
Entity Linking for Retrieval-Augmented Factoid Question Answering
with Large Language Models

Anonymous ACL submission

Abstract

Factoid questions seek real world factual001
knowledge. We explore the application of002
retrieval augmented question answering with003
large language models in the context of fac-004
toid questions. Our novel approach, Entity005
Retrieval, employs entity linking to identify006
relevant documents, offering an alternative to007
dense retrieval techniques. Our findings es-008
tablish that retrieval-augmented methods are009
particularly effective for smaller large language010
models, and that Entity Retrieval outperforms011
other retrieval methods while demanding re-012
duced time and resources1.013

1 Introduction014

Factoid questions seek factual information about015

the real world, and typically have answers that016

are concise single words or short phrases. These017

answers often reference or directly stem from a018

knowledge base entity (Ranjan and Balabantaray,019

2016). The literature on factoid question answering020

is replete with a variety of well-studied method-021

ologies, including rule-based (Shitu et al., 2020),022

pattern-based (Pala Er and Cicekli, 2013), and neu-023

ral network-based approaches (Lukovnikov et al.,024

2017; Mohammed et al., 2018; Lukovnikov et al.,025

2019).026

In recent years, Large Language Models (LLMs;027

OpenAI, 2023; Touvron et al., 2023; Jiang et al.,028

2024) have significantly transformed the field of029

natural language processing. Retrieval-augmented030

generation (RAG; Lewis et al., 2020b; Izacard and031

Grave, 2021; Singh et al., 2021) has emerged as032

a prevalent approach to question answering with033

LLMs. RAG systems typically utilize the retriever-034

reader architecture (Chen et al., 2017), where the035

retriever can be sparse (Peng et al., 2023), dense036

(Karpukhin et al., 2020), or a hybrid of the two037

1We have included our source code implementation of
the project, along with the generated model answers, in the
Software section of our ARR submission.
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Figure 1: Entity Retrieval simplifies the process of ob-
taining augmentation documents by replacing the need
to search through large indexed passages with a straight-
forward lookup.

(Glass et al., 2022). The reader, a generative lan- 038

guage model (e.g., BART; Lewis et al., 2020a, T5; 039

Raffel et al., 2020, GPT-3; Brown et al., 2020), 040

then conditions the generated output based on the 041

documents retrieved by the retriever. Recent RAG 042

methodologies leverage the in-context learning ca- 043

pabilities of LLMs to integrate the retrieved docu- 044

ments into the prompt (Shi et al., 2023; Peng et al., 045

2023; Yu et al., 2023). 046

Following the prevalent belief that factoid ques- 047

tion answering is nearing resolution (Petrochuk and 048

Zettlemoyer, 2018), there has been a shift in the 049

community towards reading comprehension (Joshi 050

et al., 2017), multi-hop (Yang et al., 2018), and 051

commonsense (Talmor et al., 2019) question an- 052

swering. This shift has relegated factoid question 053

answering to a less central position. Consequently, 054
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a reliable evaluation of the performance of common055

