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Abstract

Generative modeling is increasingly important for data-driven computational design.
Conventional approaches pair a generative model with a discriminative model to
select or guide samples toward optimized designs. Yet discriminative models often
struggle in data-scarce settings, common in scientific applications, and are unreliable
in the tails of the distribution where optimal designs typically lie. We introduce
generative property enhancer (GPE), an approach that implicitly guides generation
by matching samples with lower property values to higher-value ones. Formulated
as conditional density estimation, our framework defines a target distribution
with improved properties, compelling the generative model to produce enhanced,
diverse designs without auxiliary predictors. GPE is simple, scalable, end-to-end,
modality-agnostic, and integrates seamlessly with diverse generative model
architectures and losses. We demonstrate competitive empirical results on standard
in silico offline (non-sequential) protein fitness optimization benchmarks. Finally,
we propose iterative training on a combination of limited real data and self-generated
synthetic data, enabling extrapolation beyond the original property ranges.

1 Introduction

Generative modeling has become an essential component to tackle computational design problems
in scientific applications such as protein engineering, synthetic biology, material sciences or molecular
design. An important application—the one we explore in this work—is the problem of design optimiza-
tion1, where the goal is to produce optimized samples (designs) according to some desired property(ies).

Conventional data-driven approaches are usually composed of two modules: (i) a generative model
to propose design candidates, and (ii) a discriminative model to select optimized designs. The
discriminative models are trained on available data to approximate the unknown objective landscape
of the data. They are used to either rank and select generated samples or to guide the generation process
toward samples with desired properties [1–18]. However, when data is scarce (usually the case in
scientific applications), training a reliable discriminative model is often not feasible. To make the
matter worse, we usually seek designs that lie in the tail of the distribution of the property which is
typically very challenging to learn, making predictions even less reliable.

In this work, we challenge this paradigm by casting the problem of design optimization as a conditional
generative modeling problem. We leverage the implicit guidance mechanism proposed by Tagasovska et
al. [19] and take it a step further by going from an optimization perspective to a sampling-based
one. This transition allows us to move beyond generating single point estimates and instead estimate

∗This work was done while the author was at Genentech.
1Here, “design optimization” is taken in its broader, applied meaning common in science and engineering,

different from its formal mathematical definition.
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Figure 1: (a) An illustrative 2D dataset where the property increases counter clockwise. (b) Uncondi-
tional/unguided generative models trained on this data sample diverse points (marked as colored dots)
but are unaware of their property values. (c) Implicit guided optimization [19] generates points with
higher properties than the initial seed (marked as a cross), where each point is a subsequent optimization
step. (d) Our method is able to sample diverse points with increasing values of the property. The
colormap indicates the number of iterations. Appendix A further explores this example.

the probability density of improved designs. As a result, our framework is more general—readily
applicable to diverse settings, data modalities, and generative models—and it mitigates a core
limitation of point-based methods: their tendency to converge to local maxima [20, Section 4].

Our approach—generative property enhancer (GPE)—utilizes inherent pairwise relationships within
the data: by matching lower-valued property samples x directly to higher-valued samples x′, our
method implicitly defines an improved target distribution. This “matching” strategy naturally forms a
conditional density estimation problem wherein the generative model is compelled—via e.g. maximum
likelihood training or approximating conditional score functions—to reproduce the distribution of
samples with improved properties. Thus, excluding the reliance on any external discriminative model2.

GPE provides an end-to-end, simple and scalable way to tackle design optimization problems with
conditional generative models. The implicit guidance mechanism eliminates the need for an external
predictor, reducing the complexity of the model and improving data efficiency. Moreover, it increases
the effective training set size by taking into account pairs of points. Finally, our approach is general and
can be applied to many different off-the-shelf state-of-the-art generative models and data modalities.
Figure 1 shows how our approach works in an illustrative example and highlights its benefits compared
to baselines.

Our contributions are as follows: (i) We propose a new implicitly guided generative framework and
provide general theoretical guarantees (Section 3.1). (ii) We show how to incorporate the proposed
implicit guidance within diverse off-the-shelf generative modeling frameworks, e.g., variational
autoencoders [21], flow matching [22], and walk-jump sampling [23] (Section 3.2). (iii) We show
empirically that GPE models achieve competitive results in an in silico benchmark for offline
(non-sequential) protein fitness optimization in two well-studied protein domains (Section 4.1). (iv)
We show how GPE can “self train”, pushing the boundaries of the designs’ property beyond their scope
in the training set (Section 4.2).

2 Related work

Most related works have been applied in the context of protein design and optimization. This problem
has been tackled with a plethora of approaches, including latent space optimization [24, 11, 25, 15],
reinforcement learning [6, 26, 15], genetic algorithm-based approaches [27, 8, 28, 29], energy-based
methods [30, 31, 14], methods based on machine translation [32, 33, 12] and predictor-guided
generative models [34, 7, 13, 35–39]. These approaches are typically deployed in either an offline
setting, where optimization is performed on a fixed dataset, or an online setting involving iterative,
multi-round optimization. While our work focuses on the former, we note that our model can be readily
integrated into online frameworks, for instance, to warm-start the optimization or as a generative model
to produce design candidates at each iteration.

2These discriminative models are called by different names, such as, predictor, scorer, surrogate, proxy,
(pseudo-)oracle, etc.
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Our work is closer to iterative editing methods, where the goal is to iteratively make local modifications
to inputs for extrapolating the property of interest. For instance, Damani et al. [33] propose to continu-
ously revising combinatorial structures on small molecules via paired data. Other works [12, 18] match
sequences by generating perturbed sequences, scoring them with a (learned) scorer, and matching
the original sequence with the generated ones (if the predicted score is below a certain threshold).
Kirjner et al. [14] propose an approach where they iteratively use Gibbs sampling [40], followed by
a scorer-based selection, on smoothed protein fitness landscapes. In contrast to previous work, GPE
introduces a domain and modality-agnostic framework, comes with new theoretical guarantees that
link generated samples to the property improvement. Moreover, unlike previous work, our method
does not rely on discriminative models on any step of training, sampling or selection. Therefore, it
can easily be integrated with previous work, potentially improving performance even further.

Our pairing step induces a preference relation, connecting our approach to preference learning [41],
including DPO [42] for large language models, which shifts models toward preferred outcomes under
(implicit) KL regularization. Recent protein-design work echoes this idea. Lee et al. [43] propose a
fine-tuning framework to align protein language models to a specific desired fitness by ranking mutants.
ReFT [44] filters data with auxiliary rewards and fine-tunes on the preferred subset for backbone
generation. Zhou et al. [45] learns residue-level energy preferences to train a conditional diffusion
model with a direct preference objective for antibody co-design and Mistani et al. [46] uses DPO on
curated chosen–rejected receptor–binder pairs for peptide/protein binders. Despite these links, our
setting differs from classical preference learning which compares pairs without enforcing proximity
in data space or property magnitude.

