.8 53.3 34.7 36.4

the second group consists of enhanced LM methods that incorporate auxiliary techniques such as
similarity-based retrieval and chain-of-thought prompting to improve reasoning capabilities; the third
category involves graph-based augmented generation approaches that leverage structured knowledge
graphs, including methods based on common knowledge graphs and hierarchical clustering strategies.

Evaluation Metrics. For evaluation metrics, existing methods primarily rely on string matching
techniques to assess answer accuracy. The most commonly adopted metrics include Exact Match,
which requires the predicted answer to exactly match the ground truth string, and Answer Containment,
which checks whether the ground truth answer is contained within the model’s prediction. However,
the correctness of answers can sometimes be overlooked if the phrasing differs, even when the answer
is correct. To address this, GPT-based evaluation methods have gradually been adopted. We utilize a
dual evaluation strategy comprising both string-matching and LLM-based judgment to achieve a fair
and clarifying comparison. This is motivated by the need to overcome the limitations of any single
metric, balancing objective reproducibility with nuanced semantic assessment.

4.2 MAIN RESULTS

The overall comparison between HyperRAG and other baselines is presented in Table[I] As mentioned
above, the baselines are categorized into three groups. From the zero-shot performance, it is evident
that advanced LLMs already possess considerable answering capability, reflecting a strong storage
of background knowledge. Additionally, similarity-based retrieval and chain of thought prompting
significantly improve performance, demonstrating that incorporating supplementary information
through multi-round interaction effectively enhances answer quality. Thirdly, overall, graph-based
variants tend to outperform purely semantic similarity-based methods. This improvement stems
from the graph structure’s ability to enhance reasoning capacity by explicitly modeling relationships
and dependencies. However, not all graph RAG approaches are equally effective. Sometimes,
they do not surpass direct retrieval methods. This highlights the importance of how the graph is
constructed: the quality and relevance of the graph structure are crucial factors that determine whether
the graph-based approach will yield better results. In practice, we employ two distinct paradigms for
answer generation: single-round and multi-round reasoning. For straightforward queries, a single
retrieval and reasoning cycle suffices to produce accurate answers. For more complex questions
requiring multi-hop reasoning, the model first decomposes them into simpler sub-questions, performs
sequential retrieval for each sub-question, and then synthesizes the intermediate results to form a
comprehensive final answer. Empirical results have shown that incorporating additional information
retrieved in hyperbolic space significantly improves the model’s performance, as it provides richer,
more relevant context that helps the model better understand and address complex queries.
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Figure 3: (Left) Time and token consumption; (Right) Effect of hyperparameters.

4.3 ANALYZING THE COMPUTATIONAL EFFICIENCY OF HYPERRAG

Our HyperRAG framework introduces two major sources of computational cost. The first occurs
during query-aware graph construction, where we reason over the relationships between the input
question and its retrieved candidate passages. For a dataset of 1,000 queries and around 10,000
passages, the full graph construction and multi-step answering take approximately 6 seconds per
query. However, the inference phase demonstrates significantly higher efficiency when employing a
single-round approach. Once the graph is constructed, the system only requires a lightweight search
and reasoning step without iterative model interactions, making it suitable for practical real-life
use. In this optimized setup, each query processing time is reduced to approximately 3 seconds,
encompassing both retrieval and answer generation. Although the current implementation processes
tasks iteratively, the framework can be further accelerated by integrating multi-processing techniques.

For a more comprehensive evaluation, we compare HyperRAG against a range of baselines, including
zero-shot LLM, similarity-based dense retrieval, and several graph-based retrieval variants on the
left of Figure[3] As expected, the zero-shot method is the fastest since it bypasses retrieval entirely.
Dense retrieval approaches, such as BERT-based retrievers, offer a good tradeoff with slightly higher
latency but much better answer quality. GraphRAG-style models exhibit the most variability in
runtime due to differences in graph construction strategies, the number of retrieval hops, and the
multi-step inference. HyperRAG incurs only a modest computational cost compared to simple
retrieval while being efficient than other graph-based counterparts. By leveraging a fast hyperbolic
retrieval technique and capped-round reasoning, our model achieves highly competitive efficiency.

