
Efficient Policy Evaluation Across Multiple Different
Experimental Datasets

Yonghan Jung˚

Purdue University
jung222@purdue.edu

Alexis Bellot˚:

Independent Researcher
abellot@gmail.com

Abstract

Artificial intelligence systems are trained combining various observational and
experimental datasets from different source sites, and are increasingly used to
reason about the effectiveness of candidate policies. One common assumption
in this context is that the data in source and target sites (where the candidate
policy is due to be deployed) come from the same distribution. This assumption is
often violated in practice, causing challenges for generalization, transportability,
or external validity. Despite recent advances for determining the identifiability of
the effectiveness of policies in a target domain, there are still challenges for the
accurate estimation of effects from finite samples. In this paper, we develop novel
graphical criteria and estimators for evaluating the effectiveness of policies (e.g.,
conditional, stochastic) by combining data from multiple experimental studies.
Asymptotic error analysis of our estimators provides fast convergence guarantee.
We empirically verified the robustness of estimators through simulations.

1 Introduction

In the empirical sciences, conclusions on the effect of actions or policies is often supported by evidence
drawn from prior observations and experiments. The conditions under which such inferences can
be formally justified can be traced back (in part) to Campbell, Stanley and Cook [10, 11, 14]. They
argued for a basic dichotomy in the kinds of questions that scientists seek to answer from experimental
data. On the one hand asking whether “in fact, the experimental stimulus made some significant
difference in this specific instance?”, and on the other hand asking “to what populations, settings, and
treatments can this effect be generalized?” [10, p. 297]. These inferences have since been labelled as
internal validity and external validity, respectively.

External validity is concerned with the extent to which findings from one population can be “re-
processed”, or “re-calibrated” so as to circumvent population differences and produce valid general-
izations in a target population where experiments cannot be performed (e.g., outside the laboratory,
different domains, etc.). The validity of these inferences will necessarily be contingent on a careful
analysis to ascertain the commonalities and differences between domains as, for example, if the
target domain is completely arbitrary generalization is impossible. In the causal transportability
literature, the basis for generalization (also called transportability) is justified by the stability and
invariance of the causal mechanisms shared across populations and domains [20, 32]. Several graphi-
cal characterizations exist to delineate the conditions under which transportability is possible, with
recent algorithms proposing solutions for general instances of the external validity task combining
observational and experimental distributions under partial observability [36, 2, 3, 16, 30].
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These algorithmic solutions express a target policy effect in terms of the observational and experi-
mental source distributions. Still, then one needs to go further and estimate the resulting expression
from finite samples. In practice, with a finite number of samples and potentially high-dimensional
covariates, estimating causal expressions is quite challenging. Effective estimators have been de-
veloped for specific settings, starting with doubly-robust estimators for functionals given by the
backdoor criterion [13, 37, 9, 45], and recently extended to cover general identification scenarios with
observational and experimental samples [25, 26, 8]. These techniques also find parallels across other
related disciplines, such as reinforcement learning where re-weighting [42, 31], outcome modelling
[6], and doubly-robust estimation [18], are common for evaluating the effect of policies to overcome
shifts in the behaviour policy. Recently, [44] and [22] have considered policy evaluation under
covariate shift and selection bias, a special case of the external validity problem with a given graph.
Despite their generality, existing estimators still only cover a limited portion of realistic scientific
inferences. In particular, existing methods are not applicable in settings where datasets are collected
in different domains.

We consider the generalization of causal claims from observational and experimental data through the
task of policy evaluation. The target for inference is EP 0

π
rY s where P 0

π symbolizes the distribution
of data in a target domain (indexed as 0) in which a hypothetical policy of interest π (also known as
dynamic treatment regimes [33] or soft interventions [16]) has been implemented. The question then
becomes how to identify and estimate EP 0

π
rY s, given finite samples from multiple observational and

experimental data (e.g., P iπi
, a source domain indexed by i in which experimental policy is πi that

may differ with π0) collected under different settings and structural assumptions, encoded in causal
diagrams. We aim to bridge the gap between identification and estimation to solve general instances
of external validity. Our contributions are twofold:

1. Sec. 3: We develop nonparametric identification criteria (Thm. 1) to determine whether the effect
of a policy may be expressed through an adjustment formula from two separate distributions
induced by policy interventions, collected from different populations. Based on this formulation,
we develop a multiply robust estimator (Thm. 3) that enjoys multiply robustness against model
misspecification and bias.

2. Sec. 4: We generalize these identification criteria (Thm. 4) and propose a general multiply-robust
estimator (Thm. 6) applicable for the evaluation of policies from multiple source datasets.

1.1 Preliminaries

We use bold letters (X) to denote a random vector and X a random value. Each random vector
is represented with a capital letter (X) and its realized value with a small letter (x). Given a
set X “ tX1, ¨ ¨ ¨ , Xnu, we denote Xpiq :“ tX1, ¨ ¨ ¨ , Xiu. For a discrete vector X, we use
1xpXq to represent the indicator function such that 1xpXq “ 1 if X “ x; 1xpXq “ 0 otherwise.
For comprehensibility, we use P pvq to denote a probability at V at v for discrete/continuous
random variables V. In similar, we use

ř

z for Z Ď V for the summation/integration over a
mixture of discrete/continuous random variables Z For example, we write the back-door adjustment
as

ř

z EP rY | x, zsP pzq even when Z is a mixture of discrete/continuous variables. We use
EP rfpVqs :“

ř

v fpvqP pvq for a function f . For a sample set D :“ tVpiq : i “ 1, ¨ ¨ ¨ , nu

where Vpiq denotes the ith samples, we use EDrfpVqs :“ p1{nq
řn
i“1 fpVpiqq. We use }f}P :“

a

EP rtfpVqu2s. If a function pf is a consistent estimator of f having a rate rn, we use pf ´ f “

oP prnq. We say f̂ is L2-consistent if }f̂ ´f}P “ oP p1q. We use pf ´f “ OP p1q if pf ´f is bounded
in probability, and pf ´ f “ OP prnq when pf ´ f is bounded in probability at rate rn.

We use Structural Causal Models (SCMs) as our framework [35]. An SCM M is a quadruple
M “ xU,V, P pUq,Fy. U is a set of latent variables following a joint distribution P pUq. V is
a set of observable variables whose values are determined by functions F “ tfVi : Vi P Vu such
that Vi Ð fVippaVi

,uViq where PAi Ď V and UVi Ď U. Each SCM M induces a distribution
P pVq and a causal graph G in which directed edges from every variable in PAi to Vi exist. Dashed-
bidirected arrows encode correlated latent variables.
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2 Policy Evaluation Integrating Multiple Experimental Datasets

We investigate the sequential decision-making setting concerning a set of actions X, a series of
dynamic covariates Z, a series of static covariates C and an outcome variable of interest Y in an
SCM M. A policy vector π :“ tπiu over actions X “ tX1, ¨ ¨ ¨ , Xmu is an ordered set of decision
rules for each Xi P X. Actions are selected according to a topological ordering X1 ă ¨ ¨ ¨ ă XK

over time. Each action Xi is potentially associated with a set of prior static and dynamic covariates,
for example, the decision rule for Xk could be defined as xk „ πp¨ | zpkq,xpk´1q, cpkqq. Every
πpXk | Zpkq,Xpk´1q,Cpkqq is a probability distribution mapping from domains of the set of inputs
tZpkq,Xpk´1q,Cpkqu to the domain of actions Xk. The implementation of a policy π in M induces
an intervened model Mπ, that sets values of every X P X to be decided by the policy π, replacing
the functions tfX , X P Xu that would normally set its value. We denote a distribution induced by
Mπ as Pπ . Now, we fix the notion of the policy evaluation as follows:

Definition 1 (Policy evaluation [41]). The policy evaluation is to predict the effectiveness of a policy
vector π on an outcome Y in an target SCM M0; i.e., ψ0 :“ EP 0

π
rY s.

Difficulties in estimating EP 0
π

rY s comes from that the distribution or samples from P 0
π are generally

not available. These discrepancies can be formalized under the rubric of SCMs as follows. In the
most general setting, an investigator might leverage multiple source domains tM1,M2, . . . ,MKu

over V that entail distributions P : tP 1, P 2, . . . , PKu. Data or samples from these distributions may
be available under different behaviour policies, e.g., π1, π2, . . . , πK , depending on the study or data
collection protocol implemented in each domain (that might include an observational regime, i.e. no
policy implemented). To ground the policy evaluation problem, we define graphical tools to capture
commonalities and discrepancies across domains.

Definition 2 (Domain discrepancy [29]). For every pair of SCMs Mi,Mj (i, j P t0, 1, 2, . . . ,Ku)
defined over V , the domain discrepancy set ∆ij Ď V is defined such that for every V P ∆ij there
might exist a discrepancy between fM

i

V ‰ fM
j

V , or PM
i

puV q ‰ PM
j

puV q.

Definition 3 (Selection diagram [29]). The selection diagram G∆ “

tGjujPt0,1,2,...,T u

Ť

tG∆0j ujPt1,2,...,T u is a graph constructed from Gi (i P t0, 1, 2, . . . , T u)
by adding the selection node Sij to the vertex set, and adding the edge Sij Ñ V for every V P ∆ij .

∆i,j locates the mechanisms where structural discrepancies between two domains are suspected to
take place. V R ∆i,j represents the assumption that the mechanisms for V are invariant across the
two domains. The induced selection diagram is a parsimonious representation of these constraints.
The following example illustrates these notions.