retrieval-augmented question answering methods056

for factoid question types is currently lacking.057

In this paper, we examine the suitability of058

retrieval-augmented question answering methods059

for factoid questions. In addition, following the es-060

tablished methodologies in statistical factoid ques-061

tion answering systems (Aghaebrahimian and Ju-062

rčíček, 2016; Li et al., 2021; Adebisi et al., 2022),063

we study the role of entity linking as a critical com-064

ponent in retrieval-augmented factoid question an-065

swering with LLMs. Our contributions in this paper066

are as follows:067

(1) We examine the performance of retrieval- and068

non-retrieval-augmented LLMs for answering069

factoid questions.070

(2) We propose Entity Retrieval, a simple yet ef-071

fective approach to employ entity linking in072

retrieval-augmented factoid question answer-073

ing with LLMs.074

Figure 1 presents a schematic comparison between075

Entity Retrieval and the common dense retrieval ap-076

proach (e.g. Karpukhin et al., 2020) in identifying077

retrieval documents to enhance question answering078

with LLMs.079

2 Retrieval-Augmentation Techniques080

Retrieval-augmentation (Lewis et al., 2020b) is a081

method of converting closed-book question answer-082

ing2 (Roberts et al., 2020) into extractive ques-083

tion answering (Abney et al., 2000; Rajpurkar084

et al., 2016), where the answers can be directly085

extracted from the retrieved documents. Despite086

the abundance of effective retrieval-augmentation087

techniques for question answering in existing lit-088

erature, this section will concentrate on a select089

few methods utilized to study the factoid question090

answering capabilities of LLMs in this paper.091

Dense Passage Retrieval (DPR; Karpukhin092

et al., 2020) leverages a bi-encoder architecture,093

wherein the initial encoder processes the question094

and the subsequent encoder handles the passages to095

be retrieved. The similarity scores between the two096

encoded representations are computed using a dot097

product. The encoded representations of the second098

encoder are fixed and indexed in FAISS (Johnson099

et al., 2019; Douze et al., 2024), while the first100

encoder is optimized to maximize the dot-product101

2Closed-book QA focuses on answering questions without
additional context during inference.

scores based on positive and negative examples. 102

The performance of DPR solidifies its position 103

as a superior retriever compared to BM25-based 104

(Robertson et al., 1994) sparse retrieval methods 105

for question answering. 106

REPLUG (Shi et al., 2023) views LLM as a 107

black-box, encoding each of the k most relevant 108

retrieved documents along with the input query 109

to generate k probability distributions over the 110

forthcoming token. These distributions are then 111

weighted averaged, considering the similarity of 112

each retrieved document to the original input query. 113

The strength of REPLUG lies in its ability to infuse 114

the knowledge from the retrieved documents while 115

generating the answer. This makes REPLUG a com- 116

pelling candidate for studying retrieval-augmented 117

question answering. 118

3 Entity Linking for Question Answering 119

While quite powerful, most retrieval-augmented 120

systems are notably time and resource-intensive, 121

necessitating the storage of extensive lookup in- 122

dices and the need to attend to all retrieved docu- 123

ments to generate a response. 124

Entity linking has been an integral compo- 125

nent of statistical factoid question answering sys- 126

tems (Aghaebrahimian and Jurčíček, 2016, inter 127

alia). Additionally, the extensively studied field of 128

Knowledge Base Question Answering (Cui et al., 129

2017, inter alia) has underscored the significance 130

of entity information from knowledge bases in 131

question answering (Salnikov et al., 2023). 132

A traditional neural question answering pipeline 133

may contain entity detection, entity linking, re- 134

lation prediction, and evidence integration (Mo- 135

hammed et al., 2018; Lukovnikov et al., 2019), 136

where entity detection can employ LSTM-based 137

(Hochreiter and Schmidhuber, 1997) or BERT- 138

based (Devlin et al., 2019) encoders. Inspired by 139

this body of work, we investigate the relevance of 140

entity linking as an alternative strategy to dense re- 141

trieval methods for augmenting factoid question an- 142

swering with LLMs. We propose Entity Retrieval, 143

a method employing a simple heuristic for imple- 144

menting entity linking-based document retrieval. 145

Entity Retrieval leverages entity linking to iden- 146

tify entities within the question and retrieves cor- 147

responding knowledge base articles, providing the 148

first 100 words of each article as the retrieved doc- 149

uments (see Figure 1.b). 150
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4 Experiments151