4.4 EFFECTS OF SEMANTIC & STRUCTURAL REPRESENTATION LEARNING

In our framework, the ultimate passage representations result from a combination of initial semantic
embeddings and structural refinement through hyperbolic space learning. We analyze how the number
of training epochs in hyperbolic representation learning affects performance on the right of Figure
[] This process essentially controls the tradeoff between semantic fidelity and structural alignment.
When the number of training epochs is too small, the learned embeddings remain largely similar to
the initial BERT-based representations, preserving strong semantic similarity but failing to encode
deeper relational structure across the reasoning graph. In contrast, when trained for too many epochs,
the representations become dominated by the graph’s structural connections. Our experiments show
that setting the number of hyperbolic training epochs to 3 provides a good balance. Another important
factor affecting performance is the number of retrieved passages during inference. Interestingly, we
observe that retrieving more candidates does not always help. When the number of retrieved passages
exceeds 5, the overall performance tends to decrease. This suggests that adding too much irrelevant
content may hinder the model’s ability to focus on the most useful evidence. Besides, we test how
important the explicit and implicit edges are by conducting an ablation study. Based on the results
shown in Table[2] we observe that explicit edges contribute to a modest performance improvement
across all datasets, while implicit edges significantly enhance the model’s effectiveness. These results
confirm that explicit and implicit connections play distinct roles in the reasoning process. Explicit
edges effectively capture surface-level topical associations and structural relationships, providing
a foundational context. Conversely, implicit edges are crucial for tracing the underlying logical
pathways required to answer complex questions, enabling deeper and adaptive inference.
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4.5 COMPARISON OF HYPERBOLIC AND EUCLIDEAN DISTANCES

To gain deeper insights into the properties of hyperbolic geometry in embedding spaces, we randomly
sampled queries from the dataset and systematically compared their distance distributions to the
corpus embeddings in both hyperbolic and Euclidean spaces. The phenomenon of larger hyperbolic
distance values can be explained by the exponential expansion property of hyperbolic geometry. Under
the same embedding dimensionality, hyperbolic space provides a more expansive representation space,
enabling pushing unrelated entities to greater distances. This distance distribution characteristic
offers two key advantages. Enhanced Discriminative Power: The larger distance numerical range
provides richer gradient signals for the model, facilitating learning of more precise similarity decision
boundaries. Improved Ranking Stability: The amplification effect of distance differences makes
retrieval rankings more stable, reducing sorting uncertainties in borderline cases.

Table 2: Effects of Connection Strategies Table 3: Comparison of Distance Metrics
Method HotpotQA  Wiki  Musique Metric Hyperbolic Distance Euclidean Distance
Semantic retrieval 45.1 435 19.2 Max Min Mean Max Min Mean
Explicit edges 43.8 449 213 Top-1 222 159 187 L1l 029 071
Implicit edges 55.2 50.0 29.9 Top-3 223 156 197 133 029 087
HyperRAG 57.5 51.8 31.4 Top-10 229 145 210 144 027 106

A critical challenge in high-dimensional Euclidean space is the distance concentration phenomenon
Francois et al.|(2007). The squared Euclidean distance asymptotically follows a normal distribution.
This leads to poor discrimination between nearest and furthest neighbors. In contrast, the logarithmic
growth of the arcosh function for large arguments and the amplification of small coordinate differ-
ences near the boundary induce a heavy-tailed distance distribution. This distribution is right-skewed,
providing superior discriminative power for learning semantic hierarchies, as evidenced in Table

5 RELATED WORK

Retrieval-augmented generation (RAG) has become a prominent paradigm for open-domain and
multi-hop question answering, where an external corpus is indexed and queried to retrieve relevant
documents that are then fed into a generative model [Lewis et al.|(2020b). Early approaches such
as REALM |Guu et al.[(2020) and DPR [Sachan et al.|(2021)) focus on encoding large text corpora
into dense embeddings, enabling scalable and differentiable retrieval. Subsequent work improved
retrieval-augmented generation by incorporating fusion mechanisms or editable memory |Bajaj et al.
(2022); Hofstétter et al.| (2023). To better capture the semantic and logical relationships between
passages, some studies explored mind map-style structures that model paragraph connectivity through
co-reference, discourse, or logical links. Building on this intuition, GraphRAG approaches explicitly
incorporate graph structures to enrich the retrieval process, offering additional reasoning paths or
relational priors to assist generation |[Edge et al.|(2024)); Dong et al.|(2025)); Zhou et al.|(2025). Among
them, HippoRAG |Gutiérrez et al.[(2024) and GFM-RAG |Luo et al.| (2025) are examples of KG-based
methods. HippoRAG leverages external knowledge graphs to enhance context understanding during
retrieval and generation. GFM-RAG goes further by constructing and completing knowledge graphs
from text, aiming to improve downstream generation through enhanced graph learning. In contrast,
RaptorRAG [Sarthi et al.|(2024) avoids reliance on external knowledge bases by applying hierarchical
clustering over the corpus. This yields a multi-level document structure, allowing queries to navigate
the corpus in a coarse-to-fine manner. In summary, most existing methods construct static graphs
either through predefined knowledge graphs or heuristic relations between passages.