Finally, we note that our contribution is orthogonal to classifier guidance [47] and classifier-free
guidance [48] approaches, commonly used to guide diffusion models [49, 50] (and some instantiations
of flow matching). In fact, our framework could seamlessly be integrated into both approaches,
either by leveraging a trained classifier (classifier guidance) or by using the low-property seed as the
conditioning signal (classifier-free guidance).

3 Implicit guided generation by data matching

3.1 Problem setting

We address the problem of offline optimization [51, 52], also known as model-based optimization, where
the goal is to optimize a black-box function using only a fixed, static dataset. This paradigm stands
in contrast to online optimization approaches, such as active learning or Bayesian optimization, which
iteratively query a ground-truth objective function to acquire new data and refine a surrogate model.

Our goal is to generate new samples, referred to as designs, given one or more lead data points, referred
to as seeds. The key objectives are twofold: a generated design must improve upon its seed in a specific
property of interest (e.g., the potency of a molecule) while also adhering to predefined constraints
(e.g., a limited number of modifications).

More formally, let X be a design space representing either a d-dimensional continuous space, Rd, or
a discrete space of length L over a finite vocabulary V (e.g. for proteins |V|=20). Let g :X→R be
a function that quantifies the property of interest. Given a seed x∈X, our objective is to generate new
candidate designs x′∈X satisfying two conditions: (i) the designs’ score must exceed that of the seed,
g(x′)>g(x), and (ii) the designs must satisfy a set of constraints, represented by a boolean function
C(x,x′). For example, this function could encode a bound on the distance between seed and design,
C(x,x′)=dist(x,x′)<∆x for some threshold ∆x∈R+.

In this work, we cast the problem above as a conditional generation problem, i.e., learn how to sample
from the improved distribution given an initial seed x:

p+(x′|x) =
p(x′)I

(
x,x′

)
Z(x)

, Z(x)=

∫
p(x′)I

(
x,x′

)
dx′, (1)

where the indicator I(x,x′) is given by:

I
(
x,x′

)
=

{
1, g(x′)>g(x)∧C(x,x′),
0, otherwise.
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The normalizing factor Z(x) in (1) is generally intractable due to the (usually) high dimensionality
of the data and it cannot be solved directly. The following theorem establishes a learning criterion
for the improved distribution.

Theorem 1 (Optimality of implicit property enhancement). Let p(x) be a probability distribution and
p+(x′|x) its corresponding improved distribution, as defined in (1). Consider the objective functional:

L(q) =−Ex∼p(x)
[
Ex′∼p+(x′|x)[logq(x

′ |x)]
]
,

where q(· | x) is any family of conditional densities with supp(p+)⊂ supp(q). Then, the objective
L(q) has the unique minimizer:

q∗(x′ |x) = p+(x′|x).

Proof. Introduce a Lagrange multiplier λ(x) for the constraint
∫
q(x′ | x)dx′ =1. The Lagrangian

is defined as:

J(q,λ)=−
∫
p(x)

∫
p+(x′|x)logq(x′ |x)dx′dx+

∫
p(x)λ(x)

(∫
q(x′ |x)dx′−1

)
dx.

Taking the functional derivative w.r.t. q(x′ |x) and setting it to zero gives:

−p(x)p
+(x′ |x)

q(x′ |x)
+p(x)λ(x)=0 =⇒ q(x′ |x)= p+(x′ |x)

λ(x)
.

Enforcing normalization
∫
q(x′ | x)dx′ = 1 forces λ(x) = 1. Hence q∗(x′ | x) = p+(x′|x), as

claimed.

We stress that the condition that the support of the variational density is greater than the support of
the ground truth density is fairly standard in variational inference and can be easily ensured with
appropriate architecture choices. Furthermore, we note that the proof is an adaptation of a similar
approach for showing that maximum likelihood recovers the ground truth density at optimality.

A one-dimensional example. To build intuition, consider the following one-dimensional example: The
data distribution p(x) is the standard normal and the property of interest is defined as g(x)=−(x−1)2.
For a given suboptimal sample y, the improved distribution is defined as p+(x′ |y)∝p(x′)I

(
g(x′)>

g(y)
)
. We now try to compute the conditional expectation f∗(y)≈E

[
x′ |g(x′)>g(y)

]
, the probability

p
(
g(x′)>g(y)

)
, and comparison of the quality g(y) to the average quality of improved samples. From

Figure 2, we observe a few things: (i) Conditional Expectation: When y is far from the optimal region
(x≈ 1), the expected superior x′ is significantly higher. As y nears the optimum, the improvement
diminishes. (ii) Probability of Improvement: The likelihood of finding a superior sample decreases as y
approaches the optimal quality and (iii) Quality Comparison: The plot shows that the improved samples
not only exhibit higher x′ values but also consistently have enhanced quality g(x′) relative to g(y).
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Figure 2: Left: Conditional expectation f∗(y) = E[x′ | g(x′)> g(y)] as a function of the starting
sample y. This panel illustrates that when y is far from the ideal (i.e., lower quality), the expected
superior sample x′ is significantly higher, indicating a large potential for improvement. Center:
Probability p(g(x′)>g(y)) of finding a superior sample x′ increases for lower-quality y and decreases
as y approaches the optimal quality. Right: Comparison of the original property g(y) with the mean
property value of the superior samplesE[g(x′) |g(x′)>g(y)] reveals that the improved samples indeed
possess higher quality.
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3.2 Matched generative models

Given an initial dataset D = {(xi, g(xi)}ni=1, xi ∈ X, g(xi) ∈ R and a set of constraints
C(x,x′) : X×X→ {True,False}, we construct a matched dataset M = {(xi,x′i)}Ni=1, following
Tagasovska et al. [19]:

M=
{
(x,x′)∈X×X : g(x′)>g(x)∧C(x,x′)

}
, (2)

where x and x′ are elements of D. By construction, M contains samples drawn from p+(x′ |x)p(x).
We stress that typically the matched dataset M has the attractive property that it is significantly larger
than the initial dataset D, i.e.N>n, which is a particularly desirable in the low-data regime.

Equipped with Theorem 1 and matched datasets (2), our goal is to learn a conditional generator
qθ(x

′ | x), parameterized by θ, that approximates the improved distribution p+(x′|x). This is done
by minimizing the following loss:

L(θ,M)=−
∑

(x,x′)∈M

logqθ(x
′ |x). (3)

The minimization of L(θ,M) aligns the generative process with the desired improvement through
conditional density estimation, bypassing the need for an explicit property predictor. In some cases
(e.g. discrete data), one can directly parametrize the likelihood above. When that is not easily feasible,
we resort to approximating it. Next, we show how we can adapt off-the-shelf models to sample from
the conditional distribution of interest. We note that our approach is fairly general and can similarly
be applied to other generative models, such as autoregressive or diffusion models.