Example 1 (External validity under covariate shift). A common instance of the external validity
problem in the literature considers the evaluation the effect of a policy π : ΩC ˆ ΩX Ñ r0, 1s for
assigning a treatment X P t0, 1u, subject to shift in the distribution of covariates C. For this example,
let source and target domains M : tM1,M0u over V “ tC,X, Y u,U “ tUXY , UCu be defined as
follows,

M1 :

$

’

’

&

’

’

%

F “

$

&

%

C Ð fCpUCq

X Ð fXpC,UXY q

Y Ð fY pX,C,UXY q

P pUq “ P pUXY qP pUCq

M0 :

$

’

’

&

’

’

%

F0 “

$

&

%

C Ð f0CpUCq

X Ð fXpC,UXY q

Y Ð fY pX,C,UXY q

P 0pUq “ P pUXY qP 0pUCq

Here, C P ∆1,0, tY,Cu R ∆1,0 as only the mechanism for C varies across domains. Consider the
evaluation of π : πpX “ 1 | cq :“ 1{p1 ` expt´cuq given an experimental dataset in M1 in which
X has been randomized, i.e., X „ Bernp0.5q, and covariate data P 0pCq available in M0. Notice that
we do not have access to the specification of the SCMs M, but only the induced diagrams G∆, and a
subset of entailed distributions P : tP 1

randpXq
pX,Y,Cq, P 0pCqu. The policy effect is expressible as

EP 0
π

rY s “
ÿ

x,c,y

yP 1
randpxqpy | c, xqπpx | cqP 0pcq,

and estimated given the policy π and the combination of the available data from P 1, P 0. ■
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Figure 1: Graphs illustrating the inference of a two-stage treatment strategy π0 :“ tπ0px1 | c1q, π0px2 |

x1, c2, wqu given data from source domains M1,M2, described in Example 2.

3 Combining experiments from two domains

Example 1 illustrates two challenges in combining data from different domains to infer the effect
of a new policy in a target domain. In a first instance highlighting the challenge of identification,
that is inferring an expression in terms of P that identifies the policy effect, and in a second instance
highlighting the challenge of estimation, that is providing efficient estimators from finite samples for
the identified policy effect. The following example will serve to motivate this setting.
Example 2 (Two-stage treatment strategies). A team of physicians is contemplating a treatment
plan π0 against heart disease Y for their patients in M0. They consider administrating two drugs
in sequence: a drug against hypertension X1, followed by an anti-diabetic drug X2 depending on
the effect of X1 on blood pressure W . To support their evaluation, two studies exist on these drugs,
from domains M1,M2, that, however, have only analyzed their effect in isolation (on X1 and X2

separately) and under different treatment guidelines, π1, π2 respectively. The data collected refers to
the variables V :“ pY,C1,C2, X1, X2,W q in which pC1,C2q are demographic variables. Formally,
we assume physicians have access to P : tP 1

π1
pVq, P 2

π2
pVq, P 0pC1,C2qu. The superscripts in

P 0, P 1, P 2 are the index for the domain, and the subscripts π0, π1, π2 denote the policies for
assigning treatments. G∆ in Fig. 1 encodes the structural assumptions, which include discrepancies
across domains and implemented policies in the available data. For example, the graph G1

π1
specifies

the known guideline π1 used in M1, while no specific plan was followed for the assignment of X2,
that in practice depends on the patient’s covariates C2 as well as unobserved factors, e.g. mood,
health awareness, etc. (summarized in the bi-directed arc). In addition, selection diagrams describe
differences between domains. For example, the edge tSC1 Ñ C1u in G∆0,1

π0 indicates a potential
change in the distribution of covariates C1 across domains M0,M1. The question then becomes how
to estimate EP 0

π0
rY s given pG∆,Pq. ■

3.1 Identification

Example 2 illustrates the complexity of drawing inferences from multiple datasets collected under
different settings. We extend this example to provide a general identification procedure for the effect
of policies when two source datasets subject to different policies and/or discrepancies with the target
domain are available. Let V :“ pY,C, X1,W, X2,W, Y,Sq denote a set of disjoint variables, where
Y is an outcome variable, C, pC,Wq are covariates corresponding to two experiments, pX1, X2q

are treatment variables, and S denotes the selection nodes describing discrepancies across pairs of
domains. Formally, the task signature is given as follows:

• Input: Samples from P “ tP 1
π1

pVq, P 2
π2

pVq, P 0pC1,C2qu; structural assumptions G∆ :“

tG0
π0
,G1
π1
,G2
π2
,G∆0,1
π0 ,G∆0,2

π0 u.

• Query: Estimate EP 0
π0

rY s where P 0 is distribution on the target domain and π0 is a target policy
assigning treatments with π0pX1 | C1q and π0pX2 | C2,W q.

Given these inputs, a sufficient condition for identifying the query is given as follows:
Definition 4 (Adjustment criterion for combining two experiments). Given G∆, the adjustment
criterion for combining two experimental datasets is defined by the following d-separation statements:

1. Domain transfer for Y : pY KK S | C, X1, X2,W q in G∆0,2
π0 ; i.e., the distribution over Y is

invariant between the source distribution from M2 and the target.
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2. Domain transfer for W : pW KK S | C, X1q in G∆0,1
π0 ; i.e., the distribution over W is invariant

between the source distribution from M1 and the target.

3. Adjustment for Y : pY KK πi | C1, C2, X1, X2,W q in Gπi for i P t0, 2u; i.e., the distribution
over Y is invariant between regimes π0 and π2.

4. Adjustment for W : pW KK πi | C1, C2, X1q in Gπi
for i P t0, 1u; i.e., the distribution over W is

invariant between regimes π0 and π1.

The adjustment criterion could be shown to hold for Example 2. Specifically, domain transfer Y could
be shown by inspecting Fig.5e as the set S “ tSC1 , SC2 , SW u is d-separated from Y , conditional on
tC1, C2, X1, X2,W u. Similarly, domain transfer for W holds as S “ tSC1 , SC2 , SY u is d-separated
from W , given C1, C2, X1 in Fig.5d. Similarly, one could verify the adjustment condition for Y by
inspecting Fig.5c and the adjustment condition for W by inspecting Fig. 5a.

For this example, these conditions imply identifiability of the target query EP 0
π0

rY s given pG∆,Pq.

Theorem 1 (Adjustment for combining two experiments). Under the adjustment criterion in Def. 4,
the target query ψ0 :“ EP 0

π0
rY s is identifiable from the samples from P 1

π1
pVq, P 2

π2
pVq, P 0pC1,C2q.

Specifically, it’s expressed as follows 3:

EP 0
π0

rY s “
ÿ

w,c,x

EP 2
π2

rY | c, w,xsπ0px2 | c, wqP 1
π1

pw | c1, x1qπ0px1 | cqP 0pcq, (1)

where X :“ pX1, X2q and C :“ pC1,C2q.

Effectively, despite the differences across domains encoded in Example 2, the effect of the new
combination of anti-diabetic and anti-hypertensive drugs π0, can be estimated using samples from
experiments already conducted in M1,M2, and baseline characteristics of patients in M0.

3.2 Estimation

This section considers the estimation of the effect of policies, building on the identification criterion
in Thm. 1. We first parameterize the identification estimand in Eq. (1) with two types of nuisance
parameters µ and ω. µ is a collection of regression parameters, and ω is a collection of the ratio of
distributions.

The regression nuisance parameters are defined as follows: µ2
0pC,W,Xq :“ EP 2

π2
rY | C,W,Xs

and µ̌2
0pC,W,X1q :“

ř

x2
µ2
0pC,W,X1, x2qπ0px2 | C,W,X1q. Recursively, µ1

0pC, X1q :“

EP 1
π1

rµ̌2
0pC,W,X1q | C, X1s and µ̌1

0pCq :“
ř

x1
µ1
0pC, x1qπ0px1 | Cq. Eq. (1) can be param-

eterized as EP 0
π0

rY s “ EP 0rµ̌1
0pCqs.

On the other hand, the ratio nuisance parameters ω2
0 , ω

1
0 are defined as functionals satisfying the

following properties:

EP 0
π

rY s “ EP 2
π2

rµ2
0pC,W,Xqπ2

0pC,W,Xqs “ EP 1
π1

rµ1
0pC, X1qπ1

0pC, X1qs. (2)

A closed form of the ωi0 is provided in the later section at Eq. (14). By the definition of ratio nuisances,
Eq. (1) can be parameterized as EP 0

π0
rY s “ EP 2

π2
rω2

0pC,W,XqY s. Equipped with these nuisances,
we now present the DML-based estimator for the target query:
Definition 5 (DML for combining two experiments). Let D2 „ P 2

π2
pVq, D1 „ P 1

π1
pVq and

D0 „ P 0pCq. Let L ě 2 denote a fixed number.

1. Sample split: For ℓ “ 1, ¨ ¨ ¨ , L, randomly split Di for i P t0, 1, 2u into L-fold. The ℓ’th partition
of the sample is denoted Di

ℓ. The complement is Di
´ℓ :“ DizDi

ℓ.

