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Abstract

Factoid questions seek real world factual
knowledge. We explore the application of
retrieval augmented question answering with
large language models in the context of fac-
toid questions. Our novel approach, Entity
Retrieval, employs entity linking to identify
relevant documents, offering an alternative to
dense retrieval techniques. Our findings es-
tablish that retrieval-augmented methods are
particularly effective for smaller large language
models, and that Entity Retrieval outperforms
other retrieval methods while demanding re-
duced time and resources'.

1 Introduction

Factoid questions seek factual information about
the real world, and typically have answers that
are concise single words or short phrases. These
answers often reference or directly stem from a
knowledge base entity (Ranjan and Balabantaray,
2016). The literature on factoid question answering
is replete with a variety of well-studied method-
ologies, including rule-based (Shitu et al., 2020),
pattern-based (Pala Er and Cicekli, 2013), and neu-
ral network-based approaches (Lukovnikov et al.,
2017; Mohammed et al., 2018; Lukovnikov et al.,
2019).

In recent years, Large Language Models (LLMs;
OpenAl, 2023; Touvron et al., 2023; Jiang et al.,
2024) have significantly transformed the field of
natural language processing. Retrieval-augmented
generation (RAG; Lewis et al., 2020b; Izacard and
Grave, 2021; Singh et al., 2021) has emerged as
a prevalent approach to question answering with
LLMs. RAG systems typically utilize the retriever-
reader architecture (Chen et al., 2017), where the
retriever can be sparse (Peng et al., 2023), dense
(Karpukhin et al., 2020), or a hybrid of the two

'We have included our source code implementation of
the project, along with the generated model answers, in the
Software section of our ARR submission.

21 Million Passages

LLM A
Retrieval

(a) Retrieval-Augmented QA with Dense Retrieval

A
Lookup
Q Entity Ll Fetch First
Linking gntities 100 Words

(b) Retrieval-Augmented QA with Entity Retrieval

Figure 1: Entity Retrieval simplifies the process of ob-
taining augmentation documents by replacing the need
to search through large indexed passages with a straight-
forward lookup.

(Glass et al., 2022). The reader, a generative lan-
guage model (e.g., BART; Lewis et al., 2020a, T5;
Raffel et al., 2020, GPT-3; Brown et al., 2020),
then conditions the generated output based on the
documents retrieved by the retriever. Recent RAG
methodologies leverage the in-context learning ca-
pabilities of LLMs to integrate the retrieved docu-
ments into the prompt (Shi et al., 2023; Peng et al.,
2023; Yu et al., 2023).

Following the prevalent belief that factoid ques-
tion answering is nearing resolution (Petrochuk and
Zettlemoyer, 2018), there has been a shift in the
community towards reading comprehension (Joshi
et al., 2017), multi-hop (Yang et al., 2018), and
commonsense (Talmor et al., 2019) question an-
swering. This shift has relegated factoid question
answering to a less central position. Consequently,



areliable evaluation of the performance of common
retrieval-augmented question answering methods
for factoid question types is currently lacking.

In this paper, we examine the suitability of
retrieval-augmented question answering methods
for factoid questions. In addition, following the es-
tablished methodologies in statistical factoid ques-
tion answering systems (Aghaebrahimian and Ju-
réicek, 2016; Li et al., 2021; Adebisi et al., 2022),
we study the role of entity linking as a critical com-
ponent in retrieval-augmented factoid question an-
swering with LLMs. Our contributions in this paper
are as follows:

(1) We examine the performance of retrieval- and
non-retrieval-augmented LLMs for answering
factoid questions.

(2) We propose Entity Retrieval, a simple yet ef-
fective approach to employ entity linking in
retrieval-augmented factoid question answer-
ing with LLMs.

Figure 1 presents a schematic comparison between
Entity Retrieval and the common dense retrieval ap-
proach (e.g. Karpukhin et al., 2020) in identifying
retrieval documents to enhance question answering
with LLMs.