6 CONCLUSION

We observe that knowledge passages are connected not only through explicit relationships but also
through implicit logical relationships that emerge only under specific questions. To this end, we
introduce a novel approach that fuses both perspectives into a single graph, enabling a query-centric
retrieval. Moreover, by recognizing the inherent tree-like structure of multi-hop reasoning, we get rid
of traditional Euclidean representations and instead learn embeddings in a hyperbolic space, which
better preserves hierarchical relationships and logical distance. Compared with traditional KG-based
and graph-based models, our method demonstrates superior performance. Such advantages highlight
its potential for practical deployment in knowledge-intensive applications.
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ETHICS STATEMENT

This research utilizes exclusively publicly available benchmark datasets (e.g., HotpotQA, Wiki,
Musique) that contain no personally identifiable information or private user data. All datasets
employed have been previously published for academic research purposes with appropriate ethical
oversight. Our work poses no additional ethical risks beyond those inherent in the original dataset
collections, as we do not collect, annotate, or process any new human-subject data. The experimental
procedures involve standard natural language processing tasks that do not raise ethical concerns
regarding privacy or potential harm to individuals.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we have provided comprehensive details throughout
this paper: (1) All baseline implementations are based on established methods with clear citations to
original sources; (2) Experimental configurations including hyperparameters, training details, and
evaluation metrics are thoroughly documented; (3) The core framework is presented in the main text
with sufficient implementation details. The complete code and data processing scripts will be made
publicly available upon publication.
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APPENDIX

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, LLMs (specifically GPT-4) were employed solely for limited textual refinement tasks,
primarily for paraphrasing technical descriptions and improving the fluency of certain passages.
All LLM-generated content was carefully reviewed and refined by the authors to ensure technical
accuracy and alignment with our original scientific contributions. The core intellectual contributions,
methodological innovations, and scientific insights remain entirely author-driven.

A MORE DETAILS ABOUT HYPERGRAPH

A.1 DISTANCE CHOICE FOR GRAPH-BASED REASONING

After constructing a passage graph G = (V, £), a key design choice is how to define the semantic
distance between nodes. Common metrics include LP norms, each with different characteristics. Let
x,y € R™ be embeddings of two passages. The general LP norm is defined as:

n 1/p
z,y) = (Z s —yﬁ) : 8))
=1

There are some popular variants of the general LP norm family, each offering a different geometric
intuition and sensitivity to feature dimensions. The L' norm (Manhattan distance) emphasizes
coordinate-wise differences, the L2 norm (Euclidean distance) captures straight-line distance in space,
and the L*° norm (Chebyshev distance) reflects the maximum single-coordinate deviation. These
distances are commonly used for computing similarity between item embeddings. Mathematical
expressions are presented in the following:

Manhattan Distance: d;(z,y) Z |z; — vl

1/2
= @)
Euclidean Distance: dy(z,y)da(z,y) = <Z(Jcz — yl)2> )
i=1
Chebyshev Distance: doo(z,y) = max |x; — ;.
7

While desirable in many metric spaces, these metrics universally satisfy the triangle inequality. As the
number of hops increases (i.e., py — pa — - -+ — P ), passages with similar semantic embeddings
have endpoints py and py, that remain close in the metric space. As k increases, the global semantic
distance between distant nodes in the chain is underestimated.

d(z,z) < d(z,y) +d(y, 2). 3
k—
d(po, pr) Z (P> pit1)- )
=0

This becomes a problem in reasoning tasks where longer chains should reflect increased difference or
inferential effort. For instance, passages separated by multiple reasoning steps shouldn’t be treated as
nearly the same as directly connected ones. Euclidean-like metrics end up “flattening” the structure,
losing sight of the underlying hierarchy or compositional relationships within the information.