2. Nuisance estimation: For each ℓ “ 1, ¨ ¨ ¨ , L, learn the estimator model µ̂2
ℓ and µ̂1

ℓ for µ2
0, µ

1
0

using samples D2
´ℓ,D1

´ℓ, respectively. Also, learn the estimation model for ω̂1
ℓ , ω̂

2
ℓ for ω1

0 , ω
2
0

using samples Di
´ℓ for i “ 0, 1, 2, respectively.

3Thm. 1 remains valid for a mixture of discrete and continuous W , C, and X. For these cases, sums can
be appropriately replaced by Lebesgue integrals. However, we continue to use summation notation in our
explanation to keep the presentation of the identification result straightforward.
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3. Evaluation: The DML estimator ψ̂ for EP 0
π0

rY s is then given as

ψ̂ :“
1

L

L
ÿ

ℓ“1

ED2
ℓ
rω̂2
ℓ tY ´ µ̂2

ℓus ` ED1
ℓ
rω̂1
ℓ t ˇ̂µ2

ℓ ´ µ̂1
ℓus ` ED0

ℓ
r ˇ̂µ1
ℓ s. (3)

Estimating the ratio nuisance tω̂1, ω̂2u can be challenging due to the necessity of estimating density

ratios like
P 1

π1
pCq

P 2
π2

pCq
or

P 1
π1

pW |C,X1q

P 2
π2

pW |C,X1q
. We employ the classification-based method for estimating the

density [17, Sec. 5.4]. To illustrate this method, consider estimating
P 1

π1
pCq

P 2
π2

pCq
. We assign λ “ 1 if

samples of C are from P 1
π1

and λ “ 0 if from P 2
π2

. Then, it’s provable that
P 1

π1
pCq

P 2
π2

pCq
“

P pλ“1|Cq

P pλ“0|Cq
,

which can be estimated using off-the-shelf probabilistic classification estimators.

The error of the DML estimator is presented below:

Theorem 2 (Learning Guarantees). Suppose µ̂2
ℓ , µ̂

1
ℓ ă 8 and 0 ă ω̂2

ℓ , ω̂
1
ℓ ă 8.

Define ϕ2pV;µ2, π2q :“ ω2pC,W,XqtY ´ µ2pC,W,Xqu, ϕ1ppC,W,X1q; µ̌2, µ1, ω1q :“
ω1pC, X1qtµ̌2pC,W,X1q ´ µ1pC, X1qu, and ϕ0pC; µ̌1q :“ µ̌1pCq ´ ψ0. For i “ 0, 1, 2, de-
fine ϕi0 as ϕi equipped with true nuisances (µi0, π

i
0) and ϕ̂iℓ as ϕi equipped with estimated nuisances

µ̂iℓ, π̂
i
ℓ. Define Ri :“ p1{Lq

řL
ℓ“1pEDi

ℓ
rϕ̂iℓs ´ EP irϕ̂iℓsq for i “ 0, 1, 2. Then,

1. The error ψ̂ ´ ψ0 is decomposed as follows:

ψ̂ ´ ψ0 “

2
ÿ

i“0

Ri `
1

L

L
ÿ

ℓ“1

2
ÿ

i“1

EP i
πi

rtµ̂iℓ ´ µi0utωi0 ´ ω̂iℓus. (4)

2. Let ρ2i,0 :“ VP i
πi

rϕi0s. With probability (W.P) greater than 1 ´ ϵ,

2
ÿ

i“0

Ri ď 3

c

2

ϵ

¨

˚

˝

g

f

f

e

2
ÿ

i“0

ρi,0
|Di|

`

g

f

f

e

L
ÿ

ℓ“1

2
ÿ

i“0

}ϕ̂iℓ ´ ϕi0}2P i
πi

|Di
ℓ|

˛

‹

‚

. (5)

3. Let κ3i,0 :“ EP i
πi

r|ϕi0|3s. Let Φpxq denote the standard normal CDF. W.P greater than 1 ´ ϵ,

ˇ

ˇ

ˇ

ˇ

ˇ

P iπi

˜

a

|Di|

ρk,0
Ri ă x

¸

´ Φpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

?
2π

g

f

f

e

L2

ϵ

L
ÿ

ℓ“1

}ϕ̂iℓ ´ ϕi0}2P i
πi

|Di
ℓ|

`
0.4748κ3i,0

ρ3i,0
a

|Dk|
. (6)

If the nuisance parameters µ̂iℓ and π̂iℓ converge at a rate of n´1{4 (where n is the size of the smallest
sample set), the DML estimator achieves a faster convergence rate of n´1{2. This rapid convergence
allows its asymptotic distribution to closely approximate the standard normal distribution, as is further
clarified in the asymptotic analysis:

Theorem 3 (Asymptotic Error). Suppose each nuisance estimates µ̂2
ℓ , µ̂

1
ℓ , ω̂

2
ℓ , ω̂

1
ℓ are L2-consistent

and bounded. Then, the error of the DML estimator ψ̂ in Def. 5 is given as follows:

ψ̂ ´ ψ0 “

2
ÿ

i“0

Ri `

L
ÿ

ℓ“1

OP 2
π2

p}µ̂2
ℓ ´ µ2

0}}ω̂2
ℓ ´ ω2

0}q `

L
ÿ

ℓ“1

OP 1
π1

p}µ̂1
ℓ ´ µ1

0}}ω̂1
ℓ ´ ω1

0}q, (7)

where Ri converges in distribution to normalp0, ρ2i,0q.

Eq. (7) implies that the error term ψ̂ ´ ψ0 converges to zero faster than the convergence rate of
nuisances, which is a property known as debiasedness.
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Figure 2: Graphs illustrating the inference of a multiple treatment strategy π0 :“ tπ0px1 | c1q, π0px2 |

x1, c2, w1q, π0px3 | x2, c3, w2qu given data from source domains M1,M2,M3.

4 Combining multiple experiments

In this section, we extend our method to incorporate the combination of data from multiple experi-
ments, specifically focusing on m different experiments derived from varied policies (πi) in distinct
source domains (Mi). A practical scenario for this task is the following:
Example 3 (Multi-stage treatment strategies). Consider a scenario involving hospitals in three
different cities: New York (domain 1 with P 1,G1), Los Angeles (domain 2 with P 2,G2), and San
Francisco (domain 3 with P 3,G3). Each hospital has different guidelines, i.e., policies, for diabetes
treatment. In New York, the hospital focuses on insulin therapy adjustment based on the patient
lifestyle choices, primarily for Type 1 Diabetes patients (π1). In Los Angeles, the hospital focuses on
team diet and exercise regimen adjustments, primarily for Type 2 Diabetes patients (π2). In contrast,
San Francisco’s approach involves advanced monitoring and AI-driven predictive adjustments for
higher-risk diabetes patients. Now, as the leader of a new clinical team in Chicago (the target domain
with P 0,G0), the task is to evaluate a novel candidate treatment policy π0, which integrates the
strategies from these three domains to provide comprehensive care for both Type 1 and Type 2
Diabetes patients. The structure of the problem is captured in causal diagrams in Fig. 2, illustrating
the data-generating process, the experiments in each city, and the assumed discrepancies between
these source domains and Chicago. ■

4.1 Identification

We consider a sequence of variables pC, X1,W1, ¨ ¨ ¨ , Xm,Wm :“ Y q where pC,Wpi´1qq represent
the covariates corresponding to each of the i’th experiments, and pX1, ¨ ¨ ¨ , Xmq are the corresponding
treatment variables. We are given samples drawn from P iπi

pVq for i “ 1, ¨ ¨ ¨ ,m and P 0pCq. We
will leverage causal diagrams Gπi

and selection diagrams G∆0,i for every i “ 1, ¨ ¨ ¨ ,m. Formally,
the task signature is given as follows:

• Input: Samples from P iπi
pVq for i “ 1, ¨ ¨ ¨ ,m and P 0pC1,C2q; Causal diagrams Giπi

and
selection diagrams G∆0,i

π0 for i “ 1, ¨ ¨ ¨ ,m.
• Query: Estimate the effect of the target policy π0 on the target domain M0; i.e., EP 0

π0
rY s.

Definition 6 (Adjustment criterion for combining multiple experiments). The adjustment cri-
terion for combining multiple policies are the following d-separation criterion in the the DTRs
Gπ0 ,Gπ1 , ¨ ¨ ¨ ,Gπm and the selection diagram G∆0,1

π0 , ¨ ¨ ¨ ,G∆0,m
π0 .

1. Domain transfer for Y : pY KK S | C,W,Xq in G∆0,m
π0 ; i.e., the distribution over Y is invariant

between the source distribution from Mm and the target.

2. Domain transfer for Wi for i “ 1, ¨ ¨ ¨ ,m ´ 1: pWi KK S | Cpiq,Wpi´1qq in G∆0,i
π0 ; i.e., the

distribution over Wi is invariant between the source distribution from Mi and the target.

7



3. Adjustment for Y : pY KK πi | C,W,Xq in Gπi for i P t0,mu; i.e., the distribution over Y is
invariant between regimes π0 and πm.

4. Adjustment for Wi i “ 1, ¨ ¨ ¨ ,m ´ 1: pWi KK πj | Cpiq,Xpi´1qq in Gπj
for j P t0, iu; i.e., the

distribution over Wi is invariant between regimes π0 and πi.