Matched PropEn (mPropEn). PropEn [19] leverages matched datasets to approximate the gradient
of the property of interest by minimizing a matched reconstruction loss, between a sample with low
property and its higher-value match. The trained model is used to sample designs by “following the
gradient”: given an initial seed, the model is applied iteratively, generating one sample per iteration
step. When data is discrete, the matched reconstruction loss is the negative log-likelihood loss in (3).
Here we extend the gradient-based PropEn into an instantiation of matched generative models3: we
sample set of designs from the logits of the model (by choosing an appropriate temperature).

Matched variational auto-encoder (mVAE). We instantiate qθ(x′ |x) as a latent-variable model
defined as:

qθ(x
′ |x)=

∫
pψ(x

′ |x,z)qϕ(z |x,x′)dz,

parameterized by θ=(ϕ,ψ), where ϕ and ψ are parameters of the encoder and decoder, respectively.
Training is done by minimizing the following negative ELBO [21, 53]:

LmVAE(θ,M)=−
∑

(x,x′)∈M

Eqϕ(z|x,x′)logpψ(x
′ |x,z)+KL

(
qϕ(z |x,x′)∥N(z;0,Id)

)
, (4)

where N(z;0,Id) is the standard d-dimensional normal distribution. This objective is a lower bound
of the maximum-likelihood problem in Theorem 1. Hence, the mVAE approximates the optimal
density while providing a tractable latent representation and sampling mechanism. We sample designs
following the standard (conditional) VAE approach [21, 54]: given a query seed x, sample z from
the prior, then forward through the decoder to get approximated samples from pψ(x

′|x,z).
Matched flow matching (mFM). We use a continuous normalizing flow [55] to generate samples
from the improved conditional distribution by, given an initial seed, (i) first sample from an (easy)
source distribution p0, (ii) then transform it into a sample from the desired target distribution p+(x′|x)
by solving an ODE.

Until recently, continuous normalizing flows have been trained by directly optimizing the maximum
likelihood objective of Theorem 1. However, recently practitioners have switched to the flow
matching objective as it allows simulation-free training and tends to produce higher likelihood in
practice [22, 56, 57]. In flow matching, one uses a time-dependent velocity field vθt (x

′
t,x), with

t∈ [0,1], and x′t an intermediate sample from the probability path pt(x′t|x) that defines the velocity

3We abuse notation by calling this model “matched PropEn”, since [19] also leverages matched datasets. The
difference is how we use the model to sample designs.
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field. We follow [22] and choose the linear probability path. The velocity field is learned by adapting
the conditional flow matching loss [22]—that matches the parameterized velocity to the optimal
velocity that transports p0 to p+(·|x)—to our setting:

LmFM(θ,M)=
∑

(x,x′)∈M

Et∼U(0,1),x′
0∼p0 ||v

θ
t (x

′
t,x)−(x′−x′0)||2, (5)

where x′t=(1−t)x′0+tx′. In case data is discrete, we can equivalently use the discrete flow matching
loss [58, 59]. We sample improved designs by solving the ODE ẋ′t= vθt (x

′
t,x), where x′0∼ p0 and

x′1 is an (approximate) sample from p+(x′|x).
Matched walk-jump sampling (mWJS). Walk-jump sampling [23] is a score-based generative model
that approximate samples fromp+(x′|x) by following a two-step procedure, given a (usually high) noise
level σ: (i) sample from the smooth distribution p(y|x)=p+(x′|x)⋆N(0,σ2Id), (ii) then estimate sam-
ples x̂=E(x|y). We approximate the score function with conditional denoiserDθ :Rd×Rd→Rd, a
neural network parameterized by θ, that takes as input pairs (y,x) and outputs an estimated clean version
of x′ (the clean version of the noisy design). The denoiser is trained by minimizing the following loss:

LmWJS(θ,M)=
∑

(x,x′)∈M

Eε∼N(0,Id)||Dθ(x
′+σε,x)−x′||2. (6)

Following learning the conditional denoiser, we approximate the score function p(y|x) using the
conditional version of Tweedie-Miyasawa formula [60, Proposition 1], i.e.,

∇log p(y|x)≈sθ(y|x) :=(Dθ(y,x)−y)/σ2.

We then leverage the (learned) conditional denoiser (Dθ) and the score function (sθ) to generate
designs (x′) conditioned on seeds (x):

(i) (init.) pick an initial seed x and initialize y0 with noise.
(ii) (walk) sample yk∼p(y|x) with Langevin MCMC with discretization step δ4:

yk+1=yk+δsθ(y|x)+
√
2δεk, εk

iid∼N(0,Id).

(iii) (jump) generate clean designs at arbitrary stepK: x′K←Dθ(yK ,x).

Note that the least-squares loss (6) does not correspond to maximum likelihood; however, samples
from this model are approximate draws from p+(x′|x). The degree of this approximation is controlled
by σ [62]. In practice, σ plays the role of a regularizer, both for learning a smoother density and for
easing the problem of sampling. Due to the simplicity of this scheme (σ is the main hyperparameter),
it has proven to be an effective sampling strategy in practical applications [63, 30, 60, 64].

3.3 Iterative sampling

Our matched generative models sample designs, given seeds, with improved property and satisfying
constraints C(x,x′). They are amenable to iterative optimization and, in practice, we apply the
sampling procedure multiple times, (implicitly) guiding designs toward higher property values, until
some criterion is reached (e.g., the number of iteration, a certain value on the property). Similar
to [19], and unlike e.g. [12, 14], our iterative optimization approach does not rely on any auxiliary
discriminative models. Unlike [19], the matched models generate a population of designs at each
iteration. We propose a simple iterative process: x′k+1 ∼ p+(·|x′k), where x′k is an element of design
set Dk and k=0,1,...,K. Starting from a set of seeds D0 = {xi}Ni=1 (including the case of a single
seed), we get a population of improved designs D1 after the first iteration, which are then used as seeds
on the following iteration and the process is repeated. The samples on iteration k+1 should have a
better property than the samples on iteration k, while still satisfying additional constraints. Algorithm 1
in appendix describes a simple pseudo-code for this procedure.

4The kinetic Langevin MCMC [61] has better mixing properties, which we do not discuss here due to space.
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3.4 Iterative training on self-generated data

Figure 3: Iterative training with pseudo-matches.

Starting from a small set of N0 true matched
data points M0={(x0,x′0)i}

N0
i=1, for every step

k the model generates new samples optimized
for desired properties and pairs them with their
original inputs to form pseudo-matched exam-
ples {(xk,x′k)i}

Nk
i=1. These synthetic matches

are then merged back into the training set, Mk←
Mk−1∪{(xk,x′k)i}

Nk
i=1, effectively enlarging the

dataset. This iterative cycle—generate, match,
retrain—enables the model to (i) refine its im-
proved target distribution and (ii) explore regions
of data space beyond the original manifold. As a result, generative performance steadily improves: the
model learns from its own best guesses, sharpens its ability to produce high-value samples, and is able
to extrapolate property values than could not have been achieved with the initial, limited ground-truth
set alone. This procedure is summarized in Figure 3 and Algorithm 2.