Besides, hyperbolic space enables a large number of nodes per parent, reflecting the branching
nature of trees. Additionally, distances in hyperbolic space show logarithmic growth with respect to
similarity, quantified by
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d(u,v) ~ — log(similarity(u, v)). 5)

Furthermore, hyperbolic spaces can effectively embed high-dimensional trees, where a tree with a
branching factor b and depth h contains

phtl _ 1 ph+1

~ N h

nodes. The constant negative curvature of hyperbolic spaces facilitates the efficient packing of nodes,
allowing for more nodes in a given volume while preserving hierarchical relationships. For instance,
the Poincaré disk model visually represents these properties, illustrating how distances correspond to
relationships in a tree structure. Together, these features underscore hyperbolic space’s suitability for
accurately capturing the complexity of hierarchical tree structures.

A.2 CASE STUDY OF QUERY-CENTRIC GRAPH CONSTRUCTION
A.2.1 IMPLICIT CONNECTION

As shown below, while passage #1 explicitly defines the temporal boundary of the Disney Renaissance
period (1989-1999), it does not itself mention any subsequent films. However, passages #4, #5, and
#6 provide information about films and series released after this era. The connection between passage
#1 and these later passages is implicit, as they are linked not by surface-level semantic similarity but
by a shared temporal and logical context, i.e. the transition from the Disney Renaissance into the
post-Renaissance period. In particular, passage #5 mentions The Emperor’s New Groove (2000),
which is directly situated after the time frame established in passage 1, thus forming a reasoning
chain across the two. Similarly, passage #6 extends this timeline further, showcasing the evolution of
Disney’s productions.

Q: Which film was released right after the Disney Renaissance period by Disney?

Retrieved Passages

Round-1 Retrieval:

1. In the history of The Walt Disney Company, the Disney Renaissance refers to the era
from 1989 to 1999 during which Walt Disney Feature Animation (renamed Walt Disney
Animation Studios in 2006) experienced a creative resurgence in producing successful
animated films based on well-known stories, which restored public and critical interest
in The Walt Disney Company as a whole.

2. Disney’s The Little Mermaid is an American animated television series produced by
Walt Disney Television Animation based on the 1989 Disney film of the same name.

3. Corso is a New York Foundation for the Arts Poetry Fellow and Sherwood Anderson
Fiction Award Winner, and is the author of "Death by Renaissance” (2004).

The first paragraph is relevant and it’s insufficient to answer the question. We need to know which
Walt Disney films were released after 1999.

14



Under review as a conference paper at ICLR 2026

Retrieved Passages

Round-2 Retrieval:

4. The Apple Dumpling Gang is a 1975 American comedy-western film produced by Walt
Disney Productions about a slick gambler named Russell Donovan (Bill Bixby) who
is duped into taking care of a group of orphans who eventually strike gold during the
California Gold Rush.

5. The Emperor’s New Groove is a 2000 American animated buddy comedy film created
by Walt Disney Feature Animation and released by Walt Disney Pictures. It is the 40th
Disney animated feature film.

6. The Lion Guard is an American animated television series developed by Ford Riley
based on Disney’s 1994 film “The Lion King.” The series was first broadcast with a
television movie, titled The Lion Guard: Return of the Roar on Disney Channel on
November 22, 2015, and began airing as a TV series on January 15, 2016, on Disney
Junior and Disney Channel.

A.2.2 EXPLICIT CONNECTION

Passages #4, #8, and #9 can be explicitly connected as they all refer to the same work, The Apple
Dumpling Gang. Passage #4 introduces the original film, while Passage #8 mentions a drama
produced by Walt Disney Productions, and Passage #9 references the film’s composer. These
connections are straightforward and fact-based, forming an explicit linkage through shared entities
and production history. In our graph construction, such connections form strong edges that preserve
concrete semantic relationships within the corpus.

Retrieved Passages through Keyword Extraction

7. "Down in New Orleans” is a jazz song from Disney’s 2009 animated film “”The Princess and the
Frog”, written by Randy Newman. Several versions of the song were recorded for use in different parts
of the film and other materials. The song was nominated for Best Original Song at the 82nd Academy
Awards but lost to "The Weary Kind” from ”Crazy Heart”.

8. Gun Shy is an American sitcom that was shown on CBS from March 15 to April 19, 1983. The
series, produced by Walt Disney Productions, was based on its popular comedy-western films: ”The
Apple Dumpling Gang” and “The Apple Dumpling Gang Rides Again”.

9. Norman Dale "Buddy” Baker (January 4, 1918 — July 26, 2002) was an American composer who,
together with Paul J. Smith, scored many Disney films, such as ”"The Apple Dumpling Gang” in 1975.
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