These conditions lead to the following identification criterion.
Theorem 4 (Adjustment for combining multiple experiments). Under the adjustment criterion in
Def. 6, the target query ψ0 :“ EP 0

π0
rY s is identifiable from the samples from P 1

π1
pVq, ¨ ¨ ¨ , Pmπm

pVq

and P 0pCq. Specifically, it’s expressed as follows:

EP 0
π0

rY s “
ÿ

w,c,x

EPm
πm

rY | c,w,xs

m´1
ź

i“1

P iπi
pwi | c,xpi´1q,wpi´1qq

m´1
ź

j“1

π0pxj | c,wpj´1qqP 0pcq,

(8)

4.2 Estimation

The regression nuisance parameters are defined as follows. We first define the following nuisance.

µm0 pC,W,Xq :“ EPm
πm

rY | C,W,Xs (9)

µ̌m0 pC,W,Xpm´1qq :“
ÿ

xm

πm0 pxm | C,Wpm´1qqµm0 pC,W,Xpm´1q, xmq (10)

For i “ m´ 1, ¨ ¨ ¨ , 1, the other nuisances are defined in a following manner:

µi0pC,Wpi´1q,Xpiqq :“ EP i
πi

rµ̌i`1
0 pC,Wpiq,Xpiqq | C,Wpi´1q,Xpiqs, (11)

µ̌i0pC,Wpi´1q,Xpi´1qq :“
ÿ

xi

µi0pC,Wpi´1q,Xpi´1q, xiqπ
i
0pxi,C,W

pi´1qq. (12)

We note that Eq. (8) can be parameterized as EP 0
π0

rY s “ EP 0rµ̌1
0pCqs. On the other hand, the ratio

nuisance parameters ωi0 for i “ 1, ¨ ¨ ¨ ,m are defined as functionals satisfying the followings:

EP 0
π

rY s “ EP i
πi

rµi0pC,Wpi´1q,Xpiqqωi0pC,Wpi´1q,Xpiqqs, (13)

where the closed form is given as

ωi0 “
π0pXi | C,Wpi´1qq

śi´1
j“1 P

j
πj

pWj | C,Xpj´1q,Wpj´1qqπ0pXj | C,Wpj´1qqP 0pCq

P 0
π0

pC,Wpi´1q,Xpiqq

(14)

Eq. (8) can be parameterized as EPm
πm

rωpmqpC,Wpm´1q,XpmqqY s. Equipped with these nuisances,
we define a corresponding estimator as follows.
Definition 7 (DML for combining multiple experiments). Let Di „ P iπi

pVq for i “ 1, ¨ ¨ ¨ ,m

and D0 „ P 0pCq. Let L ě 2 denote a fixed number.

1. Sample split: For ℓ “ 1, ¨ ¨ ¨ , L, randomly split Di for i P t0, 1, ¨ ¨ ¨ ,mu into L-fold. The ℓ’th
partition of the sample is denoted Di

ℓ. The complement is Di
´ℓ :“ DizDi

ℓ.

2. Nuisance estimation: For each ℓ “ 1, ¨ ¨ ¨ , L, learn the estimator model µ̂mℓ , ¨ ¨ ¨ , µ̂1
ℓ for

µm0 , ¨ ¨ ¨ , µ1
0 using samples Dm

´ℓ,D1
´ℓ, respectively. Also, learn the estimation model for

ω̂1
ℓ , ¨ ¨ ¨ , ω̂mℓ for ω1

0 , ¨ ¨ ¨ , ωm0 using samples Di
´ℓ for i “ 0, 1, ¨ ¨ ¨ ,m, respectively.

3. Evaluation: The DML estimator ψ̂ for EP 0
π0

rY s is then given as

ψ̂ :“
1

L

L
ÿ

ℓ“1

m
ÿ

i“1

EDi
ℓ
rω̂iℓt ˆ̌µ

i`1
ℓ ´ µ̂iℓus ` ED0

ℓ
r ˇ̂µ1
ℓ s. (15)

The error of the DML estimator is presented below:

8



Theorem 5 (Learning Guarantees). Suppose µi0, µ̂
i
ℓ ă 8 and 0 ă πi0, π̂

i
ℓ ă 8 almost surely for

i “ 1, ¨ ¨ ¨ ,m. Define ϕippC,Wpiq,Xpiqq;ωi, µ̌i`1, µiq :“ ωitµ̌i`1 ´ µiu for i “ 1, ¨ ¨ ¨ ,m, where
µ̌m`1 :“ Y . Let ϕ0pC; µ̌1q :“ µ̌1 ´ ψ0. For i “ 0, ¨ ¨ ¨ ,m, define ϕi0 as ϕi equipped with true
nuisances, and ϕ̂iℓ as ϕi equipped with estimated nuisances. Define Ri :“ p1{Lq

řL
ℓ“1pEDi

ℓ
rϕ̂iℓs ´

EP irϕ̂iℓsq for i “ 0, 1, ¨ ¨ ¨ ,m. Then,

1. The error ψ̂ ´ ψ0 is decomposed as follows:

ψ̂ ´ ψ0 “

m
ÿ

i“0

Ri `
1

L

L
ÿ

ℓ“1

m
ÿ

i“1

EP i
πi

rtµ̂iℓ ´ µi0utωi0 ´ ω̂iℓus. (16)

2. Let ρ2i,0 :“ VP i
πi

rϕi0s. With probability (W.P) greater than 1 ´ ϵ,

m
ÿ

i“0

Ri ď pm` 1q

c

2

ϵ

¨

˚

˝

g

f

f

e

m
ÿ

i“0

ρ2i,0
|Di|

`

g

f

f

e

L
ÿ

ℓ“1

m
ÿ

i“0

}ϕ̂iℓ ´ ϕi0}2P i
πi

|Di
ℓ|

˛

‹

‚

. (17)

3. Let κ3i,0 :“ EP i
πi

r|ϕi0|3s. Let Φpxq denote the standard normal CDF. W.P greater than 1 ´ ϵ,

ˇ

ˇ

ˇ

ˇ

ˇ

P iπi

˜

a

|Di|

ρk,0
Ri ă x

¸

´ Φpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

?
2π

g

f

f

e

1

ϵ

L
ÿ

ℓ“1

}ϕ̂iℓ ´ ϕi0}2P i
πi

|Di
ℓ|

`
0.4748κ3i,0

ρ3i,0
a

|Dk|
. (18)

A corresponding asymptotic error analysis is following:
Theorem 6 (Asymptotic Error). Suppose each nuisance estimates µ̂1

ℓ , ¨ ¨ ¨ , µ̂mℓ and ω̂1
ℓ , ¨ ¨ ¨ , ω̂mℓ

are L2-consistent and bounded. Then, the error of the DML estimator ψ̂ in Def. 7 is given as follows:

ψ̂ ´ ψ0 “

m
ÿ

i“0

Ri `

L
ÿ

ℓ“1

m
ÿ

i“1

OP i
πi

p}µ̂iℓ ´ µi0}}ω̂iℓ ´ ωi0}q, (19)

where Ri converges in distribution to Normalp0, ρ2i,0q.

Similarly to Thm. 3, this result implies that the DML estimator ψ̂ converges fast even when the
nuisance estimates converge relatively slowly.

5 Experiments

In this section, we demonstrate the proposed estimators in Defs. (5,7) for combining multiple
experimental datasets from different domains. We first compared the estimators on synthetic data
to provide evidence of the fast convergence and doubly robustness behaviours of the proposed
estimators. We conclude with an analysis of the ACTG 175 clinical trial [21] and Project STAR. We
will use T estpxq for est P treg, pw, dmlu to denote the estimators tOM,PW,DMLu for the policy
effect EP 0

π0
Y . OM and PW estimators are purely based on the regression-based nuisances µ and

ω, respectively. To assess the quality of each estimator, we consider the absolute error (AE) as
AEest

“ |T estpxq ´ EP 0
π0

rY s |. We used XGBoost [12] to estimate nuisances.

Synthetic Simulations We ran 100 simulations for each N “ t2500, 5000, 10000, 20000u where
N is the sample size. We measure the AEest in the presence of the ‘converging noise ϵ’ in estimating
the nuisance, decaying at a N´1{4 rate (i.e., ϵ „ normalpN´1{4, N´1{4q, where N is the size of
samples). To enforce the convergence rate of nuisance estimates no faster than the decaying rate
n´1{4, we add ϵ to all nuisance estimates. This scenario is inspired by the experimental design
discussed in [27]. The AE plots for combining two/multiple experiments are presented in Figs. (3a,
3b). For all examples, the proposed DML estimator outperforms the other two estimators by achieving
fast convergence. This result corroborates the robustness property in Thm. (3, 6), which implies that
the proposed estimator converges faster than the other counterparts.
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(a) (b) (c) (d)

Figure 3: Comparison of the proposed DML estimator with other counterparts (outcome-based model called
‘OM’, and the probability-weighting-based model labelled ‘PW’) for (a,b) synthetic data analysis for combining
two and multiple experiments; and (c,d) real-world data analysis under the noise-free or noisy environments in
learning nuisances.

External validity: ACTG 175 To provide empirical evidence, we analyze the ACTG 175 random-
ized trial [21], which assessed therapies for reducing CD4 T cell counts in HIV patients. Participants
were randomly assigned to treatments X2 P t0, 1u, with prior anti-retroviral drug use X1 P t0, 1u

recorded. Patient demographics C1,C2—including gender, age, weight, and Karnofsky score—were
collected, and CD4 T cell counts (W ) were measured. To simulate an alternative study with a modi-
fied guideline for X1, we sub-sampled ACTG 175, adjusting covariate distributions and assignments
of tX1, X2u. Specifically, we evaluate a stochastic policy π0 “ tπ0px1 | c1q, π0px1 | c2qu for
combining X1 and X2 based on C1,C2, with distribution P 0 representing a location with differing
covariate distributions and treatment assignments. Further details are provided in Appendix D.2.