4.1 Setup152

We focus on Wikipedia as the knowledge base and153

utilize the pre-existing Wikipedia passages and the154

dense retrieval model available in the wiki_dpr3155

repository from huggingface. wiki_dpr follows156

established practices (Chen et al., 2017; Karpukhin157

et al., 2020) and segments the articles into non-158

overlapping text blocks of 100 words, resulting in159

21,015,300 passages. These passages are processed160

with a pre-trained DPR context encoder, generating161

fixed embedding vectors stored in a FAISS index162

(Douze et al., 2024). Factoid questions are encoded163

using the DPR question encoder, and the top k rele-164

vant passages to the encoded question are retrieved165

from the FAISS index. We use the exact FAISS166

index storage, single-nq DPR question encoder,167

and retrieve the top 4 documents for each question,168

in our experiments. As well for better time effi-169

ciency, following Ram et al. (2023), we treat doc-170

ument retrieval as a pre-processing step, caching171

the most relevant passages for each question before172

conducting the question answering experiments.173

For entity linking in Entity Retrieval, we select174

SPEL (Shavarani and Sarkar, 2023) mainly due to175

its near-perfect linking precision. Architecturally,176

SPEL comprises an entity knowledge fine-tuned177

RoBERTa (Liu et al., 2019) model as the encoder178

and a classification layer atop the encoder which179

maps the encoded representations to the space of180

predicted entities. SPEL models entity linking as181

structured prediction which enables it to be fast182

and minimal resource demanding. In this study,183

we employ the fine-tuned SPEL-large model with184

an entity vocabulary of 500K, enabling identifica-185

tion of entity mentions referencing the 500K most186

hyperlinked Wikipedia pages.187

Given the proven effectiveness of utilizing ini-188

tial sentences from Wikipedia pages for entities in189

tasks such as document classification (Shavarani190

and Sekine, 2020) and question answering (Choi191

et al., 2018), we propose employing the first 100192

words of Wikipedia articles corresponding to the193

identified entities in questions as retrieved docu-194

ments for Entity Retrieval settings. We consider195

two such settings: (1) using SPEL for question an-196

notation and utilizing its suggested linked entities197

to retrieve Wikipedia articles, (2) using gold entity198

link annotations for dataset questions to retrieve199

3https://huggingface.co/datasets/wiki_dpr, cre-
ated on a Wikipedia dump from December 20, 2018.

the Wikipedia articles. 200

For LLMs, we consider the open weight LLaMA 201

2 (Touvron et al., 2023) model in all three avail- 202

able sizes (7B, 13B, and 70B). However, due to 203

hardware constraints — limited to 2 RTX A6000s 204

with 49GB GPU memory each — we utilize the 205

8-bit quantized version of the 70B model. In all 206

our experiments with LLaMA 2, we prevent it from 207

generating sequences longer than 10 subwords. Ad- 208

ditionally, we evaluate GPT 4 (0613 version) from 209

OpenAI (2023). 210

As a public implementation of REPLUG is not 211

available, we implement it with the haystack4 li- 212

brary, employing our cached DPR passages for 213

each question to autoregressively generate answers. 214

To verify the capacity of LLMs in utilizing the 215

retrieved documents without additional fine-tuning 216

or further in-context examples, we do not use any 217

training question-answer pairs in the prompts of 218

our models. Aside from a simple instruction for 219

answering the question, in the closed-book setting, 220

the prompt solely comprises the question, while in 221

the DPR and REPLUG settings, it includes the re- 222

trieved documents from the DPR cache along with 223

the question. Similarly, for the Entity Retrieval set- 224

tings, the prompt consists of the first 100 words of 225

the Wikipedia pages corresponding to the identified 226

or gold entities in the question. We follow Ram 227

et al. (2023) for question normalization and prompt 228

formulation. 229

4.2 Data 230

We use the following datasets in our experiments: 231

FactoidQA (Smith et al., 2008) contains 2203 232

hand crafted factoid question-answer pairs derived 233

from Wikipedia articles, with each pair accompa- 234

nied by its corresponding Wikipedia source arti- 235

cle included in the dataset. We use OpenQA-eval 236

(Kamalloo et al., 2023) scripts to evaluate model 237

performance, reporting exact match (EM) and F1 238

scores by comparing expected answers to model 239

responses for FactoidQA questions. 240

StrategyQA (Geva et al., 2021) is a complex 241

boolean question answering dataset, constructed by 242

presenting individual terms from Wikipedia to an- 243

notators. Its questions contain references to more 244

than one Wikipedia entity, and necessitate implicit 245

reasoning for binary responses. The dataset com- 246

prises 5111 answered questions which are split into 247

two subsets: train and train_filtered subsets 248

4https://haystack.deepset.ai
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LLaMA 2
GPT 4

Setting 7B 13B 70B-8bQ

EM F1 EM F1 EM F1 EM F1

Closed-book 30.5 38.3 33.7 42.9 37.0 45.9 42.4 55.1
DPR 33.6 42.7 37.1 45.5 35.6 42.0 35.9 47.1
REPLUG 15.8 22.0 27.7 33.4 22.0 25.3 - -
Entity Retrieval w/ SPEL 38.1 47.3 40.5 49.2 40.6 49.0 37.3 48.0

Entity Retrieval w/ oracle entities† 37.2 46.9 40.2 49.3 41.4 49.7 38.5 48.2

Table 1: FactoidQA evaluation results. EM refers to the exact match between predicted and expected answers,
disregarding punctuation and articles (a, an, the). †Entity Retrieval with oracle results are not directly comparable
to other approaches, as they leverage gold annotated entity links from the dataset.