Our approach draws from classic semi-supervised pseudo-labeling methods [65, 66] and their modern
successors in generative contexts like FixMatch [67], where models reuse their own predictions for
training models for supervised tasks. While recent studies highlight failure modes in high-capacity
large language models—regression to overly common patterns and failure to explore richer outputs
[68, 69]—our work contrasts by focusing on sparse, low-data settings (e.g. early-stage drug or antibody
design). Here, we use iterative pseudo-matching to bootstrap new data pairs, mitigate regression to the
mean, and push property values beyond the original training manifold, crucially operating without the
oracles or pruning methods prevalent in many LLM-based model collapse solutions.

4 Experimental results
We evaluate the effectiveness of our models on two in silico offline (non-sequential) settings related to
protein design. First, we compare our model examples with baselines on a protein fitness optimization
benchmark, focusing on subdomains of AAV and GFP proteins (Section 4.1). Then, we show how
iterative training on self-generated data can push the boundaries of the designs’ properties beyond their
scope in the training set (Section 4.2). We emphasize our approach is general and can be applied in
modalities other than biological sequences, illustrated on a MNIST toy task presented in Appendix F.

4.1 Protein fitness optimization

Datasets. We evaluate the performance of our model on two important protein subdomain datasets:
adeno-associated virus (AAV) [70] and green fluorescent protein (GFP) [71]. The former measures the
ability of the AAV to package a DNA payload, for applications in e.g. gene delivery, while the latter’s
fitness is its fluorescence properties, useful for e.g. biomarkers. AAV and GFP datasets contain 44,156
and 56,806 pairs of amino acid sequences and experimentally measured property, respectively.

We use the benchmark proposed by Kirjner et al. [14], which contains functional segments of length
L=28 and L=237 amino acids for AAV and GFP, respectively. Following common practice, the
protein sequences are one-hot encoded over a dictionary of 20 amino acids. The optimal fitness set
for each dataset is defined as the top 99th percentile of experimental data with the highest measured
property. We consider the two splits proposed by the authors—“medium” and “hard” splits—with
2,139/3,448 samples for AAV and 2,828/2,426 for GFP. The medium split is a subset of the data
containing the 20th-40th percentiles that are 6 edit distances or more from any sample in the optimal
fitness set. The hard split contains the lowest 30th percentiles that are 7 mutations or more away
from the optimal fitness set. Similar to [19], we consider the following constraints when creating
the matched datasets for our models: C(x,x′) = dist(x,x′)<∆x∧(g(x′)−g(x)<∆g), where we
consider Levenshtein distance, ∆x of 5 and 10 and ∆g of .2 and .05 (before normalization) for AAV
and GFP tasks, respectively. These thresholds were selected based on an ablation conducted with one
model variant, mWJS, on the medium splits (see Appendix C.2).

Baselines. We compare our GPE models proposed in the previous section with a variety of methods
in the offline optimization setting5: GFlowNets (GFN-AL) [72], model-based adaptive sampling

5The baseline results are taken from [14].
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(CbAS) [7], greedy search (AdaLead) [8], a simple Bayesian optimization baseline (BO-qei) [73] (using
the implementation of [51]), conservative model-based optimization (CoMs) [9], proximal exploration
(PEX) [28], Gibbs with gradients [40] (GWG) adaptation from [14] and its labeled-smoothed version
(GGS) [14]. We emphasize that, unlike our models, all baselines rely on a discriminative model either
as part of the sampling process or as a way to select designs at each iteration.

Evaluation and metrics. Following [72, 14], each method starts the optimization process with 128
seeds,X={xi}, and generates 128 designs,X

′
={x′i}, ideally with higher fitness than the initial seeds.

For our experiments, we used the top 128 seeds from each dataset, but as shown in the Appendix C.3,
our method is robust and performs well regardless of the initial seed selection.

The fitness of generated designs are approximated with a fitness predictor, ĝ. We use the fitness
predictor (and model weights) from [14]. This (pseudo-)oracle is a 1D convnet trained on all wet-lab
data provided by [70, 71] and used only for evaluation6. The fitness is min-max normalized on all tasks.
For fair comparison with previous work, we use the same metrics as in [14]7. Given the set of generated
designs, we compute: Fitness=median({ĝ(x′i)|x′ ∈X

′}), the median of the approximated fitness
predicted by the pseudo-oracle (higher is better), Diversity=median({dist(x,x̃) |x,x̃∈X ′

,x ̸= x̃}),
the median of the Levenshtein distance between every pair of sequence on the generated set, and
Novelty=median({η(x′i,X)}128i=1)), where η(x,X)=min({dist(x,x̃) | x̃∈X,x ̸= x̃}) is the minimum
distance of sample x to any starting seed inX . We are interested in designs that have higher fitness,
while diversity and novelty are shown to assess exploration/exploitation tradeoffs. As pointed by [14],
random sequences would provide very high diversity and novelty and unreliable (predicted) fitness.

Implementation details. For the iterative sampling, we start with 128 seeds from the training set
(similar to other baselines) and sample designs according to Algorithm 1 for K =20 iterations. At
each iteration, we sample a pool of M = 2560 designs and reject the repeated ones and those that
have a Levenshtein distance larger than 10 from any seed. On the final iteration, we randomly pick
128 samples from the last pool of designs. For details on the architecture, training and sampling
hyperparameters of our models, see Appendix B.3.

Results. Table 1 and Table 2 compare our matched generative models with baselines on both splits of
AAV and GFP datasets, respectively. Our matched generative models achieve similar or better results
than baselines on most tasks, while being conceptually simpler and without relying on any external
predictor. We remark that the main contribution of the best performing baseline (GSS), i.e. graph-based
smoothing of the fitness landscape, is orthogonal to our approach and could potentially be integrated to
our matched models to further improve results.

Figure 4 compares one of our proposed models, mWJS, to its unmatched counterparts, akin to a
simplified version of [30]. The two models have the same architecture and hyperparameters, the
only difference being that the former is conditioned on the matched dataset while the latter is an
unconditional model. It clearly illustrates the benefits of our approach: the median fitness of designs
generated by the matched model increases as we do more sampling iterations (until it plateaus), while
the fitness of the unmatched one remains mostly unchanged. Table 3 and Table 4 (appendix) shows how
the matched version of the generative models improve over the unconditional version for the generative
models considered. Finally, Figure 8 (appendix) shows quantitative examples of how the distribution
changes over iterations starting from randomly chosen single seeds (not seen during training).

4.2 Iterative training on self-generated data

Dataset. In this task, we focus on optimizing therapeutic proteins—specifically, antibodies—using the
mutagenesis library introduced in [74]. This dataset covers three different antigen targets; here, we
concentrate on the HER2 subset8. Physicochemical properties such as hydrophobicity and electrostatic
charge strongly influence a molecule’s developability profile, impacting key attributes like viscosity
and specificity [75]. Unlike binding affinity or expression, which lack reliable computational proxies,
these physicochemical features can be estimated in silico via closed-form metrics that correlate well
with experimental measurements. For clarity, we use charge at given pH of a protein to illustrate the

6Using trained models to approximate fitness is obviously unreliable and should be taken with a grain of salt. It
does provide, however, a convenient way to compare different methods in a toy-task setting.