We evaluated the AEest of all proposed estimators with and without noise (as described in the synthetic
simulations). The AE plots are shown in Figs. (3c, 3d). Results indicate that both the regression and
DML estimators converge to the true policy effect faster under noisy conditions, whereas the PW
estimator converges more slowly. However, DML does not consistently outperform at all sample
sizes (see Fig. 3c), as its error is influenced by the combined errors in the OM and PW estimators.
Consequently, high error in the PW estimator may lead to increased error in the DML estimator.

Figure 4: STAR Results.

External validity: Project STAR We further examine policies on
teacher-student ratios (i.e., class sizes) to improve academic achieve-
ment, using a semi-synthetic adaptation of the Project STAR dataset
[40]. This longitudinal study evaluated the impact of teacher-student
ratios on academic outcomes for students in kindergarten through third
grade, with students randomized each year to one of three class size
interventions. Here, we assess a 3-stage policy setting student-teacher
ratios across Grades 0, 1, and 2, observing academic scores as interme-
diate outcomes, with baseline covariates (e.g., ethnicity, gender) and
final academic scores at the end of Grade 3 as the primary outcome. To
emulate data collected across different domains, we subsample using various probabilities to shift
baseline covariate distributions, as done in ACTG 175 (see Appendix D.3 for details). We evaluated
the PW, OM, and DML estimators across dataset sizes, plotting their absolute errors against the true
effect of the candidate policy. Results, shown in Fig. 4, mirror earlier experiments, with all estimators
improving as sample size increases and DML showing faster convergence.

6 Conclusion

This paper has considered the evaluation of the effectiveness of policies in settings where the available
data is sampled from distributions that differ from the population in the target domain. We have
illustrated this task with the problem of extrapolating the results of a clinical trial in both working
examples and real-world scenarios to evaluate variations of the treatment in different populations.
Our contributions are (1) introducing several identification criteria for the effectiveness of policies
given experimental datasets from two or more domains and (2) developing doubly robust estimators
for these settings that achieve fast convergence.
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A Related Work

Evaluating the impact of a policy using observational and experimental data under different condi-
tions is a widespread challenge in various important decision-making fields. Formulations of this
problem have appeared in the causality literature, but also in statistics, reinforcement learning, and
epidemiology.

Off-policy evaluation (OPE) aims to assess the performance of policies of interest using observational
samples. In this line of research, [44] considers generalizing the effect of a policy under distribution
shift. We build on this intuition, but instead seek to combine multiple (policy-)interventional data
from source domains to learn the effect of policies of interest on the target domain. [1, 23] for
instance used auxiliary datasets from multiple bandit instance, though they setting assume that the
datasets are sampled from the same underlying populations and environments. Several authors have
also considered transfer learning in off-policy learning in the context of bandits [46, 5]. Further, [22]
addresses the problem of selection biases in observational data for off-policy learning.

In the causal inference literature, combining multiple experimental studies to estimate a new causal
effect is a task called generalized identification [30]. Recent progress has been made in developing
corresponding estimators [26, 24]. However, these estimators are not applicable when our goal is to
combine multiple policy interventional studies from source domains to estimate a causal effect in
the target domain. Accordingly, [4, 29, 15] developed the notion of generalized transportability that
aims to evaluate a causal effect on a target domain from multiple observational and / or interventional
distributions from other source domains. In this line of research, our work relates closely to Correa
and Bareinboim’s identification algorithm for the effect of policies [15]. We similarly develop
identification criteria that are conducive to efficient estimation from finite samples. In particular, our
work focuses on the derivation of sample-efficient estimators for the policy effect of interest on the
target domain.

From this perspective, our work can be interpreted as a bridge between causal inference and off-policy
evaluation [34] since we leverage formal theories in causal inference (e.g., generalized identification
[29], generalized transportability [15, 30]) to solve off-policy evaluation problems efficiently from
finite samples. There are prior works that similarly integrated both fields. For instance, standard
policy evaluation methods in the RL literature use the backdoor adjustment to learn the Q value as a
function of the state, to address confounding effects [41]. Meanwhile, other studies have applied the
front-door adjustment formula for OPE in the presence of unmeasured confounders [39]. Finally,
some works have leveraged double negative controls for OPE [43].

B Broader Impact Statement

Our work investigates the conditions under which policies may be estimated from multipe datasets
collected under different conditions. In this work, we start from the assumption that causal and
selection diagrams that are consistent with the underlying data generating systems of interest are
available. In general, this requires domain knowledge and should be justified by prior knowledge or
experiment. It is important also to make the distinction between the task of partial identification, that is
inferring an expression for bounds on causal effects, and that of estimation, that is providing efficient
estimators from finite samples to compute bounds in practice. This set of results concerns mostly
the second task. In higher-dimensional systems, the computational complexity of estimating the
conditional expectations and density ratios that define our estimators could be a substantial challenge.
Consequently, practitioners must exercise caution when deploying the proposed method in small
sample scenarios where estimators may be inaccurate. Moreover, we have stated our convergence
guarantees in the infinite sample limit, without quantifying the finite-sample estimation uncertainty.
Finally, we emphasize that simulations on real and synthetic data are provided for illustration purposes
only. These results do not recommend or advocate for the implementation of a particular policy, and
should be considered in practice in combination with other aspects of the decision-making process.
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C Proofs

C.1 Proof for Theorem 1 and Theorem 4

Since Theorem 1 is a special case for Theorem 4, we will only prove for Theorem 4.

Note

EP 0
π0

rY s “
ÿ

w,c,x

EP 0
π0

rY | c,w,xs

m´1
ź

i“1

P 0
π0

pwi | c,Xpi´1q,wpi´1qq

m´1
ź

j“1

π0pxj | c,wpj´1qqP 0pcq.

(1)

Then,

EP 0
π0

rY | c,w,xs “ EP 0
π2

rY | c,w,xs (2)

“ EP 2
π2

rY | c,w,xs, (3)

by leveraging the domain transfer for Y and adjustment for Y condition.

For each P 0
π0

pwi | c,Xpi´1q,wpi´1qq,

P 0
π0

pwi | c,Xpi´1q,wpi´1qq (4)

“ P iπ0
pwi | c,Xpi´1q,wpi´1qq (5)

“ P iπi
pwi | c,Xpi´1q,wpi´1qq, (6)

again, by leveraging the domain transfer condition for Wi and adjustment condition for Wi. This
completes the proof.

C.2 Proof for Theorem 2 and Theorem 5

Since Theorem 2 is a special case for Theorem 5, we will only prove for Theorem 5. Throughout
the proof, we will use C1 :“ C, Xi :“ tXiu for i “ 1, ¨ ¨ ¨ ,m, and Ci :“ tWi´1u for i “

2, ¨ ¨ ¨ ,m´ 1. Also, we will sometimes use P 1pC1q :“ P 0pCq, P ipCi | Cpi´1q YXpi´1qq for i ą 1
as P i´1

πi´1pWi´1 | C,Wpi´2q,Xpi´1qq.

C.2.1 Proof of Mixed Bias Property

Using the fact that ψ0 “ EP 0rµ̌1
0s, we can write it as

ψ0 :“
m
ÿ

i“1

EP i
πi

rϕi0s
looomooon

“0

`EP 0rϕ00s “

m
ÿ

i“0

EP i
πi

rϕi0s. (7)

Then, we will claim and prove the following:
Lemma 1 (Mixed Bias Property). Suppose µi0, µ̂

i ă 8 and 0 ă πi0, π̂
i ă 8 almost surely for

i “ 1, ¨ ¨ ¨ ,m. For i “ 1, 2, ¨ ¨ ¨ ,m, define

ϕippC,Wpiq,Xpiqq;ωi, µ̌i`1, µiq :“ ωitµ̌i`1 ´ µiu, (8)

and µ̌m`1 :“ Y . Define ϕ0pC; µ̌1q :“ µ̌1. For i “ 0, ¨ ¨ ¨ ,m, define ϕi0 as ϕi equipped with true
nuisances, and ϕ̂i as ϕi equipped with estimated nuisances. Then,

m
ÿ

i“0

EP i
πi

rϕ̂i ´ ϕi0s “

m
ÿ

i“1

EP i
πi

rtµ̂i ´ µi0utωi0 ´ ω̂ius. (9)

Proof of Lemma 1. For i “ m, ¨ ¨ ¨ , 1 with µ̌m`1 :“ Y , define

µi0rµ̌i`1s :“ EP i
πi

rµ̌i`1 | C,Wpiq,Xpiqs.
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Then,

EPm
πm

rω̂mtµ̌m`1 ´ µ̂mus ` EPm
πm

rωm0 µ̂
ms ´ EPm

πm
rωm0 µ

m
0 rµ̌i`1ss

looooooooooomooooooooooon

“ψ0

“ EPm
πm

rtω̂m ´ ωm0 utµm0 rµ̌i`1s ´ µ̂mus.

For i “ m´ 1, ¨ ¨ ¨ , 1,

EP i
πi

rω̂itµ̌i`1 ´ µ̂ius ` EP i
πi

rωi0µ̂
is ´ EP i

πi
rωi0µ

i
0rµ̌i`1ss

“ EP i
πi

rtω̂i ´ ωi0utµi0rµ̌i`1s ´ µ̂ius.