2 Retrieval-Augmentation Techniques

Retrieval-augmentation (Lewis et al., 2020b) is a
method of converting closed-book question answer-
ing® (Roberts et al., 2020) into extractive ques-
tion answering (Abney et al., 2000; Rajpurkar
et al., 2016), where the answers can be directly
extracted from the retrieved documents. Despite
the abundance of effective retrieval-augmentation
techniques for question answering in existing lit-
erature, this section will concentrate on a select
few methods utilized to study the factoid question
answering capabilities of LLMs in this paper.
Dense Passage Retrieval (DPR; Karpukhin
et al., 2020) leverages a bi-encoder architecture,
wherein the initial encoder processes the question
and the subsequent encoder handles the passages to
be retrieved. The similarity scores between the two
encoded representations are computed using a dot
product. The encoded representations of the second
encoder are fixed and indexed in FAISS (Johnson
et al., 2019; Douze et al., 2024), while the first
encoder is optimized to maximize the dot-product

2Closed-book QA focuses on answering questions without
additional context during inference.

scores based on positive and negative examples.
The performance of DPR solidifies its position
as a superior retriever compared to BM25-based
(Robertson et al., 1994) sparse retrieval methods
for question answering.

REPLUG (Shi et al., 2023) views LLM as a
black-box, encoding each of the k£ most relevant
retrieved documents along with the input query
to generate k probability distributions over the
forthcoming token. These distributions are then
weighted averaged, considering the similarity of
each retrieved document to the original input query.
The strength of REPLUG lies in its ability to infuse
the knowledge from the retrieved documents while
generating the answer. This makes REPLUG a com-
pelling candidate for studying retrieval-augmented
question answering.

3 Entity Linking for Question Answering

While quite powerful, most retrieval-augmented
systems are notably time and resource-intensive,
necessitating the storage of extensive lookup in-
dices and the need to attend to all retrieved docu-
ments to generate a response.

Entity linking has been an integral compo-
nent of statistical factoid question answering sys-
tems (Aghaebrahimian and Jurcicek, 2016, inter
alia). Additionally, the extensively studied field of
Knowledge Base Question Answering (Cui et al.,
2017, inter alia) has underscored the significance
of entity information from knowledge bases in
question answering (Salnikov et al., 2023).

A traditional neural question answering pipeline
may contain entity detection, entity linking, re-
lation prediction, and evidence integration (Mo-
hammed et al., 2018; Lukovnikov et al., 2019),
where entity detection can employ LSTM-based
(Hochreiter and Schmidhuber, 1997) or BERT-
based (Devlin et al., 2019) encoders. Inspired by
this body of work, we investigate the relevance of
entity linking as an alternative strategy to dense re-
trieval methods for augmenting factoid question an-
swering with LLMs. We propose Entity Retrieval,
a method employing a simple heuristic for imple-
menting entity linking-based document retrieval.
Entity Retrieval leverages entity linking to iden-
tify entities within the question and retrieves cor-
responding knowledge base articles, providing the
first 100 words of each article as the retrieved doc-
uments (see Figure 1.b).



4 [Experiments

4.1 Setup

We focus on Wikipedia as the knowledge base and
utilize the pre-existing Wikipedia passages and the
dense retrieval model available in the wiki_dpr?
repository from huggingface. wiki_dpr follows
established practices (Chen et al., 2017; Karpukhin
et al., 2020) and segments the articles into non-
overlapping text blocks of 100 words, resulting in
21,015,300 passages. These passages are processed
with a pre-trained DPR context encoder, generating
fixed embedding vectors stored in a FAISS index
(Douze et al., 2024). Factoid questions are encoded
using the DPR question encoder, and the top k rele-
vant passages to the encoded question are retrieved
from the FAISS index. We use the exact FAISS
index storage, single-nq DPR question encoder,
and retrieve the top 4 documents for each question,
in our experiments. As well for better time effi-
ciency, following Ram et al. (2023), we treat doc-
ument retrieval as a pre-processing step, caching
the most relevant passages for each question before
conducting the question answering experiments.

For entity linking in Entity Retrieval, we select
SPEL (Shavarani and Sarkar, 2023) mainly due to
its near-perfect linking precision. Architecturally,
SPEL comprises an entity knowledge fine-tuned
RoBERTa (Liu et al., 2019) model as the encoder
and a classification layer atop the encoder which
maps the encoded representations to the space of
predicted entities. SPEL models entity linking as
structured prediction which enables it to be fast
and minimal resource demanding. In this study,
we employ the fine-tuned SPEL-large model with
an entity vocabulary of 500K, enabling identifica-
tion of entity mentions referencing the 500K most
hyperlinked Wikipedia pages.