7We use the implementation provided by the authors in https://github.com/kirjner/GGS.
8Human epidermal growth factor receptor 2, oncogene with an important role in the development and progres-

sion of certain aggressive types of breast cancer.
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Medium difficulty Hard difficulty

Method Fitness Diversity Novelty Fitness Diversity Novelty
GFN-AL [72] 0.20 (0.1) 9.6 (1.2) 19.4 (1.1) 0.10 (0.1) 11.6 (1.4) 19.6 (1.1)
CbAS [7] 0.43 (0.0) 12.7 (0.7) 7.2 (0.4) 0.36 (0.0) 14.4 (0.7) 8.6 (0.5)
AdaLead [8] 0.46 (0.0) 8.5 (0.8) 2.8 (0.4) 0.40 (0.0) 8.5 (0.1) 3.4 (0.5)
BOqei [73] 0.38 (0.0) 15.2 (0.8) 0.0 (0.0) 0.32 (0.0) 17.9 (0.3) 0.0 (0.0)
CoMS [9] 0.37 (0.1) 10.1 (5.9) 8.2 (3.5) 0.26 (0.0) 10.7 (3.5) 10.0 (2.8)
PEX [28] 0.40 (0.0) 2.8 (0.0) 1.4 (0.2) 0.30 (0.0) 2.8 (0.0) 1.3 (0.3)
GWG [40] 0.43 (0.1) 6.6 (6.3) 7.7 (0.8) 0.33 (0.0) 12.0 (0.4) 12.2 (0.4)
GGS [14] 0.51 (0.0) 4.0 (0.2) 5.4 (0.5) 0.60 (0.0) 4.5 (0.5) 7.0 (0.0)

GPE (ours)
mPropEn 0.52 (0.02) 6.4 (0.7) 6.0 (0.7) 0.38 (0.04) 8.7 (0.7) 7.8 (0.7)
mVAE 0.48 (0.02) 9.5 (0.3) 6.0 (0.0) 0.38 (0.04) 12.0 (1.2) 7.3 (0.8)
mFM 0.52 (0.01) 6.2 (0.2) 5.6 (0.6) 0.35 (0.02) 6.6 (0.3) 5.2 (0.5)
mWJS 0.53 (0.01) 5.2 (0.2) 5.6 (0.6) 0.54 (0.04) 4.6 (0.7) 6.6 (0.5)

Table 1: AAV benchmarks results. Results are shown with mean/standard deviation across 5 runs. We
bold and underline the best and second best fitness score, respectively. Unlike our models (bottom),
all baselines use discriminative model to guide sampling. Details about baselines and metrics can be
found in Section 4.1.

Medium difficulty Hard difficulty

Method Fitness Diversity Novelty Fitness Diversity Novelty
GFN-AL [72] 0.09 (0.1) 25.1 (0.5) 213 (2.2) 0.10 (0.2) 23.6 (1.0) 214 (4.2)
CbAS [7] 0.14 (0.0) 9.7 (1.1) 7.2 (0.4) 0.18 (0.0) 9.6 (1.3) 7.8 (0.4)
AdaLead [8] 0.56 (0.0) 3.5 (0.1) 2.0 (0.0) 0.18 (0.0) 5.6 (0.5) 2.8 (0.4)
BOqei [73] 0.20 (0.0) 19.3 (0.0) 0.0 (0.0) 0.00 (0.5) 94.6 (71) 54.1 (81)
CoMS [9] 0.00 (0.1) 133 (25) 192 (12) 0.00 (0.1) 144 (7.5) 201 (3.0)
PEX [28] 0.47 (0.0) 3.0 (0.0) 1.4 (0.2) 0.00 (0.0) 3.0 (0.0 1.3 (0.3)
GWG [40] 0.10 (0.0) 33.0 (0.8) 12.8 (0.4) 0.00 (0.0) 4.2 (7.0) 7.6 (1.1)
GGS [14] 0.76 (0.0) 3.7 (0.2) 5.0 (0.0) 0.74 (0.0) 3.6 (0.1) 8.0 (0.0)

GPE (ours)
mPropEn 0.62 (0.02) 4.2 (0.3) 8.0 (0.4) 0.88 (0.02) 2.8 (0.2) 7.00 (0.0)
mVAE 0.84 (0.03) 1.9 (0.2) 7.0 (0.7) 0.78 (0.04) 1.3 (0.2) 7.5 (0.6)
mFM 0.50 (0.03) 5.3 (0.2) 7.0 (0.0) 0.55 (0.04) 5.4 (0.1) 7.7 (0.5)
mWJS 0.76 (0.03) 3.2 (0.1) 6.0 (0.0) 0.78 (0.02) 2.9 (0.2) 7.0 (0.0)

Table 2: GFP benchmarks results. Results are shown with mean/standard deviation across 5 runs. We
bold and underline the best and second best fitness score, respectively. Unlike our models (bottom),
all baselines use discriminative model to guide sampling. Details about baselines and metrics can be
found in Section 4.1.

benefits of self-training with exact evaluation. Each antibody is represented in AHo numbering format
[76], yielding one-hot encoded sequences of length 298. From the original training set, we randomly
select 1,000 examples to mirror the low-data regimes common in real-world drug discovery—often on
the order of only a few hundred samples. We use ∆x=10 and ∆g=0.05 for matching constraints.

Metrics. We evaluate the performance in terms of per-design metrics: average improvement (AI), the
difference in property value between each design and its corresponding seed, and ratio of improvement
(RI), the proportion of designs which have improved property values compared to their seeds.

Implementation details. Our architecture and training procedures follow Tagasovska et al. [19]. The
overall pipeline is illustrated in Figure 3. At round k = 1, we train GPE models on the dataset of
true matched points, generated fromN0=400 sequences, and evaluate on a held-out test set of 100
examples. Then, for each round k (for a total ofK=4 rounds), we sample new designs, generate new
pseudo-match pairs, update the training set and retrain the models.
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(a) AAV hard split (b) GFP hard split

(b) GFP hard split(a) AAV hard split

Figure 4: Normalized fitness per iteration (for a total of 20 iterations) for AAV (a) and GFP (b) hard
splits. We show results for WJS (red) and mWJS (blue). The dashed lines correspond to the fitness of
training set sample with maximum fitness. For each iteration, the median and 25-75 percentiles are
shown. We start with 128 seeds from training set (iteration 0) and iteratively sample designs for a total
of 20 iterations.

Figure 5: Iterative training with three GPE models starting from only 400 examples. Each panel shows
how RI (left) and AI (right) metrics evolve over four rounds. The dashed lines show performance of a
model trained on 1,000 samples. All methods rapidly surpass this baseline by round 2 and continue to
improve until saturating around round 4.