Also, the following holds:

EP i`1
πi`1

rωi`1
0 µ̂i`1s “ EP i

πi
rωi0µ

i
0rµ̌i`1ss.

Finally, EP 1
π1

rω1
0µ̂

1s “ EP 1
π1

rµ̌1s.

Therefore,
m
ÿ

i“1

EP i
πi

rω̂itµ̌i`1 ´ µ̂ius ` EP i
πi

rωi0µ̂
is ´ EP i

πi
rωi0µ

i
0rµ̌i`1ss

“

m
ÿ

i“0

EP i
πi

rϕ̂i ´ ϕi0s

“

m
ÿ

i“1

EP i
πi

rtω̂i ´ ωi0utµi0rµ̌i`1s ´ µ̂ius.

C.2.2 Proof for Statement 1

Recall

ψ̂ :“
1

L

L
ÿ

ℓ“1

m
ÿ

i“1

EDi
ℓ
rω̂iℓt ˆ̌µ

i`1 ´ µ̂iℓus ` ED0
ℓ
r ˇ̂µ1
ℓ s “

1

L

L
ÿ

ℓ“1

m
ÿ

i“0

EDi
ℓ
rϕ̂iℓs. (10)

From Eq. (7),

ψ0 :“
1

L

L
ÿ

ℓ“1

m
ÿ

i“0

EP i
πi

rϕi0s. (11)

Then, the error ψ̂ ´ ψ0 can be decomposed into

ψ̂ ´ ψ0 “

m
ÿ

i“0

EDi´P i
πi

rϕi0s `
1

L

L
ÿ

ℓ“1

m
ÿ

i“0

EDi´P i
πi

rϕ̂iℓ ´ ϕi0s `
1

L

L
ÿ

ℓ“1

m
ÿ

i“0

EP i
πi

rϕ̂iℓ ´ ϕi0s. (12)

Define

Ri :“ EDi´P i
πi

rϕi0s `
1

L

L
ÿ

ℓ“1

EDi´P i
πi

rϕ̂iℓ ´ ϕi0s.

Then, the error can be represented as

ψ̂ ´ ψ0 “

m
ÿ

i“0

Ri `
1

L

L
ÿ

ℓ“1

m
ÿ

i“0

EP i
πi

rϕ̂iℓ ´ ϕi0s.
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By Lemma 1,

ψ̂ ´ ψ0 “

m
ÿ

i“0

Ri `
1

L

L
ÿ

ℓ“1

m
ÿ

i“0

EP i
πi

rtω̂iℓ ´ ωi0utµi0 ´ µ̂iℓus.

C.2.3 Proof for Statement 2

We will use the following results:

Lemma 2 (Combining concentration inequalities). SupposeP pAk ą tq ď bk{t2 for k “ 1, ¨ ¨ ¨ ,K.
Then,

P

˜

K
ÿ

k“1

Ak ď tK

¸

ě 1 ´
1

t2

K
ÿ

k“1

bk.

Proof of Lemma 2. The event
řK
k“1Ak ď tK includes the case where Ak ă t for k “ 1, ¨ ¨ ¨ ,K.

Therefore,

P

˜

K
ÿ

k“1

Ak ď tK

¸

ě P pA1 ď t and ¨ ¨ ¨ and AK ď tq

“ 1 ´ P pA1 ą t or ¨ ¨ ¨ or AK ą tq

ě 1 ´

K
ÿ

k“1

P pAk ą tq

ě 1 ´

K
ÿ

k“1

bk
t2
.

Lemma 3 (Stochastic Equicontinuity). Let D iid
„ P . Let D “ D0 Ÿ D1, where n :“ |D0|. Let f̂ be

a function estimated from D1. Then, in probability greater than 1 ´ ϵ for any ϵ P p0, 1q,

ED0´P

”
ˇ

ˇ

ˇ
f̂ ´ f

ˇ

ˇ

ˇ

ı w.p 1´ϵ
ă

}f̂ ´ f}P
?
nϵ

, (13)

which implies that

ED0´P r|f̂ ´ f |s “ OP

˜

}f̂ ´ f}P
?
n

¸

.

Proof of Lemma 3. This proof is from [28, Lemma 2]. Since f̂ is a function of D1, we will denote
f̂D1 . Define a following random variable of interest:

X :“ ED0´P rf̂D1 ´ f s.

Then, the conditional expectation of X given D1 is zero, since

EP

«

1

n

n
ÿ

i“1

f̂D1
pViq

ˇ

ˇ

ˇ

ˇ

D1

ff

“
1

n

n
ÿ

i“1

EP rf̂D1
pViq | D1s “

1

n

n
ÿ

i“1

EP rf̂D1
pVq | D1s “ EP rf̂D1

pVq | D1s,

where the third equality holds by the independence of D0 and D1. Therefore,

EP rX | D1s “ EP rED0´P rf̂D1 ´ f s | D1s

“ EP rED0rf̂D1 ´ f s | D1s ´ EP rEP rf̂D1 ´ f s | D1s

“ EP rEP rf̂D1 ´ f s | D1s ´ EP rEP rf̂D1 ´ f s | D1s “ 0.
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Also,

VP rX | D1s “ VP rED0´P rf̂D1 ´ f s | D1s

“ VP rED0rf̂D1 ´ f s | D1s

“
1

n
VP rf̂D1

´ f | D1s

ď
1

n
}f̂D1

´ f}2P .

By applying the (conditional-) Chevyshev’s inequality,

P p|X ´ EP rX | D1s| ě t | D1q ď
1

t2
VP rX | D1s ď

1

nt2
}f̂D1 ´ f}2P .

Then,

P p|X| ě tq “ P p|X ´ EP rX | D1s| ě tq

“ EP pD1qrP p|X ´ EP rX | D1s| ě t | D1qs

ď
1

nt2
}f̂D1

´ f}2P .

In other words, X ă t in probability greater than 1 ´ 1
nt2 }f̂D1

´ f}2P . If t “
}f̂D1

´f}P
?
nϵ

, then

X ă
}f̂D1

´f}P
?
nϵ

in the probability greater than 1 ´ ϵ for any ϵ P p0, 1q.

Here, we will study the finite sample behavior of

m
ÿ

i“0

Ri :“
m
ÿ

i“0

EDi´P i
πi

rϕi0s `
1

L

L
ÿ

ℓ“1

m
ÿ

i“0

EDi
ℓ´P i

πi
rϕ̂iℓ ´ ϕi0s.

By Chevyshev’s inequality,

Pr

˜

ˇ

ˇ

ˇ
EDi´P i

πi
rϕi0s

ˇ

ˇ

ˇ
ą t

ρi,0
a

|Di|

¸

ă
1

t2
,

or equivalently,

Pr
´

ˇ

ˇ

ˇ
EDi´P i

πi
rϕi0s

ˇ

ˇ

ˇ
ą t

¯

ă
1

t2
ρ2i,0
|Di|

.

By Lemma 2,

Pr

˜

m
ÿ

i“0

ˇ

ˇ

ˇ
EDi´P i

πi
rϕi0s

ˇ

ˇ

ˇ
ď pm` 1qt1

¸

ě 1 ´
1

t21

m
ÿ

i“0

ρ2i,0
|Di|

.

By Lemma 3,

Pr
´

ˇ

ˇ

ˇ
EDi

ℓ´P i
πi

rϕ̂iℓ ´ ϕi0s

ˇ

ˇ

ˇ
ą t2

¯

ď
1

t22

}ϕ̂iℓ ´ ϕi0}2P i
πi

|Di
ℓ|

.

By Lemma 2,

P

˜

1

L

L
ÿ

ℓ“1

m
ÿ

i“0

ˇ

ˇ

ˇ
EDi

ℓ´P i
πi

rϕ̂iℓ ´ ϕi0s

ˇ

ˇ

ˇ
ď pm` 1qt2

¸

ě 1 ´
1

t22

L
ÿ

ℓ“1

m
ÿ

i“0

}ϕ̂iℓ ´ ϕi0}2P i
πi

|Di
ℓ|

.

19



Choose t1 :“

c

2
ϵ

řm
i“0

ρ2i,0
|Di|

and t2 :“

d

2
ϵ

řL
ℓ“1

řm
i“0

}ϕ̂i
ℓ´ϕi

0}2
Pi
πi

|Di
ℓ|

. Then, with a probability greater

than 1 ´ ϵ,

m
ÿ

i“0

Ri ď pm` 1q

¨

˝

g

f

f

e

2

ϵ

m
ÿ

i“0

ρ2i,0
|Di|

`

g

f

f

e

2

ϵ

L
ÿ

ℓ“1

K
ÿ

i“1

}ϕ̂kℓ ´ ϕk0}2
Pk

|Dk
ℓ |

˛

‚

“ pm` 1q

c

2

ϵ

¨

˚

˝

g

f

f

e

m
ÿ

i“0

ρ2i,0
|Di|

`

g

f

f

e

L
ÿ

ℓ“1

m
ÿ

i“0

}ϕ̂iℓ ´ ϕi0}2P i
πi

|Di
ℓ|

˛

‹

‚

.