Given the proven effectiveness of utilizing ini-
tial sentences from Wikipedia pages for entities in
tasks such as document classification (Shavarani
and Sekine, 2020) and question answering (Choi
et al., 2018), we propose employing the first 100
words of Wikipedia articles corresponding to the
identified entities in questions as retrieved docu-
ments for Entity Retrieval settings. We consider
two such settings: (1) using SPEL for question an-
notation and utilizing its suggested linked entities
to retrieve Wikipedia articles, (2) using gold entity
link annotations for dataset questions to retrieve

3https://huggingface.co/datasets/wiki_dpr, cre-
ated on a Wikipedia dump from December 20, 2018.

the Wikipedia articles.

For LLMs, we consider the open weight LLaMA
2 (Touvron et al., 2023) model in all three avail-
able sizes (7B, 13B, and 70B). However, due to
hardware constraints — limited to 2 RTX A6000s
with 499GB GPU memory each — we utilize the
8-bit quantized version of the 70B model. In all
our experiments with LLaMA 2, we prevent it from
generating sequences longer than 10 subwords. Ad-
ditionally, we evaluate GPT 4 (0613 version) from
OpenAl (2023).

As a public implementation of REPLUG is not
available, we implement it with the haystack* li-
brary, employing our cached DPR passages for
each question to autoregressively generate answers.

To verify the capacity of LLMs in utilizing the
retrieved documents without additional fine-tuning
or further in-context examples, we do not use any
training question-answer pairs in the prompts of
our models. Aside from a simple instruction for
answering the question, in the closed-book setting,
the prompt solely comprises the question, while in
the DPR and REPLUG settings, it includes the re-
trieved documents from the DPR cache along with
the question. Similarly, for the Entity Retrieval set-
tings, the prompt consists of the first 100 words of
the Wikipedia pages corresponding to the identified
or gold entities in the question. We follow Ram
et al. (2023) for question normalization and prompt
formulation.

4.2 Data

We use the following datasets in our experiments:

FactoidQA (Smith et al., 2008) contains 2203
hand crafted factoid question-answer pairs derived
from Wikipedia articles, with each pair accompa-
nied by its corresponding Wikipedia source arti-
cle included in the dataset. We use OpenQA-eval
(Kamalloo et al., 2023) scripts to evaluate model
performance, reporting exact match (EM) and F1
scores by comparing expected answers to model
responses for FactoidQA questions.

StrategyQA (Geva et al., 2021) is a complex
boolean question answering dataset, constructed by
presenting individual terms from Wikipedia to an-
notators. Its questions contain references to more
than one Wikipedia entity, and necessitate implicit
reasoning for binary responses. The dataset com-
prises 5111 answered questions which are split into
two subsets: train and train_filtered subsets

*https://haystack.deepset.ai
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LLaMA 2

| | Gpr4
Setting | 7B | 13B | 70B-8bQ |

|EM F1 |EM Fl |EM Fl |EM FI
Closed-book 305 383|337 429370 459|424 55.1
DPR 336 427 |37.1 455|356 420359 47.1
REPLUG 158 220|277 334|220 253| - -
Entity Retrieval w/ SPEL 38.1 47.3 | 40.5 49.2 | 40.6 49.0 | 373 480
Entity Retrieval wi oracle entities’ | 37.2 46.9 | 40.2 493 | 414 49.7 | 38.5 482

Table 1: FactoidQA evaluation results. EM refers to the exact match between predicted and expected answers,
disregarding punctuation and articles (a, an, the). TEntity Retrieval with oracle results are not directly comparable
to other approaches, as they leverage gold annotated entity links from the dataset.