Results. Figure 5 demonstrates that across three GPE variants, when starting from only 400 seed
sequences, each successive self-training iteration outperforms a baseline trained on 1,000 true examples,
both in the fraction of improved designs and in average property gain. Moreover, with each round, the
property ceiling rises until it plateaus around round 4, consistent with our limited initial dataset. These
results underscore the power of iterative self-training in low-data regimes typical of drug discovery.
Appendix D.1 shows an ablation comparing our method with a version where designs for each round
are selected using a (trained) predictor or the ground-truth oracle.

5 Conclusion
We introduced generative property enhancer (GPE), a novel approach for guiding generative models
that circumvents the need for explicit discriminative models, which are often unreliable in low-data
regimes and for tail-end distribution properties. GPE offers a simple, scalable, end-to-end, and broadly
adaptable solution compatible with diverse generative models and data representations. GPE achieves
competitive performance in a standard offline (non-sequential) protein fitness optimization benchmark
and can be iteratively trained on self-generated data, successfully applied to an antibody property
optimization task.

Our work shares similar limitations to related approaches. First, GPE currently focuses on single-
property enhancement, which may not fully meet industry expectations for designs that must simul-
taneously adhere to multiple properties of interest. Second, our current validation has thus far been
conducted on in silico benchmarks. Finally, the iterative sampling process involves some hyperparam-
eter tuning (e.g., number of iteration steps, number of seeds per step). We observed, however, that
these hyperparameters are transferable between the protein tasks studied, suggesting some degree of
robustness. Future work will focus on extending our framework to multiple-property optimization,
leveraging domain-specific knowledge for targeted applications, and experimenting with multi-modal
representations.

10



Broader Impact

Design optimization is an important problem in many scientific applications, such as protein engi-
neering, synthetic biology, materials, environment and molecule design. These are very long and
challenging endeavors that involve many steps to achieve success. In this paper we propose an approach
to this problem, which deals with one of these steps. There is still a lot of work that needs to be done to
validate these kinds of models in practice (e.g., lab experimental validation, clinical trials, technological
advances, etc). That being said, if successful, advances in this field can directly impact quality of
human life. Like many other powerful technologies, we need to ensure that these models are deployed
in ways that are safe, ethical, accountable and exclusively beneficial to society.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [Yes]

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: [Yes]

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]
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Justification: Section 3.1

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
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Answer: [Yes]

Justification: Source code provided to the submission and an updated version will be released
if accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4 and appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See results on Section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: Appendix B.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [Yes]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: [Yes]

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: They are properly cited but license not mentioned. Kirjner et al [14] does not
cite any license on their benchmark. See https://github.com/kirjner/GGS.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?
Answer: [NA] .
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A 2D toy task

Here, we analyze the behavior of one of our models—the matched walk-jump sampling—on a simple
task in 2 dimensions. We start with a dataset of 186 points whose property value increases as the points
move counter clockwise on the spiral. We then create the matched dataset considering a threshold
∆x=0.5, ∆y=0.01 and the Euclidean distance between points, with a total of 498 pairs (we use 401
for training). Figure 6 shows the initial and the matched dataset. We proceed by training a mWJS (we
use a simple 2 layers MLP as the denoiser) on the matched dataset and use this model to sample new
points with (hopefully) increased properties.

(a) Initial dataset (b) Matched dataset

(a) Initial dataset (b) Matched dataset

Figure 6: (a) Initial dataset, 186 points. (b) Matched dataset, 498 pairs. The data coordinates are
between -2 and 2 and the property values range from 0 to 1, increasing counter-clockwise.

Figure 7 shows examples of generated designs following our iterative sampling over 50 optimization
iterations, starting from unseen test points. We observe exactly what we would expect: (i) the generated
samples remain on the manifold of data, (ii) the property of the samples increase as we sample for more
iterations, and (iii) samples at each iteration are diverse.
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Figure 7: Examples of generated samples with our model for different initial seeds (marked as a cross
on the plots). Samples from each iteration are color-coded (blue for first iteration, yellow for the last).
The generated samples (i) remain on the manifold of data, (ii) are diverse, and (iii) increase property as
we increase the number of iterations.
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B Implementation details

B.1 Iterative sampling algorithm

See Algorithm 1.

Algorithm 1: Iterative Sampling
Data: Model qθ, seeds S={xi}ni=1, n iterationsK, n samples per iterationM , distance threshold

δ, n designsN .
Result: Designs {x′i}Ni=1.

1 D0←S;
2 for k←0 toK−1 do

// 1. Sample M designs given Dk

3 Dk+1={x′i}Mi=1∼qθ
(
· |Dk);

// 2. rejection step
4 Dk+1←unique(Dk+1);
5 Dk+1←{x|dist(x,x̃)<δ,x∈Dk+1,x̃∈S};
6 end for
7 DK←choose_random(DK ,N) // N random samples from pool of designs
8 return DK

B.2 Iterative training on self-generated data

See Algorithm 2.

Algorithm 2: Iterative training on self-generated data

Data: Initial parameters θ(0); data distribution p(x); conditional generator qθ(x′ |x);
neighborhood radius ∆x; iterationsNiter; samples per roundM ; loss L(θ;·); initial
matched dataset M(0).

Result: Trained parameters θ(Niter).
1 for k←0 toNiter−1 do

// 1. Generate candidate samples

2 Draw {xi}Mi=1
i.i.d.∼ p(x);

3 For each i, draw x′i∼qθ(k)(x′ |xi);
// 2. Filter / enforce neighborhood (and optional property)

4 D(k)←
{
(xi,x

′
i) :d(xi,x

′
i)≤∆x ∧ g(x′i)>g(xi)

}
;

// (Optional) discriminator/oracle filter: keep only (xi,x
′
i)∈D(k) with

score s(xi,x′i)≥τ
// 3. Augment training set

5 M(k+1)←M(k)∪D(k);
// (Optional) deduplicate near-duplicates in M(k+1)

// 4. Retrain on full set (real + pseudo-matches)

6 θ(k+1)←argmin
θ

L
(
θ;M(k+1)

)
(initialized at θ(k));

7 end for
8 return θ(Niter)

B.3 Matched generative models implementation details

The models on this paper were trained using single A100 Nvidia GPUs and 4 CPU workers per model.
Training of different models varies, but they all were trained on less than 1 day. The hyperparameters
for training and sampling are the same for all tasks, unless stated differently. They were chosen using a
subset of the AAV hard task.
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mVAE. We use the ResNet architecture proposed in [19], which has shown to be an efficient encoder-
decoder framework for protein design. We extend this to a matched version by implementing a
conditional VAE, with the conditioning on x being concatenated to z the latent representation. We have
one layer of one-hot encoding, followed by 3-layer MLP resnet blocks with internal layers of size 128.
Each mVAE was trained with Adam, learning rate 1e−4 for AAV and antibodies, and, 1e−5 for GFP,
and train for 500 epochs each.