C.2.4 Proof for Statement 3

We will use the following result:

Proposition 1 (Berry–Esseen’s inequality [7, 19, 38]). Suppose D “ tX1, ¨ ¨ ¨ , Xnu are in-
dependent and identically distributed random variables with EP rXis “ 0, EP rX2

i s “ σ2 and
EP r|Xi|

3
s “ κ3. Then, for all x and n,

ˇ

ˇ

ˇ

ˇ

P

ˆ?
n

σ0
EDrXs ă x

˙

´ Φpxq

ˇ

ˇ

ˇ

ˇ

ď
0.4748κ3

σ3
?
n

.

By Lemma 3,

Pr
´

ˇ

ˇ

ˇ
EDi

ℓ´P i
πi

rϕ̂iℓ ´ ϕi0s

ˇ

ˇ

ˇ
ą t

¯

ď
1

t2

}ϕ̂iℓ ´ ϕi0}2P i
πi

|Di
ℓ|

. (14)

By Lemma 2,

Pr

˜

1

L

L
ÿ

ℓ“1

ˇ

ˇ

ˇ
EDi

ℓ´P i
πi

rϕ̂iℓ ´ ϕi0s

ˇ

ˇ

ˇ
ď t

¸

ě 1 ´
1

t2

L
ÿ

ℓ“1

}ϕ̂iℓ ´ ϕi0}2P i
πi

|Di
ℓ|

. (15)

Define

∆i :“

g

f

f

e

1

ϵ

L
ÿ

ℓ“1

}ϕ̂iℓ ´ ϕi0}2P i
πi

|Di
ℓ|

.

With a probability greater than 1 ´ ϵ,

1

L

L
ÿ

ℓ“1

ˇ

ˇ

ˇ
EDi

ℓ´P i
πi

rϕ̂iℓ ´ ϕi0s

ˇ

ˇ

ˇ

w.p 1´ϵ
ď ∆i.

Define

Ai :“ EDi´P i
πi

rϕi0s

Bi :“
1

L

L
ÿ

ℓ“1

EDi
ℓ´P i

πi
rϕ̂iℓ ´ ϕi0s

Ci :“
1

L

L
ÿ

ℓ“1

ˇ

ˇ

ˇ
EDi

ℓ´P i
πi

rϕ̂iℓ ´ ϕi0s

ˇ

ˇ

ˇ
.
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Then, Ri “ Ai `Bi. Then,

Pr pRi ă xq (16)
“ Pr pAi `Bi ă xq (17)
“ Pr pAi ă x´Biq (18)
ď Pr pAi ă x` Ciq (19)
w.p 1´ϵ

ď Pr pAi ă x` ∆iq . (20)

Then,

|Pr pAi ă x` ∆iq ´ Φpxq| (21)
“ |Pr pAi ă x` ∆iq ´ Φpx` ∆iq ` Φpx` ∆iq ´ Φpxq| (22)
ď |Pr pAi ă x` ∆iq ´ Φpx` ∆iq| ` |Φpx` ∆iq ´ Φpxq| (23)

ď
0.4748κ30
ρ3i,0

a

|Di|
` |Φpx` ∆iq ´ Φpxq| (Prop. 1) (24)

“
0.4748κ30
ρ3i,0

a

|Di|
`

ˇ

ˇΦ1px1q∆i

ˇ

ˇ (Mean-value theorem) (25)

ď
0.4748κ30
ρ3i,0

a

|Di|
`

1
?
2π

∆i. (26)

This completes the proof. ■

C.3 Proof for Theorem 3 and Theorem 6

By Cauchy-Schwartz’ inequality,

1

L

L
ÿ

ℓ“1

m
ÿ

i“0

EP i
πi

rtµi0 ´ µ̂iℓutω̂iℓ ´ ωi0us ď
1

L

L
ÿ

ℓ“1

m
ÿ

i“0

OP i
πi

`

}µi0 ´ µ̂iℓ}}ωi0 ´ ω̂iℓ}
˘

. (27)

Given assumption, the upper bound in Eq. (18) converges at 1{
a

|Di
ℓ| rate. Therefore, Ri converges

in distribution to normalp0, ρ2i,0q.

D Details of Simulations

D.1 Data Generating Process for Synthetic Simulations

Codes corresponding to simulations are submitted as supplementary materials.

D.1.1 Synthetic Simulations for Fig. 3a

We define the following SCM. First,UXW , UX1,X2
, UX2,W , UX2,Y , UC1,1

, UC1,2
, UC2,1

, UC2,2
, UW , UY „

normalp0, 1q. Then,

C1 :“ fC1pSq “ 0.25SUC1,1 ` 0.1S ` UC1,1

C2 :“ fC2
pSq “ 0.25SUC2,1

` 0.1S ` UC2,2

X1 :“ fX1pC1, C2, Sq „ Bernoulipπ1,SpC1, C2qq

W :“ fW pC1, C2, X1, UX1,W , Sq “ sigmoidp0.25SUW ` 0.5UX1,W ` 3X1 ` 0.5pC1 ` C2qq

X2 :“ fX2
pX1,W,C1, C2, Sq „ Bernoulipπ2,SpC1, C2qq

Y :“ fY pC1, C2, X1, X2,W,UX2,Y , Sq “ sigmoidp0.5pC1 ` C2q ` 2pX1 `X2q ´ 2 ´ 0.5W

` 0.1UX2,Y ` 0.25SUW q.
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Also, for S ‰ 0,

π1,0 “ sigmoidpC1 ` C2 ´ 2q

π1,S “ sigmoidp0.5pC1 ` C2q ´ 1q

π2,0 “ sigmoidp0.5pC1 ` C2q ` 2p2X1 ´ 1q ´ 0.5W ` 1q

π2,S “ sigmoidpC1 ` C2 ` 2X1 ´ 1 ` 0.5W ´ 1q.

D.1.2 Synthetic Simulations for Fig. 3b

We define the following SCM. First, UX1,X2
, UX2,X3

, UW1,X1
, UW1,X2

, UW2,X2
, UW2,X3

, UC1,C2
,

UC2,C3
, UX3,Y , UC1,1

, UC1,2
, UC2,1

, UC2,2
, UC3,1

, UC3,2
, UW1

, UW2
, UY „ normalp0, 1q. Then,

C1 :“ fC1pSq “ 0.25SUC1,1 ` 0.1S ` UC1,2 ` UC1,C2

C2 :“ fC2pSq “ 0.25SUC2,1 ` 0.1S ` UC2,2 ` UC1,C2 ` UC2,C3

C3 :“ fC3pSq “ 0.25SUC3,1 ` 0.1S ` UC3,2 ` UC2,C3

X1 :“ fX1pC1, C2, Sq „ Bernoulipπ1,SpC1, C2qq

W1 :“ fW1pC, X1, UW1,X1 , UW1,X2 , Sq “ sigmoidp0.25SUW1 ` 0.5pC1 ` C2 ` C3q

´ 1 ` 3X1 ` 0.5pUW1,X1 ` UW1,X2q ` Sq

X2 :“ fX2pX1,W1, C1, C2, C3, Sq „ Bernoulipπ2,SpX1,W1, C1, C2, C3, Sqq

W2 :“ fW2pC, X1, X2,W1, UW2,X2 , UW2,X3 , Sq “ sigmoidp0.25SUW2 ` 0.5pC1 ` C2 ` C3q

´ 1 ` 3pX1 ` X2q ` 0.5pUW2,X2 ` UW2,X3q ` Sq

X3 :“ fX3pX1, X2,W1,W2, C1, C2, C3, Sq „ Bernoulipπ3,SpX1, X2,W1,W2, C1, C2, C3, Sqq

Y :“ fY pC,X,W, UX3,Y , Sq “ sigmoidp0.5pC1 ` C2 ` C3q ` 2pX1 ` X2 ` X3q

´ 3 ´ 0.5pW1 ` W2q ` 0.1UX3,Y ` 0.25SUW ` Sq.

Also, for S ‰ 0,

π1,0 “ sigmoidpC1 ` C2 ` C3 ´ 2q

π1,S “ sigmoidp0.5pC1 ` C2 ` C3q ´ 1q

π2,0 “ sigmoidp0.5pC1 ` C2 ` C3q ` 2p2X1 ´ 1q ´ 0.5W ` 1q

π2,S “ sigmoidpC1 ` C2 ` C3 ` 2X1 ´ 1 ` 0.5W ´ 1q

π3,0 “ sigmoidp0.25pC1 ` C2 ` C3q ` p2X1 ´ 1q ´ 0.25W1 ` 1 ` p2X2 ´ 1q ´ 0.25W2 ` 1q

π3,S “ sigmoidp0.5pC1 ` C2 ` C3q ` 2p2X1 ´ 1q ` 0.25W1 ´ 1 ` 2p2X2 ´ 1q ` 0.25W2 ´ 1q.

D.2 External validity of the ACTG 175 clinical trial

To provide empirical evidence of policy estimation in a real-world setting, we revisit the ACTG
175 randomized clinical trial from 1994 conducted on patients from the United States and Puerto
Rico [21]. It investigated the effectiveness of different therapies for reducing CD4 T cell counts in
individuals with HIV (selected subject to various inclusion criteria). In the study, individuals were
randomly assigned to two different treatments X2 P t0, 1u, and a record was made on whether a
previous anti-retroviral drug had been administered X1 P t0, 1u prior to the start of the trial. Patient
demographics C1,C2 including gender, age, weight, among others, were collected, and CD4 T cell
count were measured at treatment time W , and again 20 weeks after treatment initialization Y , the
outcome of the analysis. To simulate a second study with a different guideline for anti-retroviral drug
administration, we considered a sub-sampled version of ACTG 175 in which covariate distributions
as well as the assignment of X1, X2 were modified.