Setting
7B 13B 70B-8bQ

Acc Inv # Acc Inv # Acc Inv #

tr
ai

n

Closed-book 51.8 215 51.4 302 60.3 191
DPR 52.8 212 52.5 280 52.8 336
Entity Retrieval

w/ SPEL
53.8 175 52.7 200 58.0 152

tr
ai

n_
fil

te
re

d Closed-book 59.9 286 61.6 337 67.0 232
DPR 59.8 274 63.7 296 62.7 407
Entity Retrieval

w/ SPEL
60.1 233 64.9 190 66.6 206

Table 2: StrategyQA evaluation with LLaMA 2 results.

containing 2290 and 2821 questions, respectively.249

For evaluation, we present accuracy scores by com-250

paring model responses to the expected boolean251

answers in the dataset. As well, to assess model252

comprehension of the task, we count the number253

of invalid answers that deviate from Yes or No and254

report this count in a distinct column labeled “Inv255

#” for each experiment.256

4.3 Results and Analysis257

We generate answers to FactoidQA questions for258

the following settings: (1) closed-book, (2) DPR,259

(3) REPLUG, (4) Entity Retrieval with SPEL-260

identified entities, and (5) Entity Retrieval with261

oracle entity annotations from the dataset. Table 1262

summarizes our evaluation results.263

Our experimental results prove that Entity Re-264

trieval is a formidable contender among retrieval-265

augmented techniques for factoid question answer-266

ing, particularly exhibiting enhanced efficacy with267

smaller LLMs. The outcomes from our GPT-45268

5Despite undisclosed specifications of GPT-4 models, ex-
trapolating from the known size of GPT-3 (175B parameters;
Brown et al., 2020), it is plausible to estimate GPT-4 to surpass
200 billion parameters, with speculations suggesting over 1
trillion parameters implemented as a mixture of experts model.

experiments substantiate this assertion, revealing a 269

consistent decline in performance across all inves- 270

tigated retrieval-augmentation techniques. 271

Furthermore, comparing the evaluation results 272

using SPEL identified entities and the oracle en- 273

tities for Entity Retrieval, we realize that despite 274

SPEL’s constrained entity lexicon comprising the 275

500K most hyperlinked entities, its performance re- 276

mains notably competitive. While acknowledging 277

this observation, we defer a comprehensive evalua- 278

tion of alternative entity linking methods beyond 279

SPEL to future investigations. 280

Table 2 presents our evaluation results for the 281

StrategyQA dataset. Notably, Entity Retrieval with 282

oracle annotations is excluded due to the absence 283

of oracle entity links for questions in StrategyQA, 284

while the exclusion of REPLUG is attributed to its 285

comparatively inferior performance relative to DPR 286

in FactoidQA experiments. Our results affirm our 287

previous inference that retrieval-augmentation is 288

not beneficial with sufficiently large models. How- 289

ever, despite the complex reasoning demanded by 290

this dataset, Entity Retrieval achieves comparable 291

results to other retrieval-augmented methods, while 292

offering better hardware efficiency. Additionally, 293

invalid count values indicate that Entity Retrieval 294

is capable of aiding the model in understanding the 295

boolean nature of expected responses without rely- 296

ing on dense retrieval from millions of passages. 297

5 Conclusion 298

We highlight the disproportionate benefit of re- 299

trieval augmentation for smaller LLMs in the con- 300

text of factoid question answering, and introduce 301

Entity Retrieval as a promising entity linking-based 302

alternative to dense retrieval for augmenting factoid 303

questions in prompting LLMs. 304
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Limitations and Ethical Considerations305

We have not exhaustively explored all potential306

entity linking methods, which may yield insights307

enhancing the proposed Entity Retrieval approach.308

Additionally, due to space constraints and a309

desire to expedite community engagement, we310

have not incorporated additional datasets (e.g.311

30MFQA; Serban et al., 2016), most of which are312

annotated with Freebase (Bollacker et al., 2008)313

and have fallen into disuse following Freebase’s314

discontinuation. We intend to revitalize such ne-315

glected factoid question answering datasets, and316

we posit that revitalizing these datasets could facil-317

itate the development of a benchmark dataset akin318

to MMLU (Hendrycks et al., 2021), enabling ro-319

bust evaluations of newly released LLMs in terms320

of their factual knowledge capabilities.321

Our research is on English only, and we acknowl-322

edge that factoid question answering in other lan-323

guages is also relevant and important. We hope324

to extend our work to cover multiple languages in325

the future. We inherit the biases that exist in the326

data used in this project, and we do not explicitly327

de-bias the data. We are providing our code to the328

research community and we trust that those who329

use the model will do so ethically and responsibly.330
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