mWJS. Similar to [30], we model amino acid sequences (both seeds and designs) as one-hot encoding
lying on the continuous space of dimension d=20×L. We chose a noise levelσ= .5 and generate noisy
samples by adding gaussian noise to designs, i.e., y=x′+σε, ε∼N(0,Id). We adapt the architecture
of the condition denoiser used for conditional walk-jump sampling from [60] to our setting, i.e., we
modify their architecture to be applied to 1D sequences instead of 3D voxel grids. First we pad the
two inputs (noisy design y and clean seed x) so that they have lengths divisible by 8 (required for the
denoiser) so thatL=32 for AAV dataset, and 240 for GFP. The padded inputs are then forwarded through
a single 1D conv (with kernel size 1) and added together (or we just encode y in the unconditional
setting). The resulting embedding is then forwarded through a 1D U-Net. Here, we adapt the 2D unet
proposed by [77] to our 1D setting9. We remove the noise-conditioning, as our denoiser is trained on a
single noise level. The architecture starts with 32 and contains 4 resolution levels, each level containing
4 residual blocks. At each resolution level, we downsample (upsample in the case of decoder) the
sequence embedding by two while doubling (halving for the decoder) the number of channels. The two
last layers of the encoder (two first layers of the decoder) contain self-attention blocks, similar to [77].
The denoiser model has a total of 3.8M parameters, and it is trained with batch size of 256, learning rate
1e−3, Adam [78] optimizer and a total of 5,000/1,000 epochs for AAV and GFP, respectively.

Sampling is done following the conditional walk-jump sampling from [60] (see Algorithm 1 in the
paper). We use underdamped Langevin MCMC with the discretization scheme proposed by [61] with
step size δ=σ/2 and set γ=1/δ. Each iteration consists of two walk steps followed by a jump step,
which approximates improved designs. The chains in the first iteration are initialized with a seed from
the initial set of seeds and uniform + gaussian noise, (x,y0), where y0=UId(0,1)+N(0,σ2Id). Each
iteration consists of 2 walk steps followed by a jump step, which generates the new sets of design for
iteration i. We use the designs generated at iteration i to condition the chains on iteration i+1, until we
reach 20 iterations. Note that we do not re-initialize the noisy seeds y at each iteration: they keep being
updated as the MCMC chain progresses.

mFM. Similar as above, we use the same data representation and the unet architecture of [77] adapted to
the 1D setting. The conditioning mechanism is identical to the original implementation: at each scale we
integrate embeddings for the time t and seed x (instead of the class label, as in the original architecture).
As we represent molecules as discrete data, we use the discrete flow matching [58, 59] variant. In
preliminary experiments, we observed the uniform source distribution p0 achieved better performance
than the masked distribution (where all tokens are masked). We use the implementation from [57]10, and
in particular, their proposedMixtureDiscreteProbPath path withPolynomialConvexScheduler
scheduler (n=2) and the MixturePathGeneralizedKL loss. We also use their provided ODE solver
with 32 steps (ConditionalMixtureDiscreteEulerSolver). Similar to the mWJS variant, we
train for 5,000/1,000 epochs for AAV and GFP, respectively, we use the learning rate of 1e−3, Adam
optimizer and batch size 256.

C Additional results on protein fitness

C.1 Ablation study: Comparison between unconditional models and matched generative
models

Table 3 and Table 4 below show empirically the advantage of our proposed method. In this experiment,
the architecture and training/sampling hyperparameters are the same for both the unconditional and the
matched models (the only difference being the matched conditioning on the latter).

9We use the official implementation provided by the authors in https://github.com/NVlabs/edm2.
10We use the codebase provided by the authors: https://github.com/facebookresearch/flow_

matching.
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Medium difficulty Hard difficulty

Method Fitness Diversity Novelty Fitness Diversity Novelty
VAE 0.39 (0.01) 12.2 (0.3) 5.3 (0.6) 0.30(0.02) 14.8 (0.4) 5.0 (0.0)
mVAE 0.48 (0.02) 9.5 (0.3) 6.0 (0.0) 0.38 (0.04) 12.0 (1.2) 7.3 (0.8)
FM 0.35 (0.00) 14.4 (0.4) 6.2 (0.5) 0.27 (0.00) 16.8 (0.2) 8.5 (0.5)
mFM 0.52 (0.01) 6.2 (0.2) 5.6 (0.6) 0.35 (0.02) 6.6 (0.3) 5.2 (0.5)
WJS 0.37 (0.01) 14.1 (0.3) 6.8 (0.5) 0.28 (0.00) 17.3 (0.3) 9.1 (0.3)
mWJS 0.53 (0.01) 5.2 (0.2) 5.6 (0.6) 0.54 (0.04) 4.6 (0.7) 6.6 (0.5)

Table 3: Comparison between (unconditional) models and matched generative models on AAV
benchmarks results. Results are shown with mean/standard deviation across 5 runs.

Medium difficulty Hard difficulty

Method Fitness Diversity Novelty Fitness Diversity Novelty
VAE 0.74 (0.05) 1.3 (0.1) 6.3 (0.6) 0.31 (0.02) 6.2 (1.4) 11.6 (1.5)
mVAE 0.84 (0.03) 1.9 (0.2) 7.0 (0.7) 0.78 (0.04) 1.3 (0.2) 7.5 (0.6)
FM 0.14 (0.01) 11.5 (0.2) 9.2 (0.4) 0.08 (0.01) 13.3 (0.4) 11.4 (0.6)
mFM 0.50 (0.03) 5.3 (0.2) 7.0 (0.0) 0.55 (0.04) 5.4 (0.1) 7.7 (0.5)
WJS -0.02 (0.01) 83.5 (2.2) 63.7 (5.7) -0.06 (0.02) 80.2 (3.0) 61.5 (1.5)
mWJS 0.76 (0.03) 3.2 (0.1) 6.0 (0.0) 0.78 (0.02) 2.9 (0.2) 7.0 (0.0)

Table 4: Comparison between (unconditional) models and matched generative models on GFP bench-
marks results. Results are shown with mean/standard deviation across 5 runs.

C.2 Ablation study: influence of the constraint criterion

Table 5 shows ablation studies on the ∆x constraint (Levenshtein distance) for the mWJS model
on AAV medium task. We observe that fitness remains relatively stable with lower ∆x thresholds
(0.50-0.53 for ∆x in 1-7), peaking at 0.53 for ∆x values of 4, 5, and 6. As ∆x increases beyond
7, fitness notably declines, reaching 0.45 at ∆x=10. Diversity generally increases with ∆x, while
novelty shows minor fluctuations. These results indicate that a moderate range for ∆x (e.g., 4-7) yields
optimal or near-optimal fitness. Very small thresholds likely overly restrict generation, while very large
thresholds may dilute meaningful local relationships.