ACTG 175 is an experimental study in which X2 has been randomized and X1 follows a base-
line, unknown, stochastic policy π2 : ΩC2

ˆ ΩX1
Ñ r0, 1s assumed to depend on study-specific

features C2 such a patient’s Karnofsky score and symptomatic indicators (both normalized to lie
in the r0, 1s interval). Samples of variables C1,C2,W,X1, X2, Y therefore follow a distribution
P 2

randpX2q,π2
pC1,C2,W,X1, X2, Y q. The suffix “randpX2q” denotes a policy that randomizes X2,

i.e. X2 „ Bernp0.5q.
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Figure 5: Causal diagrams and selection diagrams of the ACTG 175 experiment.

We generate a data sample from a second domain (S “ 1) following the marginalized distribution
P 1
π1

pC1,W,X1q, mimicking a simple stochastic guideline on X1 in which π1 :“ π1px1 “ 1 | c1q “

1{p1 ` expt´c11 ´ c12 ´ c13uq. Higher values of C1 (taken to be normalized measurements of
weight, height, and age) lead to higher likelihood of treatment. We achieve this dataset by sampling
according to a re-weighted version of the ACTG 175 trial. In particular, we collect data from P 1

according to,

P 1
π1

pC1,W,X1q :“ P 2
π2

pC1,W,X1q
π1pX1 | C1qP 1pC1q

P 2
π2

pX1 | C1q

For this example, we consider evaluating a stochastic policy π0 “ tπ0px1 | c1q, π0px1 | c2qu that
combines the drugs X1, X2 according to a stochastic policy for X1 based on weight, height, and
age, pC1q and for X2 based on a patient’s Karnofsky score and symptomatic indicators pC2q. In
particular,

π0px1 “ 1 | c1q “ 1{p1 ` expt´c11 ´ 1uq, π0px2 “ 1 | c2q “ 1{p1 ` expt´0.5c21 ´ c22uq.
(1)

The policy π0 is considered to be implemented on a patient population located in a different location
that are know to have a differing covariate distribution P 0pC1,C2q to that observed in ACTG 175 and
the second study, among other discrepancies. We assume that the SCM generating this experimental
study follows the causal graphs in Fig. 5.

The target population under π0 is then given by

P 0
π0

pC1,C2,W,X1, X2, Y q

:“ P 2
randpX2q,π2

pC1,C2,W,X1, X2, Y q
P 0pC1,C2qπ0pX1 | C1qπ0pX2 | C2q

P 2pC1,C2qP 2
π2

pX1 | C1qP 2
randpX2q,π2

pX2q

We limit all datasets to approximately 2000 samples as this is the size of the ACTG 175 trial. The
ground truth target effect EP 0

π0
rY s is evaluated by taking the empirical mean of Y in the sample of

data collected from P 0 with the procedure above.

D.3 External validity of the Project STAR study

We describe in this section additional experimental details on the Project STAR study4 . This
study investigated the impact of teacher/student ratios on academic achievement for kindergarten
through third-grade students. Project STAR was a four-year longitudinal study where students
were randomly assigned to one of three interventions with different class sizes each year, following
different randomization procedures. The causal diagram we assume for this setting is provided in

4The dataset is publicly accessible from the R data repository:
https://search.r-project.org/CRAN/refmans/AER/html/STAR.html.
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Fig. 6. Bi-directed arcs denote unobserved confounding in the observational regime (when student
are observed in a particular class size rather than forced to join a particular class size).

Specifically, we consider the evaluation of a 3-stage stochastic policy,

π0 “ tπ0px1 | c1q, π0px2 | c2, x1, w1q, π0px3 | c3, x2, w2qu,

where,

π0px1 | c1q :“ 1{p1 ` exptc11 ` c12 ´ 2uq

π0px2 | c2, x1, w1q :“ 1{p1 ` expt0.5pc21 ` c22q ` 2p2x1 ´ 1q ´ 0.5w1 ` 1uq

π0px3 | c3, x2, w2q :“ 1{p1 ` expt0.5pc31 ` c32q ` p2x1 ´ 1q ´ 0.25w1 ` p2x2 ´ 1q ´ 0.25w2 ` 1uq

These policies determine the student-teacher ratio X0, X1, X2, taking values "regular" or "small",
across three different grades, namely Grade 0 (Kindergarten), Grade 1 and Grade 2. C refers to
a two-dimensional demographic variable encoding gender and ethnicity, converted to binary and
categorical variables respectively. (To avoid clutter, in Fig. 6 we use C “ C1 “ C2 “ C3.) W1,W2

are intermediate school outcomes that include the sum total of an individual’s reading score and math
score in grades 0 (Kindergarten) and 1 respectively. Y is the outcome of interest and represents total
reading score and math score in grade 2.

To mimic the setting where data at different stages was collected from different domains, we
subsample the dataset using different sets of probabilities to induce differences in the distributions of
baseline covariates. In particular, we fix the dataset in the target domain (S “ 0) to the distribution
observed in the study and sub-sample according to different probabilities to create datasets for
domains S “ 1, S “ 2, and S “ 3, as follows.

We generate a sample of data from a first source domain (S “ 1) following the marginalized
distribution P 1

π1
pC1,W1, X1q, where π1 :“ π1px1 “ 1 | c1q “ 1{p1 ` expt0.5pc11 ` c12q ´ 1uq

defines the probability for the student-teacher ratio variables in Kindergarten in domain S “ 1. We
achieve this dataset by sampling according to a re-weighted version of the STAR study. In particular,
we collect data from P 1 according to,

P 1
π1

pC1,W1, X1q :“ P 0pC1,W,X1q
π1pX1 | C1qP 1pC1q

P 0pX1 | C1q

where P 1pc1q “ 0.3 if c11 “ 1, c12 “ 1 and P 1pc1q “ 0.7 otherwise.

We generate a sample of data from a second source domain (S “ 2) following the marginalized dis-
tribution P 2

π2
pC2,W1,W2, X1, X2q, where π2 :“ π2px2 “ 1 | c2, x1, w1q “ 1{p1 ` expt0.5pc21 `

c22q ` 2x1 ´ 1 ´ 0.5w1 ´ 1uq defines the probability for the student-teacher ratio variables in grade
1 in domain S “ 2. We achieve this dataset by sampling according to a re-weighted version of the
STAR study. In particular, we collect data from P 2 according to,

P 2
π2

pC2,W1,W2, X1, X2q :“ P 0pC2,W1,W2, X1, X2q
π2pX2 | C2, X1,W1qP 2pC2q

P 0pX2 | C2, X1,W1q

where P 2pc2q “ 0.7 if c21 “ 1, c22 “ 1 and P 2pc2q “ 0.3 otherwise.

We generate a sample of data from a third source domain (S “ 3) following the marginalized
distribution P 3

π3
pC3,W1,W2, X1, X2, X3q, where π3 :“ π3px3 “ 1 | c3, x1, w1, x2, w2q “ 1{p1 `

expt0.5pc31 ` c32q ` 2p2x1 ´ 1q ´ 0.25w1 ` p2x2 ´ 1q ` 0.25w2 ´ 1uq defines the probability
for the student-teacher ratio variables in grade 3 in domain S “ 3. We achieve this dataset by
sampling according to a re-weighted version of the STAR study. In particular, we collect data from
P 3 according to,

P 3
π3

pC3,W1,W2, X1, X2, X3, Y q :“

P 0pC3,W1,W2, X1, X2, X3, Y q
π3pX3 | C3,W1,W2, X1, X2, X3qP 3pC3q

P 0pX3 | C3, X1,W1, X2,W2q

where P 3pc3q “ 0.5 if c31 “ 1, c32 “ 1 and P 3pc3q “ 0.5 otherwise.
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Figure 6: Causal diagram assumed for the target domain of the STAR Project study. To avoid cluttering the
diagram we write C “ C1 “ C2 “ C3, i.e., all C’s refer to the same variables (gender and ethnicity).

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made match the theoretical and experimental results presented in
the paper. A broader overview statement in the Appendix reflects how much the results can
be expected to generalize to other settings.

Guidelines:
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We include a broader overview statement in the Appendix to more thoroughly
describe the limitations of our analysis, assumptions, and applicability in real-world settings.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical statement are quoted in full in the paper. We have attempted to
provide an example to illustrate the significance of each theoretical statement and highlight
its implications. The formal proof of all statements is given in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the data generating mechanisms, details of the target of estimation
and information as to what python libraries can be used to fit the proposed estimators. We
do not, however, disclose an open source implementation of the proposed methods at this
moment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data is publicly available and we have provided full details as to where to
access the data and how to run the synthetic data generation pipeline. The code will not be
open sourced at this moment but we believe to have provided sufficient details to reproduce
our results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [TODO]

Justification: [TODO]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provided details where applicable. In our case, data splits, hyper-
parameters, optimizers, etc., are not significant for the implementation the method.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report our results with error bars that represent 2 standard deviations from
the mean.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the guidelines and we do not think that our work presents any
notable concerns.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: We include a broader overview statement in the Appendix. We do not expect
any negative societal impacts of our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing asset

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [No]

Justification: The paper does not involve crowd-sourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [No]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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