Setting | 7B | 13B | 70B-8bQ
‘Acc Inv#‘Acc Inv#‘Acc Inv #
Closed-book  |51.8 215 |51.4 302 [60.3 191
£|DPR 528 212 |525 280 |52.8 336
E | Entity Retrieval
niity Retrieval| s ¢ 175 52,7 200 |58.0 152
w/ SPEL
B[ Closed-book  [59.9 286 [61.6 337 |67.0 232
2| DPR 59.8 274 |63.7 296 |62.7 407
' Entity Retrieval
g | enity Retrievall o 1 233 1649 190 |66.6 206
g w/ SPEL

Table 2: StrategyQA evaluation with LLaMA 2 results.

containing 2290 and 2821 questions, respectively.
For evaluation, we present accuracy scores by com-
paring model responses to the expected boolean
answers in the dataset. As well, to assess model
comprehension of the task, we count the number
of invalid answers that deviate from Yes or No and
report this count in a distinct column labeled “Inv
#” for each experiment.

4.3 Results and Analysis

We generate answers to FactoidQA questions for
the following settings: (1) closed-book, (2) DPR,
(3) REPLUG, (4) Entity Retrieval with SPEL-
identified entities, and (5) Entity Retrieval with
oracle entity annotations from the dataset. Table 1
summarizes our evaluation results.

Our experimental results prove that Entity Re-
trieval is a formidable contender among retrieval-
augmented techniques for factoid question answer-
ing, particularly exhibiting enhanced efficacy with
smaller LLMs. The outcomes from our GPT-4°

SDespite undisclosed specifications of GPT-4 models, ex-
trapolating from the known size of GPT-3 (175B parameters;
Brown et al., 2020), it is plausible to estimate GPT-4 to surpass

200 billion parameters, with speculations suggesting over 1
trillion parameters implemented as a mixture of experts model.

experiments substantiate this assertion, revealing a
consistent decline in performance across all inves-
tigated retrieval-augmentation techniques.

Furthermore, comparing the evaluation results
using SPEL identified entities and the oracle en-
tities for Entity Retrieval, we realize that despite
SPEL’s constrained entity lexicon comprising the
500K most hyperlinked entities, its performance re-
mains notably competitive. While acknowledging
this observation, we defer a comprehensive evalua-
tion of alternative entity linking methods beyond
SPEL to future investigations.

Table 2 presents our evaluation results for the
StrategyQA dataset. Notably, Entity Retrieval with
oracle annotations is excluded due to the absence
of oracle entity links for questions in StrategyQA,
while the exclusion of REPLUG is attributed to its
comparatively inferior performance relative to DPR
in FactoidQA experiments. Our results affirm our
previous inference that retrieval-augmentation is
not beneficial with sufficiently large models. How-
ever, despite the complex reasoning demanded by
this dataset, Entity Retrieval achieves comparable
results to other retrieval-augmented methods, while
offering better hardware efficiency. Additionally,
invalid count values indicate that Entity Retrieval
is capable of aiding the model in understanding the
boolean nature of expected responses without rely-
ing on dense retrieval from millions of passages.

5 Conclusion

We highlight the disproportionate benefit of re-
trieval augmentation for smaller LLMs in the con-
text of factoid question answering, and introduce
Entity Retrieval as a promising entity linking-based
alternative to dense retrieval for augmenting factoid
questions in prompting LLMs.



Limitations and Ethical Considerations

We have not exhaustively explored all potential
entity linking methods, which may yield insights
enhancing the proposed Entity Retrieval approach.

Additionally, due to space constraints and a
desire to expedite community engagement, we
have not incorporated additional datasets (e.g.
30MFQA; Serban et al., 2016), most of which are
annotated with Freebase (Bollacker et al., 2008)
and have fallen into disuse following Freebase’s
discontinuation. We intend to revitalize such ne-
glected factoid question answering datasets, and
we posit that revitalizing these datasets could facil-
itate the development of a benchmark dataset akin
to MMLU (Hendrycks et al., 2021), enabling ro-
bust evaluations of newly released LLMs in terms
of their factual knowledge capabilities.

Our research is on English only, and we acknowl-
edge that factoid question answering in other lan-
guages is also relevant and important. We hope
to extend our work to cover multiple languages in
the future. We inherit the biases that exist in the
data used in this project, and we do not explicitly
de-bias the data. We are providing our code to the
research community and we trust that those who
use the model will do so ethically and responsibly.
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