∆x 1 2 3 4 5 6 7 8 9 10
Fitness .52 .50 .52 .53 .53 .53 .52 .48 .46 .45
Diversity 4.3 6.0 6.0 5.7 5.2 5.3 5.9 6.8 7.3 8.2
Novelty 5.5 5.5 4.6 5.5 5.5 5.5 4.6 5.5 5.0 5.5

Table 5: Ablation study on the effect of ∆x threshold (while keeping ∆g fixed at .2) on AAV medium
for the mWJS model.

Table 6 shows ablation studies on the ∆g constraint for the mWJS model on AAV medium task. Here,
we observe that performance is stable for smaller ∆g values. However, fitness declines when ∆g

exceeds 0.8.

∆g .1 .2 .4 .8 1.0 1.2
Fitness .54 .53 .55 .51 .51 .51
Diversity 5.5 5.2 5.5 5.7 5.3 4.9
Novelty 4.7 5.6 4.7 4.7 4.7 4.7

Table 6: Ablation study on the effect of ∆g threshold (while keeping ∆x fixed at 5) on AAV medium
task.
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C.3 Ablation study: choice of initial seeds

In our main experiments, we start the iterative sampling with the top 128 seeds in the train set. Table 7
compares performance of the mWJS variant when selecting when starting with the top seeds versus
randomly choosing the initial seeds (independent of their property value).

Medium difficulty Hard difficulty

Method Fitness Diversity Novelty Fitness Diversity Novelty
fixed top seeds 0.53 (0.01) 5.2 (0.2) 5.6 (0.6) 0.54 (0.04) 4.6 (0.7) 6.6 (0.5)
random seeds 0.52 (0.02) 5.1 (0.3) 5.8 (0.4) 0.53 (0.07) 3.8 (0.7) 7.0 (0.4)

Table 7: Comparison between fixed (5 runs) vs random initial seeds (100 runs) for AAV medium and
hard tasks (mean/std reported).

We observe that the performance across all metrics (fitness, diversity, and novelty) remains consistent,
regardless of whether fixed or random seeds are used. The slight variations observed are well within
the reported standard deviations, confirming the stability of the results.

C.4 Protein fitness vs number of iterations plots

Figure 8 shows plots of protein fitness improvement vs. number of iterations starting with different
initial seeds and generating 200 designs per iteration.

D Additional results on iterative training on self-generated data

D.1 Ablation study

We performed an additional ablation, comparing our original GPE method to a version where the
selected designs for each round are conditioned on a discriminator.

Experimental Setup. We trained an ensemble of 15 discriminators, each sharing the mVAE encoder
architecture with an added classification head. These discriminators were trained to predict improve-
ment labels, I(x,x′). We used the charge at pH7 property for consistency with section 4.2. In our
first baseline (GPE + Discriminator), we filtered GPE-generated designs, x′, using the mean predicted
probability from the ensemble and retaining only designs with low prediction variance (<0.05). For
an upper bound on performance, we also created a second baseline (GPE + Oracle) where we filtered
generated designs using the ground-truth oracle.

Results. Our findings in Table 8 show that the discriminator-based filtering scheme did not improve
performance. In fact, it underperformed our original GPE method, while the oracle-filtered version
achieved a slight early-round improvement. In the table below, RI and AI are the “Ratio of Improvement”
and “Average Improvement”.

Method Round 1 (RI / AI) Round 2 (RI / AI) Round 3 (RI / AI)

GPE + Discriminator 0.57±0.022/0.83±0.018 0.67/0.92 0.67±0.017/0.90
GPE + Oracle 0.63±0.019/1.01 0.79±0.015/1.51 0.80±0.014/1.53
GPE (ours) 0.60±0.023/0.98 0.76±0.017/1.45 0.78±0.016/1.51

Table 8: Performance comparison of GPE variants across rounds. RI = Ratio of Improvement; AI =
Average Improvement.

We attribute the discriminator’s poor performance to domain shift. The discriminator was trained on
(x,x′) pairs with at most two Levenshtein edits, matching the constraints used to build the training set.
However, GPE-generated pairs in later rounds span one to ten edits, making them out-of-distribution
for the discriminator. This is reflected in the metrics presented in Table 9.
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Figure 8: Protein fitness improvement as number of iterations increase. We start from single random
seed and use the mWJS model trained on AAV hard to sample designs. The plots show the distribution
of fitness of designs for a different initial seeds not seen during training (rows) at different sampling
iterations (columns). The first column show the fitness of the initial seed.

Evaluation Set Accuracy Precision Recall Variance

On 10% Holdout Set (IID) 0.94±0.005 1.00±0.001 0.93±0.008 0.007
On GPE Designs 0.659±0.021 1.00±0.002 0.659±0.026 0.021

Table 9: Discriminator performance on IID and out-of-distribution (GPE) data.

D.2 Diversity analysis

Not all seeds are equal. For some which have more neighbors, i.e. lie in a more dense region in the
training data, the model has better chances of learning the implicit direction of improvement and
therefore more opportunity for generating diverse candidate designs. Hence, the number of pairs
around each seed at round 0, is indicative of the opportunities of improvement.

In Table 10, we notice the expected trend, that is, at each round the number of designs (diversity) per
seed goes down both in terms of mean and standard deviation.
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Statistic Round 1 Round 2 Round 3

Count 3,554 4,054 4,319
Mean 3.43 2.06 1.71
Std 14.28 7.63 5.86
Min 1.00 1.00 1.00
Max 101.00 101.00 101.00

Table 10: Descriptive statistics of GPE-generated designs across rounds.

E Wet-lab validation

As additional empirical evidence we provide a summary of wet-lab experiments comparing GPE
(mPropEn variant) against unconditional WJS [30] for improving therapeutic protein binding affinity
across eight initial seeds over three distinct targets as presented in [17]. Our model demonstrates
significantly higher and more consistent binding rates (94.6% vs. 62.2%) and design improvements
(34.4% vs. 4.8%). Additional experiments benchmarking mVAE vs mPropEn are in progress and will
be added to the manuscript as soon as available.

F Qualitative results on rotating MNIST with mWJS

To showcase that our model also works for continuous representation, we test our model on a simple
task derived from MNIST dataset. In this toy task, we artificially create a property by rotating digits
clockwise. The matched dataset is defined such that for each digit in the dataset, we apply two rotations
and give the highest property to the digit rotated with highest angle, i.e., given two random angles θ1
and θ2 s.t. θ1−θ2<30◦ and θ1>θ2, then g(R(x,θ1))>g(R(x,θ2)).

We train a matched walk-jump sampling model (using a tiny unet model as denoiser) on this dataset and
observe qualitatively what we would expect: starting from an unseen digit, the model samples digits
are increasingly rotated clockwise (that is, with higher property).

Figure 9: Qualitative results on rotating MNIST. Given an unseen digit (the first on the sequence), our
model sample digits that have higher property (i.e. are more clockwise rotated). Each figure is a single
MCMC chain generated by the masked walk-sampling model.
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